xref: /linux/kernel/exit.c (revision bf80eef2212a1e8451df13b52533f4bc31bb4f8e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 
71 #include <linux/uaccess.h>
72 #include <asm/unistd.h>
73 #include <asm/mmu_context.h>
74 
75 static void __unhash_process(struct task_struct *p, bool group_dead)
76 {
77 	nr_threads--;
78 	detach_pid(p, PIDTYPE_PID);
79 	if (group_dead) {
80 		detach_pid(p, PIDTYPE_TGID);
81 		detach_pid(p, PIDTYPE_PGID);
82 		detach_pid(p, PIDTYPE_SID);
83 
84 		list_del_rcu(&p->tasks);
85 		list_del_init(&p->sibling);
86 		__this_cpu_dec(process_counts);
87 	}
88 	list_del_rcu(&p->thread_group);
89 	list_del_rcu(&p->thread_node);
90 }
91 
92 /*
93  * This function expects the tasklist_lock write-locked.
94  */
95 static void __exit_signal(struct task_struct *tsk)
96 {
97 	struct signal_struct *sig = tsk->signal;
98 	bool group_dead = thread_group_leader(tsk);
99 	struct sighand_struct *sighand;
100 	struct tty_struct *tty;
101 	u64 utime, stime;
102 
103 	sighand = rcu_dereference_check(tsk->sighand,
104 					lockdep_tasklist_lock_is_held());
105 	spin_lock(&sighand->siglock);
106 
107 #ifdef CONFIG_POSIX_TIMERS
108 	posix_cpu_timers_exit(tsk);
109 	if (group_dead)
110 		posix_cpu_timers_exit_group(tsk);
111 #endif
112 
113 	if (group_dead) {
114 		tty = sig->tty;
115 		sig->tty = NULL;
116 	} else {
117 		/*
118 		 * If there is any task waiting for the group exit
119 		 * then notify it:
120 		 */
121 		if (sig->notify_count > 0 && !--sig->notify_count)
122 			wake_up_process(sig->group_exec_task);
123 
124 		if (tsk == sig->curr_target)
125 			sig->curr_target = next_thread(tsk);
126 	}
127 
128 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
129 			      sizeof(unsigned long long));
130 
131 	/*
132 	 * Accumulate here the counters for all threads as they die. We could
133 	 * skip the group leader because it is the last user of signal_struct,
134 	 * but we want to avoid the race with thread_group_cputime() which can
135 	 * see the empty ->thread_head list.
136 	 */
137 	task_cputime(tsk, &utime, &stime);
138 	write_seqlock(&sig->stats_lock);
139 	sig->utime += utime;
140 	sig->stime += stime;
141 	sig->gtime += task_gtime(tsk);
142 	sig->min_flt += tsk->min_flt;
143 	sig->maj_flt += tsk->maj_flt;
144 	sig->nvcsw += tsk->nvcsw;
145 	sig->nivcsw += tsk->nivcsw;
146 	sig->inblock += task_io_get_inblock(tsk);
147 	sig->oublock += task_io_get_oublock(tsk);
148 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
149 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
150 	sig->nr_threads--;
151 	__unhash_process(tsk, group_dead);
152 	write_sequnlock(&sig->stats_lock);
153 
154 	/*
155 	 * Do this under ->siglock, we can race with another thread
156 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
157 	 */
158 	flush_sigqueue(&tsk->pending);
159 	tsk->sighand = NULL;
160 	spin_unlock(&sighand->siglock);
161 
162 	__cleanup_sighand(sighand);
163 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
164 	if (group_dead) {
165 		flush_sigqueue(&sig->shared_pending);
166 		tty_kref_put(tty);
167 	}
168 }
169 
170 static void delayed_put_task_struct(struct rcu_head *rhp)
171 {
172 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
173 
174 	kprobe_flush_task(tsk);
175 	rethook_flush_task(tsk);
176 	perf_event_delayed_put(tsk);
177 	trace_sched_process_free(tsk);
178 	put_task_struct(tsk);
179 }
180 
181 void put_task_struct_rcu_user(struct task_struct *task)
182 {
183 	if (refcount_dec_and_test(&task->rcu_users))
184 		call_rcu(&task->rcu, delayed_put_task_struct);
185 }
186 
187 void __weak release_thread(struct task_struct *dead_task)
188 {
189 }
190 
191 void release_task(struct task_struct *p)
192 {
193 	struct task_struct *leader;
194 	struct pid *thread_pid;
195 	int zap_leader;
196 repeat:
197 	/* don't need to get the RCU readlock here - the process is dead and
198 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
199 	rcu_read_lock();
200 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
201 	rcu_read_unlock();
202 
203 	cgroup_release(p);
204 
205 	write_lock_irq(&tasklist_lock);
206 	ptrace_release_task(p);
207 	thread_pid = get_pid(p->thread_pid);
208 	__exit_signal(p);
209 
210 	/*
211 	 * If we are the last non-leader member of the thread
212 	 * group, and the leader is zombie, then notify the
213 	 * group leader's parent process. (if it wants notification.)
214 	 */
215 	zap_leader = 0;
216 	leader = p->group_leader;
217 	if (leader != p && thread_group_empty(leader)
218 			&& leader->exit_state == EXIT_ZOMBIE) {
219 		/*
220 		 * If we were the last child thread and the leader has
221 		 * exited already, and the leader's parent ignores SIGCHLD,
222 		 * then we are the one who should release the leader.
223 		 */
224 		zap_leader = do_notify_parent(leader, leader->exit_signal);
225 		if (zap_leader)
226 			leader->exit_state = EXIT_DEAD;
227 	}
228 
229 	write_unlock_irq(&tasklist_lock);
230 	seccomp_filter_release(p);
231 	proc_flush_pid(thread_pid);
232 	put_pid(thread_pid);
233 	release_thread(p);
234 	put_task_struct_rcu_user(p);
235 
236 	p = leader;
237 	if (unlikely(zap_leader))
238 		goto repeat;
239 }
240 
241 int rcuwait_wake_up(struct rcuwait *w)
242 {
243 	int ret = 0;
244 	struct task_struct *task;
245 
246 	rcu_read_lock();
247 
248 	/*
249 	 * Order condition vs @task, such that everything prior to the load
250 	 * of @task is visible. This is the condition as to why the user called
251 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
252 	 * barrier (A) in rcuwait_wait_event().
253 	 *
254 	 *    WAIT                WAKE
255 	 *    [S] tsk = current	  [S] cond = true
256 	 *        MB (A)	      MB (B)
257 	 *    [L] cond		  [L] tsk
258 	 */
259 	smp_mb(); /* (B) */
260 
261 	task = rcu_dereference(w->task);
262 	if (task)
263 		ret = wake_up_process(task);
264 	rcu_read_unlock();
265 
266 	return ret;
267 }
268 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
269 
270 /*
271  * Determine if a process group is "orphaned", according to the POSIX
272  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
273  * by terminal-generated stop signals.  Newly orphaned process groups are
274  * to receive a SIGHUP and a SIGCONT.
275  *
276  * "I ask you, have you ever known what it is to be an orphan?"
