xref: /linux/kernel/exit.c (revision c053784454550cf750399caa65482b31ffbe3c57)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 
54 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/pgtable.h>
57 #include <asm/mmu_context.h>
58 
59 static void exit_mm(struct task_struct * tsk);
60 
61 static void __unhash_process(struct task_struct *p, bool group_dead)
62 {
63 	nr_threads--;
64 	detach_pid(p, PIDTYPE_PID);
65 	if (group_dead) {
66 		detach_pid(p, PIDTYPE_PGID);
67 		detach_pid(p, PIDTYPE_SID);
68 
69 		list_del_rcu(&p->tasks);
70 		list_del_init(&p->sibling);
71 		__get_cpu_var(process_counts)--;
72 	}
73 	list_del_rcu(&p->thread_group);
74 }
75 
76 /*
77  * This function expects the tasklist_lock write-locked.
78  */
79 static void __exit_signal(struct task_struct *tsk)
80 {
81 	struct signal_struct *sig = tsk->signal;
82 	bool group_dead = thread_group_leader(tsk);
83 	struct sighand_struct *sighand;
84 	struct tty_struct *uninitialized_var(tty);
85 
86 	sighand = rcu_dereference_check(tsk->sighand,
87 					rcu_read_lock_held() ||
88 					lockdep_tasklist_lock_is_held());
89 	spin_lock(&sighand->siglock);
90 
91 	posix_cpu_timers_exit(tsk);
92 	if (group_dead) {
93 		posix_cpu_timers_exit_group(tsk);
94 		tty = sig->tty;
95 		sig->tty = NULL;
96 	} else {
97 		/*
98 		 * If there is any task waiting for the group exit
99 		 * then notify it:
100 		 */
101 		if (sig->notify_count > 0 && !--sig->notify_count)
102 			wake_up_process(sig->group_exit_task);
103 
104 		if (tsk == sig->curr_target)
105 			sig->curr_target = next_thread(tsk);
106 		/*
107 		 * Accumulate here the counters for all threads but the
108 		 * group leader as they die, so they can be added into
109 		 * the process-wide totals when those are taken.
110 		 * The group leader stays around as a zombie as long
111 		 * as there are other threads.  When it gets reaped,
112 		 * the exit.c code will add its counts into these totals.
113 		 * We won't ever get here for the group leader, since it
114 		 * will have been the last reference on the signal_struct.
115 		 */
116 		sig->utime = cputime_add(sig->utime, tsk->utime);
117 		sig->stime = cputime_add(sig->stime, tsk->stime);
118 		sig->gtime = cputime_add(sig->gtime, tsk->gtime);
119 		sig->min_flt += tsk->min_flt;
120 		sig->maj_flt += tsk->maj_flt;
121 		sig->nvcsw += tsk->nvcsw;
122 		sig->nivcsw += tsk->nivcsw;
123 		sig->inblock += task_io_get_inblock(tsk);
124 		sig->oublock += task_io_get_oublock(tsk);
125 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
126 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
127 	}
128 
129 	sig->nr_threads--;
130 	__unhash_process(tsk, group_dead);
131 
132 	/*
133 	 * Do this under ->siglock, we can race with another thread
134 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
135 	 */
136 	flush_sigqueue(&tsk->pending);
137 	tsk->sighand = NULL;
138 	spin_unlock(&sighand->siglock);
139 
140 	__cleanup_sighand(sighand);
141 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
142 	if (group_dead) {
143 		flush_sigqueue(&sig->shared_pending);
144 		tty_kref_put(tty);
145 	}
146 }
147 
148 static void delayed_put_task_struct(struct rcu_head *rhp)
149 {
150 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
151 
152 	perf_event_delayed_put(tsk);
153 	trace_sched_process_free(tsk);
154 	put_task_struct(tsk);
155 }
156 
157 
158 void release_task(struct task_struct * p)
159 {
160 	struct task_struct *leader;
161 	int zap_leader;
162 repeat:
163 	tracehook_prepare_release_task(p);
164 	/* don't need to get the RCU readlock here - the process is dead and
165 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
166 	rcu_read_lock();
167 	atomic_dec(&__task_cred(p)->user->processes);
168 	rcu_read_unlock();
169 
170 	proc_flush_task(p);
171 
172 	write_lock_irq(&tasklist_lock);
173 	tracehook_finish_release_task(p);
174 	__exit_signal(p);
175 
176 	/*
177 	 * If we are the last non-leader member of the thread
178 	 * group, and the leader is zombie, then notify the
179 	 * group leader's parent process. (if it wants notification.)
180 	 */
181 	zap_leader = 0;
182 	leader = p->group_leader;
183 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
184 		BUG_ON(task_detached(leader));
185 		do_notify_parent(leader, leader->exit_signal);
186 		/*
187 		 * If we were the last child thread and the leader has
188 		 * exited already, and the leader's parent ignores SIGCHLD,
189 		 * then we are the one who should release the leader.
190 		 *
191 		 * do_notify_parent() will have marked it self-reaping in
192 		 * that case.
193 		 */
194 		zap_leader = task_detached(leader);
195 
196 		/*
197 		 * This maintains the invariant that release_task()
198 		 * only runs on a task in EXIT_DEAD, just for sanity.
199 		 */
200 		if (zap_leader)
201 			leader->exit_state = EXIT_DEAD;
202 	}
203 
204 	write_unlock_irq(&tasklist_lock);
205 	release_thread(p);
206 	call_rcu(&p->rcu, delayed_put_task_struct);
207 
208 	p = leader;
209 	if (unlikely(zap_leader))
210 		goto repeat;
211 }
212 
213 /*
214  * This checks not only the pgrp, but falls back on the pid if no
215  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
216  * without this...
217  *
218  * The caller must hold rcu lock or the tasklist lock.
219  */
220 struct pid *session_of_pgrp(struct pid *pgrp)
221 {
222 	struct task_struct *p;
223 	struct pid *sid = NULL;
224 
225 	p = pid_task(pgrp, PIDTYPE_PGID);
226 	if (p == NULL)
227 		p = pid_task(pgrp, PIDTYPE_PID);
228 	if (p != NULL)
229 		sid = task_session(p);
230 
231 	return sid;
232 }
233 
234 /*
235  * Determine if a process group is "orphaned", according to the POSIX
236  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
237  * by terminal-generated stop signals.  Newly orphaned process groups are
238  * to receive a SIGHUP and a SIGCONT.
239  *
240  * "I ask you, have you ever known what it is to be an orphan?"
