1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/binfmts.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pid_namespace.h> 25 #include <linux/ptrace.h> 26 #include <linux/profile.h> 27 #include <linux/signalfd.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/cpuset.h> 35 #include <linux/syscalls.h> 36 #include <linux/signal.h> 37 #include <linux/posix-timers.h> 38 #include <linux/cn_proc.h> 39 #include <linux/mutex.h> 40 #include <linux/futex.h> 41 #include <linux/compat.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 48 #include <asm/uaccess.h> 49 #include <asm/unistd.h> 50 #include <asm/pgtable.h> 51 #include <asm/mmu_context.h> 52 53 extern void sem_exit (void); 54 55 static void exit_mm(struct task_struct * tsk); 56 57 static void __unhash_process(struct task_struct *p) 58 { 59 nr_threads--; 60 detach_pid(p, PIDTYPE_PID); 61 if (thread_group_leader(p)) { 62 detach_pid(p, PIDTYPE_PGID); 63 detach_pid(p, PIDTYPE_SID); 64 65 list_del_rcu(&p->tasks); 66 __get_cpu_var(process_counts)--; 67 } 68 list_del_rcu(&p->thread_group); 69 remove_parent(p); 70 } 71 72 /* 73 * This function expects the tasklist_lock write-locked. 74 */ 75 static void __exit_signal(struct task_struct *tsk) 76 { 77 struct signal_struct *sig = tsk->signal; 78 struct sighand_struct *sighand; 79 80 BUG_ON(!sig); 81 BUG_ON(!atomic_read(&sig->count)); 82 83 rcu_read_lock(); 84 sighand = rcu_dereference(tsk->sighand); 85 spin_lock(&sighand->siglock); 86 87 /* 88 * Notify that this sighand has been detached. This must 89 * be called with the tsk->sighand lock held. Also, this 90 * access tsk->sighand internally, so it must be called 91 * before tsk->sighand is reset. 92 */ 93 signalfd_detach_locked(tsk); 94 95 posix_cpu_timers_exit(tsk); 96 if (atomic_dec_and_test(&sig->count)) 97 posix_cpu_timers_exit_group(tsk); 98 else { 99 /* 100 * If there is any task waiting for the group exit 101 * then notify it: 102 */ 103 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) { 104 wake_up_process(sig->group_exit_task); 105 sig->group_exit_task = NULL; 106 } 107 if (tsk == sig->curr_target) 108 sig->curr_target = next_thread(tsk); 109 /* 110 * Accumulate here the counters for all threads but the 111 * group leader as they die, so they can be added into 112 * the process-wide totals when those are taken. 113 * The group leader stays around as a zombie as long 114 * as there are other threads. When it gets reaped, 115 * the exit.c code will add its counts into these totals. 116 * We won't ever get here for the group leader, since it 117 * will have been the last reference on the signal_struct. 118 */ 119 sig->utime = cputime_add(sig->utime, tsk->utime); 120 sig->stime = cputime_add(sig->stime, tsk->stime); 121 sig->min_flt += tsk->min_flt; 122 sig->maj_flt += tsk->maj_flt; 123 sig->nvcsw += tsk->nvcsw; 124 sig->nivcsw += tsk->nivcsw; 125 sig->inblock += task_io_get_inblock(tsk); 126 sig->oublock += task_io_get_oublock(tsk); 127 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 128 sig = NULL; /* Marker for below. */ 129 } 130 131 __unhash_process(tsk); 132 133 tsk->signal = NULL; 134 tsk->sighand = NULL; 135 spin_unlock(&sighand->siglock); 136 rcu_read_unlock(); 137 138 __cleanup_sighand(sighand); 139 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 140 flush_sigqueue(&tsk->pending); 141 if (sig) { 142 flush_sigqueue(&sig->shared_pending); 143 taskstats_tgid_free(sig); 144 __cleanup_signal(sig); 145 } 146 } 147 148 static void delayed_put_task_struct(struct rcu_head *rhp) 149 { 150 put_task_struct(container_of(rhp, struct task_struct, rcu)); 151 } 152 153 void release_task(struct task_struct * p) 154 { 155 struct task_struct *leader; 156 int zap_leader; 157 repeat: 158 atomic_dec(&p->user->processes); 159 write_lock_irq(&tasklist_lock); 160 ptrace_unlink(p); 161 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); 162 __exit_signal(p); 163 164 /* 165 * If we are the last non-leader member of the thread 166 * group, and the leader is zombie, then notify the 167 * group leader's parent process. (if it wants notification.) 168 */ 169 zap_leader = 0; 170 leader = p->group_leader; 171 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 172 BUG_ON(leader->exit_signal == -1); 173 do_notify_parent(leader, leader->exit_signal); 174 /* 175 * If we were the last child thread and the leader has 176 * exited already, and the leader's parent ignores SIGCHLD, 177 * then we are the one who should release the leader. 178 * 179 * do_notify_parent() will have marked it self-reaping in 180 * that case. 181 */ 182 zap_leader = (leader->exit_signal == -1); 183 } 184 185 write_unlock_irq(&tasklist_lock); 186 proc_flush_task(p); 187 release_thread(p); 188 call_rcu(&p->rcu, delayed_put_task_struct); 189 190 p = leader; 191 if (unlikely(zap_leader)) 192 goto repeat; 193 } 194 195 /* 196 * This checks not only the pgrp, but falls back on the pid if no 197 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 198 * without this... 199 * 200 * The caller must hold rcu lock or the tasklist lock. 201 */ 202 struct pid *session_of_pgrp(struct pid *pgrp) 203 { 204 struct task_struct *p; 205 struct pid *sid = NULL; 206 207 p = pid_task(pgrp, PIDTYPE_PGID); 208 if (p == NULL) 209 p = pid_task(pgrp, PIDTYPE_PID); 210 if (p != NULL) 211 sid = task_session(p); 212 213 return sid; 214 } 215 216 /* 217 * Determine if a process group is "orphaned", according to the POSIX 218 * definition in 2.2.2.52. Orphaned process groups are not to be affected 219 * by terminal-generated stop signals. Newly orphaned process groups are 220 * to receive a SIGHUP and a SIGCONT. 221 * 222 * "I ask you, have you ever known what it is to be an orphan?" 