277  */
278 static int will_become_orphaned_pgrp(struct pid *pgrp,
279 					struct task_struct *ignored_task)
280 {
281 	struct task_struct *p;
282 
283 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
284 		if ((p == ignored_task) ||
285 		    (p->exit_state && thread_group_empty(p)) ||
286 		    is_global_init(p->real_parent))
287 			continue;
288 
289 		if (task_pgrp(p->real_parent) != pgrp &&
290 		    task_session(p->real_parent) == task_session(p))
291 			return 0;
292 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
293 
294 	return 1;
295 }
296 
297 int is_current_pgrp_orphaned(void)
298 {
299 	int retval;
300 
301 	read_lock(&tasklist_lock);
302 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
303 	read_unlock(&tasklist_lock);
304 
305 	return retval;
306 }
307 
308 static bool has_stopped_jobs(struct pid *pgrp)
309 {
310 	struct task_struct *p;
311 
312 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
313 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
314 			return true;
315 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
316 
317 	return false;
318 }
319 
320 /*
321  * Check to see if any process groups have become orphaned as
322  * a result of our exiting, and if they have any stopped jobs,
323  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
324  */
325 static void
326 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
327 {
328 	struct pid *pgrp = task_pgrp(tsk);
329 	struct task_struct *ignored_task = tsk;
330 
331 	if (!parent)
332 		/* exit: our father is in a different pgrp than
333 		 * we are and we were the only connection outside.
334 		 */
335 		parent = tsk->real_parent;
336 	else
337 		/* reparent: our child is in a different pgrp than
338 		 * we are, and it was the only connection outside.
339 		 */
340 		ignored_task = NULL;
341 
342 	if (task_pgrp(parent) != pgrp &&
343 	    task_session(parent) == task_session(tsk) &&
344 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
345 	    has_stopped_jobs(pgrp)) {
346 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
347 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
348 	}
349 }
350 
351 static void coredump_task_exit(struct task_struct *tsk)
352 {
353 	struct core_state *core_state;
354 
355 	/*
356 	 * Serialize with any possible pending coredump.
357 	 * We must hold siglock around checking core_state
358 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
359 	 * will increment ->nr_threads for each thread in the
360 	 * group without PF_POSTCOREDUMP set.
361 	 */
362 	spin_lock_irq(&tsk->sighand->siglock);
363 	tsk->flags |= PF_POSTCOREDUMP;
364 	core_state = tsk->signal->core_state;
365 	spin_unlock_irq(&tsk->sighand->siglock);
366 	if (core_state) {
367 		struct core_thread self;
368 
369 		self.task = current;
370 		if (self.task->flags & PF_SIGNALED)
371 			self.next = xchg(&core_state->dumper.next, &self);
372 		else
373 			self.task = NULL;
374 		/*
375 		 * Implies mb(), the result of xchg() must be visible
376 		 * to core_state->dumper.
377 		 */
378 		if (atomic_dec_and_test(&core_state->nr_threads))
379 			complete(&core_state->startup);
380 
381 		for (;;) {
382 			set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
383 			if (!self.task) /* see coredump_finish() */
384 				break;
385 			schedule();
386 		}
387 		__set_current_state(TASK_RUNNING);
388 	}
389 }
390 
391 #ifdef CONFIG_MEMCG
392 /*
393  * A task is exiting.   If it owned this mm, find a new owner for the mm.
394  */
395 void mm_update_next_owner(struct mm_struct *mm)
396 {
397 	struct task_struct *c, *g, *p = current;
398 
399 retry:
400 	/*
401 	 * If the exiting or execing task is not the owner, it's
402 	 * someone else's problem.
403 	 */
404 	if (mm->owner != p)
405 		return;
406 	/*
407 	 * The current owner is exiting/execing and there are no other
408 	 * candidates.  Do not leave the mm pointing to a possibly
409 	 * freed task structure.
410 	 */
411 	if (atomic_read(&mm->mm_users) <= 1) {
412 		WRITE_ONCE(mm->owner, NULL);
413 		return;
414 	}
415 
416 	read_lock(&tasklist_lock);
417 	/*
418 	 * Search in the children
419 	 */
420 	list_for_each_entry(c, &p->children, sibling) {
421 		if (c->mm == mm)
422 			goto assign_new_owner;
423 	}
424 
425 	/*
426 	 * Search in the siblings
427 	 */
428 	list_for_each_entry(c, &p->real_parent->children, sibling) {
429 		if (c->mm == mm)
430 			goto assign_new_owner;
431 	}
432 
433 	/*
434 	 * Search through everything else, we should not get here often.
435 	 */
436 	for_each_process(g) {
437 		if (g->flags & PF_KTHREAD)
438 			continue;
439 		for_each_thread(g, c) {
440 			if (c->mm == mm)
441 				goto assign_new_owner;
442 			if (c->mm)
443 				break;
444 		}
445 	}
446 	read_unlock(&tasklist_lock);
447 	/*
448 	 * We found no owner yet mm_users > 1: this implies that we are
449 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
450 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
451 	 */
452 	WRITE_ONCE(mm->owner, NULL);
453 	return;
454 
455 assign_new_owner:
456 	BUG_ON(c == p);
457 	get_task_struct(c);
458 	/*
459 	 * The task_lock protects c->mm from changing.
460 	 * We always want mm->owner->mm == mm
461 	 */
462 	task_lock(c);
463 	/*
464 	 * Delay read_unlock() till we have the task_lock()
465 	 * to ensure that c does not slip away underneath us
466 	 */
467 	read_unlock(&tasklist_lock);
468 	if (c->mm != mm) {
469 		task_unlock(c);
470 		put_task_struct(c);
471 		goto retry;
472 	}
473 	WRITE_ONCE(mm->owner, c);
474 	lru_gen_migrate_mm(mm);
475 	task_unlock(c);
476 	put_task_struct(c);
477 }
478 #endif /* CONFIG_MEMCG */
479 
480 /*
481  * Turn us into a lazy TLB process if we
482  * aren't already..
483  */
484 static void exit_mm(void)
485 {
486 	struct mm_struct *mm = current->mm;
487 
488 	exit_mm_release(current, mm);
489 	if (!mm)
490 		return;
491 	sync_mm_rss(mm);
492 	mmap_read_lock(mm);
493 	mmgrab(mm);
494 	BUG_ON(mm != current->active_mm);
495 	/* more a memory barrier than a real lock */
496 	task_lock(current);
497 	/*
498 	 * When a thread stops operating on an address space, the loop
499 	 * in membarrier_private_expedited() may not observe that
500 	 * tsk->mm, and the loop in membarrier_global_expedited() may
501 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
502 	 * rq->membarrier_state, so those would not issue an IPI.
503 	 * Membarrier requires a memory barrier after accessing
504 	 * user-space memory, before clearing tsk->mm or the
505 	 * rq->membarrier_state.