241  */
242 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
243 {
244 	struct task_struct *p;
245 
246 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
247 		if ((p == ignored_task) ||
248 		    (p->exit_state && thread_group_empty(p)) ||
249 		    is_global_init(p->real_parent))
250 			continue;
251 
252 		if (task_pgrp(p->real_parent) != pgrp &&
253 		    task_session(p->real_parent) == task_session(p))
254 			return 0;
255 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
256 
257 	return 1;
258 }
259 
260 int is_current_pgrp_orphaned(void)
261 {
262 	int retval;
263 
264 	read_lock(&tasklist_lock);
265 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
266 	read_unlock(&tasklist_lock);
267 
268 	return retval;
269 }
270 
271 static int has_stopped_jobs(struct pid *pgrp)
272 {
273 	int retval = 0;
274 	struct task_struct *p;
275 
276 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
277 		if (!task_is_stopped(p))
278 			continue;
279 		retval = 1;
280 		break;
281 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
282 	return retval;
283 }
284 
285 /*
286  * Check to see if any process groups have become orphaned as
287  * a result of our exiting, and if they have any stopped jobs,
288  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
289  */
290 static void
291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
292 {
293 	struct pid *pgrp = task_pgrp(tsk);
294 	struct task_struct *ignored_task = tsk;
295 
296 	if (!parent)
297 		 /* exit: our father is in a different pgrp than
298 		  * we are and we were the only connection outside.
299 		  */
300 		parent = tsk->real_parent;
301 	else
302 		/* reparent: our child is in a different pgrp than
303 		 * we are, and it was the only connection outside.
304 		 */
305 		ignored_task = NULL;
306 
307 	if (task_pgrp(parent) != pgrp &&
308 	    task_session(parent) == task_session(tsk) &&
309 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
310 	    has_stopped_jobs(pgrp)) {
311 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
312 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
313 	}
314 }
315 
316 /**
317  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
318  *
319  * If a kernel thread is launched as a result of a system call, or if
320  * it ever exits, it should generally reparent itself to kthreadd so it
321  * isn't in the way of other processes and is correctly cleaned up on exit.
322  *
323  * The various task state such as scheduling policy and priority may have
324  * been inherited from a user process, so we reset them to sane values here.
325  *
326  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
327  */
328 static void reparent_to_kthreadd(void)
329 {
330 	write_lock_irq(&tasklist_lock);
331 
332 	ptrace_unlink(current);
333 	/* Reparent to init */
334 	current->real_parent = current->parent = kthreadd_task;
335 	list_move_tail(&current->sibling, &current->real_parent->children);
336 
337 	/* Set the exit signal to SIGCHLD so we signal init on exit */
338 	current->exit_signal = SIGCHLD;
339 
340 	if (task_nice(current) < 0)
341 		set_user_nice(current, 0);
342 	/* cpus_allowed? */
343 	/* rt_priority? */
344 	/* signals? */
345 	memcpy(current->signal->rlim, init_task.signal->rlim,
346 	       sizeof(current->signal->rlim));
347 
348 	atomic_inc(&init_cred.usage);
349 	commit_creds(&init_cred);
350 	write_unlock_irq(&tasklist_lock);
351 }
352 
353 void __set_special_pids(struct pid *pid)
354 {
355 	struct task_struct *curr = current->group_leader;
356 
357 	if (task_session(curr) != pid)
358 		change_pid(curr, PIDTYPE_SID, pid);
359 
360 	if (task_pgrp(curr) != pid)
361 		change_pid(curr, PIDTYPE_PGID, pid);
362 }
363 
364 static void set_special_pids(struct pid *pid)
365 {
366 	write_lock_irq(&tasklist_lock);
367 	__set_special_pids(pid);
368 	write_unlock_irq(&tasklist_lock);
369 }
370 
371 /*
372  * Let kernel threads use this to say that they allow a certain signal.
373  * Must not be used if kthread was cloned with CLONE_SIGHAND.
374  */
375 int allow_signal(int sig)
376 {
377 	if (!valid_signal(sig) || sig < 1)
378 		return -EINVAL;
379 
380 	spin_lock_irq(&current->sighand->siglock);
381 	/* This is only needed for daemonize()'ed kthreads */
382 	sigdelset(&current->blocked, sig);
383 	/*
384 	 * Kernel threads handle their own signals. Let the signal code
385 	 * know it'll be handled, so that they don't get converted to
386 	 * SIGKILL or just silently dropped.
387 	 */
388 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
389 	recalc_sigpending();
390 	spin_unlock_irq(&current->sighand->siglock);
391 	return 0;
392 }
393 
394 EXPORT_SYMBOL(allow_signal);
395 
396 int disallow_signal(int sig)
397 {
398 	if (!valid_signal(sig) || sig < 1)
399 		return -EINVAL;
400 
401 	spin_lock_irq(&current->sighand->siglock);
402 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
403 	recalc_sigpending();
404 	spin_unlock_irq(&current->sighand->siglock);
405 	return 0;
406 }
407 
408 EXPORT_SYMBOL(disallow_signal);
409 
410 /*
411  *	Put all the gunge required to become a kernel thread without
412  *	attached user resources in one place where it belongs.
413  */
414 
415 void daemonize(const char *name, ...)
416 {
417 	va_list args;
418 	sigset_t blocked;
419 
420 	va_start(args, name);
421 	vsnprintf(current->comm, sizeof(current->comm), name, args);
422 	va_end(args);
423 
424 	/*
425 	 * If we were started as result of loading a module, close all of the
426 	 * user space pages.  We don't need them, and if we didn't close them
427 	 * they would be locked into memory.
428 	 */
429 	exit_mm(current);
430 	/*
431 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
432 	 * or suspend transition begins right now.
433 	 */
434 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
435 
436 	if (current->nsproxy != &init_nsproxy) {
437 		get_nsproxy(&init_nsproxy);
438 		switch_task_namespaces(current, &init_nsproxy);
439 	}
440 	set_special_pids(&init_struct_pid);
441 	proc_clear_tty(current);
442 
443 	/* Block and flush all signals */
444 	sigfillset(&blocked);
445 	sigprocmask(SIG_BLOCK, &blocked, NULL);
446 	flush_signals(current);
447 
448 	/* Become as one with the init task */
449 
450 	daemonize_fs_struct();
451 	exit_files(current);
452 	current->files = init_task.files;
453 	atomic_inc(&current->files->count);
454 
455 	reparent_to_kthreadd();
456 }
457 
458 EXPORT_SYMBOL(daemonize);
459 
460 static void close_files(struct files_struct * files)
461 {
462 	int i, j;
463 	struct fdtable *fdt;
464 
465 	j = 0;
466 
467 	/*
468 	 * It is safe to dereference the fd table without RCU or
469 	 * ->file_lock because this is the last reference to the
470 	 * files structure.  But use RCU to shut RCU-lockdep up.