223 */ 224 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 225 { 226 struct task_struct *p; 227 int ret = 1; 228 229 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 230 if (p == ignored_task 231 || p->exit_state 232 || is_init(p->real_parent)) 233 continue; 234 if (task_pgrp(p->real_parent) != pgrp && 235 task_session(p->real_parent) == task_session(p)) { 236 ret = 0; 237 break; 238 } 239 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 240 return ret; /* (sighing) "Often!" */ 241 } 242 243 int is_current_pgrp_orphaned(void) 244 { 245 int retval; 246 247 read_lock(&tasklist_lock); 248 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 249 read_unlock(&tasklist_lock); 250 251 return retval; 252 } 253 254 static int has_stopped_jobs(struct pid *pgrp) 255 { 256 int retval = 0; 257 struct task_struct *p; 258 259 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 260 if (p->state != TASK_STOPPED) 261 continue; 262 retval = 1; 263 break; 264 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 265 return retval; 266 } 267 268 /** 269 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 270 * 271 * If a kernel thread is launched as a result of a system call, or if 272 * it ever exits, it should generally reparent itself to kthreadd so it 273 * isn't in the way of other processes and is correctly cleaned up on exit. 274 * 275 * The various task state such as scheduling policy and priority may have 276 * been inherited from a user process, so we reset them to sane values here. 277 * 278 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 279 */ 280 static void reparent_to_kthreadd(void) 281 { 282 write_lock_irq(&tasklist_lock); 283 284 ptrace_unlink(current); 285 /* Reparent to init */ 286 remove_parent(current); 287 current->real_parent = current->parent = kthreadd_task; 288 add_parent(current); 289 290 /* Set the exit signal to SIGCHLD so we signal init on exit */ 291 current->exit_signal = SIGCHLD; 292 293 if (task_nice(current) < 0) 294 set_user_nice(current, 0); 295 /* cpus_allowed? */ 296 /* rt_priority? */ 297 /* signals? */ 298 security_task_reparent_to_init(current); 299 memcpy(current->signal->rlim, init_task.signal->rlim, 300 sizeof(current->signal->rlim)); 301 atomic_inc(&(INIT_USER->__count)); 302 write_unlock_irq(&tasklist_lock); 303 switch_uid(INIT_USER); 304 } 305 306 void __set_special_pids(pid_t session, pid_t pgrp) 307 { 308 struct task_struct *curr = current->group_leader; 309 310 if (process_session(curr) != session) { 311 detach_pid(curr, PIDTYPE_SID); 312 set_signal_session(curr->signal, session); 313 attach_pid(curr, PIDTYPE_SID, find_pid(session)); 314 } 315 if (process_group(curr) != pgrp) { 316 detach_pid(curr, PIDTYPE_PGID); 317 curr->signal->pgrp = pgrp; 318 attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp)); 319 } 320 } 321 322 static void set_special_pids(pid_t session, pid_t pgrp) 323 { 324 write_lock_irq(&tasklist_lock); 325 __set_special_pids(session, pgrp); 326 write_unlock_irq(&tasklist_lock); 327 } 328 329 /* 330 * Let kernel threads use this to say that they 331 * allow a certain signal (since daemonize() will 332 * have disabled all of them by default). 333 */ 334 int allow_signal(int sig) 335 { 336 if (!valid_signal(sig) || sig < 1) 337 return -EINVAL; 338 339 spin_lock_irq(¤t->sighand->siglock); 340 sigdelset(¤t->blocked, sig); 341 if (!current->mm) { 342 /* Kernel threads handle their own signals. 343 Let the signal code know it'll be handled, so 344 that they don't get converted to SIGKILL or 345 just silently dropped */ 346 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 347 } 348 recalc_sigpending(); 349 spin_unlock_irq(¤t->sighand->siglock); 350 return 0; 351 } 352 353 EXPORT_SYMBOL(allow_signal); 354 355 int disallow_signal(int sig) 356 { 357 if (!valid_signal(sig) || sig < 1) 358 return -EINVAL; 359 360 spin_lock_irq(¤t->sighand->siglock); 361 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 362 recalc_sigpending(); 363 spin_unlock_irq(¤t->sighand->siglock); 364 return 0; 365 } 366 367 EXPORT_SYMBOL(disallow_signal); 368 369 /* 370 * Put all the gunge required to become a kernel thread without 371 * attached user resources in one place where it belongs. 372 */ 373 374 void daemonize(const char *name, ...) 375 { 376 va_list args; 377 struct fs_struct *fs; 378 sigset_t blocked; 379 380 va_start(args, name); 381 vsnprintf(current->comm, sizeof(current->comm), name, args); 382 va_end(args); 383 384 /* 385 * If we were started as result of loading a module, close all of the 386 * user space pages. We don't need them, and if we didn't close them 387 * they would be locked into memory. 388 */ 389 exit_mm(current); 390 391 set_special_pids(1, 1); 392 proc_clear_tty(current); 393 394 /* Block and flush all signals */ 395 sigfillset(&blocked); 396 sigprocmask(SIG_BLOCK, &blocked, NULL); 397 flush_signals(current); 398 399 /* Become as one with the init task */ 400 401 exit_fs(current); /* current->fs->count--; */ 402 fs = init_task.fs; 403 current->fs = fs; 404 atomic_inc(&fs->count); 405 406 exit_task_namespaces(current); 407 current->nsproxy = init_task.nsproxy; 408 get_task_namespaces(current); 409 410 exit_files(current); 411 current->files = init_task.files; 412 atomic_inc(¤t->files->count); 413 414 reparent_to_kthreadd(); 415 } 416 417 EXPORT_SYMBOL(daemonize); 418 419 static void close_files(struct files_struct * files) 420 { 421 int i, j; 422 struct fdtable *fdt; 423 424 j = 0; 425 426 /* 427 * It is safe to dereference the fd table without RCU or 428 * ->file_lock because this is the last reference to the 429 * files structure. 