506 	 */
507 	smp_mb__after_spinlock();
508 	local_irq_disable();
509 	current->mm = NULL;
510 	membarrier_update_current_mm(NULL);
511 	enter_lazy_tlb(mm, current);
512 	local_irq_enable();
513 	task_unlock(current);
514 	mmap_read_unlock(mm);
515 	mm_update_next_owner(mm);
516 	mmput(mm);
517 	if (test_thread_flag(TIF_MEMDIE))
518 		exit_oom_victim();
519 }
520 
521 static struct task_struct *find_alive_thread(struct task_struct *p)
522 {
523 	struct task_struct *t;
524 
525 	for_each_thread(p, t) {
526 		if (!(t->flags & PF_EXITING))
527 			return t;
528 	}
529 	return NULL;
530 }
531 
532 static struct task_struct *find_child_reaper(struct task_struct *father,
533 						struct list_head *dead)
534 	__releases(&tasklist_lock)
535 	__acquires(&tasklist_lock)
536 {
537 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
538 	struct task_struct *reaper = pid_ns->child_reaper;
539 	struct task_struct *p, *n;
540 
541 	if (likely(reaper != father))
542 		return reaper;
543 
544 	reaper = find_alive_thread(father);
545 	if (reaper) {
546 		pid_ns->child_reaper = reaper;
547 		return reaper;
548 	}
549 
550 	write_unlock_irq(&tasklist_lock);
551 
552 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
553 		list_del_init(&p->ptrace_entry);
554 		release_task(p);
555 	}
556 
557 	zap_pid_ns_processes(pid_ns);
558 	write_lock_irq(&tasklist_lock);
559 
560 	return father;
561 }
562 
563 /*
564  * When we die, we re-parent all our children, and try to:
565  * 1. give them to another thread in our thread group, if such a member exists
566  * 2. give it to the first ancestor process which prctl'd itself as a
567  *    child_subreaper for its children (like a service manager)
568  * 3. give it to the init process (PID 1) in our pid namespace
569  */
570 static struct task_struct *find_new_reaper(struct task_struct *father,
571 					   struct task_struct *child_reaper)
572 {
573 	struct task_struct *thread, *reaper;
574 
575 	thread = find_alive_thread(father);
576 	if (thread)
577 		return thread;
578 
579 	if (father->signal->has_child_subreaper) {
580 		unsigned int ns_level = task_pid(father)->level;
581 		/*
582 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
583 		 * We can't check reaper != child_reaper to ensure we do not
584 		 * cross the namespaces, the exiting parent could be injected
585 		 * by setns() + fork().
586 		 * We check pid->level, this is slightly more efficient than
587 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
588 		 */
589 		for (reaper = father->real_parent;
590 		     task_pid(reaper)->level == ns_level;
591 		     reaper = reaper->real_parent) {
592 			if (reaper == &init_task)
593 				break;
594 			if (!reaper->signal->is_child_subreaper)
595 				continue;
596 			thread = find_alive_thread(reaper);
597 			if (thread)
598 				return thread;
599 		}
600 	}
601 
602 	return child_reaper;
603 }
604 
605 /*
606 * Any that need to be release_task'd are put on the @dead list.
607  */
608 static void reparent_leader(struct task_struct *father, struct task_struct *p,
609 				struct list_head *dead)
610 {
611 	if (unlikely(p->exit_state == EXIT_DEAD))
612 		return;
613 
614 	/* We don't want people slaying init. */
615 	p->exit_signal = SIGCHLD;
616 
617 	/* If it has exited notify the new parent about this child's death. */
618 	if (!p->ptrace &&
619 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
620 		if (do_notify_parent(p, p->exit_signal)) {
621 			p->exit_state = EXIT_DEAD;
622 			list_add(&p->ptrace_entry, dead);
623 		}
624 	}
625 
626 	kill_orphaned_pgrp(p, father);
627 }
628 
629 /*
630  * This does two things:
631  *
632  * A.  Make init inherit all the child processes
633  * B.  Check to see if any process groups have become orphaned
634  *	as a result of our exiting, and if they have any stopped
635  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
636  */
637 static void forget_original_parent(struct task_struct *father,
638 					struct list_head *dead)
639 {
640 	struct task_struct *p, *t, *reaper;
641 
642 	if (unlikely(!list_empty(&father->ptraced)))
643 		exit_ptrace(father, dead);
644 
645 	/* Can drop and reacquire tasklist_lock */
646 	reaper = find_child_reaper(father, dead);
647 	if (list_empty(&father->children))
648 		return;
649 
650 	reaper = find_new_reaper(father, reaper);
651 	list_for_each_entry(p, &father->children, sibling) {
652 		for_each_thread(p, t) {
653 			RCU_INIT_POINTER(t->real_parent, reaper);
654 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
655 			if (likely(!t->ptrace))
656 				t->parent = t->real_parent;
657 			if (t->pdeath_signal)
658 				group_send_sig_info(t->pdeath_signal,
659 						    SEND_SIG_NOINFO, t,
660 						    PIDTYPE_TGID);
661 		}
662 		/*
663 		 * If this is a threaded reparent there is no need to
664 		 * notify anyone anything has happened.
665 		 */
666 		if (!same_thread_group(reaper, father))
667 			reparent_leader(father, p, dead);
668 	}
669 	list_splice_tail_init(&father->children, &reaper->children);
670 }
671 
672 /*
673  * Send signals to all our closest relatives so that they know
674  * to properly mourn us..
675  */
676 static void exit_notify(struct task_struct *tsk, int group_dead)
677 {
678 	bool autoreap;
679 	struct task_struct *p, *n;
680 	LIST_HEAD(dead);
681 
682 	write_lock_irq(&tasklist_lock);
683 	forget_original_parent(tsk, &dead);
684 
685 	if (group_dead)
686 		kill_orphaned_pgrp(tsk->group_leader, NULL);
687 
688 	tsk->exit_state = EXIT_ZOMBIE;
689 	if (unlikely(tsk->ptrace)) {
690 		int sig = thread_group_leader(tsk) &&
691 				thread_group_empty(tsk) &&
692 				!ptrace_reparented(tsk) ?
