1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 54 #include <asm/uaccess.h> 55 #include <asm/unistd.h> 56 #include <asm/pgtable.h> 57 #include <asm/mmu_context.h> 58 59 static void exit_mm(struct task_struct * tsk); 60 61 static void __unhash_process(struct task_struct *p, bool group_dead) 62 { 63 nr_threads--; 64 detach_pid(p, PIDTYPE_PID); 65 if (group_dead) { 66 detach_pid(p, PIDTYPE_PGID); 67 detach_pid(p, PIDTYPE_SID); 68 69 list_del_rcu(&p->tasks); 70 list_del_init(&p->sibling); 71 __get_cpu_var(process_counts)--; 72 } 73 list_del_rcu(&p->thread_group); 74 } 75 76 /* 77 * This function expects the tasklist_lock write-locked. 78 */ 79 static void __exit_signal(struct task_struct *tsk) 80 { 81 struct signal_struct *sig = tsk->signal; 82 bool group_dead = thread_group_leader(tsk); 83 struct sighand_struct *sighand; 84 struct tty_struct *uninitialized_var(tty); 85 86 sighand = rcu_dereference_check(tsk->sighand, 87 rcu_read_lock_held() || 88 lockdep_tasklist_lock_is_held()); 89 spin_lock(&sighand->siglock); 90 91 posix_cpu_timers_exit(tsk); 92 if (group_dead) { 93 posix_cpu_timers_exit_group(tsk); 94 tty = sig->tty; 95 sig->tty = NULL; 96 } else { 97 /* 98 * If there is any task waiting for the group exit 99 * then notify it: 100 */ 101 if (sig->notify_count > 0 && !--sig->notify_count) 102 wake_up_process(sig->group_exit_task); 103 104 if (tsk == sig->curr_target) 105 sig->curr_target = next_thread(tsk); 106 /* 107 * Accumulate here the counters for all threads but the 108 * group leader as they die, so they can be added into 109 * the process-wide totals when those are taken. 110 * The group leader stays around as a zombie as long 111 * as there are other threads. When it gets reaped, 112 * the exit.c code will add its counts into these totals. 113 * We won't ever get here for the group leader, since it 114 * will have been the last reference on the signal_struct. 115 */ 116 sig->utime = cputime_add(sig->utime, tsk->utime); 117 sig->stime = cputime_add(sig->stime, tsk->stime); 118 sig->gtime = cputime_add(sig->gtime, tsk->gtime); 119 sig->min_flt += tsk->min_flt; 120 sig->maj_flt += tsk->maj_flt; 121 sig->nvcsw += tsk->nvcsw; 122 sig->nivcsw += tsk->nivcsw; 123 sig->inblock += task_io_get_inblock(tsk); 124 sig->oublock += task_io_get_oublock(tsk); 125 task_io_accounting_add(&sig->ioac, &tsk->ioac); 126 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 127 } 128 129 sig->nr_threads--; 130 __unhash_process(tsk, group_dead); 131 132 /* 133 * Do this under ->siglock, we can race with another thread 134 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 135 */ 136 flush_sigqueue(&tsk->pending); 137 tsk->sighand = NULL; 138 spin_unlock(&sighand->siglock); 139 140 __cleanup_sighand(sighand); 141 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 142 if (group_dead) { 143 flush_sigqueue(&sig->shared_pending); 144 tty_kref_put(tty); 145 } 146 } 147 148 static void delayed_put_task_struct(struct rcu_head *rhp) 149 { 150 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 151 152 perf_event_delayed_put(tsk); 153 trace_sched_process_free(tsk); 154 put_task_struct(tsk); 155 } 156 157 158 void release_task(struct task_struct * p) 159 { 160 struct task_struct *leader; 161 int zap_leader; 162 repeat: 163 tracehook_prepare_release_task(p); 164 /* don't need to get the RCU readlock here - the process is dead and 165 * can't be modifying its own credentials. But shut RCU-lockdep up */ 166 rcu_read_lock(); 167 atomic_dec(&__task_cred(p)->user->processes); 168 rcu_read_unlock(); 169 170 proc_flush_task(p); 171 172 write_lock_irq(&tasklist_lock); 173 tracehook_finish_release_task(p); 174 __exit_signal(p); 175 176 /* 177 * If we are the last non-leader member of the thread 178 * group, and the leader is zombie, then notify the 179 * group leader's parent process. (if it wants notification.) 180 */ 181 zap_leader = 0; 182 leader = p->group_leader; 183 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 184 BUG_ON(task_detached(leader)); 185 do_notify_parent(leader, leader->exit_signal); 186 /* 187 * If we were the last child thread and the leader has 188 * exited already, and the leader's parent ignores SIGCHLD, 189 * then we are the one who should release the leader. 190 * 191 * do_notify_parent() will have marked it self-reaping in 192 * that case. 193 */ 194 zap_leader = task_detached(leader); 195 196 /* 197 * This maintains the invariant that release_task() 198 * only runs on a task in EXIT_DEAD, just for sanity. 199 */ 200 if (zap_leader) 201 leader->exit_state = EXIT_DEAD; 202 } 203 204 write_unlock_irq(&tasklist_lock); 205 release_thread(p); 206 call_rcu(&p->rcu, delayed_put_task_struct); 207 208 p = leader; 209 if (unlikely(zap_leader)) 210 goto repeat; 211 } 212 213 /* 214 * This checks not only the pgrp, but falls back on the pid if no 215 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 216 * without this... 217 * 218 * The caller must hold rcu lock or the tasklist lock. 219 */ 220 struct pid *session_of_pgrp(struct pid *pgrp) 221 { 222 struct task_struct *p; 223 struct pid *sid = NULL; 224 225 p = pid_task(pgrp, PIDTYPE_PGID); 226 if (p == NULL) 227 p = pid_task(pgrp, PIDTYPE_PID); 228 if (p != NULL) 229 sid = task_session(p); 230 231 return sid; 232 } 233 234 /* 235 * Determine if a process group is "orphaned", according to the POSIX 236 * definition in 2.2.2.52. Orphaned process groups are not to be affected 237 * by terminal-generated stop signals. Newly orphaned process groups are 238 * to receive a SIGHUP and a SIGCONT. 239 * 240 * "I ask you, have you ever known what it is to be an orphan?" 