430 */ 431 fdt = files_fdtable(files); 432 for (;;) { 433 unsigned long set; 434 i = j * __NFDBITS; 435 if (i >= fdt->max_fds) 436 break; 437 set = fdt->open_fds->fds_bits[j++]; 438 while (set) { 439 if (set & 1) { 440 struct file * file = xchg(&fdt->fd[i], NULL); 441 if (file) { 442 filp_close(file, files); 443 cond_resched(); 444 } 445 } 446 i++; 447 set >>= 1; 448 } 449 } 450 } 451 452 struct files_struct *get_files_struct(struct task_struct *task) 453 { 454 struct files_struct *files; 455 456 task_lock(task); 457 files = task->files; 458 if (files) 459 atomic_inc(&files->count); 460 task_unlock(task); 461 462 return files; 463 } 464 465 void fastcall put_files_struct(struct files_struct *files) 466 { 467 struct fdtable *fdt; 468 469 if (atomic_dec_and_test(&files->count)) { 470 close_files(files); 471 /* 472 * Free the fd and fdset arrays if we expanded them. 473 * If the fdtable was embedded, pass files for freeing 474 * at the end of the RCU grace period. Otherwise, 475 * you can free files immediately. 476 */ 477 fdt = files_fdtable(files); 478 if (fdt != &files->fdtab) 479 kmem_cache_free(files_cachep, files); 480 free_fdtable(fdt); 481 } 482 } 483 484 EXPORT_SYMBOL(put_files_struct); 485 486 void reset_files_struct(struct task_struct *tsk, struct files_struct *files) 487 { 488 struct files_struct *old; 489 490 old = tsk->files; 491 task_lock(tsk); 492 tsk->files = files; 493 task_unlock(tsk); 494 put_files_struct(old); 495 } 496 EXPORT_SYMBOL(reset_files_struct); 497 498 static inline void __exit_files(struct task_struct *tsk) 499 { 500 struct files_struct * files = tsk->files; 501 502 if (files) { 503 task_lock(tsk); 504 tsk->files = NULL; 505 task_unlock(tsk); 506 put_files_struct(files); 507 } 508 } 509 510 void exit_files(struct task_struct *tsk) 511 { 512 __exit_files(tsk); 513 } 514 515 static inline void __put_fs_struct(struct fs_struct *fs) 516 { 517 /* No need to hold fs->lock if we are killing it */ 518 if (atomic_dec_and_test(&fs->count)) { 519 dput(fs->root); 520 mntput(fs->rootmnt); 521 dput(fs->pwd); 522 mntput(fs->pwdmnt); 523 if (fs->altroot) { 524 dput(fs->altroot); 525 mntput(fs->altrootmnt); 526 } 527 kmem_cache_free(fs_cachep, fs); 528 } 529 } 530 531 void put_fs_struct(struct fs_struct *fs) 532 { 533 __put_fs_struct(fs); 534 } 535 536 static inline void __exit_fs(struct task_struct *tsk) 537 { 538 struct fs_struct * fs = tsk->fs; 539 540 if (fs) { 541 task_lock(tsk); 542 tsk->fs = NULL; 543 task_unlock(tsk); 544 __put_fs_struct(fs); 545 } 546 } 547 548 void exit_fs(struct task_struct *tsk) 549 { 550 __exit_fs(tsk); 551 } 552 553 EXPORT_SYMBOL_GPL(exit_fs); 554 555 /* 556 * Turn us into a lazy TLB process if we 557 * aren't already.. 558 */ 559 static void exit_mm(struct task_struct * tsk) 560 { 561 struct mm_struct *mm = tsk->mm; 562 563 mm_release(tsk, mm); 564 if (!mm) 565 return; 566 /* 567 * Serialize with any possible pending coredump. 568 * We must hold mmap_sem around checking core_waiters 569 * and clearing tsk->mm. The core-inducing thread 570 * will increment core_waiters for each thread in the 571 * group with ->mm != NULL. 572 */ 573 down_read(&mm->mmap_sem); 574 if (mm->core_waiters) { 575 up_read(&mm->mmap_sem); 576 down_write(&mm->mmap_sem); 577 if (!--mm->core_waiters) 578 complete(mm->core_startup_done); 579 up_write(&mm->mmap_sem); 580 581 wait_for_completion(&mm->core_done); 582 down_read(&mm->mmap_sem); 583 } 584 atomic_inc(&mm->mm_count); 585 BUG_ON(mm != tsk->active_mm); 586 /* more a memory barrier than a real lock */ 587 task_lock(tsk); 588 tsk->mm = NULL; 589 up_read(&mm->mmap_sem); 590 enter_lazy_tlb(mm, current); 591 task_unlock(tsk); 592 mmput(mm); 593 } 594 595 static inline void 596 choose_new_parent(struct task_struct *p, struct task_struct *reaper) 597 { 598 /* 599 * Make sure we're not reparenting to ourselves and that 600 * the parent is not a zombie. 601 */ 602 BUG_ON(p == reaper || reaper->exit_state); 603 p->real_parent = reaper; 604 } 605 606 static void 607 reparent_thread(struct task_struct *p, struct task_struct *father, int traced) 608 { 609 if (p->pdeath_signal) 610 /* We already hold the tasklist_lock here. */ 611 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 612 613 /* Move the child from its dying parent to the new one. */ 614 if (unlikely(traced)) { 615 /* Preserve ptrace links if someone else is tracing this child. */ 616 list_del_init(&p->ptrace_list); 617 if (p->parent != p->real_parent) 618 list_add(&p->ptrace_list, &p->real_parent->ptrace_children); 619 } else { 620 /* If this child is being traced, then we're the one tracing it 621 * anyway, so let go of it. 622 */ 623 p->ptrace = 0; 624 remove_parent(p); 625 p->parent = p->real_parent; 626 add_parent(p); 627 628 if (p->state == TASK_TRACED) { 629 /* 630 * If it was at a trace stop, turn it into 631 * a normal stop since it's no longer being 632 * traced. 633 */ 634 ptrace_untrace(p); 635 } 636 } 637 638 /* If this is a threaded reparent there is no need to 639 * notify anyone anything has happened. 640 */ 641 if (p->real_parent->group_leader == father->group_leader) 642 return; 643 644 /* We don't want people slaying init. */ 645 if (p->exit_signal != -1) 646 p->exit_signal = SIGCHLD; 647 648 /* If we'd notified the old parent about this child's death, 649 * also notify the new parent. 650 */ 651 if (!traced && p->exit_state == EXIT_ZOMBIE && 652 p->exit_signal != -1 && thread_group_empty(p)) 653 do_notify_parent(p, p->exit_signal); 654 655 /* 656 * process group orphan check 657 * Case ii: Our child is in a different pgrp 658 * than we are, and it was the only connection 659 * outside, so the child pgrp is now orphaned. 