471 	 */
472 	rcu_read_lock();
473 	fdt = files_fdtable(files);
474 	rcu_read_unlock();
475 	for (;;) {
476 		unsigned long set;
477 		i = j * __NFDBITS;
478 		if (i >= fdt->max_fds)
479 			break;
480 		set = fdt->open_fds->fds_bits[j++];
481 		while (set) {
482 			if (set & 1) {
483 				struct file * file = xchg(&fdt->fd[i], NULL);
484 				if (file) {
485 					filp_close(file, files);
486 					cond_resched();
487 				}
488 			}
489 			i++;
490 			set >>= 1;
491 		}
492 	}
493 }
494 
495 struct files_struct *get_files_struct(struct task_struct *task)
496 {
497 	struct files_struct *files;
498 
499 	task_lock(task);
500 	files = task->files;
501 	if (files)
502 		atomic_inc(&files->count);
503 	task_unlock(task);
504 
505 	return files;
506 }
507 
508 void put_files_struct(struct files_struct *files)
509 {
510 	struct fdtable *fdt;
511 
512 	if (atomic_dec_and_test(&files->count)) {
513 		close_files(files);
514 		/*
515 		 * Free the fd and fdset arrays if we expanded them.
516 		 * If the fdtable was embedded, pass files for freeing
517 		 * at the end of the RCU grace period. Otherwise,
518 		 * you can free files immediately.
519 		 */
520 		rcu_read_lock();
521 		fdt = files_fdtable(files);
522 		if (fdt != &files->fdtab)
523 			kmem_cache_free(files_cachep, files);
524 		free_fdtable(fdt);
525 		rcu_read_unlock();
526 	}
527 }
528 
529 void reset_files_struct(struct files_struct *files)
530 {
531 	struct task_struct *tsk = current;
532 	struct files_struct *old;
533 
534 	old = tsk->files;
535 	task_lock(tsk);
536 	tsk->files = files;
537 	task_unlock(tsk);
538 	put_files_struct(old);
539 }
540 
541 void exit_files(struct task_struct *tsk)
542 {
543 	struct files_struct * files = tsk->files;
544 
545 	if (files) {
546 		task_lock(tsk);
547 		tsk->files = NULL;
548 		task_unlock(tsk);
549 		put_files_struct(files);
550 	}
551 }
552 
553 #ifdef CONFIG_MM_OWNER
554 /*
555  * Task p is exiting and it owned mm, lets find a new owner for it
556  */
557 static inline int
558 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
559 {
560 	/*
561 	 * If there are other users of the mm and the owner (us) is exiting
562 	 * we need to find a new owner to take on the responsibility.
563 	 */
564 	if (atomic_read(&mm->mm_users) <= 1)
565 		return 0;
566 	if (mm->owner != p)
567 		return 0;
568 	return 1;
569 }
570 
571 void mm_update_next_owner(struct mm_struct *mm)
572 {
573 	struct task_struct *c, *g, *p = current;
574 
575 retry:
576 	if (!mm_need_new_owner(mm, p))
577 		return;
578 
579 	read_lock(&tasklist_lock);
580 	/*
581 	 * Search in the children
582 	 */
583 	list_for_each_entry(c, &p->children, sibling) {
584 		if (c->mm == mm)
585 			goto assign_new_owner;
586 	}
587 
588 	/*
589 	 * Search in the siblings
590 	 */
591 	list_for_each_entry(c, &p->real_parent->children, sibling) {
592 		if (c->mm == mm)
593 			goto assign_new_owner;
594 	}
595 
596 	/*
597 	 * Search through everything else. We should not get
598 	 * here often
599 	 */
600 	do_each_thread(g, c) {
601 		if (c->mm == mm)
602 			goto assign_new_owner;
603 	} while_each_thread(g, c);
604 
605 	read_unlock(&tasklist_lock);
606 	/*
607 	 * We found no owner yet mm_users > 1: this implies that we are
608 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
609 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
610 	 */
611 	mm->owner = NULL;
612 	return;
613 
614 assign_new_owner:
615 	BUG_ON(c == p);
616 	get_task_struct(c);
617 	/*
618 	 * The task_lock protects c->mm from changing.
619 	 * We always want mm->owner->mm == mm
620 	 */
621 	task_lock(c);
622 	/*
623 	 * Delay read_unlock() till we have the task_lock()
624 	 * to ensure that c does not slip away underneath us
625 	 */
626 	read_unlock(&tasklist_lock);
627 	if (c->mm != mm) {
628 		task_unlock(c);
629 		put_task_struct(c);
630 		goto retry;
631 	}
632 	mm->owner = c;
633 	task_unlock(c);
634 	put_task_struct(c);
635 }
636 #endif /* CONFIG_MM_OWNER */
637 
638 /*
639  * Turn us into a lazy TLB process if we
640  * aren't already..
641  */
642 static void exit_mm(struct task_struct * tsk)
643 {
644 	struct mm_struct *mm = tsk->mm;
645 	struct core_state *core_state;
646 
647 	mm_release(tsk, mm);
648 	if (!mm)
649 		return;
650 	/*
651 	 * Serialize with any possible pending coredump.
652 	 * We must hold mmap_sem around checking core_state
653 	 * and clearing tsk->mm.  The core-inducing thread
654 	 * will increment ->nr_threads for each thread in the
655 	 * group with ->mm != NULL.
656 	 */
657 	down_read(&mm->mmap_sem);
658 	core_state = mm->core_state;
659 	if (core_state) {
660 		struct core_thread self;
661 		up_read(&mm->mmap_sem);
662 
663 		self.task = tsk;
664 		self.next = xchg(&core_state->dumper.next, &self);
665 		/*
666 		 * Implies mb(), the result of xchg() must be visible
667 		 * to core_state->dumper.
668 		 */
669 		if (atomic_dec_and_test(&core_state->nr_threads))
670 			complete(&core_state->startup);
671 
672 		for (;;) {
673 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
674 			if (!self.task) /* see coredump_finish() */
675 				break;
676 			schedule();
677 		}
678 		__set_task_state(tsk, TASK_RUNNING);
679 		down_read(&mm->mmap_sem);
680 	}
681 	atomic_inc(&mm->mm_count);
682 	BUG_ON(mm != tsk->active_mm);
683 	/* more a memory barrier than a real lock */
684 	task_lock(tsk);
685 	tsk->mm = NULL;
686 	up_read(&mm->mmap_sem);
687 	enter_lazy_tlb(mm, current);
688 	/* We don't want this task to be frozen prematurely */
689 	clear_freeze_flag(tsk);
690 	task_unlock(tsk);
691 	mm_update_next_owner(mm);
692 	mmput(mm);
693 }
694 
695 /*
696  * When we die, we re-parent all our children.
697  * Try to give them to another thread in our thread
698  * group, and if no such member exists, give it to
699  * the child reaper process (ie "init") in our pid
700  * space.
701  */
702 static struct task_struct *find_new_reaper(struct task_struct *father)
703 {
704 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
705 	struct task_struct *thread;
706 
707 	thread = father;
708 	while_each_thread(father, thread) {
709 		if (thread->flags & PF_EXITING)
710 			continue;
711 		if (unlikely(pid_ns->child_reaper == father))
712 			pid_ns->child_reaper = thread;
713 		return thread;
714 	}
715 
716 	if (unlikely(pid_ns->child_reaper == father)) {
717 		write_unlock_irq(&tasklist_lock);
718 		if (unlikely(pid_ns == &init_pid_ns))
719 			panic("Attempted to kill init!");
720 
721 		zap_pid_ns_processes(pid_ns);
722 		write_lock_irq(&tasklist_lock);
723 		/*
724 		 * We can not clear ->child_reaper or leave it alone.