241 */ 242 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 243 { 244 struct task_struct *p; 245 246 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 247 if ((p == ignored_task) || 248 (p->exit_state && thread_group_empty(p)) || 249 is_global_init(p->real_parent)) 250 continue; 251 252 if (task_pgrp(p->real_parent) != pgrp && 253 task_session(p->real_parent) == task_session(p)) 254 return 0; 255 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 256 257 return 1; 258 } 259 260 int is_current_pgrp_orphaned(void) 261 { 262 int retval; 263 264 read_lock(&tasklist_lock); 265 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 266 read_unlock(&tasklist_lock); 267 268 return retval; 269 } 270 271 static int has_stopped_jobs(struct pid *pgrp) 272 { 273 int retval = 0; 274 struct task_struct *p; 275 276 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 277 if (!task_is_stopped(p)) 278 continue; 279 retval = 1; 280 break; 281 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 282 return retval; 283 } 284 285 /* 286 * Check to see if any process groups have become orphaned as 287 * a result of our exiting, and if they have any stopped jobs, 288 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 289 */ 290 static void 291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 292 { 293 struct pid *pgrp = task_pgrp(tsk); 294 struct task_struct *ignored_task = tsk; 295 296 if (!parent) 297 /* exit: our father is in a different pgrp than 298 * we are and we were the only connection outside. 299 */ 300 parent = tsk->real_parent; 301 else 302 /* reparent: our child is in a different pgrp than 303 * we are, and it was the only connection outside. 304 */ 305 ignored_task = NULL; 306 307 if (task_pgrp(parent) != pgrp && 308 task_session(parent) == task_session(tsk) && 309 will_become_orphaned_pgrp(pgrp, ignored_task) && 310 has_stopped_jobs(pgrp)) { 311 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 312 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 313 } 314 } 315 316 /** 317 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 318 * 319 * If a kernel thread is launched as a result of a system call, or if 320 * it ever exits, it should generally reparent itself to kthreadd so it 321 * isn't in the way of other processes and is correctly cleaned up on exit. 322 * 323 * The various task state such as scheduling policy and priority may have 324 * been inherited from a user process, so we reset them to sane values here. 325 * 326 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 327 */ 328 static void reparent_to_kthreadd(void) 329 { 330 write_lock_irq(&tasklist_lock); 331 332 ptrace_unlink(current); 333 /* Reparent to init */ 334 current->real_parent = current->parent = kthreadd_task; 335 list_move_tail(¤t->sibling, ¤t->real_parent->children); 336 337 /* Set the exit signal to SIGCHLD so we signal init on exit */ 338 current->exit_signal = SIGCHLD; 339 340 if (task_nice(current) < 0) 341 set_user_nice(current, 0); 342 /* cpus_allowed? */ 343 /* rt_priority? */ 344 /* signals? */ 345 memcpy(current->signal->rlim, init_task.signal->rlim, 346 sizeof(current->signal->rlim)); 347 348 atomic_inc(&init_cred.usage); 349 commit_creds(&init_cred); 350 write_unlock_irq(&tasklist_lock); 351 } 352 353 void __set_special_pids(struct pid *pid) 354 { 355 struct task_struct *curr = current->group_leader; 356 357 if (task_session(curr) != pid) 358 change_pid(curr, PIDTYPE_SID, pid); 359 360 if (task_pgrp(curr) != pid) 361 change_pid(curr, PIDTYPE_PGID, pid); 362 } 363 364 static void set_special_pids(struct pid *pid) 365 { 366 write_lock_irq(&tasklist_lock); 367 __set_special_pids(pid); 368 write_unlock_irq(&tasklist_lock); 369 } 370 371 /* 372 * Let kernel threads use this to say that they allow a certain signal. 373 * Must not be used if kthread was cloned with CLONE_SIGHAND. 374 */ 375 int allow_signal(int sig) 376 { 377 if (!valid_signal(sig) || sig < 1) 378 return -EINVAL; 379 380 spin_lock_irq(¤t->sighand->siglock); 381 /* This is only needed for daemonize()'ed kthreads */ 382 sigdelset(¤t->blocked, sig); 383 /* 384 * Kernel threads handle their own signals. Let the signal code 385 * know it'll be handled, so that they don't get converted to 386 * SIGKILL or just silently dropped. 387 */ 388 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 389 recalc_sigpending(); 390 spin_unlock_irq(¤t->sighand->siglock); 391 return 0; 392 } 393 394 EXPORT_SYMBOL(allow_signal); 395 396 int disallow_signal(int sig) 397 { 398 if (!valid_signal(sig) || sig < 1) 399 return -EINVAL; 400 401 spin_lock_irq(¤t->sighand->siglock); 402 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 403 recalc_sigpending(); 404 spin_unlock_irq(¤t->sighand->siglock); 405 return 0; 406 } 407 408 EXPORT_SYMBOL(disallow_signal); 409 410 /* 411 * Put all the gunge required to become a kernel thread without 412 * attached user resources in one place where it belongs. 413 */ 414 415 void daemonize(const char *name, ...) 416 { 417 va_list args; 418 sigset_t blocked; 419 420 va_start(args, name); 421 vsnprintf(current->comm, sizeof(current->comm), name, args); 422 va_end(args); 423 424 /* 425 * If we were started as result of loading a module, close all of the 426 * user space pages. We don't need them, and if we didn't close them 427 * they would be locked into memory. 428 */ 429 exit_mm(current); 430 /* 431 * We don't want to have TIF_FREEZE set if the system-wide hibernation 432 * or suspend transition begins right now. 433 */ 434 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 435 436 if (current->nsproxy != &init_nsproxy) { 437 get_nsproxy(&init_nsproxy); 438 switch_task_namespaces(current, &init_nsproxy); 439 } 440 set_special_pids(&init_struct_pid); 441 proc_clear_tty(current); 442 443 /* Block and flush all signals */ 444 sigfillset(&blocked); 445 sigprocmask(SIG_BLOCK, &blocked, NULL); 446 flush_signals(current); 447 448 /* Become as one with the init task */ 449 450 daemonize_fs_struct(); 451 exit_files(current); 452 current->files = init_task.files; 453 atomic_inc(¤t->files->count); 454 455 reparent_to_kthreadd(); 456 } 457 458 EXPORT_SYMBOL(daemonize); 459 460 static void close_files(struct files_struct * files) 461 { 462 int i, j; 463 struct fdtable *fdt; 464 465 j = 0; 466 467 /* 468 * It is safe to dereference the fd table without RCU or 469 * ->file_lock because this is the last reference to the 470 * files structure. But use RCU to shut RCU-lockdep up. 471 */ 472 rcu_read_lock(); 473 fdt = files_fdtable(files); 474 rcu_read_unlock(); 475 for (;;) { 476 unsigned long set; 477 i = j * __NFDBITS; 478 if (i >= fdt->max_fds) 479 break; 480 set = fdt->open_fds->fds_bits[j++]; 481 while (set) { 482 if (set & 1) { 483 struct file * file = xchg(&fdt->fd[i], NULL); 484 if (file) { 485 filp_close(file, files); 486 cond_resched(); 487 } 488 } 489 i++; 490 set >>= 1; 491 } 492 } 493 } 494 495 struct files_struct *get_files_struct(struct task_struct *task) 496 { 497 struct files_struct *files; 498 499 task_lock(task); 500 files = task->files; 501 if (files) 502 atomic_inc(&files->count); 503 task_unlock(task); 504 505 return files; 506 } 507 508 void put_files_struct(struct files_struct *files) 509 { 510 struct fdtable *fdt; 511 512 if (atomic_dec_and_test(&files->count)) { 513 close_files(files); 514 /* 515 * Free the fd and fdset arrays if we expanded them. 516 * If the fdtable was embedded, pass files for freeing 517 * at the end of the RCU grace period. Otherwise, 518 * you can free files immediately. 519 */ 520 rcu_read_lock(); 521 fdt = files_fdtable(files); 522 if (fdt != &files->fdtab) 523 kmem_cache_free(files_cachep, files); 524 free_fdtable(fdt); 525 rcu_read_unlock(); 526 } 527 } 528 529 void reset_files_struct(struct files_struct *files) 530 { 531 struct task_struct *tsk = current; 532 struct files_struct *old; 533 534 old = tsk->files; 535 task_lock(tsk); 536 tsk->files = files; 537 task_unlock(tsk); 538 put_files_struct(old); 539 } 540 541 void exit_files(struct task_struct *tsk) 542 { 543 struct files_struct * files = tsk->files; 544 545 if (files) { 546 task_lock(tsk); 547 tsk->files = NULL; 548 task_unlock(tsk); 549 put_files_struct(files); 550 } 551 } 552 553 #ifdef CONFIG_MM_OWNER 554 /* 555 * Task p is exiting and it owned mm, lets find a new owner for it 556 */ 557 static inline int 558 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 559 { 560 /* 561 * If there are other users of the mm and the owner (us) is exiting 562 * we need to find a new owner to take on the responsibility. 563 */ 564 if (atomic_read(&mm->mm_users) <= 1) 565 return 0; 566 if (mm->owner != p) 567 return 0; 568 return 1; 569 } 570 571 void mm_update_next_owner(struct mm_struct *mm) 572 { 573 struct task_struct *c, *g, *p = current; 574 575 retry: 576 if (!mm_need_new_owner(mm, p)) 577 return; 578 579 read_lock(&tasklist_lock); 580 /* 581 * Search in the children 582 */ 583 list_for_each_entry(c, &p->children, sibling) { 584 if (c->mm == mm) 585 goto assign_new_owner; 586 } 587 588 /* 589 * Search in the siblings 590 */ 591 list_for_each_entry(c, &p->real_parent->children, sibling) { 592 if (c->mm == mm) 593 goto assign_new_owner; 594 } 595 596 /* 597 * Search through everything else. We should not get 598 * here often 599 */ 600 do_each_thread(g, c) { 601 if (c->mm == mm) 602 goto assign_new_owner; 603 } while_each_thread(g, c); 604 605 read_unlock(&tasklist_lock); 606 /* 607 * We found no owner yet mm_users > 1: this implies that we are 608 * most likely racing with swapoff (try_to_unuse()) or /proc or 609 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 610 */ 611 mm->owner = NULL; 612 return; 613 614 assign_new_owner: 615 BUG_ON(c == p); 616 get_task_struct(c); 617 /* 618 * The task_lock protects c->mm from changing. 619 * We always want mm->owner->mm == mm 620 */ 621 task_lock(c); 622 /* 623 * Delay read_unlock() till we have the task_lock() 624 * to ensure that c does not slip away underneath us 625 */ 626 read_unlock(&tasklist_lock); 627 if (c->mm != mm) { 628 task_unlock(c); 629 put_task_struct(c); 630 goto retry; 631 } 632 mm->owner = c; 633 task_unlock(c); 634 put_task_struct(c); 635 } 636 #endif /* CONFIG_MM_OWNER */ 637 638 /* 639 * Turn us into a lazy TLB process if we 640 * aren't already.. 641 */ 642 static void exit_mm(struct task_struct * tsk) 643 { 644 struct mm_struct *mm = tsk->mm; 645 struct core_state *core_state; 646 647 mm_release(tsk, mm); 648 if (!mm) 649 return; 650 /* 651 * Serialize with any possible pending coredump. 652 * We must hold mmap_sem around checking core_state 653 * and clearing tsk->mm. The core-inducing thread 654 * will increment ->nr_threads for each thread in the 655 * group with ->mm != NULL. 656 */ 657 down_read(&mm->mmap_sem); 658 core_state = mm->core_state; 659 if (core_state) { 660 struct core_thread self; 661 up_read(&mm->mmap_sem); 662 663 self.task = tsk; 664 self.next = xchg(&core_state->dumper.next, &self); 665 /* 666 * Implies mb(), the result of xchg() must be visible 667 * to core_state->dumper. 668 */ 669 if (atomic_dec_and_test(&core_state->nr_threads)) 670 complete(&core_state->startup); 671 672 for (;;) { 673 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 674 if (!self.task) /* see coredump_finish() */ 675 break; 676 schedule(); 677 } 678 __set_task_state(tsk, TASK_RUNNING); 679 down_read(&mm->mmap_sem); 680 } 681 atomic_inc(&mm->mm_count); 682 BUG_ON(mm != tsk->active_mm); 683 /* more a memory barrier than a real lock */ 684 task_lock(tsk); 685 tsk->mm = NULL; 686 up_read(&mm->mmap_sem); 687 enter_lazy_tlb(mm, current); 688 /* We don't want this task to be frozen prematurely */ 689 clear_freeze_flag(tsk); 690 task_unlock(tsk); 691 mm_update_next_owner(mm); 692 mmput(mm); 693 } 694 695 /* 696 * When we die, we re-parent all our children. 697 * Try to give them to another thread in our thread 698 * group, and if no such member exists, give it to 699 * the child reaper process (ie "init") in our pid 700 * space. 