660 */ 661 if ((task_pgrp(p) != task_pgrp(father)) && 662 (task_session(p) == task_session(father))) { 663 struct pid *pgrp = task_pgrp(p); 664 665 if (will_become_orphaned_pgrp(pgrp, NULL) && 666 has_stopped_jobs(pgrp)) { 667 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 668 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 669 } 670 } 671 } 672 673 /* 674 * When we die, we re-parent all our children. 675 * Try to give them to another thread in our thread 676 * group, and if no such member exists, give it to 677 * the child reaper process (ie "init") in our pid 678 * space. 679 */ 680 static void 681 forget_original_parent(struct task_struct *father, struct list_head *to_release) 682 { 683 struct task_struct *p, *reaper = father; 684 struct list_head *_p, *_n; 685 686 do { 687 reaper = next_thread(reaper); 688 if (reaper == father) { 689 reaper = child_reaper(father); 690 break; 691 } 692 } while (reaper->exit_state); 693 694 /* 695 * There are only two places where our children can be: 696 * 697 * - in our child list 698 * - in our ptraced child list 699 * 700 * Search them and reparent children. 701 */ 702 list_for_each_safe(_p, _n, &father->children) { 703 int ptrace; 704 p = list_entry(_p, struct task_struct, sibling); 705 706 ptrace = p->ptrace; 707 708 /* if father isn't the real parent, then ptrace must be enabled */ 709 BUG_ON(father != p->real_parent && !ptrace); 710 711 if (father == p->real_parent) { 712 /* reparent with a reaper, real father it's us */ 713 choose_new_parent(p, reaper); 714 reparent_thread(p, father, 0); 715 } else { 716 /* reparent ptraced task to its real parent */ 717 __ptrace_unlink (p); 718 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && 719 thread_group_empty(p)) 720 do_notify_parent(p, p->exit_signal); 721 } 722 723 /* 724 * if the ptraced child is a zombie with exit_signal == -1 725 * we must collect it before we exit, or it will remain 726 * zombie forever since we prevented it from self-reap itself 727 * while it was being traced by us, to be able to see it in wait4. 728 */ 729 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) 730 list_add(&p->ptrace_list, to_release); 731 } 732 list_for_each_safe(_p, _n, &father->ptrace_children) { 733 p = list_entry(_p, struct task_struct, ptrace_list); 734 choose_new_parent(p, reaper); 735 reparent_thread(p, father, 1); 736 } 737 } 738 739 /* 740 * Send signals to all our closest relatives so that they know 741 * to properly mourn us.. 742 */ 743 static void exit_notify(struct task_struct *tsk) 744 { 745 int state; 746 struct task_struct *t; 747 struct list_head ptrace_dead, *_p, *_n; 748 struct pid *pgrp; 749 750 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT) 751 && !thread_group_empty(tsk)) { 752 /* 753 * This occurs when there was a race between our exit 754 * syscall and a group signal choosing us as the one to 755 * wake up. It could be that we are the only thread 756 * alerted to check for pending signals, but another thread 757 * should be woken now to take the signal since we will not. 758 * Now we'll wake all the threads in the group just to make 759 * sure someone gets all the pending signals. 760 */ 761 read_lock(&tasklist_lock); 762 spin_lock_irq(&tsk->sighand->siglock); 763 for (t = next_thread(tsk); t != tsk; t = next_thread(t)) 764 if (!signal_pending(t) && !(t->flags & PF_EXITING)) 765 recalc_sigpending_and_wake(t); 766 spin_unlock_irq(&tsk->sighand->siglock); 767 read_unlock(&tasklist_lock); 768 } 769 770 write_lock_irq(&tasklist_lock); 771 772 /* 773 * This does two things: 774 * 775 * A. Make init inherit all the child processes 776 * B. Check to see if any process groups have become orphaned 777 * as a result of our exiting, and if they have any stopped 778 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 779 */ 780 781 INIT_LIST_HEAD(&ptrace_dead); 782 forget_original_parent(tsk, &ptrace_dead); 783 BUG_ON(!list_empty(&tsk->children)); 784 BUG_ON(!list_empty(&tsk->ptrace_children)); 785 786 /* 787 * Check to see if any process groups have become orphaned 788 * as a result of our exiting, and if they have any stopped 789 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 790 * 791 * Case i: Our father is in a different pgrp than we are 792 * and we were the only connection outside, so our pgrp 793 * is about to become orphaned. 794 */ 795 796 t = tsk->real_parent; 797 798 pgrp = task_pgrp(tsk); 799 if ((task_pgrp(t) != pgrp) && 800 (task_session(t) == task_session(tsk)) && 801 will_become_orphaned_pgrp(pgrp, tsk) && 802 has_stopped_jobs(pgrp)) { 803 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 804 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 805 } 806 807 /* Let father know we died 808 * 809 * Thread signals are configurable, but you aren't going to use 810 * that to send signals to arbitary processes. 811 * That stops right now. 812 * 813 * If the parent exec id doesn't match the exec id we saved 814 * when we started then we know the parent has changed security 815 * domain. 816 * 817 * If our self_exec id doesn't match our parent_exec_id then 818 * we have changed execution domain as these two values started 819 * the same after a fork. 820 * 821 */ 822 823 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && 824 ( tsk->parent_exec_id != t->self_exec_id || 825 tsk->self_exec_id != tsk->parent_exec_id) 826 && !capable(CAP_KILL)) 827 tsk->exit_signal = SIGCHLD; 828 829 830 /* If something other than our normal parent is ptracing us, then 831 * send it a SIGCHLD instead of honoring exit_signal. exit_signal 832 * only has special meaning to our real parent. 