725 		 * There may by stealth EXIT_DEAD tasks on ->children,
726 		 * forget_original_parent() must move them somewhere.
727 		 */
728 		pid_ns->child_reaper = init_pid_ns.child_reaper;
729 	}
730 
731 	return pid_ns->child_reaper;
732 }
733 
734 /*
735 * Any that need to be release_task'd are put on the @dead list.
736  */
737 static void reparent_leader(struct task_struct *father, struct task_struct *p,
738 				struct list_head *dead)
739 {
740 	list_move_tail(&p->sibling, &p->real_parent->children);
741 
742 	if (task_detached(p))
743 		return;
744 	/*
745 	 * If this is a threaded reparent there is no need to
746 	 * notify anyone anything has happened.
747 	 */
748 	if (same_thread_group(p->real_parent, father))
749 		return;
750 
751 	/* We don't want people slaying init.  */
752 	p->exit_signal = SIGCHLD;
753 
754 	/* If it has exited notify the new parent about this child's death. */
755 	if (!task_ptrace(p) &&
756 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
757 		do_notify_parent(p, p->exit_signal);
758 		if (task_detached(p)) {
759 			p->exit_state = EXIT_DEAD;
760 			list_move_tail(&p->sibling, dead);
761 		}
762 	}
763 
764 	kill_orphaned_pgrp(p, father);
765 }
766 
767 static void forget_original_parent(struct task_struct *father)
768 {
769 	struct task_struct *p, *n, *reaper;
770 	LIST_HEAD(dead_children);
771 
772 	write_lock_irq(&tasklist_lock);
773 	/*
774 	 * Note that exit_ptrace() and find_new_reaper() might
775 	 * drop tasklist_lock and reacquire it.
776 	 */
777 	exit_ptrace(father);
778 	reaper = find_new_reaper(father);
779 
780 	list_for_each_entry_safe(p, n, &father->children, sibling) {
781 		struct task_struct *t = p;
782 		do {
783 			t->real_parent = reaper;
784 			if (t->parent == father) {
785 				BUG_ON(task_ptrace(t));
786 				t->parent = t->real_parent;
787 			}
788 			if (t->pdeath_signal)
789 				group_send_sig_info(t->pdeath_signal,
790 						    SEND_SIG_NOINFO, t);
791 		} while_each_thread(p, t);
792 		reparent_leader(father, p, &dead_children);
793 	}
794 	write_unlock_irq(&tasklist_lock);
795 
796 	BUG_ON(!list_empty(&father->children));
797 
798 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
799 		list_del_init(&p->sibling);
800 		release_task(p);
801 	}
802 }
803 
804 /*
805  * Send signals to all our closest relatives so that they know
806  * to properly mourn us..
807  */
808 static void exit_notify(struct task_struct *tsk, int group_dead)
809 {
810 	int signal;
811 	void *cookie;
812 
813 	/*
814 	 * This does two things:
815 	 *
816   	 * A.  Make init inherit all the child processes
817 	 * B.  Check to see if any process groups have become orphaned
818 	 *	as a result of our exiting, and if they have any stopped
819 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
820 	 */
821 	forget_original_parent(tsk);
822 	exit_task_namespaces(tsk);
823 
824 	write_lock_irq(&tasklist_lock);
825 	if (group_dead)
826 		kill_orphaned_pgrp(tsk->group_leader, NULL);
827 
828 	/* Let father know we died
829 	 *
830 	 * Thread signals are configurable, but you aren't going to use
831 	 * that to send signals to arbitary processes.
832 	 * That stops right now.
833 	 *
834 	 * If the parent exec id doesn't match the exec id we saved
835 	 * when we started then we know the parent has changed security
836 	 * domain.
837 	 *
838 	 * If our self_exec id doesn't match our parent_exec_id then
839 	 * we have changed execution domain as these two values started
840 	 * the same after a fork.
841 	 */
842 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
843 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
844 	     tsk->self_exec_id != tsk->parent_exec_id))
845 		tsk->exit_signal = SIGCHLD;
846 
847 	signal = tracehook_notify_death(tsk, &cookie, group_dead);
848 	if (signal >= 0)
849 		signal = do_notify_parent(tsk, signal);
850 
851 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
852 
853 	/* mt-exec, de_thread() is waiting for group leader */
854 	if (unlikely(tsk->signal->notify_count < 0))
855 		wake_up_process(tsk->signal->group_exit_task);
856 	write_unlock_irq(&tasklist_lock);
857 
858 	tracehook_report_death(tsk, signal, cookie, group_dead);
859 
860 	/* If the process is dead, release it - nobody will wait for it */
861 	if (signal == DEATH_REAP)
862 		release_task(tsk);
863 }
864 
865 #ifdef CONFIG_DEBUG_STACK_USAGE
866 static void check_stack_usage(void)
867 {
868 	static DEFINE_SPINLOCK(low_water_lock);
869 	static int lowest_to_date = THREAD_SIZE;
870 	unsigned long free;
871 
872 	free = stack_not_used(current);
873 
874 	if (free >= lowest_to_date)
875 		return;
876 
877 	spin_lock(&low_water_lock);
878 	if (free < lowest_to_date) {
879 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
880 				"left\n",
881 				current->comm, free);
882 		lowest_to_date = free;
883 	}
884 	spin_unlock(&low_water_lock);
885 }
886 #else
887 static inline void check_stack_usage(void) {}
888 #endif
889 
890 NORET_TYPE void do_exit(long code)
891 {
892 	struct task_struct *tsk = current;
893 	int group_dead;
894 
895 	profile_task_exit(tsk);
896 
897 	WARN_ON(atomic_read(&tsk->fs_excl));
898 
899 	if (unlikely(in_interrupt()))
900 		panic("Aiee, killing interrupt handler!");
901 	if (unlikely(!tsk->pid))
902 		panic("Attempted to kill the idle task!");
903 
904 	tracehook_report_exit(&code);
905 
906 	validate_creds_for_do_exit(tsk);
907 
908 	/*
909 	 * We're taking recursive faults here in do_exit. Safest is to just
910 	 * leave this task alone and wait for reboot.
911 	 */
912 	if (unlikely(tsk->flags & PF_EXITING)) {
913 		printk(KERN_ALERT
914 			"Fixing recursive fault but reboot is needed!\n");
915 		/*
916 		 * We can do this unlocked here. The futex code uses
917 		 * this flag just to verify whether the pi state
918 		 * cleanup has been done or not. In the worst case it
919 		 * loops once more. We pretend that the cleanup was
920 		 * done as there is no way to return. Either the
921 		 * OWNER_DIED bit is set by now or we push the blocked
922 		 * task into the wait for ever nirwana as well.