693 			tsk->exit_signal : SIGCHLD;
694 		autoreap = do_notify_parent(tsk, sig);
695 	} else if (thread_group_leader(tsk)) {
696 		autoreap = thread_group_empty(tsk) &&
697 			do_notify_parent(tsk, tsk->exit_signal);
698 	} else {
699 		autoreap = true;
700 	}
701 
702 	if (autoreap) {
703 		tsk->exit_state = EXIT_DEAD;
704 		list_add(&tsk->ptrace_entry, &dead);
705 	}
706 
707 	/* mt-exec, de_thread() is waiting for group leader */
708 	if (unlikely(tsk->signal->notify_count < 0))
709 		wake_up_process(tsk->signal->group_exec_task);
710 	write_unlock_irq(&tasklist_lock);
711 
712 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
713 		list_del_init(&p->ptrace_entry);
714 		release_task(p);
715 	}
716 }
717 
718 #ifdef CONFIG_DEBUG_STACK_USAGE
719 static void check_stack_usage(void)
720 {
721 	static DEFINE_SPINLOCK(low_water_lock);
722 	static int lowest_to_date = THREAD_SIZE;
723 	unsigned long free;
724 
725 	free = stack_not_used(current);
726 
727 	if (free >= lowest_to_date)
728 		return;
729 
730 	spin_lock(&low_water_lock);
731 	if (free < lowest_to_date) {
732 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
733 			current->comm, task_pid_nr(current), free);
734 		lowest_to_date = free;
735 	}
736 	spin_unlock(&low_water_lock);
737 }
738 #else
739 static inline void check_stack_usage(void) {}
740 #endif
741 
742 static void synchronize_group_exit(struct task_struct *tsk, long code)
743 {
744 	struct sighand_struct *sighand = tsk->sighand;
745 	struct signal_struct *signal = tsk->signal;
746 
747 	spin_lock_irq(&sighand->siglock);
748 	signal->quick_threads--;
749 	if ((signal->quick_threads == 0) &&
750 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
751 		signal->flags = SIGNAL_GROUP_EXIT;
752 		signal->group_exit_code = code;
753 		signal->group_stop_count = 0;
754 	}
755 	spin_unlock_irq(&sighand->siglock);
756 }
757 
758 void __noreturn do_exit(long code)
759 {
760 	struct task_struct *tsk = current;
761 	int group_dead;
762 
763 	synchronize_group_exit(tsk, code);
764 
765 	WARN_ON(tsk->plug);
766 
767 	kcov_task_exit(tsk);
768 	kmsan_task_exit(tsk);
769 
770 	coredump_task_exit(tsk);
771 	ptrace_event(PTRACE_EVENT_EXIT, code);
772 
773 	validate_creds_for_do_exit(tsk);
774 
775 	io_uring_files_cancel();
776 	exit_signals(tsk);  /* sets PF_EXITING */
777 
778 	/* sync mm's RSS info before statistics gathering */
779 	if (tsk->mm)
780 		sync_mm_rss(tsk->mm);
781 	acct_update_integrals(tsk);
782 	group_dead = atomic_dec_and_test(&tsk->signal->live);
783 	if (group_dead) {
784 		/*
785 		 * If the last thread of global init has exited, panic
786 		 * immediately to get a useable coredump.
787 		 */
788 		if (unlikely(is_global_init(tsk)))
789 			panic("Attempted to kill init! exitcode=0x%08x\n",
790 				tsk->signal->group_exit_code ?: (int)code);
791 
792 #ifdef CONFIG_POSIX_TIMERS
793 		hrtimer_cancel(&tsk->signal->real_timer);
794 		exit_itimers(tsk);
795 #endif
796 		if (tsk->mm)
797 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
798 	}
799 	acct_collect(code, group_dead);
800 	if (group_dead)
801 		tty_audit_exit();
802 	audit_free(tsk);
803 
804 	tsk->exit_code = code;
805 	taskstats_exit(tsk, group_dead);
806 
807 	exit_mm();
808 
809 	if (group_dead)
810 		acct_process();
811 	trace_sched_process_exit(tsk);
812 
813 	exit_sem(tsk);
814 	exit_shm(tsk);
815 	exit_files(tsk);
816 	exit_fs(tsk);
817 	if (group_dead)
818 		disassociate_ctty(1);
819 	exit_task_namespaces(tsk);
820 	exit_task_work(tsk);
821 	exit_thread(tsk);
822 
823 	/*
824 	 * Flush inherited counters to the parent - before the parent
825 	 * gets woken up by child-exit notifications.
826 	 *
827 	 * because of cgroup mode, must be called before cgroup_exit()
828 	 */
829 	perf_event_exit_task(tsk);
830 
831 	sched_autogroup_exit_task(tsk);
832 	cgroup_exit(tsk);
833 
834 	/*
835 	 * FIXME: do that only when needed, using sched_exit tracepoint
836 	 */
837 	flush_ptrace_hw_breakpoint(tsk);
838 
839 	exit_tasks_rcu_start();
840 	exit_notify(tsk, group_dead);
841 	proc_exit_connector(tsk);
842 	mpol_put_task_policy(tsk);
843 #ifdef CONFIG_FUTEX
844 	if (unlikely(current->pi_state_cache))
845 		kfree(current->pi_state_cache);
846 #endif
847 	/*
848 	 * Make sure we are holding no locks:
849 	 */
850 	debug_check_no_locks_held();
851 
852 	if (tsk->io_context)
853 		exit_io_context(tsk);
854 
855 	if (tsk->splice_pipe)
856 		free_pipe_info(tsk->splice_pipe);
857 
858 	if (tsk->task_frag.page)
859 		put_page(tsk->task_frag.page);
860 
861 	validate_creds_for_do_exit(tsk);
862 	exit_task_stack_account(tsk);
863 
864 	check_stack_usage();
865 	preempt_disable();
866 	if (tsk->nr_dirtied)
867 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
868 	exit_rcu();
869 	exit_tasks_rcu_finish();
870 
871 	lockdep_free_task(tsk);
872 	do_task_dead();
873 }
874 
875 void __noreturn make_task_dead(int signr)
876 {
877 	/*
878 	 * Take the task off the cpu after something catastrophic has
879 	 * happened.
880 	 *
881 	 * We can get here from a kernel oops, sometimes with preemption off.
882 	 * Start by checking for critical errors.
883 	 * Then fix up important state like USER_DS and preemption.
884 	 * Then do everything else.
885 	 */
886 	struct task_struct *tsk = current;
887 
888 	if (unlikely(in_interrupt()))
889 		panic("Aiee, killing interrupt handler!");
890 	if (unlikely(!tsk->pid))
891 		panic("Attempted to kill the idle task!");
892 
893 	if (unlikely(in_atomic())) {
894 		pr_info("note: %s[%d] exited with preempt_count %d\n",
895 			current->comm, task_pid_nr(current),
896 			preempt_count());
897 		preempt_count_set(PREEMPT_ENABLED);
898 	}
899 
900 	/*
901 	 * We're taking recursive faults here in make_task_dead. Safest is to just
902 	 * leave this task alone and wait for reboot.
903 	 */
904 	if (unlikely(tsk->flags & PF_EXITING)) {
905 		pr_alert("Fixing recursive fault but reboot is needed!\n");
906 		futex_exit_recursive(tsk);
907 		tsk->exit_state = EXIT_DEAD;
908 		refcount_inc(&tsk->rcu_users);
909 		do_task_dead();
910 	}
911 
912 	do_exit(signr);
913 }
914 
915 SYSCALL_DEFINE1(exit, int, error_code)
916 {
917 	do_exit((error_code&0xff)<<8);
918 }
919 
920 /*
921  * Take down every thread in the group.  This is called by fatal signals
922  * as well as by sys_exit_group (below).