833 */ 834 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { 835 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; 836 do_notify_parent(tsk, signal); 837 } else if (tsk->ptrace) { 838 do_notify_parent(tsk, SIGCHLD); 839 } 840 841 state = EXIT_ZOMBIE; 842 if (tsk->exit_signal == -1 && 843 (likely(tsk->ptrace == 0) || 844 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT))) 845 state = EXIT_DEAD; 846 tsk->exit_state = state; 847 848 write_unlock_irq(&tasklist_lock); 849 850 list_for_each_safe(_p, _n, &ptrace_dead) { 851 list_del_init(_p); 852 t = list_entry(_p, struct task_struct, ptrace_list); 853 release_task(t); 854 } 855 856 /* If the process is dead, release it - nobody will wait for it */ 857 if (state == EXIT_DEAD) 858 release_task(tsk); 859 } 860 861 fastcall NORET_TYPE void do_exit(long code) 862 { 863 struct task_struct *tsk = current; 864 int group_dead; 865 866 profile_task_exit(tsk); 867 868 WARN_ON(atomic_read(&tsk->fs_excl)); 869 870 if (unlikely(in_interrupt())) 871 panic("Aiee, killing interrupt handler!"); 872 if (unlikely(!tsk->pid)) 873 panic("Attempted to kill the idle task!"); 874 if (unlikely(tsk == child_reaper(tsk))) { 875 if (tsk->nsproxy->pid_ns != &init_pid_ns) 876 tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper; 877 else 878 panic("Attempted to kill init!"); 879 } 880 881 882 if (unlikely(current->ptrace & PT_TRACE_EXIT)) { 883 current->ptrace_message = code; 884 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); 885 } 886 887 /* 888 * We're taking recursive faults here in do_exit. Safest is to just 889 * leave this task alone and wait for reboot. 890 */ 891 if (unlikely(tsk->flags & PF_EXITING)) { 892 printk(KERN_ALERT 893 "Fixing recursive fault but reboot is needed!\n"); 894 /* 895 * We can do this unlocked here. The futex code uses 896 * this flag just to verify whether the pi state 897 * cleanup has been done or not. In the worst case it 898 * loops once more. We pretend that the cleanup was 899 * done as there is no way to return. Either the 900 * OWNER_DIED bit is set by now or we push the blocked 901 * task into the wait for ever nirwana as well. 902 */ 903 tsk->flags |= PF_EXITPIDONE; 904 if (tsk->io_context) 905 exit_io_context(); 906 set_current_state(TASK_UNINTERRUPTIBLE); 907 schedule(); 908 } 909 910 /* 911 * tsk->flags are checked in the futex code to protect against 912 * an exiting task cleaning up the robust pi futexes. 913 */ 914 spin_lock_irq(&tsk->pi_lock); 915 tsk->flags |= PF_EXITING; 916 spin_unlock_irq(&tsk->pi_lock); 917 918 if (unlikely(in_atomic())) 919 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 920 current->comm, current->pid, 921 preempt_count()); 922 923 acct_update_integrals(tsk); 924 if (tsk->mm) { 925 update_hiwater_rss(tsk->mm); 926 update_hiwater_vm(tsk->mm); 927 } 928 group_dead = atomic_dec_and_test(&tsk->signal->live); 929 if (group_dead) { 930 hrtimer_cancel(&tsk->signal->real_timer); 931 exit_itimers(tsk->signal); 932 } 933 acct_collect(code, group_dead); 934 if (unlikely(tsk->robust_list)) 935 exit_robust_list(tsk); 936 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT) 937 if (unlikely(tsk->compat_robust_list)) 938 compat_exit_robust_list(tsk); 939 #endif 940 if (unlikely(tsk->audit_context)) 941 audit_free(tsk); 942 943 taskstats_exit(tsk, group_dead); 944 945 exit_mm(tsk); 946 947 if (group_dead) 948 acct_process(); 949 exit_sem(tsk); 950 __exit_files(tsk); 951 __exit_fs(tsk); 952 exit_thread(); 953 cpuset_exit(tsk); 954 exit_keys(tsk); 955 956 if (group_dead && tsk->signal->leader) 957 disassociate_ctty(1); 958 959 module_put(task_thread_info(tsk)->exec_domain->module); 960 if (tsk->binfmt) 961 module_put(tsk->binfmt->module); 962 963 tsk->exit_code = code; 964 proc_exit_connector(tsk); 965 exit_task_namespaces(tsk); 966 exit_notify(tsk); 967 #ifdef CONFIG_NUMA 968 mpol_free(tsk->mempolicy); 969 tsk->mempolicy = NULL; 970 #endif 971 /* 972 * This must happen late, after the PID is not 973 * hashed anymore: 974 */ 975 if (unlikely(!list_empty(&tsk->pi_state_list))) 976 exit_pi_state_list(tsk); 977 if (unlikely(current->pi_state_cache)) 978 kfree(current->pi_state_cache); 979 /* 980 * Make sure we are holding no locks: 981 */ 982 debug_check_no_locks_held(tsk); 983 /* 984 * We can do this unlocked here. The futex code uses this flag 985 * just to verify whether the pi state cleanup has been done 986 * or not. In the worst case it loops once more. 987 */ 988 tsk->flags |= PF_EXITPIDONE; 989 990 if (tsk->io_context) 991 exit_io_context(); 992 993 if (tsk->splice_pipe) 994 __free_pipe_info(tsk->splice_pipe); 995 996 preempt_disable(); 997 /* causes final put_task_struct in finish_task_switch(). */ 998 tsk->state = TASK_DEAD; 999 1000 schedule(); 1001 BUG(); 1002 /* Avoid "noreturn function does return". */ 1003 for (;;) 1004 cpu_relax(); /* For when BUG is null */ 1005 } 1006 1007 EXPORT_SYMBOL_GPL(do_exit); 1008 1009 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1010 { 1011 if (comp) 1012 complete(comp); 1013 1014 do_exit(code); 1015 } 1016 1017 EXPORT_SYMBOL(complete_and_exit); 1018 1019 asmlinkage long sys_exit(int error_code) 1020 { 1021 do_exit((error_code&0xff)<<8); 1022 } 1023 1024 /* 1025 * Take down every thread in the group. This is called by fatal signals 1026 * as well as by sys_exit_group (below). 