701 */ 702 static struct task_struct *find_new_reaper(struct task_struct *father) 703 { 704 struct pid_namespace *pid_ns = task_active_pid_ns(father); 705 struct task_struct *thread; 706 707 thread = father; 708 while_each_thread(father, thread) { 709 if (thread->flags & PF_EXITING) 710 continue; 711 if (unlikely(pid_ns->child_reaper == father)) 712 pid_ns->child_reaper = thread; 713 return thread; 714 } 715 716 if (unlikely(pid_ns->child_reaper == father)) { 717 write_unlock_irq(&tasklist_lock); 718 if (unlikely(pid_ns == &init_pid_ns)) 719 panic("Attempted to kill init!"); 720 721 zap_pid_ns_processes(pid_ns); 722 write_lock_irq(&tasklist_lock); 723 /* 724 * We can not clear ->child_reaper or leave it alone. 725 * There may by stealth EXIT_DEAD tasks on ->children, 726 * forget_original_parent() must move them somewhere. 727 */ 728 pid_ns->child_reaper = init_pid_ns.child_reaper; 729 } 730 731 return pid_ns->child_reaper; 732 } 733 734 /* 735 * Any that need to be release_task'd are put on the @dead list. 736 */ 737 static void reparent_leader(struct task_struct *father, struct task_struct *p, 738 struct list_head *dead) 739 { 740 list_move_tail(&p->sibling, &p->real_parent->children); 741 742 if (task_detached(p)) 743 return; 744 /* 745 * If this is a threaded reparent there is no need to 746 * notify anyone anything has happened. 747 */ 748 if (same_thread_group(p->real_parent, father)) 749 return; 750 751 /* We don't want people slaying init. */ 752 p->exit_signal = SIGCHLD; 753 754 /* If it has exited notify the new parent about this child's death. */ 755 if (!task_ptrace(p) && 756 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 757 do_notify_parent(p, p->exit_signal); 758 if (task_detached(p)) { 759 p->exit_state = EXIT_DEAD; 760 list_move_tail(&p->sibling, dead); 761 } 762 } 763 764 kill_orphaned_pgrp(p, father); 765 } 766 767 static void forget_original_parent(struct task_struct *father) 768 { 769 struct task_struct *p, *n, *reaper; 770 LIST_HEAD(dead_children); 771 772 write_lock_irq(&tasklist_lock); 773 /* 774 * Note that exit_ptrace() and find_new_reaper() might 775 * drop tasklist_lock and reacquire it. 776 */ 777 exit_ptrace(father); 778 reaper = find_new_reaper(father); 779 780 list_for_each_entry_safe(p, n, &father->children, sibling) { 781 struct task_struct *t = p; 782 do { 783 t->real_parent = reaper; 784 if (t->parent == father) { 785 BUG_ON(task_ptrace(t)); 786 t->parent = t->real_parent; 787 } 788 if (t->pdeath_signal) 789 group_send_sig_info(t->pdeath_signal, 790 SEND_SIG_NOINFO, t); 791 } while_each_thread(p, t); 792 reparent_leader(father, p, &dead_children); 793 } 794 write_unlock_irq(&tasklist_lock); 795 796 BUG_ON(!list_empty(&father->children)); 797 798 list_for_each_entry_safe(p, n, &dead_children, sibling) { 799 list_del_init(&p->sibling); 800 release_task(p); 801 } 802 } 803 804 /* 805 * Send signals to all our closest relatives so that they know 806 * to properly mourn us.. 807 */ 808 static void exit_notify(struct task_struct *tsk, int group_dead) 809 { 810 int signal; 811 void *cookie; 812 813 /* 814 * This does two things: 815 * 816 * A. Make init inherit all the child processes 817 * B. Check to see if any process groups have become orphaned 818 * as a result of our exiting, and if they have any stopped 819 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 820 */ 821 forget_original_parent(tsk); 822 exit_task_namespaces(tsk); 823 824 write_lock_irq(&tasklist_lock); 825 if (group_dead) 826 kill_orphaned_pgrp(tsk->group_leader, NULL); 827 828 /* Let father know we died 829 * 830 * Thread signals are configurable, but you aren't going to use 831 * that to send signals to arbitary processes. 832 * That stops right now. 833 * 834 * If the parent exec id doesn't match the exec id we saved 835 * when we started then we know the parent has changed security 836 * domain. 837 * 838 * If our self_exec id doesn't match our parent_exec_id then 839 * we have changed execution domain as these two values started 840 * the same after a fork. 841 */ 842 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 843 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 844 tsk->self_exec_id != tsk->parent_exec_id)) 845 tsk->exit_signal = SIGCHLD; 846 847 signal = tracehook_notify_death(tsk, &cookie, group_dead); 848 if (signal >= 0) 849 signal = do_notify_parent(tsk, signal); 850 851 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 852 853 /* mt-exec, de_thread() is waiting for group leader */ 854 if (unlikely(tsk->signal->notify_count < 0)) 855 wake_up_process(tsk->signal->group_exit_task); 856 write_unlock_irq(&tasklist_lock); 857 858 tracehook_report_death(tsk, signal, cookie, group_dead); 859 860 /* If the process is dead, release it - nobody will wait for it */ 861 if (signal == DEATH_REAP) 862 release_task(tsk); 863 } 864 865 #ifdef CONFIG_DEBUG_STACK_USAGE 866 static void check_stack_usage(void) 867 { 868 static DEFINE_SPINLOCK(low_water_lock); 869 static int lowest_to_date = THREAD_SIZE; 870 unsigned long free; 871 872 free = stack_not_used(current); 873 874 if (free >= lowest_to_date) 875 return; 876 877 spin_lock(&low_water_lock); 878 if (free < lowest_to_date) { 879 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 880 "left\n", 881 current->comm, free); 882 lowest_to_date = free; 883 } 884 spin_unlock(&low_water_lock); 885 } 886 #else 887 static inline void check_stack_usage(void) {} 888 #endif 889 890 NORET_TYPE void do_exit(long code) 891 { 892 struct task_struct *tsk = current; 893 int group_dead; 894 895 profile_task_exit(tsk); 896 897 WARN_ON(atomic_read(&tsk->fs_excl)); 898 899 if (unlikely(in_interrupt())) 900 panic("Aiee, killing interrupt handler!"); 901 if (unlikely(!tsk->pid)) 902 panic("Attempted to kill the idle task!"); 903 904 tracehook_report_exit(&code); 905 906 validate_creds_for_do_exit(tsk); 907 908 /* 909 * We're taking recursive faults here in do_exit. Safest is to just 910 * leave this task alone and wait for reboot. 911 */ 912 if (unlikely(tsk->flags & PF_EXITING)) { 913 printk(KERN_ALERT 914 "Fixing recursive fault but reboot is needed!