923 		 */
924 		tsk->flags |= PF_EXITPIDONE;
925 		set_current_state(TASK_UNINTERRUPTIBLE);
926 		schedule();
927 	}
928 
929 	exit_irq_thread();
930 
931 	exit_signals(tsk);  /* sets PF_EXITING */
932 	/*
933 	 * tsk->flags are checked in the futex code to protect against
934 	 * an exiting task cleaning up the robust pi futexes.
935 	 */
936 	smp_mb();
937 	raw_spin_unlock_wait(&tsk->pi_lock);
938 
939 	if (unlikely(in_atomic()))
940 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
941 				current->comm, task_pid_nr(current),
942 				preempt_count());
943 
944 	acct_update_integrals(tsk);
945 	/* sync mm's RSS info before statistics gathering */
946 	if (tsk->mm)
947 		sync_mm_rss(tsk, tsk->mm);
948 	group_dead = atomic_dec_and_test(&tsk->signal->live);
949 	if (group_dead) {
950 		hrtimer_cancel(&tsk->signal->real_timer);
951 		exit_itimers(tsk->signal);
952 		if (tsk->mm)
953 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
954 	}
955 	acct_collect(code, group_dead);
956 	if (group_dead)
957 		tty_audit_exit();
958 	if (unlikely(tsk->audit_context))
959 		audit_free(tsk);
960 
961 	tsk->exit_code = code;
962 	taskstats_exit(tsk, group_dead);
963 
964 	exit_mm(tsk);
965 
966 	if (group_dead)
967 		acct_process();
968 	trace_sched_process_exit(tsk);
969 
970 	exit_sem(tsk);
971 	exit_files(tsk);
972 	exit_fs(tsk);
973 	check_stack_usage();
974 	exit_thread();
975 	cgroup_exit(tsk, 1);
976 
977 	if (group_dead)
978 		disassociate_ctty(1);
979 
980 	module_put(task_thread_info(tsk)->exec_domain->module);
981 
982 	proc_exit_connector(tsk);
983 
984 	/*
985 	 * FIXME: do that only when needed, using sched_exit tracepoint
986 	 */
987 	flush_ptrace_hw_breakpoint(tsk);
988 	/*
989 	 * Flush inherited counters to the parent - before the parent
990 	 * gets woken up by child-exit notifications.
991 	 */
992 	perf_event_exit_task(tsk);
993 
994 	exit_notify(tsk, group_dead);
995 #ifdef CONFIG_NUMA
996 	task_lock(tsk);
997 	mpol_put(tsk->mempolicy);
998 	tsk->mempolicy = NULL;
999 	task_unlock(tsk);
1000 #endif
1001 #ifdef CONFIG_FUTEX
1002 	if (unlikely(current->pi_state_cache))
1003 		kfree(current->pi_state_cache);
1004 #endif
1005 	/*
1006 	 * Make sure we are holding no locks:
1007 	 */
1008 	debug_check_no_locks_held(tsk);
1009 	/*
1010 	 * We can do this unlocked here. The futex code uses this flag
1011 	 * just to verify whether the pi state cleanup has been done
1012 	 * or not. In the worst case it loops once more.
1013 	 */
1014 	tsk->flags |= PF_EXITPIDONE;
1015 
1016 	if (tsk->io_context)
1017 		exit_io_context(tsk);
1018 
1019 	if (tsk->splice_pipe)
1020 		__free_pipe_info(tsk->splice_pipe);
1021 
1022 	validate_creds_for_do_exit(tsk);
1023 
1024 	preempt_disable();
1025 	exit_rcu();
1026 	/* causes final put_task_struct in finish_task_switch(). */
1027 	tsk->state = TASK_DEAD;
1028 	schedule();
1029 	BUG();
1030 	/* Avoid "noreturn function does return".  */
1031 	for (;;)
1032 		cpu_relax();	/* For when BUG is null */
1033 }
1034 
1035 EXPORT_SYMBOL_GPL(do_exit);
1036 
1037 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1038 {
1039 	if (comp)
1040 		complete(comp);
1041 
1042 	do_exit(code);
1043 }
1044 
1045 EXPORT_SYMBOL(complete_and_exit);
1046 
1047 SYSCALL_DEFINE1(exit, int, error_code)
1048 {
1049 	do_exit((error_code&0xff)<<8);
1050 }
1051 
1052 /*
1053  * Take down every thread in the group.  This is called by fatal signals
1054  * as well as by sys_exit_group (below).
1055  */
1056 NORET_TYPE void
1057 do_group_exit(int exit_code)
1058 {
1059 	struct signal_struct *sig = current->signal;
1060 
1061 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1062 
1063 	if (signal_group_exit(sig))
1064 		exit_code = sig->group_exit_code;
1065 	else if (!thread_group_empty(current)) {
1066 		struct sighand_struct *const sighand = current->sighand;
1067 		spin_lock_irq(&sighand->siglock);
1068 		if (signal_group_exit(sig))
1069 			/* Another thread got here before we took the lock.  */
1070 			exit_code = sig->group_exit_code;
1071 		else {
1072 			sig->group_exit_code = exit_code;
1073 			sig->flags = SIGNAL_GROUP_EXIT;
1074 			zap_other_threads(current);
1075 		}
1076 		spin_unlock_irq(&sighand->siglock);
1077 	}
1078 
1079 	do_exit(exit_code);
1080 	/* NOTREACHED */
1081 }
1082 
1083 /*
1084  * this kills every thread in the thread group. Note that any externally
1085  * wait4()-ing process will get the correct exit code - even if this
1086  * thread is not the thread group leader.
1087  */
1088 SYSCALL_DEFINE1(exit_group, int, error_code)
1089 {
1090 	do_group_exit((error_code & 0xff) << 8);
1091 	/* NOTREACHED */
1092 	return 0;
1093 }
1094 
1095 struct wait_opts {
1096 	enum pid_type		wo_type;
1097 	int			wo_flags;
1098 	struct pid		*wo_pid;
1099 
1100 	struct siginfo __user	*wo_info;
1101 	int __user		*wo_stat;
1102 	struct rusage __user	*wo_rusage;
1103 
1104 	wait_queue_t		child_wait;
1105 	int			notask_error;
1106 };
1107 
1108 static inline
1109 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1110 {
1111 	if (type != PIDTYPE_PID)
1112 		task = task->group_leader;
1113 	return task->pids[type].pid;
1114 }
1115 
1116 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1117 {
1118 	return	wo->wo_type == PIDTYPE_MAX ||
1119 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1120 }
1121 
1122 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1123 {
1124 	if (!eligible_pid(wo, p))
1125 		return 0;
1126 	/* Wait for all children (clone and not) if __WALL is set;
1127 	 * otherwise, wait for clone children *only* if __WCLONE is
1128 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1129 	 * A "clone" child here is one that reports to its parent
1130 	 * using a signal other than SIGCHLD.) */
1131 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1132 	    && !(wo->wo_flags & __WALL))
1133 		return 0;
1134 
1135 	return 1;
1136 }
1137 
1138 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1139 				pid_t pid, uid_t uid, int why, int status)
1140 {
1141 	struct siginfo __user *infop;
1142 	int retval = wo->wo_rusage
1143 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1144 
1145 	put_task_struct(p);
1146 	infop = wo->wo_info;
1147 	if (infop) {
1148 		if (!retval)
1149 			retval = put_user(SIGCHLD, &infop->si_signo);
1150 		if (!retval)
1151 			retval = put_user(0, &infop->si_errno);
1152 		if (!retval)
1153 			retval = put_user((short)why, &infop->si_code);
1154 		if (!retval)
1155 			retval = put_user(pid, &infop->si_pid);
1156 		if (!retval)
1157 			retval = put_user(uid, &infop->si_uid);
1158 		if (!retval)
1159 			retval = put_user(status, &infop->si_status);
1160 	}
1161 	if (!retval)
1162 		retval = pid;
1163 	return retval;
1164 }
1165 
1166 /*
1167  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1168  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1169  * the lock and this task is uninteresting.  If we return nonzero, we have
1170  * released the lock and the system call should return.