1027 */ 1028 NORET_TYPE void 1029 do_group_exit(int exit_code) 1030 { 1031 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1032 1033 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1034 exit_code = current->signal->group_exit_code; 1035 else if (!thread_group_empty(current)) { 1036 struct signal_struct *const sig = current->signal; 1037 struct sighand_struct *const sighand = current->sighand; 1038 spin_lock_irq(&sighand->siglock); 1039 if (sig->flags & SIGNAL_GROUP_EXIT) 1040 /* Another thread got here before we took the lock. */ 1041 exit_code = sig->group_exit_code; 1042 else { 1043 sig->group_exit_code = exit_code; 1044 zap_other_threads(current); 1045 } 1046 spin_unlock_irq(&sighand->siglock); 1047 } 1048 1049 do_exit(exit_code); 1050 /* NOTREACHED */ 1051 } 1052 1053 /* 1054 * this kills every thread in the thread group. Note that any externally 1055 * wait4()-ing process will get the correct exit code - even if this 1056 * thread is not the thread group leader. 1057 */ 1058 asmlinkage void sys_exit_group(int error_code) 1059 { 1060 do_group_exit((error_code & 0xff) << 8); 1061 } 1062 1063 static int eligible_child(pid_t pid, int options, struct task_struct *p) 1064 { 1065 int err; 1066 1067 if (pid > 0) { 1068 if (p->pid != pid) 1069 return 0; 1070 } else if (!pid) { 1071 if (process_group(p) != process_group(current)) 1072 return 0; 1073 } else if (pid != -1) { 1074 if (process_group(p) != -pid) 1075 return 0; 1076 } 1077 1078 /* 1079 * Do not consider detached threads that are 1080 * not ptraced: 1081 */ 1082 if (p->exit_signal == -1 && !p->ptrace) 1083 return 0; 1084 1085 /* Wait for all children (clone and not) if __WALL is set; 1086 * otherwise, wait for clone children *only* if __WCLONE is 1087 * set; otherwise, wait for non-clone children *only*. (Note: 1088 * A "clone" child here is one that reports to its parent 1089 * using a signal other than SIGCHLD.) */ 1090 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1091 && !(options & __WALL)) 1092 return 0; 1093 /* 1094 * Do not consider thread group leaders that are 1095 * in a non-empty thread group: 1096 */ 1097 if (delay_group_leader(p)) 1098 return 2; 1099 1100 err = security_task_wait(p); 1101 if (err) 1102 return err; 1103 1104 return 1; 1105 } 1106 1107 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1108 int why, int status, 1109 struct siginfo __user *infop, 1110 struct rusage __user *rusagep) 1111 { 1112 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1113 1114 put_task_struct(p); 1115 if (!retval) 1116 retval = put_user(SIGCHLD, &infop->si_signo); 1117 if (!retval) 1118 retval = put_user(0, &infop->si_errno); 1119 if (!retval) 1120 retval = put_user((short)why, &infop->si_code); 1121 if (!retval) 1122 retval = put_user(pid, &infop->si_pid); 1123 if (!retval) 1124 retval = put_user(uid, &infop->si_uid); 1125 if (!retval) 1126 retval = put_user(status, &infop->si_status); 1127 if (!retval) 1128 retval = pid; 1129 return retval; 1130 } 1131 1132 /* 1133 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1134 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1135 * the lock and this task is uninteresting. If we return nonzero, we have 1136 * released the lock and the system call should return. 1137 */ 1138 static int wait_task_zombie(struct task_struct *p, int noreap, 1139 struct siginfo __user *infop, 1140 int __user *stat_addr, struct rusage __user *ru) 1141 { 1142 unsigned long state; 1143 int retval; 1144 int status; 1145 1146 if (unlikely(noreap)) { 1147 pid_t pid = p->pid; 1148 uid_t uid = p->uid; 1149 int exit_code = p->exit_code; 1150 int why, status; 1151 1152 if (unlikely(p->exit_state != EXIT_ZOMBIE)) 1153 return 0; 1154 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) 1155 return 0; 1156 get_task_struct(p); 1157 read_unlock(&tasklist_lock); 1158 if ((exit_code & 0x7f) == 0) { 1159 why = CLD_EXITED; 1160 status = exit_code >> 8; 1161 } else { 1162 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1163 status = exit_code & 0x7f; 1164 } 1165 return wait_noreap_copyout(p, pid, uid, why, 1166 status, infop, ru); 1167 } 1168 1169 /* 1170 * Try to move the task's state to DEAD 1171 * only one thread is allowed to do this: 1172 */ 1173 state = xchg(&p->exit_state, EXIT_DEAD); 1174 if (state != EXIT_ZOMBIE) { 1175 BUG_ON(state != EXIT_DEAD); 1176 return 0; 1177 } 1178 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) { 1179 /* 1180 * This can only happen in a race with a ptraced thread 1181 * dying on another processor. 1182 */ 1183 return 0; 1184 } 1185 1186 if (likely(p->real_parent == p->parent) && likely(p->signal)) { 1187 struct signal_struct *psig; 1188 struct signal_struct *sig; 1189 1190 /* 1191 * The resource counters for the group leader are in its 1192 * own task_struct. Those for dead threads in the group 1193 * are in its signal_struct, as are those for the child 1194 * processes it has previously reaped. All these 1195 * accumulate in the parent's signal_struct c* fields. 1196 * 1197 * We don't bother to take a lock here to protect these 1198 * p->signal fields, because they are only touched by 1199 * __exit_signal, which runs with tasklist_lock 1200 * write-locked anyway, and so is excluded here. We do 1201 * need to protect the access to p->parent->signal fields, 1202 * as other threads in the parent group can be right 1203 * here reaping other children at the same time. 1204 */ 1205 spin_lock_irq(&p->parent->sighand->siglock); 1206 psig = p->parent->signal; 1207 sig = p->signal; 1208 psig->cutime = 1209 cputime_add(psig->cutime, 1210 cputime_add(p->utime, 1211 cputime_add(sig->utime, 1212 sig->cutime))); 1213 psig->cstime = 1214 cputime_add(psig->cstime, 1215 cputime_add(p->stime, 1216 cputime_add(sig->stime, 1217 sig->cstime))); 1218 psig->cmin_flt += 1219 p->min_flt + sig->min_flt + sig->cmin_flt; 1220 psig->cmaj_flt += 1221 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1222 psig->cnvcsw += 1223 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1224 psig->cnivcsw += 1225 