\n"); 915 /* 916 * We can do this unlocked here. The futex code uses 917 * this flag just to verify whether the pi state 918 * cleanup has been done or not. In the worst case it 919 * loops once more. We pretend that the cleanup was 920 * done as there is no way to return. Either the 921 * OWNER_DIED bit is set by now or we push the blocked 922 * task into the wait for ever nirwana as well. 923 */ 924 tsk->flags |= PF_EXITPIDONE; 925 set_current_state(TASK_UNINTERRUPTIBLE); 926 schedule(); 927 } 928 929 exit_irq_thread(); 930 931 exit_signals(tsk); /* sets PF_EXITING */ 932 /* 933 * tsk->flags are checked in the futex code to protect against 934 * an exiting task cleaning up the robust pi futexes. 935 */ 936 smp_mb(); 937 raw_spin_unlock_wait(&tsk->pi_lock); 938 939 if (unlikely(in_atomic())) 940 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 941 current->comm, task_pid_nr(current), 942 preempt_count()); 943 944 acct_update_integrals(tsk); 945 /* sync mm's RSS info before statistics gathering */ 946 if (tsk->mm) 947 sync_mm_rss(tsk, tsk->mm); 948 group_dead = atomic_dec_and_test(&tsk->signal->live); 949 if (group_dead) { 950 hrtimer_cancel(&tsk->signal->real_timer); 951 exit_itimers(tsk->signal); 952 if (tsk->mm) 953 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 954 } 955 acct_collect(code, group_dead); 956 if (group_dead) 957 tty_audit_exit(); 958 if (unlikely(tsk->audit_context)) 959 audit_free(tsk); 960 961 tsk->exit_code = code; 962 taskstats_exit(tsk, group_dead); 963 964 exit_mm(tsk); 965 966 if (group_dead) 967 acct_process(); 968 trace_sched_process_exit(tsk); 969 970 exit_sem(tsk); 971 exit_files(tsk); 972 exit_fs(tsk); 973 check_stack_usage(); 974 exit_thread(); 975 cgroup_exit(tsk, 1); 976 977 if (group_dead) 978 disassociate_ctty(1); 979 980 module_put(task_thread_info(tsk)->exec_domain->module); 981 982 proc_exit_connector(tsk); 983 984 /* 985 * FIXME: do that only when needed, using sched_exit tracepoint 986 */ 987 flush_ptrace_hw_breakpoint(tsk); 988 /* 989 * Flush inherited counters to the parent - before the parent 990 * gets woken up by child-exit notifications. 991 */ 992 perf_event_exit_task(tsk); 993 994 exit_notify(tsk, group_dead); 995 #ifdef CONFIG_NUMA 996 task_lock(tsk); 997 mpol_put(tsk->mempolicy); 998 tsk->mempolicy = NULL; 999 task_unlock(tsk); 1000 #endif 1001 #ifdef CONFIG_FUTEX 1002 if (unlikely(current->pi_state_cache)) 1003 kfree(current->pi_state_cache); 1004 #endif 1005 /* 1006 * Make sure we are holding no locks: 1007 */ 1008 debug_check_no_locks_held(tsk); 1009 /* 1010 * We can do this unlocked here. The futex code uses this flag 1011 * just to verify whether the pi state cleanup has been done 1012 * or not. In the worst case it loops once more. 1013 */ 1014 tsk->flags |= PF_EXITPIDONE; 1015 1016 if (tsk->io_context) 1017 exit_io_context(tsk); 1018 1019 if (tsk->splice_pipe) 1020 __free_pipe_info(tsk->splice_pipe); 1021 1022 validate_creds_for_do_exit(tsk); 1023 1024 preempt_disable(); 1025 exit_rcu(); 1026 /* causes final put_task_struct in finish_task_switch(). */ 1027 tsk->state = TASK_DEAD; 1028 schedule(); 1029 BUG(); 1030 /* Avoid "noreturn function does return". */ 1031 for (;;) 1032 cpu_relax(); /* For when BUG is null */ 1033 } 1034 1035 EXPORT_SYMBOL_GPL(do_exit); 1036 1037 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1038 { 1039 if (comp) 1040 complete(comp); 1041 1042 do_exit(code); 1043 } 1044 1045 EXPORT_SYMBOL(complete_and_exit); 1046 1047 SYSCALL_DEFINE1(exit, int, error_code) 1048 { 1049 do_exit((error_code&0xff)<<8); 1050 } 1051 1052 /* 1053 * Take down every thread in the group. This is called by fatal signals 1054 * as well as by sys_exit_group (below). 1055 */ 1056 NORET_TYPE void 1057 do_group_exit(int exit_code) 1058 { 1059 struct signal_struct *sig = current->signal; 1060 1061 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1062 1063 if (signal_group_exit(sig)) 1064 exit_code = sig->group_exit_code; 1065 else if (!thread_group_empty(current)) { 1066 struct sighand_struct *const sighand = current->sighand; 1067 spin_lock_irq(&sighand->siglock); 1068 if (signal_group_exit(sig)) 1069 /* Another thread got here before we took the lock. */ 1070 exit_code = sig->group_exit_code; 1071 else { 1072 sig->group_exit_code = exit_code; 1073 sig->flags = SIGNAL_GROUP_EXIT; 1074 zap_other_threads(current); 1075 } 1076 spin_unlock_irq(&sighand->siglock); 1077 } 1078 1079 do_exit(exit_code); 1080 /* NOTREACHED */ 1081 } 1082 1083 /* 1084 * this kills every thread in the thread group. Note that any externally 1085 * wait4()-ing process will get the correct exit code - even if this 1086 * thread is not the thread group leader. 1087 */ 1088 SYSCALL_DEFINE1(exit_group, int, error_code) 1089 { 1090 do_group_exit((error_code & 0xff) << 8); 1091 /* NOTREACHED */ 1092 return 0; 1093 } 1094 1095 struct wait_opts { 1096 enum pid_type wo_type; 1097 int wo_flags; 1098 struct pid *wo_pid; 1099 1100 struct siginfo __user *wo_info; 1101 int __user *wo_stat; 1102 struct rusage __user *wo_rusage; 1103 1104 wait_queue_t child_wait; 1105 int notask_error; 1106 }; 1107 1108 static inline 1109 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1110 { 1111 if (type != PIDTYPE_PID) 1112 task = task->group_leader; 1113 return task->pids[type].pid; 1114 } 1115 1116 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1117 { 1118 return wo->wo_type == PIDTYPE_MAX || 1119 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1120 } 1121 1122 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 1123 { 1124 if (!eligible_pid(wo, p)) 1125 return 0; 1126 /* Wait for all children (clone and not) if __WALL is set; 1127 * otherwise, wait for clone children *only* if __WCLONE is 1128 * set; otherwise, wait for non-clone children *only*. (Note: 1129 * A "clone" child here is one that reports to its parent 1130 * using a signal other than SIGCHLD.) */ 1131 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1132 && !