1171  */
1172 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1173 {
1174 	unsigned long state;
1175 	int retval, status, traced;
1176 	pid_t pid = task_pid_vnr(p);
1177 	uid_t uid = __task_cred(p)->uid;
1178 	struct siginfo __user *infop;
1179 
1180 	if (!likely(wo->wo_flags & WEXITED))
1181 		return 0;
1182 
1183 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1184 		int exit_code = p->exit_code;
1185 		int why;
1186 
1187 		get_task_struct(p);
1188 		read_unlock(&tasklist_lock);
1189 		if ((exit_code & 0x7f) == 0) {
1190 			why = CLD_EXITED;
1191 			status = exit_code >> 8;
1192 		} else {
1193 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1194 			status = exit_code & 0x7f;
1195 		}
1196 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1197 	}
1198 
1199 	/*
1200 	 * Try to move the task's state to DEAD
1201 	 * only one thread is allowed to do this:
1202 	 */
1203 	state = xchg(&p->exit_state, EXIT_DEAD);
1204 	if (state != EXIT_ZOMBIE) {
1205 		BUG_ON(state != EXIT_DEAD);
1206 		return 0;
1207 	}
1208 
1209 	traced = ptrace_reparented(p);
1210 	/*
1211 	 * It can be ptraced but not reparented, check
1212 	 * !task_detached() to filter out sub-threads.
1213 	 */
1214 	if (likely(!traced) && likely(!task_detached(p))) {
1215 		struct signal_struct *psig;
1216 		struct signal_struct *sig;
1217 		unsigned long maxrss;
1218 		cputime_t tgutime, tgstime;
1219 
1220 		/*
1221 		 * The resource counters for the group leader are in its
1222 		 * own task_struct.  Those for dead threads in the group
1223 		 * are in its signal_struct, as are those for the child
1224 		 * processes it has previously reaped.  All these
1225 		 * accumulate in the parent's signal_struct c* fields.
1226 		 *
1227 		 * We don't bother to take a lock here to protect these
1228 		 * p->signal fields, because they are only touched by
1229 		 * __exit_signal, which runs with tasklist_lock
1230 		 * write-locked anyway, and so is excluded here.  We do
1231 		 * need to protect the access to parent->signal fields,
1232 		 * as other threads in the parent group can be right
1233 		 * here reaping other children at the same time.
1234 		 *
1235 		 * We use thread_group_times() to get times for the thread
1236 		 * group, which consolidates times for all threads in the
1237 		 * group including the group leader.
1238 		 */
1239 		thread_group_times(p, &tgutime, &tgstime);
1240 		spin_lock_irq(&p->real_parent->sighand->siglock);
1241 		psig = p->real_parent->signal;
1242 		sig = p->signal;
1243 		psig->cutime =
1244 			cputime_add(psig->cutime,
1245 			cputime_add(tgutime,
1246 				    sig->cutime));
1247 		psig->cstime =
1248 			cputime_add(psig->cstime,
1249 			cputime_add(tgstime,
1250 				    sig->cstime));
1251 		psig->cgtime =
1252 			cputime_add(psig->cgtime,
1253 			cputime_add(p->gtime,
1254 			cputime_add(sig->gtime,
1255 				    sig->cgtime)));
1256 		psig->cmin_flt +=
1257 			p->min_flt + sig->min_flt + sig->cmin_flt;
1258 		psig->cmaj_flt +=
1259 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1260 		psig->cnvcsw +=
1261 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1262 		psig->cnivcsw +=
1263 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1264 		psig->cinblock +=
1265 			task_io_get_inblock(p) +
1266 			sig->inblock + sig->cinblock;
1267 		psig->coublock +=
1268 			task_io_get_oublock(p) +
1269 			sig->oublock + sig->coublock;
1270 		maxrss = max(sig->maxrss, sig->cmaxrss);
1271 		if (psig->cmaxrss < maxrss)
1272 			psig->cmaxrss = maxrss;
1273 		task_io_accounting_add(&psig->ioac, &p->ioac);
1274 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1275 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1276 	}
1277 
1278 	/*
1279 	 * Now we are sure this task is interesting, and no other
1280 	 * thread can reap it because we set its state to EXIT_DEAD.
1281 	 */
1282 	read_unlock(&tasklist_lock);
1283 
1284 	retval = wo->wo_rusage
1285 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1286 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1287 		? p->signal->group_exit_code : p->exit_code;
1288 	if (!retval && wo->wo_stat)
1289 		retval = put_user(status, wo->wo_stat);
1290 
1291 	infop = wo->wo_info;
1292 	if (!retval && infop)
1293 		retval = put_user(SIGCHLD, &infop->si_signo);
1294 	if (!retval && infop)
1295 		retval = put_user(0, &infop->si_errno);
1296 	if (!retval && infop) {
1297 		int why;
1298 
1299 		if ((status & 0x7f) == 0) {
1300 			why = CLD_EXITED;
1301 			status >>= 8;
1302 		} else {
1303 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1304 			status &= 0x7f;
1305 		}
1306 		retval = put_user((short)why, &infop->si_code);
1307 		if (!retval)
1308 			retval = put_user(status, &infop->si_status);
1309 	}
1310 	if (!retval && infop)
1311 		retval = put_user(pid, &infop->si_pid);
1312 	if (!retval && infop)
1313 		retval = put_user(uid, &infop->si_uid);
1314 	if (!retval)
1315 		retval = pid;
1316 
1317 	if (traced) {
1318 		write_lock_irq(&tasklist_lock);
1319 		/* We dropped tasklist, ptracer could die and untrace */
1320 		ptrace_unlink(p);
1321 		/*
1322 		 * If this is not a detached task, notify the parent.
1323 		 * If it's still not detached after that, don't release
1324 		 * it now.