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1226 psig->cinblock += 1227 task_io_get_inblock(p) + 1228 sig->inblock + sig->cinblock; 1229 psig->coublock += 1230 task_io_get_oublock(p) + 1231 sig->oublock + sig->coublock; 1232 spin_unlock_irq(&p->parent->sighand->siglock); 1233 } 1234 1235 /* 1236 * Now we are sure this task is interesting, and no other 1237 * thread can reap it because we set its state to EXIT_DEAD. 1238 */ 1239 read_unlock(&tasklist_lock); 1240 1241 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1242 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1243 ? p->signal->group_exit_code : p->exit_code; 1244 if (!retval && stat_addr) 1245 retval = put_user(status, stat_addr); 1246 if (!retval && infop) 1247 retval = put_user(SIGCHLD, &infop->si_signo); 1248 if (!retval && infop) 1249 retval = put_user(0, &infop->si_errno); 1250 if (!retval && infop) { 1251 int why; 1252 1253 if ((status & 0x7f) == 0) { 1254 why = CLD_EXITED; 1255 status >>= 8; 1256 } else { 1257 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1258 status &= 0x7f; 1259 } 1260 retval = put_user((short)why, &infop->si_code); 1261 if (!retval) 1262 retval = put_user(status, &infop->si_status); 1263 } 1264 if (!retval && infop) 1265 retval = put_user(p->pid, &infop->si_pid); 1266 if (!retval && infop) 1267 retval = put_user(p->uid, &infop->si_uid); 1268 if (retval) { 1269 // TODO: is this safe? 1270 p->exit_state = EXIT_ZOMBIE; 1271 return retval; 1272 } 1273 retval = p->pid; 1274 if (p->real_parent != p->parent) { 1275 write_lock_irq(&tasklist_lock); 1276 /* Double-check with lock held. */ 1277 if (p->real_parent != p->parent) { 1278 __ptrace_unlink(p); 1279 // TODO: is this safe? 1280 p->exit_state = EXIT_ZOMBIE; 1281 /* 1282 * If this is not a detached task, notify the parent. 1283 * If it's still not detached after that, don't release 1284 * it now. 1285 */ 1286 if (p->exit_signal != -1) { 1287 do_notify_parent(p, p->exit_signal); 1288 if (p->exit_signal != -1) 1289 p = NULL; 1290 } 1291 } 1292 write_unlock_irq(&tasklist_lock); 1293 } 1294 if (p != NULL) 1295 release_task(p); 1296 BUG_ON(!retval); 1297 return retval; 1298 } 1299 1300 /* 1301 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1302 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1303 * the lock and this task is uninteresting. If we return nonzero, we have 1304 * released the lock and the system call should return. 1305 */ 1306 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader, 1307 int noreap, struct siginfo __user *infop, 1308 int __user *stat_addr, struct rusage __user *ru) 1309 { 1310 int retval, exit_code; 1311 1312 if (!p->exit_code) 1313 return 0; 1314 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) && 1315 p->signal && p->signal->group_stop_count > 0) 1316 /* 1317 * A group stop is in progress and this is the group leader. 1318 * We won't report until all threads have stopped. 1319 */ 1320 return 0; 1321 1322 /* 1323 * Now we are pretty sure this task is interesting. 1324 * Make sure it doesn't get reaped out from under us while we 1325 * give up the lock and then examine it below. We don't want to 1326 * keep holding onto the tasklist_lock while we call getrusage and 1327 * possibly take page faults for user memory. 1328 */ 1329 get_task_struct(p); 1330 read_unlock(&tasklist_lock); 1331 1332 if (unlikely(noreap)) { 1333 pid_t pid = p->pid; 1334 uid_t uid = p->uid; 1335 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; 1336 1337 exit_code = p->exit_code; 1338 if (unlikely(!exit_code) || 1339 unlikely(p->state & TASK_TRACED)) 1340 goto bail_ref; 1341 return wait_noreap_copyout(p, pid, uid, 1342 why, (exit_code << 8) | 0x7f, 1343 infop, ru); 1344 } 1345 1346 write_lock_irq(&tasklist_lock); 1347 1348 /* 1349 * This uses xchg to be atomic with the thread resuming and setting 1350 * it. It must also be done with the write lock held to prevent a 1351 * race with the EXIT_ZOMBIE case. 1352 */ 1353 exit_code = xchg(&p->exit_code, 0); 1354 if (unlikely(p->exit_state)) { 1355 /* 1356 * The task resumed and then died. Let the next iteration 1357 * catch it in EXIT_ZOMBIE. Note that exit_code might 1358 * already be zero here if it resumed and did _exit(0). 1359 * The task itself is dead and won't touch exit_code again; 1360 * other processors in this function are locked out. 1361 */ 1362 p->exit_code = exit_code; 1363 exit_code = 0; 1364 } 1365 if (unlikely(exit_code == 0)) { 1366 /* 1367 * Another thread in this function got to it first, or it 1368 * resumed, or it resumed and then died. 1369 */ 1370 write_unlock_irq(&tasklist_lock); 1371 bail_ref: 1372 put_task_struct(p); 1373 /* 1374 * We are returning to the wait loop without having successfully 1375 * removed the process and having released the lock. We cannot 1376 * continue, since the "p" task pointer is potentially stale. 1377 * 1378 * Return -EAGAIN, and do_wait() will restart the loop from the 1379 * beginning. Do _not_ re-acquire the lock. 1380 */ 1381 return -EAGAIN; 1382 } 1383 1384 /* move to end of parent's list to avoid starvation */ 1385 remove_parent(p); 1386 add_parent(p); 1387 1388 write_unlock_irq(&tasklist_lock); 1389 1390 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1391 if (!retval && stat_addr) 1392 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1393 if (!retval && infop) 1394 retval = put_user(SIGCHLD, &infop->si_signo); 1395 if (!retval && infop) 1396 retval = put_user(0, &infop->si_errno); 1397 if (!retval && infop) 1398 retval = put_user((short)((p->ptrace & PT_PTRACED) 1399 ? CLD_TRAPPED : CLD_STOPPED), 1400 &infop->si_code); 1401 if (!retval && infop) 1402 retval = put_user(exit_code, &infop->si_status); 1403 if (!retval && infop) 1404 retval = put_user(p->pid, &infop->si_pid); 1405 if (!retval && infop) 1406 retval = put_user(p->uid, &infop->si_uid); 1407 if (!retval) 1408 retval = p->pid; 1409 put_task_struct(p); 1410 1411 BUG_ON(!retval); 1412 return retval; 1413 } 1414 1415 /* 1416 * Handle do_wait work for one task in a live, non-stopped state. 