923  */
924 void __noreturn
925 do_group_exit(int exit_code)
926 {
927 	struct signal_struct *sig = current->signal;
928 
929 	if (sig->flags & SIGNAL_GROUP_EXIT)
930 		exit_code = sig->group_exit_code;
931 	else if (sig->group_exec_task)
932 		exit_code = 0;
933 	else {
934 		struct sighand_struct *const sighand = current->sighand;
935 
936 		spin_lock_irq(&sighand->siglock);
937 		if (sig->flags & SIGNAL_GROUP_EXIT)
938 			/* Another thread got here before we took the lock.  */
939 			exit_code = sig->group_exit_code;
940 		else if (sig->group_exec_task)
941 			exit_code = 0;
942 		else {
943 			sig->group_exit_code = exit_code;
944 			sig->flags = SIGNAL_GROUP_EXIT;
945 			zap_other_threads(current);
946 		}
947 		spin_unlock_irq(&sighand->siglock);
948 	}
949 
950 	do_exit(exit_code);
951 	/* NOTREACHED */
952 }
953 
954 /*
955  * this kills every thread in the thread group. Note that any externally
956  * wait4()-ing process will get the correct exit code - even if this
957  * thread is not the thread group leader.
958  */
959 SYSCALL_DEFINE1(exit_group, int, error_code)
960 {
961 	do_group_exit((error_code & 0xff) << 8);
962 	/* NOTREACHED */
963 	return 0;
964 }
965 
966 struct waitid_info {
967 	pid_t pid;
968 	uid_t uid;
969 	int status;
970 	int cause;
971 };
972 
973 struct wait_opts {
974 	enum pid_type		wo_type;
975 	int			wo_flags;
976 	struct pid		*wo_pid;
977 
978 	struct waitid_info	*wo_info;
979 	int			wo_stat;
980 	struct rusage		*wo_rusage;
981 
982 	wait_queue_entry_t		child_wait;
983 	int			notask_error;
984 };
985 
986 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
987 {
988 	return	wo->wo_type == PIDTYPE_MAX ||
989 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
990 }
991 
992 static int
993 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
994 {
995 	if (!eligible_pid(wo, p))
996 		return 0;
997 
998 	/*
999 	 * Wait for all children (clone and not) if __WALL is set or
1000 	 * if it is traced by us.
1001 	 */
1002 	if (ptrace || (wo->wo_flags & __WALL))
1003 		return 1;
1004 
1005 	/*
1006 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1007 	 * otherwise, wait for non-clone children *only*.
1008 	 *
1009 	 * Note: a "clone" child here is one that reports to its parent
1010 	 * using a signal other than SIGCHLD, or a non-leader thread which
1011 	 * we can only see if it is traced by us.
1012 	 */
1013 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1014 		return 0;
1015 
1016 	return 1;
1017 }
1018 
1019 /*
1020  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1021  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1022  * the lock and this task is uninteresting.  If we return nonzero, we have
1023  * released the lock and the system call should return.
1024  */
1025 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1026 {
1027 	int state, status;
1028 	pid_t pid = task_pid_vnr(p);
1029 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1030 	struct waitid_info *infop;
1031 
1032 	if (!likely(wo->wo_flags & WEXITED))
1033 		return 0;
1034 
1035 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1036 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1037 			? p->signal->group_exit_code : p->exit_code;
1038 		get_task_struct(p);
1039 		read_unlock(&tasklist_lock);
1040 		sched_annotate_sleep();
1041 		if (wo->wo_rusage)
1042 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1043 		put_task_struct(p);
1044 		goto out_info;
1045 	}
1046 	/*
1047 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1048 	 */
1049 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1050 		EXIT_TRACE : EXIT_DEAD;
1051 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1052 		return 0;
1053 	/*
1054 	 * We own this thread, nobody else can reap it.
1055 	 */
1056 	read_unlock(&tasklist_lock);
1057 	sched_annotate_sleep();
1058 
1059 	/*
1060 	 * Check thread_group_leader() to exclude the traced sub-threads.
1061 	 */
1062 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1063 		struct signal_struct *sig = p->signal;
1064 		struct signal_struct *psig = current->signal;
1065 		unsigned long maxrss;
1066 		u64 tgutime, tgstime;
1067 
1068 		/*
1069 		 * The resource counters for the group leader are in its
1070 		 * own task_struct.  Those for dead threads in the group
1071 		 * are in its signal_struct, as are those for the child
1072 		 * processes it has previously reaped.  All these
1073 		 * accumulate in the parent's signal_struct c* fields.
1074 		 *
1075 		 * We don't bother to take a lock here to protect these
1076 		 * p->signal fields because the whole thread group is dead
1077 		 * and nobody can change them.
1078 		 *
1079 		 * psig->stats_lock also protects us from our sub-threads
1080 		 * which can reap other children at the same time. Until
1081 		 * we change k_getrusage()-like users to rely on this lock
1082 		 * we have to take ->siglock as well.
1083 		 *
1084 		 * We use thread_group_cputime_adjusted() to get times for
1085 		 * the thread group, which consolidates times for all threads
1086 		 * in the group including the group leader.
1087 		 */
1088 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1089 		spin_lock_irq(&current->sighand->siglock);
1090 		write_seqlock(&psig->stats_lock);
1091 		psig->cutime += tgutime + sig->cutime;
1092 		psig->cstime += tgstime + sig->cstime;
1093 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1094 		psig->cmin_flt +=
1095 			p->min_flt + sig->min_flt + sig->cmin_flt;
1096 		psig->cmaj_flt +=
1097 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1098 		psig->cnvcsw +=
1099 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1100 		psig->cnivcsw +=
1101 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1102 		psig->cinblock +=
1103 			task_io_get_inblock(p) +
1104 			sig->inblock + sig->cinblock;
1105 		psig->coublock +=
1106 			task_io_get_oublock(p) +
1107 			sig->oublock + sig->coublock;
1108 		maxrss = max(sig->maxrss, sig->cmaxrss);
1109 		if (psig->cmaxrss < maxrss)
1110 			psig->cmaxrss = maxrss;
1111 		task_io_accounting_add(&psig->ioac, &p->ioac);
1112 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1113 		write_sequnlock(&psig->stats_lock);
1114 		spin_unlock_irq(&current->sighand->siglock);
1115 	}
1116 
1117 	if (wo->wo_rusage)
1118 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1119 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1120 		? p->signal->group_exit_code : p->exit_code;
1121 	wo->wo_stat = status;
1122 
1123 	if (state == EXIT_TRACE) {
1124 		write_lock_irq(&tasklist_lock);
1125 		/* We dropped tasklist, ptracer could die and untrace */
1126 		ptrace_unlink(p);
1127 
1128 		/* If parent wants a zombie, don't release it now */
1129 		state = EXIT_ZOMBIE;
1130 		if (do_notify_parent(p, p->exit_signal))
1131 			state = EXIT_DEAD;
1132 		p->exit_state = state;
1133 		write_unlock_irq(&tasklist_lock);
1134 	}
1135 	if (state == EXIT_DEAD)
1136 		release_task(p);
1137 
1138 out_info:
1139 	infop = wo->wo_info;
1140 	if (infop) {
1141 		if ((status & 0x7f) == 0) {
1142 			infop->cause = CLD_EXITED;
1143 			infop->status = status >> 8;
1144 		} else {
1145 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1146 			infop->status = status & 0x7f;
1147 		}
1148 		infop->pid = pid;
1149 		infop->uid = uid;
1150 	}
1151 
1152 	return pid;
1153 }
1154 
1155 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1156 {
1157 	if (ptrace) {
1158 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1159 			return &p->exit_code;
1160 	} else {
1161 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1162 			return &p->signal->group_exit_code;
1163 	}
1164 	return NULL;
1165 }
1166 
1167 /**
1168  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1169  * @wo: wait options
1170  * @ptrace: is the wait for ptrace
1171  * @p: task to wait for
1172  *
1173  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1174  *
1175  * CONTEXT:
1176  * read_lock(&tasklist_lock), which is released if return value is
1177  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1178  *
1179  * RETURNS:
1180  * 0 if wait condition didn't exist and search for other wait conditions
1181  * should continue.  Non-zero return, -errno on failure and @p's pid on
1182  * success, implies that tasklist_lock is released and wait condition
1183  * search should terminate.