(wo->wo_flags & __WALL)) 1133 return 0; 1134 1135 return 1; 1136 } 1137 1138 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1139 pid_t pid, uid_t uid, int why, int status) 1140 { 1141 struct siginfo __user *infop; 1142 int retval = wo->wo_rusage 1143 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1144 1145 put_task_struct(p); 1146 infop = wo->wo_info; 1147 if (infop) { 1148 if (!retval) 1149 retval = put_user(SIGCHLD, &infop->si_signo); 1150 if (!retval) 1151 retval = put_user(0, &infop->si_errno); 1152 if (!retval) 1153 retval = put_user((short)why, &infop->si_code); 1154 if (!retval) 1155 retval = put_user(pid, &infop->si_pid); 1156 if (!retval) 1157 retval = put_user(uid, &infop->si_uid); 1158 if (!retval) 1159 retval = put_user(status, &infop->si_status); 1160 } 1161 if (!retval) 1162 retval = pid; 1163 return retval; 1164 } 1165 1166 /* 1167 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1168 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1169 * the lock and this task is uninteresting. If we return nonzero, we have 1170 * released the lock and the system call should return. 1171 */ 1172 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1173 { 1174 unsigned long state; 1175 int retval, status, traced; 1176 pid_t pid = task_pid_vnr(p); 1177 uid_t uid = __task_cred(p)->uid; 1178 struct siginfo __user *infop; 1179 1180 if (!likely(wo->wo_flags & WEXITED)) 1181 return 0; 1182 1183 if (unlikely(wo->wo_flags & WNOWAIT)) { 1184 int exit_code = p->exit_code; 1185 int why; 1186 1187 get_task_struct(p); 1188 read_unlock(&tasklist_lock); 1189 if ((exit_code & 0x7f) == 0) { 1190 why = CLD_EXITED; 1191 status = exit_code >> 8; 1192 } else { 1193 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1194 status = exit_code & 0x7f; 1195 } 1196 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1197 } 1198 1199 /* 1200 * Try to move the task's state to DEAD 1201 * only one thread is allowed to do this: 1202 */ 1203 state = xchg(&p->exit_state, EXIT_DEAD); 1204 if (state != EXIT_ZOMBIE) { 1205 BUG_ON(state != EXIT_DEAD); 1206 return 0; 1207 } 1208 1209 traced = ptrace_reparented(p); 1210 /* 1211 * It can be ptraced but not reparented, check 1212 * !task_detached() to filter out sub-threads. 1213 */ 1214 if (likely(!traced) && likely(!task_detached(p))) { 1215 struct signal_struct *psig; 1216 struct signal_struct *sig; 1217 unsigned long maxrss; 1218 cputime_t tgutime, tgstime; 1219 1220 /* 1221 * The resource counters for the group leader are in its 1222 * own task_struct. Those for dead threads in the group 1223 * are in its signal_struct, as are those for the child 1224 * processes it has previously reaped. All these 1225 * accumulate in the parent's signal_struct c* fields. 1226 * 1227 * We don't bother to take a lock here to protect these 1228 * p->signal fields, because they are only touched by 1229 * __exit_signal, which runs with tasklist_lock 1230 * write-locked anyway, and so is excluded here. We do 1231 * need to protect the access to parent->signal fields, 1232 * as other threads in the parent group can be right 1233 * here reaping other children at the same time. 1234 * 1235 * We use thread_group_times() to get times for the thread 1236 * group, which consolidates times for all threads in the 1237 * group including the group leader. 1238 */ 1239 thread_group_times(p, &tgutime, &tgstime); 1240 spin_lock_irq(&p->real_parent->sighand->siglock); 1241 psig = p->real_parent->signal; 1242 sig = p->signal; 1243 psig->cutime = 1244 cputime_add(psig->cutime, 1245 cputime_add(tgutime, 1246 sig->cutime)); 1247 psig->cstime = 1248 cputime_add(psig->cstime, 1249 cputime_add(tgstime, 1250 sig->cstime)); 1251 psig->cgtime = 1252 cputime_add(psig->cgtime, 1253 cputime_add(p->gtime, 1254 cputime_add(sig->gtime, 1255 sig->cgtime))); 1256 psig->cmin_flt += 1257 p->min_flt + sig->min_flt + sig->cmin_flt; 1258 psig->cmaj_flt += 1259 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1260 psig->cnvcsw += 1261 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1262 psig->cnivcsw += 1263 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1264 psig->cinblock += 1265 task_io_get_inblock(p) + 1266 sig->inblock + sig->cinblock; 1267 psig->coublock += 1268 task_io_get_oublock(p) + 1269 sig->oublock + sig->coublock; 1270 maxrss = max(sig->maxrss, sig->cmaxrss); 1271 if (psig->cmaxrss < maxrss) 1272 psig->cmaxrss = maxrss; 1273 task_io_accounting_add(&psig->ioac, &p->ioac); 1274 task_io_accounting_add(&psig->ioac, &sig->ioac); 1275 spin_unlock_irq(&p->real_parent->sighand->siglock); 1276 } 1277 1278 /* 1279 * Now we are sure this task is interesting, and no other 1280 * thread can reap it because we set its state to EXIT_DEAD. 1281 */ 1282 read_unlock(&tasklist_lock); 1283 1284 retval = wo->wo_rusage 1285 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1286 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1287 ? p->signal->group_exit_code : p->exit_code; 1288 if (!retval && wo->wo_stat) 1289 retval = put_user(status, wo->wo_stat); 1290 1291 infop = wo->wo_info; 1292 if (!retval && infop) 1293 retval = put_user(SIGCHLD, &infop->si_signo); 1294 if (!retval && infop) 1295 retval = put_user(0, &infop->si_errno); 1296 if (!retval && infop) { 1297 int why; 1298 1299 if ((status & 0x7f) == 0) { 1300 why = CLD_EXITED; 1301 status >>= 8; 1302 } else { 1303 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1304 status &= 0x7f; 1305 } 1306 retval = put_user((short)why, &infop->si_code); 1307 if (!retval) 1308 retval = put_user(status, &infop->si_status); 1309 } 1310 if (!retval && infop) 1311 retval = put_user(pid, &infop->si_pid); 1312 if (!retval && infop) 1313 retval = put_user(uid, &infop->si_uid); 1314 if (!retval) 1315 retval = pid; 1316 1317 if (traced) { 1318 write_lock_irq(&tasklist_lock); 1319 /* We dropped tasklist, ptracer could die and untrace */ 1320 ptrace_unlink(p); 1321 /* 1322 * If this is not a detached task, notify the parent. 