1325 		 */
1326 		if (!task_detached(p)) {
1327 			do_notify_parent(p, p->exit_signal);
1328 			if (!task_detached(p)) {
1329 				p->exit_state = EXIT_ZOMBIE;
1330 				p = NULL;
1331 			}
1332 		}
1333 		write_unlock_irq(&tasklist_lock);
1334 	}
1335 	if (p != NULL)
1336 		release_task(p);
1337 
1338 	return retval;
1339 }
1340 
1341 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1342 {
1343 	if (ptrace) {
1344 		if (task_is_stopped_or_traced(p))
1345 			return &p->exit_code;
1346 	} else {
1347 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1348 			return &p->signal->group_exit_code;
1349 	}
1350 	return NULL;
1351 }
1352 
1353 /*
1354  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1355  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1356  * the lock and this task is uninteresting.  If we return nonzero, we have
1357  * released the lock and the system call should return.
1358  */
1359 static int wait_task_stopped(struct wait_opts *wo,
1360 				int ptrace, struct task_struct *p)
1361 {
1362 	struct siginfo __user *infop;
1363 	int retval, exit_code, *p_code, why;
1364 	uid_t uid = 0; /* unneeded, required by compiler */
1365 	pid_t pid;
1366 
1367 	/*
1368 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1369 	 */
1370 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1371 		return 0;
1372 
1373 	exit_code = 0;
1374 	spin_lock_irq(&p->sighand->siglock);
1375 
1376 	p_code = task_stopped_code(p, ptrace);
1377 	if (unlikely(!p_code))
1378 		goto unlock_sig;
1379 
1380 	exit_code = *p_code;
1381 	if (!exit_code)
1382 		goto unlock_sig;
1383 
1384 	if (!unlikely(wo->wo_flags & WNOWAIT))
1385 		*p_code = 0;
1386 
1387 	uid = task_uid(p);
1388 unlock_sig:
1389 	spin_unlock_irq(&p->sighand->siglock);
1390 	if (!exit_code)
1391 		return 0;
1392 
1393 	/*
1394 	 * Now we are pretty sure this task is interesting.
1395 	 * Make sure it doesn't get reaped out from under us while we
1396 	 * give up the lock and then examine it below.  We don't want to
1397 	 * keep holding onto the tasklist_lock while we call getrusage and
1398 	 * possibly take page faults for user memory.
1399 	 */
1400 	get_task_struct(p);
1401 	pid = task_pid_vnr(p);
1402 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1403 	read_unlock(&tasklist_lock);
1404 
1405 	if (unlikely(wo->wo_flags & WNOWAIT))
1406 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1407 
1408 	retval = wo->wo_rusage
1409 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1410 	if (!retval && wo->wo_stat)
1411 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1412 
1413 	infop = wo->wo_info;
1414 	if (!retval && infop)
1415 		retval = put_user(SIGCHLD, &infop->si_signo);
1416 	if (!retval && infop)
1417 		retval = put_user(0, &infop->si_errno);
1418 	if (!retval && infop)
1419 		retval = put_user((short)why, &infop->si_code);
1420 	if (!retval && infop)
1421 		retval = put_user(exit_code, &infop->si_status);
1422 	if (!retval && infop)
1423 		retval = put_user(pid, &infop->si_pid);
1424 	if (!retval && infop)
1425 		retval = put_user(uid, &infop->si_uid);
1426 	if (!retval)
1427 		retval = pid;
1428 	put_task_struct(p);
1429 
1430 	BUG_ON(!retval);
1431 	return retval;
1432 }
1433 
1434 /*
1435  * Handle do_wait work for one task in a live, non-stopped state.
1436  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1437  * the lock and this task is uninteresting.  If we return nonzero, we have
1438  * released the lock and the system call should return.
1439  */
1440 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1441 {
1442 	int retval;
1443 	pid_t pid;
1444 	uid_t uid;
1445 
1446 	if (!unlikely(wo->wo_flags & WCONTINUED))
1447 		return 0;
1448 
1449 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1450 		return 0;
1451 
1452 	spin_lock_irq(&p->sighand->siglock);
1453 	/* Re-check with the lock held.  */
1454 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1455 		spin_unlock_irq(&p->sighand->siglock);
1456 		return 0;
1457 	}
1458 	if (!unlikely(wo->wo_flags & WNOWAIT))
1459 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1460 	uid = task_uid(p);
1461 	spin_unlock_irq(&p->sighand->siglock);
1462 
1463 	pid = task_pid_vnr(p);
1464 	get_task_struct(p);
1465 	read_unlock(&tasklist_lock);
1466 
1467 	if (!wo->wo_info) {
1468 		retval = wo->wo_rusage
1469 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1470 		put_task_struct(p);
1471 		if (!retval && wo->wo_stat)
1472 			retval = put_user(0xffff, wo->wo_stat);
1473 		if (!retval)
1474 			retval = pid;
1475 	} else {
1476 		retval = wait_noreap_copyout(wo, p, pid, uid,
1477 					     CLD_CONTINUED, SIGCONT);
1478 		BUG_ON(retval == 0);
1479 	}
1480 
1481 	return retval;
1482 }
1483 
1484 /*
1485  * Consider @p for a wait by @parent.
1486  *
1487  * -ECHILD should be in ->notask_error before the first call.
1488  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1489  * Returns zero if the search for a child should continue;
1490  * then ->notask_error is 0 if @p is an eligible child,
1491  * or another error from security_task_wait(), or still -ECHILD.
1492  */
1493 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1494 				struct task_struct *p)
1495 {
1496 	int ret = eligible_child(wo, p);
1497 	if (!ret)
1498 		return ret;
1499 
1500 	ret = security_task_wait(p);
1501 	if (unlikely(ret < 0)) {
1502 		/*
1503 		 * If we have not yet seen any eligible child,
1504 		 * then let this error code replace -ECHILD.
1505 		 * A permission error will give the user a clue
1506 		 * to look for security policy problems, rather
1507 		 * than for mysterious wait bugs.
1508 		 */
1509 		if (wo->notask_error)
1510 			wo->notask_error = ret;
1511 		return 0;
1512 	}
1513 
1514 	if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1515 		/*
1516 		 * This child is hidden by ptrace.
1517 		 * We aren't allowed to see it now, but eventually we will.
1518 		 */
1519 		wo->notask_error = 0;
1520 		return 0;
1521 	}
1522 
1523 	if (p->exit_state == EXIT_DEAD)
1524 		return 0;
1525 
1526 	/*
1527 	 * We don't reap group leaders with subthreads.
1528 	 */
1529 	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1530 		return wait_task_zombie(wo, p);
1531 
1532 	/*
1533 	 * It's stopped or running now, so it might
1534 	 * later continue, exit, or stop again.
1535 	 */
1536 	wo->notask_error = 0;
1537 
1538 	if (task_stopped_code(p, ptrace))
1539 		return wait_task_stopped(wo, ptrace, p);
1540 
1541 	return wait_task_continued(wo, p);
1542 }
1543 
1544 /*
1545  * Do the work of do_wait() for one thread in the group, @tsk.