1184  */
1185 static int wait_task_stopped(struct wait_opts *wo,
1186 				int ptrace, struct task_struct *p)
1187 {
1188 	struct waitid_info *infop;
1189 	int exit_code, *p_code, why;
1190 	uid_t uid = 0; /* unneeded, required by compiler */
1191 	pid_t pid;
1192 
1193 	/*
1194 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1195 	 */
1196 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1197 		return 0;
1198 
1199 	if (!task_stopped_code(p, ptrace))
1200 		return 0;
1201 
1202 	exit_code = 0;
1203 	spin_lock_irq(&p->sighand->siglock);
1204 
1205 	p_code = task_stopped_code(p, ptrace);
1206 	if (unlikely(!p_code))
1207 		goto unlock_sig;
1208 
1209 	exit_code = *p_code;
1210 	if (!exit_code)
1211 		goto unlock_sig;
1212 
1213 	if (!unlikely(wo->wo_flags & WNOWAIT))
1214 		*p_code = 0;
1215 
1216 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1217 unlock_sig:
1218 	spin_unlock_irq(&p->sighand->siglock);
1219 	if (!exit_code)
1220 		return 0;
1221 
1222 	/*
1223 	 * Now we are pretty sure this task is interesting.
1224 	 * Make sure it doesn't get reaped out from under us while we
1225 	 * give up the lock and then examine it below.  We don't want to
1226 	 * keep holding onto the tasklist_lock while we call getrusage and
1227 	 * possibly take page faults for user memory.
1228 	 */
1229 	get_task_struct(p);
1230 	pid = task_pid_vnr(p);
1231 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1232 	read_unlock(&tasklist_lock);
1233 	sched_annotate_sleep();
1234 	if (wo->wo_rusage)
1235 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1236 	put_task_struct(p);
1237 
1238 	if (likely(!(wo->wo_flags & WNOWAIT)))
1239 		wo->wo_stat = (exit_code << 8) | 0x7f;
1240 
1241 	infop = wo->wo_info;
1242 	if (infop) {
1243 		infop->cause = why;
1244 		infop->status = exit_code;
1245 		infop->pid = pid;
1246 		infop->uid = uid;
1247 	}
1248 	return pid;
1249 }
1250 
1251 /*
1252  * Handle do_wait work for one task in a live, non-stopped state.
1253  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1254  * the lock and this task is uninteresting.  If we return nonzero, we have
1255  * released the lock and the system call should return.
1256  */
1257 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1258 {
1259 	struct waitid_info *infop;
1260 	pid_t pid;
1261 	uid_t uid;
1262 
1263 	if (!unlikely(wo->wo_flags & WCONTINUED))
1264 		return 0;
1265 
1266 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1267 		return 0;
1268 
1269 	spin_lock_irq(&p->sighand->siglock);
1270 	/* Re-check with the lock held.  */
1271 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1272 		spin_unlock_irq(&p->sighand->siglock);
1273 		return 0;
1274 	}
1275 	if (!unlikely(wo->wo_flags & WNOWAIT))
1276 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1277 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1278 	spin_unlock_irq(&p->sighand->siglock);
1279 
1280 	pid = task_pid_vnr(p);
1281 	get_task_struct(p);
1282 	read_unlock(&tasklist_lock);
1283 	sched_annotate_sleep();
1284 	if (wo->wo_rusage)
1285 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1286 	put_task_struct(p);
1287 
1288 	infop = wo->wo_info;
1289 	if (!infop) {
1290 		wo->wo_stat = 0xffff;
1291 	} else {
1292 		infop->cause = CLD_CONTINUED;
1293 		infop->pid = pid;
1294 		infop->uid = uid;
1295 		infop->status = SIGCONT;
1296 	}
1297 	return pid;
1298 }
1299 
1300 /*
1301  * Consider @p for a wait by @parent.
1302  *
1303  * -ECHILD should be in ->notask_error before the first call.
1304  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1305  * Returns zero if the search for a child should continue;
1306  * then ->notask_error is 0 if @p is an eligible child,
1307  * or still -ECHILD.
1308  */
1309 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1310 				struct task_struct *p)
1311 {
1312 	/*
1313 	 * We can race with wait_task_zombie() from another thread.
1314 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1315 	 * can't confuse the checks below.
1316 	 */
1317 	int exit_state = READ_ONCE(p->exit_state);
1318 	int ret;
1319 
1320 	if (unlikely(exit_state == EXIT_DEAD))
1321 		return 0;
1322 
1323 	ret = eligible_child(wo, ptrace, p);
1324 	if (!ret)
1325 		return ret;
1326 
1327 	if (unlikely(exit_state == EXIT_TRACE)) {
1328 		/*
1329 		 * ptrace == 0 means we are the natural parent. In this case
1330 		 * we should clear notask_error, debugger will notify us.
1331 		 */
1332 		if (likely(!ptrace))
1333 			wo->notask_error = 0;
1334 		return 0;
1335 	}
1336 
1337 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1338 		/*
1339 		 * If it is traced by its real parent's group, just pretend
1340 		 * the caller is ptrace_do_wait() and reap this child if it
1341 		 * is zombie.
1342 		 *
1343 		 * This also hides group stop state from real parent; otherwise
1344 		 * a single stop can be reported twice as group and ptrace stop.
1345 		 * If a ptracer wants to distinguish these two events for its
1346 		 * own children it should create a separate process which takes
1347 		 * the role of real parent.
1348 		 */
1349 		if (!ptrace_reparented(p))
1350 			ptrace = 1;
1351 	}
1352 
1353 	/* slay zombie? */
1354 	if (exit_state == EXIT_ZOMBIE) {
1355 		/* we don't reap group leaders with subthreads */
1356 		if (!delay_group_leader(p)) {
1357 			/*
1358 			 * A zombie ptracee is only visible to its ptracer.
1359 			 * Notification and reaping will be cascaded to the
1360 			 * real parent when the ptracer detaches.
1361 			 */
1362 			if (unlikely(ptrace) || likely(!p->ptrace))
1363 				return wait_task_zombie(wo, p);
1364 		}
1365 
1366 		/*
1367 		 * Allow access to stopped/continued state via zombie by
1368 		 * falling through.  Clearing of notask_error is complex.