1323 * If it's still not detached after that, don't release 1324 * it now. 1325 */ 1326 if (!task_detached(p)) { 1327 do_notify_parent(p, p->exit_signal); 1328 if (!task_detached(p)) { 1329 p->exit_state = EXIT_ZOMBIE; 1330 p = NULL; 1331 } 1332 } 1333 write_unlock_irq(&tasklist_lock); 1334 } 1335 if (p != NULL) 1336 release_task(p); 1337 1338 return retval; 1339 } 1340 1341 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1342 { 1343 if (ptrace) { 1344 if (task_is_stopped_or_traced(p)) 1345 return &p->exit_code; 1346 } else { 1347 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1348 return &p->signal->group_exit_code; 1349 } 1350 return NULL; 1351 } 1352 1353 /* 1354 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1355 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1356 * the lock and this task is uninteresting. If we return nonzero, we have 1357 * released the lock and the system call should return. 1358 */ 1359 static int wait_task_stopped(struct wait_opts *wo, 1360 int ptrace, struct task_struct *p) 1361 { 1362 struct siginfo __user *infop; 1363 int retval, exit_code, *p_code, why; 1364 uid_t uid = 0; /* unneeded, required by compiler */ 1365 pid_t pid; 1366 1367 /* 1368 * Traditionally we see ptrace'd stopped tasks regardless of options. 1369 */ 1370 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1371 return 0; 1372 1373 exit_code = 0; 1374 spin_lock_irq(&p->sighand->siglock); 1375 1376 p_code = task_stopped_code(p, ptrace); 1377 if (unlikely(!p_code)) 1378 goto unlock_sig; 1379 1380 exit_code = *p_code; 1381 if (!exit_code) 1382 goto unlock_sig; 1383 1384 if (!unlikely(wo->wo_flags & WNOWAIT)) 1385 *p_code = 0; 1386 1387 uid = task_uid(p); 1388 unlock_sig: 1389 spin_unlock_irq(&p->sighand->siglock); 1390 if (!exit_code) 1391 return 0; 1392 1393 /* 1394 * Now we are pretty sure this task is interesting. 1395 * Make sure it doesn't get reaped out from under us while we 1396 * give up the lock and then examine it below. We don't want to 1397 * keep holding onto the tasklist_lock while we call getrusage and 1398 * possibly take page faults for user memory. 1399 */ 1400 get_task_struct(p); 1401 pid = task_pid_vnr(p); 1402 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1403 read_unlock(&tasklist_lock); 1404 1405 if (unlikely(wo->wo_flags & WNOWAIT)) 1406 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1407 1408 retval = wo->wo_rusage 1409 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1410 if (!retval && wo->wo_stat) 1411 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1412 1413 infop = wo->wo_info; 1414 if (!retval && infop) 1415 retval = put_user(SIGCHLD, &infop->si_signo); 1416 if (!retval && infop) 1417 retval = put_user(0, &infop->si_errno); 1418 if (!retval && infop) 1419 retval = put_user((short)why, &infop->si_code); 1420 if (!retval && infop) 1421 retval = put_user(exit_code, &infop->si_status); 1422 if (!retval && infop) 1423 retval = put_user(pid, &infop->si_pid); 1424 if (!retval && infop) 1425 retval = put_user(uid, &infop->si_uid); 1426 if (!retval) 1427 retval = pid; 1428 put_task_struct(p); 1429 1430 BUG_ON(!retval); 1431 return retval; 1432 } 1433 1434 /* 1435 * Handle do_wait work for one task in a live, non-stopped state. 1436 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1437 * the lock and this task is uninteresting. If we return nonzero, we have 1438 * released the lock and the system call should return. 1439 */ 1440 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1441 { 1442 int retval; 1443 pid_t pid; 1444 uid_t uid; 1445 1446 if (!unlikely(wo->wo_flags & WCONTINUED)) 1447 return 0; 1448 1449 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1450 return 0; 1451 1452 spin_lock_irq(&p->sighand->siglock); 1453 /* Re-check with the lock held. */ 1454 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1455 spin_unlock_irq(&p->sighand->siglock); 1456 return 0; 1457 } 1458 if (!unlikely(wo->wo_flags & WNOWAIT)) 1459 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1460 uid = task_uid(p); 1461 spin_unlock_irq(&p->sighand->siglock); 1462 1463 pid = task_pid_vnr(p); 1464 get_task_struct(p); 1465 read_unlock(&tasklist_lock); 1466 1467 if (!wo->wo_info) { 1468 retval = wo->wo_rusage 1469 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1470 put_task_struct(p); 1471 if (!retval && wo->wo_stat) 1472 retval = put_user(0xffff, wo->wo_stat); 1473 if (!retval) 1474 retval = pid; 1475 } else { 1476 retval = wait_noreap_copyout(wo, p, pid, uid, 1477 CLD_CONTINUED, SIGCONT); 1478 BUG_ON(retval == 0); 1479 } 1480 1481 return retval; 1482 } 1483 1484 /* 1485 * Consider @p for a wait by @parent. 1486 * 1487 * -ECHILD should be in ->notask_error before the first call. 1488 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1489 * Returns zero if the search for a child should continue; 1490 * then ->notask_error is 0 if @p is an eligible child, 1491 * or another error from security_task_wait(), or still -ECHILD. 1492 */ 1493 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1494 struct task_struct *p) 1495 { 1496 int ret = eligible_child(wo, p); 1497 if (!ret) 1498 return ret; 1499 1500 ret = security_task_wait(p); 1501 if (unlikely(ret < 0)) { 1502 /* 1503 * If we have not yet seen any eligible child, 1504 * then let this error code replace -ECHILD. 1505 * A permission error will give the user a clue 1506 * to look for security policy problems, rather 1507 * than for mysterious wait bugs. 1508 */ 1509 if (wo->notask_error) 1510 wo->notask_error = ret; 1511 return 0; 1512 } 1513 1514 if (likely(!ptrace) && unlikely(task_ptrace(p))) { 1515 /* 1516 * This child is hidden by ptrace. 1517 * We aren't allowed to see it now, but eventually we will. 1518 */ 1519 wo->notask_error = 0; 1520 return 0; 1521 } 1522 1523 if (p->exit_state == EXIT_DEAD) 1524 return 0; 1525 1526 /* 1527 * We don't reap group leaders with subthreads. 1528 */ 1529 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1530 return wait_task_zombie(wo, p); 1531 1532 /* 1533 * It's stopped or running now, so it might 1534 * later continue, exit, or stop again. 