1546  *
1547  * -ECHILD should be in ->notask_error before the first call.
1548  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1549  * Returns zero if the search for a child should continue; then
1550  * ->notask_error is 0 if there were any eligible children,
1551  * or another error from security_task_wait(), or still -ECHILD.
1552  */
1553 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1554 {
1555 	struct task_struct *p;
1556 
1557 	list_for_each_entry(p, &tsk->children, sibling) {
1558 		int ret = wait_consider_task(wo, 0, p);
1559 		if (ret)
1560 			return ret;
1561 	}
1562 
1563 	return 0;
1564 }
1565 
1566 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1567 {
1568 	struct task_struct *p;
1569 
1570 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1571 		int ret = wait_consider_task(wo, 1, p);
1572 		if (ret)
1573 			return ret;
1574 	}
1575 
1576 	return 0;
1577 }
1578 
1579 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1580 				int sync, void *key)
1581 {
1582 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1583 						child_wait);
1584 	struct task_struct *p = key;
1585 
1586 	if (!eligible_pid(wo, p))
1587 		return 0;
1588 
1589 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1590 		return 0;
1591 
1592 	return default_wake_function(wait, mode, sync, key);
1593 }
1594 
1595 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1596 {
1597 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1598 				TASK_INTERRUPTIBLE, 1, p);
1599 }
1600 
1601 static long do_wait(struct wait_opts *wo)
1602 {
1603 	struct task_struct *tsk;
1604 	int retval;
1605 
1606 	trace_sched_process_wait(wo->wo_pid);
1607 
1608 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1609 	wo->child_wait.private = current;
1610 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1611 repeat:
1612 	/*
1613 	 * If there is nothing that can match our critiera just get out.
1614 	 * We will clear ->notask_error to zero if we see any child that
1615 	 * might later match our criteria, even if we are not able to reap
1616 	 * it yet.
1617 	 */
1618 	wo->notask_error = -ECHILD;
1619 	if ((wo->wo_type < PIDTYPE_MAX) &&
1620 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1621 		goto notask;
1622 
1623 	set_current_state(TASK_INTERRUPTIBLE);
1624 	read_lock(&tasklist_lock);
1625 	tsk = current;
1626 	do {
1627 		retval = do_wait_thread(wo, tsk);
1628 		if (retval)
1629 			goto end;
1630 
1631 		retval = ptrace_do_wait(wo, tsk);
1632 		if (retval)
1633 			goto end;
1634 
1635 		if (wo->wo_flags & __WNOTHREAD)
1636 			break;
1637 	} while_each_thread(current, tsk);
1638 	read_unlock(&tasklist_lock);
1639 
1640 notask:
1641 	retval = wo->notask_error;
1642 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1643 		retval = -ERESTARTSYS;
1644 		if (!signal_pending(current)) {
1645 			schedule();
1646 			goto repeat;
1647 		}
1648 	}
1649 end:
1650 	__set_current_state(TASK_RUNNING);
1651 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1652 	return retval;
1653 }
1654 
1655 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1656 		infop, int, options, struct rusage __user *, ru)
1657 {
1658 	struct wait_opts wo;
1659 	struct pid *pid = NULL;
1660 	enum pid_type type;
1661 	long ret;
1662 
1663 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1664 		return -EINVAL;
1665 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1666 		return -EINVAL;
1667 
1668 	switch (which) {
1669 	case P_ALL:
1670 		type = PIDTYPE_MAX;
1671 		break;
1672 	case P_PID:
1673 		type = PIDTYPE_PID;
1674 		if (upid <= 0)
1675 			return -EINVAL;
1676 		break;
1677 	case P_PGID:
1678 		type = PIDTYPE_PGID;
1679 		if (upid <= 0)
1680 			return -EINVAL;
1681 		break;
1682 	default:
1683 		return -EINVAL;
1684 	}
1685 
1686 	if (type < PIDTYPE_MAX)
1687 		pid = find_get_pid(upid);
1688 
1689 	wo.wo_type	= type;
1690 	wo.wo_pid	= pid;
1691 	wo.wo_flags	= options;
1692 	wo.wo_info	= infop;
1693 	wo.wo_stat	= NULL;
1694 	wo.wo_rusage	= ru;
1695 	ret = do_wait(&wo);
1696 
1697 	if (ret > 0) {
1698 		ret = 0;
1699 	} else if (infop) {
1700 		/*
1701 		 * For a WNOHANG return, clear out all the fields
1702 		 * we would set so the user can easily tell the
1703 		 * difference.
1704 		 */
1705 		if (!ret)
1706 			ret = put_user(0, &infop->si_signo);
1707 		if (!ret)
1708 			ret = put_user(0, &infop->si_errno);
1709 		if (!ret)
1710 			ret = put_user(0, &infop->si_code);
1711 		if (!ret)
1712 			ret = put_user(0, &infop->si_pid);
1713 		if (!ret)
1714 			ret = put_user(0, &infop->si_uid);
1715 		if (!ret)
1716 			ret = put_user(0, &infop->si_status);
1717 	}
1718 
1719 	put_pid(pid);
1720 
1721 	/* avoid REGPARM breakage on x86: */
1722 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1723 	return ret;
1724 }
1725 
1726 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1727 		int, options, struct rusage __user *, ru)
1728 {
1729 	struct wait_opts wo;
1730 	struct pid *pid = NULL;
1731 	enum pid_type type;
1732 	long ret;
1733 
1734 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1735 			__WNOTHREAD|__WCLONE|__WALL))
1736 		return -EINVAL;
1737 
1738 	if (upid == -1)
1739 		type = PIDTYPE_MAX;
1740 	else if (upid < 0) {
1741 		type = PIDTYPE_PGID;
1742 		pid = find_get_pid(-upid);
1743 	} else if (upid == 0) {
1744 		type = PIDTYPE_PGID;
1745 		pid = get_task_pid(current, PIDTYPE_PGID);
1746 	} else /* upid > 0 */ {
1747 		type = PIDTYPE_PID;
1748 		pid = find_get_pid(upid);
1749 	}
1750 
1751 	wo.wo_type	= type;
1752 	wo.wo_pid	= pid;
1753 	wo.wo_flags	= options | WEXITED;
1754 	wo.wo_info	= NULL;
1755 	wo.wo_stat	= stat_addr;
1756 	wo.wo_rusage	= ru;
1757 	ret = do_wait(&wo);
1758 	put_pid(pid);
1759 
1760 	/* avoid REGPARM breakage on x86: */
1761 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1762 	return ret;
1763 }
1764 
1765 #ifdef __ARCH_WANT_SYS_WAITPID
1766 
1767 /*
1768  * sys_waitpid() remains for compatibility. waitpid() should be
1769  * implemented by calling sys_wait4() from libc.a.
1770  */
1771 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1772 {
1773 	return sys_wait4(pid, stat_addr, options, NULL);
1774 }
1775 
1776 #endif
1777