1369 		 *
1370 		 * When !@ptrace:
1371 		 *
1372 		 * If WEXITED is set, notask_error should naturally be
1373 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1374 		 * so, if there are live subthreads, there are events to
1375 		 * wait for.  If all subthreads are dead, it's still safe
1376 		 * to clear - this function will be called again in finite
1377 		 * amount time once all the subthreads are released and
1378 		 * will then return without clearing.
1379 		 *
1380 		 * When @ptrace:
1381 		 *
1382 		 * Stopped state is per-task and thus can't change once the
1383 		 * target task dies.  Only continued and exited can happen.
1384 		 * Clear notask_error if WCONTINUED | WEXITED.
1385 		 */
1386 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1387 			wo->notask_error = 0;
1388 	} else {
1389 		/*
1390 		 * @p is alive and it's gonna stop, continue or exit, so
1391 		 * there always is something to wait for.
1392 		 */
1393 		wo->notask_error = 0;
1394 	}
1395 
1396 	/*
1397 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1398 	 * is used and the two don't interact with each other.
1399 	 */
1400 	ret = wait_task_stopped(wo, ptrace, p);
1401 	if (ret)
1402 		return ret;
1403 
1404 	/*
1405 	 * Wait for continued.  There's only one continued state and the
1406 	 * ptracer can consume it which can confuse the real parent.  Don't
1407 	 * use WCONTINUED from ptracer.  You don't need or want it.
1408 	 */
1409 	return wait_task_continued(wo, p);
1410 }
1411 
1412 /*
1413  * Do the work of do_wait() for one thread in the group, @tsk.
1414  *
1415  * -ECHILD should be in ->notask_error before the first call.
1416  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1417  * Returns zero if the search for a child should continue; then
1418  * ->notask_error is 0 if there were any eligible children,
1419  * or still -ECHILD.
1420  */
1421 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1422 {
1423 	struct task_struct *p;
1424 
1425 	list_for_each_entry(p, &tsk->children, sibling) {
1426 		int ret = wait_consider_task(wo, 0, p);
1427 
1428 		if (ret)
1429 			return ret;
1430 	}
1431 
1432 	return 0;
1433 }
1434 
1435 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1436 {
1437 	struct task_struct *p;
1438 
1439 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1440 		int ret = wait_consider_task(wo, 1, p);
1441 
1442 		if (ret)
1443 			return ret;
1444 	}
1445 
1446 	return 0;
1447 }
1448 
1449 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1450 				int sync, void *key)
1451 {
1452 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1453 						child_wait);
1454 	struct task_struct *p = key;
1455 
1456 	if (!eligible_pid(wo, p))
1457 		return 0;
1458 
1459 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1460 		return 0;
1461 
1462 	return default_wake_function(wait, mode, sync, key);
1463 }
1464 
1465 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1466 {
1467 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1468 			   TASK_INTERRUPTIBLE, p);
1469 }
1470 
1471 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1472 				 struct task_struct *target)
1473 {
1474 	struct task_struct *parent =
1475 		!ptrace ? target->real_parent : target->parent;
1476 
1477 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1478 				     same_thread_group(current, parent));
1479 }
1480 
1481 /*
1482  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1483  * and tracee lists to find the target task.
1484  */
1485 static int do_wait_pid(struct wait_opts *wo)
1486 {
1487 	bool ptrace;
1488 	struct task_struct *target;
1489 	int retval;
1490 
1491 	ptrace = false;
1492 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1493 	if (target && is_effectively_child(wo, ptrace, target)) {
1494 		retval = wait_consider_task(wo, ptrace, target);
1495 		if (retval)
1496 			return retval;
1497 	}
1498 
1499 	ptrace = true;
1500 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1501 	if (target && target->ptrace &&
1502 	    is_effectively_child(wo, ptrace, target)) {
1503 		retval = wait_consider_task(wo, ptrace, target);
1504 		if (retval)
1505 			return retval;
1506 	}
1507 
1508 	return 0;
1509 }
1510 
1511 static long do_wait(struct wait_opts *wo)
1512 {
1513 	int retval;
1514 
1515 	trace_sched_process_wait(wo->wo_pid);
1516 
1517 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1518 	wo->child_wait.private = current;
1519 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1520 repeat:
1521 	/*
1522 	 * If there is nothing that can match our criteria, just get out.
1523 	 * We will clear ->notask_error to zero if we see any child that
1524 	 * might later match our criteria, even if we are not able to reap
1525 	 * it yet.
1526 	 */
1527 	wo->notask_error = -ECHILD;
1528 	if ((wo->wo_type < PIDTYPE_MAX) &&
1529 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1530 		goto notask;
1531 
1532 	set_current_state(TASK_INTERRUPTIBLE);
1533 	read_lock(&tasklist_lock);
1534 
1535 	if (wo->wo_type == PIDTYPE_PID) {
1536 		retval = do_wait_pid(wo);
1537 		if (retval)
1538 			goto end;
1539 	} else {
1540 		struct task_struct *tsk = current;
1541 
1542 		do {
1543 			retval = do_wait_thread(wo, tsk);
1544 			if (retval)
1545 				goto end;
1546 
1547 			retval = ptrace_do_wait(wo, tsk);
1548 			if (retval)
1549 				goto end;
1550 
1551 			if (wo->wo_flags & __WNOTHREAD)
1552 				break;
1553 		} while_each_thread(current, tsk);
1554 	}
1555 	read_unlock(&tasklist_lock);
1556 
1557 notask:
1558 	retval = wo->notask_error;
1559 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1560 		retval = -ERESTARTSYS;
1561 		if (!signal_pending(current)) {
1562 			schedule();
1563 			goto repeat;
1564 		}
1565 	}
1566 end:
1567 	__set_current_state(TASK_RUNNING);
1568 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1569 	return retval;
1570 }
1571 
1572 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1573 			  int options, struct rusage *ru)
1574 {
1575 	struct wait_opts wo;
1576 	struct pid *pid = NULL;
1577 	enum pid_type type;
1578 	long ret;
1579 	unsigned int f_flags = 0;
1580 
1581 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1582 			__WNOTHREAD|__WCLONE|__WALL))
1583 		return -EINVAL;
1584 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1585 		return -EINVAL;
1586 
1587 	switch (which) {
1588 	case P_ALL:
1589 		type = PIDTYPE_MAX;
1590 		break;
1591 	case P_PID:
1592 		type = PIDTYPE_PID;
1593 		if (upid <= 0)
1594 			return -EINVAL;
1595 
1596 		pid = find_get_pid(upid);
1597 		break;
1598 	case P_PGID:
1599 		type = PIDTYPE_PGID;
1600 		if (upid < 0)
1601 			return -EINVAL;
1602 
1603 		if (upid)
1604 			pid = find_get_pid(upid);
1605 		else
1606 			pid = get_task_pid(current, PIDTYPE_PGID);
1607 		break;
1608 	case P_PIDFD:
1609 		type = PIDTYPE_PID;
1610 		if (upid < 0)
1611 			return -EINVAL;
1612 
1613 		pid = pidfd_get_pid(upid, &f_flags);
1614 		if (IS_ERR(pid))
1615 			return PTR_ERR(pid);
1616 
1617 		break;
1618 	default:
1619 		return -EINVAL;
1620 	}
1621 
1622 	wo.wo_type	= type;
1623 	wo.wo_pid	= pid;
1624 	wo.wo_flags	= options;
1625 	wo.wo_info	= infop;
1626 	wo.wo_rusage	= ru;
1627 	if (f_flags & O_NONBLOCK)
1628 		wo.wo_flags |= WNOHANG;
1629 
1630 	ret = do_wait(&wo);
1631 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1632 		ret = -EAGAIN;
1633 
1634 	put_pid(pid);
1635 	return ret;
1636 }
1637 
1638 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1639 		infop, int, options, struct rusage __user *, ru)
1640 {
1641 	struct rusage r;
1642 	struct waitid_info info = {.status = 0};
1643 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1644 	int signo = 0;
1645 
1646 	if (err > 0) {
1647 		signo = SIGCHLD;
1648 		err = 0;
1649 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1650 			return -EFAULT;
1651 	}
1652 	if (!infop)
1653 		return err;
1654 
1655 	if (!user_write_access_begin(infop, sizeof(*infop)))
1656 		return -EFAULT;
1657 
1658 	unsafe_put_user(signo, &infop->si_signo, Efault);
1659 	unsafe_put_user(0, &infop->si_errno, Efault);
1660 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1661 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1662 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1663 	unsafe_put_user(info.status, &infop->si_status, Efault);
1664 	user_write_access_end();
1665 	return err;
1666 Efault:
1667 	user_write_access_end();
1668 	return -EFAULT;
1669 }
1670 
1671 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1672 		  struct rusage *ru)
1673 {
1674 	struct wait_opts wo;
1675 	struct pid *pid = NULL;
1676 	enum pid_type type;
1677 	long ret;
1678 
1679 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1680 			__WNOTHREAD|__WCLONE|__WALL))
1681 		return -EINVAL;
1682 
1683 	/* -INT_MIN is not defined */
1684 	if (upid == INT_MIN)
1685 		return -ESRCH;
1686 
1687 	if (upid == -1)
1688 		type = PIDTYPE_MAX;
1689 	else if (upid < 0) {
1690 		type = PIDTYPE_PGID;
1691 		pid = find_get_pid(-upid);
1692 	} else if (upid == 0) {
1693 		type = PIDTYPE_PGID;
1694 		pid = get_task_pid(current, PIDTYPE_PGID);
1695 	} else /* upid > 0 */ {
1696 		type = PIDTYPE_PID;
1697 		pid = find_get_pid(upid);
1698 	}
1699 
1700 	wo.wo_type	= type;
1701 	wo.wo_pid	= pid;
1702 	wo.wo_flags	= options | WEXITED;
1703 	wo.wo_info	= NULL;
1704 	wo.wo_stat	= 0;
1705 	wo.wo_rusage	= ru;
1706 	ret = do_wait(&wo);
1707 	put_pid(pid);
1708 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1709 		ret = -EFAULT;
1710 
1711 	return ret;
1712 }
1713 
1714 int kernel_wait(pid_t pid, int *stat)
1715 {
1716 	struct wait_opts wo = {
1717 		.wo_type	= PIDTYPE_PID,
1718 		.wo_pid		= find_get_pid(pid),
1719 		.wo_flags	= WEXITED,
1720 	};
1721 	int ret;
1722 
1723 	ret = do_wait(&wo);
1724 	if (ret > 0 && wo.wo_stat)
1725 		*stat = wo.wo_stat;
1726 	put_pid(wo.wo_pid);
1727 	return ret;
1728 }
1729 
1730 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1731 		int, options, struct rusage __user *, ru)
1732 {
1733 	struct rusage r;
1734 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1735 
1736 	if (err > 0) {
1737 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1738 			return -EFAULT;
1739 	}
1740 	return err;
1741 }
1742 
1743 #ifdef __ARCH_WANT_SYS_WAITPID
1744 
1745 /*
1746  * sys_waitpid() remains for compatibility. waitpid() should be
1747  * implemented by calling sys_wait4() from libc.a.
1748  */
1749 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1750 {
1751 	return kernel_wait4(pid, stat_addr, options, NULL);
1752 }
1753 
1754 #endif
1755 
1756 #ifdef CONFIG_COMPAT
1757 COMPAT_SYSCALL_DEFINE4(wait4,
1758 	compat_pid_t, pid,
1759 	compat_uint_t __user *, stat_addr,
1760 	int, options,
1761 	struct compat_rusage __user *, ru)
1762 {
1763 	struct rusage r;
1764 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1765 	if (err > 0) {
1766 		if (ru && put_compat_rusage(&r, ru))
1767 			return -EFAULT;
1768 	}
1769 	return err;
1770 }
1771 
1772 COMPAT_SYSCALL_DEFINE5(waitid,
1773 		int, which, compat_pid_t, pid,
1774 		struct compat_siginfo __user *, infop, int, options,
1775 		struct compat_rusage __user *, uru)
1776 {
1777 	struct rusage ru;
1778 	struct waitid_info info = {.status = 0};
1779 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1780 	int signo = 0;
1781 	if (err > 0) {
1782 		signo = SIGCHLD;
1783 		err = 0;
1784 		if (uru) {
1785 			/* kernel_waitid() overwrites everything in ru */
1786 			if (COMPAT_USE_64BIT_TIME)
1787 				err = copy_to_user(uru, &ru, sizeof(ru));
1788 			else
1789 				err = put_compat_rusage(&ru, uru);
1790 			if (err)
1791 				return -EFAULT;
1792 		}
1793 	}
1794 
1795 	if (!infop)
1796 		return err;
1797 
1798 	if (!user_write_access_begin(infop, sizeof(*infop)))
1799 		return -EFAULT;
1800 
1801 	unsafe_put_user(signo, &infop->si_signo, Efault);
1802 	unsafe_put_user(0, &infop->si_errno, Efault);
1803 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1804 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1805 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1806 	unsafe_put_user(info.status, &infop->si_status, Efault);
1807 	user_write_access_end();
1808 	return err;
1809 Efault:
1810 	user_write_access_end();
1811 	return -EFAULT;
1812 }
1813 #endif
1814 
1815 /**
1816  * thread_group_exited - check that a thread group has exited
1817  * @pid: tgid of thread group to be checked.
1818  *
1819  * Test if the thread group represented by tgid has exited (all
1820  * threads are zombies, dead or completely gone).
1821  *
1822  * Return: true if the thread group has exited. false otherwise.
1823  */
1824 bool thread_group_exited(struct pid *pid)
1825 {
1826 	struct task_struct *task;
1827 	bool exited;
1828 
1829 	rcu_read_lock();
1830 	task = pid_task(pid, PIDTYPE_PID);
1831 	exited = !task ||
1832 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1833 	rcu_read_unlock();
1834 
1835 	return exited;
1836 }
1837 EXPORT_SYMBOL(thread_group_exited);
1838 
1839 __weak void abort(void)
1840 {
1841 	BUG();
1842 
1843 	/* if that doesn't kill us, halt */
1844 	panic("Oops failed to kill thread");
1845 }
1846 EXPORT_SYMBOL(abort);
1847