1535 */ 1536 wo->notask_error = 0; 1537 1538 if (task_stopped_code(p, ptrace)) 1539 return wait_task_stopped(wo, ptrace, p); 1540 1541 return wait_task_continued(wo, p); 1542 } 1543 1544 /* 1545 * Do the work of do_wait() for one thread in the group, @tsk. 1546 * 1547 * -ECHILD should be in ->notask_error before the first call. 1548 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1549 * Returns zero if the search for a child should continue; then 1550 * ->notask_error is 0 if there were any eligible children, 1551 * or another error from security_task_wait(), or still -ECHILD. 1552 */ 1553 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1554 { 1555 struct task_struct *p; 1556 1557 list_for_each_entry(p, &tsk->children, sibling) { 1558 int ret = wait_consider_task(wo, 0, p); 1559 if (ret) 1560 return ret; 1561 } 1562 1563 return 0; 1564 } 1565 1566 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1567 { 1568 struct task_struct *p; 1569 1570 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1571 int ret = wait_consider_task(wo, 1, p); 1572 if (ret) 1573 return ret; 1574 } 1575 1576 return 0; 1577 } 1578 1579 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1580 int sync, void *key) 1581 { 1582 struct wait_opts *wo = container_of(wait, struct wait_opts, 1583 child_wait); 1584 struct task_struct *p = key; 1585 1586 if (!eligible_pid(wo, p)) 1587 return 0; 1588 1589 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1590 return 0; 1591 1592 return default_wake_function(wait, mode, sync, key); 1593 } 1594 1595 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1596 { 1597 __wake_up_sync_key(&parent->signal->wait_chldexit, 1598 TASK_INTERRUPTIBLE, 1, p); 1599 } 1600 1601 static long do_wait(struct wait_opts *wo) 1602 { 1603 struct task_struct *tsk; 1604 int retval; 1605 1606 trace_sched_process_wait(wo->wo_pid); 1607 1608 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1609 wo->child_wait.private = current; 1610 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1611 repeat: 1612 /* 1613 * If there is nothing that can match our critiera just get out. 1614 * We will clear ->notask_error to zero if we see any child that 1615 * might later match our criteria, even if we are not able to reap 1616 * it yet. 1617 */ 1618 wo->notask_error = -ECHILD; 1619 if ((wo->wo_type < PIDTYPE_MAX) && 1620 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1621 goto notask; 1622 1623 set_current_state(TASK_INTERRUPTIBLE); 1624 read_lock(&tasklist_lock); 1625 tsk = current; 1626 do { 1627 retval = do_wait_thread(wo, tsk); 1628 if (retval) 1629 goto end; 1630 1631 retval = ptrace_do_wait(wo, tsk); 1632 if (retval) 1633 goto end; 1634 1635 if (wo->wo_flags & __WNOTHREAD) 1636 break; 1637 } while_each_thread(current, tsk); 1638 read_unlock(&tasklist_lock); 1639 1640 notask: 1641 retval = wo->notask_error; 1642 if (!retval && !(wo->wo_flags & WNOHANG)) { 1643 retval = -ERESTARTSYS; 1644 if (!signal_pending(current)) { 1645 schedule(); 1646 goto repeat; 1647 } 1648 } 1649 end: 1650 __set_current_state(TASK_RUNNING); 1651 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1652 return retval; 1653 } 1654 1655 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1656 infop, int, options, struct rusage __user *, ru) 1657 { 1658 struct wait_opts wo; 1659 struct pid *pid = NULL; 1660 enum pid_type type; 1661 long ret; 1662 1663 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1664 return -EINVAL; 1665 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1666 return -EINVAL; 1667 1668 switch (which) { 1669 case P_ALL: 1670 type = PIDTYPE_MAX; 1671 break; 1672 case P_PID: 1673 type = PIDTYPE_PID; 1674 if (upid <= 0) 1675 return -EINVAL; 1676 break; 1677 case P_PGID: 1678 type = PIDTYPE_PGID; 1679 if (upid <= 0) 1680 return -EINVAL; 1681 break; 1682 default: 1683 return -EINVAL; 1684 } 1685 1686 if (type < PIDTYPE_MAX) 1687 pid = find_get_pid(upid); 1688 1689 wo.wo_type = type; 1690 wo.wo_pid = pid; 1691 wo.wo_flags = options; 1692 wo.wo_info = infop; 1693 wo.wo_stat = NULL; 1694 wo.wo_rusage = ru; 1695 ret = do_wait(&wo); 1696 1697 if (ret > 0) { 1698 ret = 0; 1699 } else if (infop) { 1700 /* 1701 * For a WNOHANG return, clear out all the fields 1702 * we would set so the user can easily tell the 1703 * difference. 1704 */ 1705 if (!ret) 1706 ret = put_user(0, &infop->si_signo); 1707 if (!ret) 1708 ret = put_user(0, &infop->si_errno); 1709 if (!ret) 1710 ret = put_user(0, &infop->si_code); 1711 if (!ret) 1712 ret = put_user(0, &infop->si_pid); 1713 if (!ret) 1714 ret = put_user(0, &infop->si_uid); 1715 if (!ret) 1716 ret = put_user(0, &infop->si_status); 1717 } 1718 1719 put_pid(pid); 1720 1721 /* avoid REGPARM breakage on x86: */ 1722 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1723 return ret; 1724 } 1725 1726 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1727 int, options, struct rusage __user *, ru) 1728 { 1729 struct wait_opts wo; 1730 struct pid *pid = NULL; 1731 enum pid_type type; 1732 long ret; 1733 1734 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1735 __WNOTHREAD|__WCLONE|__WALL)) 1736 return -EINVAL; 1737 1738 if (upid == -1) 1739 type = PIDTYPE_MAX; 1740 else if (upid < 0) { 1741 type = PIDTYPE_PGID; 1742 pid = find_get_pid(-upid); 1743 } else if (upid == 0) { 1744 type = PIDTYPE_PGID; 1745 pid = get_task_pid(current, PIDTYPE_PGID); 1746 } else /* upid > 0 */ { 1747 type = PIDTYPE_PID; 1748 pid = find_get_pid(upid); 1749 } 1750 1751 wo.wo_type = type; 1752 wo.wo_pid = pid; 1753 wo.wo_flags = options | WEXITED; 1754 wo.wo_info = NULL; 1755 wo.wo_stat = stat_addr; 1756 wo.wo_rusage = ru; 1757 ret = do_wait(&wo); 1758 put_pid(pid); 1759 1760 /* avoid REGPARM breakage on x86: */ 1761 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1762 return ret; 1763 } 1764 1765 #ifdef __ARCH_WANT_SYS_WAITPID 1766 1767 /* 1768 * sys_waitpid() remains for compatibility. waitpid() should be 1769 * implemented by calling sys_wait4() from libc.a. 1770 */ 1771 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1772 { 1773 return sys_wait4(pid, stat_addr, options, NULL); 1774 } 1775 1776 #endif 1777