1417 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1418 * the lock and this task is uninteresting. If we return nonzero, we have 1419 * released the lock and the system call should return. 1420 */ 1421 static int wait_task_continued(struct task_struct *p, int noreap, 1422 struct siginfo __user *infop, 1423 int __user *stat_addr, struct rusage __user *ru) 1424 { 1425 int retval; 1426 pid_t pid; 1427 uid_t uid; 1428 1429 if (unlikely(!p->signal)) 1430 return 0; 1431 1432 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1433 return 0; 1434 1435 spin_lock_irq(&p->sighand->siglock); 1436 /* Re-check with the lock held. */ 1437 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1438 spin_unlock_irq(&p->sighand->siglock); 1439 return 0; 1440 } 1441 if (!noreap) 1442 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1443 spin_unlock_irq(&p->sighand->siglock); 1444 1445 pid = p->pid; 1446 uid = p->uid; 1447 get_task_struct(p); 1448 read_unlock(&tasklist_lock); 1449 1450 if (!infop) { 1451 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1452 put_task_struct(p); 1453 if (!retval && stat_addr) 1454 retval = put_user(0xffff, stat_addr); 1455 if (!retval) 1456 retval = p->pid; 1457 } else { 1458 retval = wait_noreap_copyout(p, pid, uid, 1459 CLD_CONTINUED, SIGCONT, 1460 infop, ru); 1461 BUG_ON(retval == 0); 1462 } 1463 1464 return retval; 1465 } 1466 1467 1468 static inline int my_ptrace_child(struct task_struct *p) 1469 { 1470 if (!(p->ptrace & PT_PTRACED)) 1471 return 0; 1472 if (!(p->ptrace & PT_ATTACHED)) 1473 return 1; 1474 /* 1475 * This child was PTRACE_ATTACH'd. We should be seeing it only if 1476 * we are the attacher. If we are the real parent, this is a race 1477 * inside ptrace_attach. It is waiting for the tasklist_lock, 1478 * which we have to switch the parent links, but has already set 1479 * the flags in p->ptrace. 1480 */ 1481 return (p->parent != p->real_parent); 1482 } 1483 1484 static long do_wait(pid_t pid, int options, struct siginfo __user *infop, 1485 int __user *stat_addr, struct rusage __user *ru) 1486 { 1487 DECLARE_WAITQUEUE(wait, current); 1488 struct task_struct *tsk; 1489 int flag, retval; 1490 int allowed, denied; 1491 1492 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1493 repeat: 1494 /* 1495 * We will set this flag if we see any child that might later 1496 * match our criteria, even if we are not able to reap it yet. 1497 */ 1498 flag = 0; 1499 allowed = denied = 0; 1500 current->state = TASK_INTERRUPTIBLE; 1501 read_lock(&tasklist_lock); 1502 tsk = current; 1503 do { 1504 struct task_struct *p; 1505 struct list_head *_p; 1506 int ret; 1507 1508 list_for_each(_p,&tsk->children) { 1509 p = list_entry(_p, struct task_struct, sibling); 1510 1511 ret = eligible_child(pid, options, p); 1512 if (!ret) 1513 continue; 1514 1515 if (unlikely(ret < 0)) { 1516 denied = ret; 1517 continue; 1518 } 1519 allowed = 1; 1520 1521 switch (p->state) { 1522 case TASK_TRACED: 1523 /* 1524 * When we hit the race with PTRACE_ATTACH, 1525 * we will not report this child. But the 1526 * race means it has not yet been moved to 1527 * our ptrace_children list, so we need to 1528 * set the flag here to avoid a spurious ECHILD 1529 * when the race happens with the only child. 1530 */ 1531 flag = 1; 1532 if (!my_ptrace_child(p)) 1533 continue; 1534 /*FALLTHROUGH*/ 1535 case TASK_STOPPED: 1536 /* 1537 * It's stopped now, so it might later 1538 * continue, exit, or stop again. 1539 */ 1540 flag = 1; 1541 if (!(options & WUNTRACED) && 1542 !my_ptrace_child(p)) 1543 continue; 1544 retval = wait_task_stopped(p, ret == 2, 1545 (options & WNOWAIT), 1546 infop, 1547 stat_addr, ru); 1548 if (retval == -EAGAIN) 1549 goto repeat; 1550 if (retval != 0) /* He released the lock. */ 1551 goto end; 1552 break; 1553 default: 1554 // case EXIT_DEAD: 1555 if (p->exit_state == EXIT_DEAD) 1556 continue; 1557 // case EXIT_ZOMBIE: 1558 if (p->exit_state == EXIT_ZOMBIE) { 1559 /* 1560 * Eligible but we cannot release 1561 * it yet: 1562 */ 1563 if (ret == 2) 1564 goto check_continued; 1565 if (!likely(options & WEXITED)) 1566 continue; 1567 retval = wait_task_zombie( 1568 p, (options & WNOWAIT), 1569 infop, stat_addr, ru); 1570 /* He released the lock. */ 1571 if (retval != 0) 1572 goto end; 1573 break; 1574 } 1575 check_continued: 1576 /* 1577 * It's running now, so it might later 1578 * exit, stop, or stop and then continue. 1579 */ 1580 flag = 1; 1581 if (!unlikely(options & WCONTINUED)) 1582 continue; 1583 retval = wait_task_continued( 1584 p, (options & WNOWAIT), 1585 infop, stat_addr, ru); 1586 if (retval != 0) /* He released the lock. */ 1587 goto end; 1588 break; 1589 } 1590 } 1591 if (!flag) { 1592 list_for_each(_p, &tsk->ptrace_children) { 1593 p = list_entry(_p, struct task_struct, 1594 ptrace_list); 1595 if (!eligible_child(pid, options, p)) 1596 continue; 1597 flag = 1; 1598 break; 1599 } 1600 } 1601 if (options & __WNOTHREAD) 1602 break; 1603 tsk = next_thread(tsk); 1604 BUG_ON(tsk->signal != current->signal); 1605 } while (tsk != current); 1606 1607 read_unlock(&tasklist_lock); 1608 if (flag) { 1609 retval = 0; 1610 if (options & WNOHANG) 1611 goto end; 1612 retval = -ERESTARTSYS; 1613 if (signal_pending(current)) 1614 goto end; 1615 schedule(); 1616 goto repeat; 1617 } 1618 retval = -ECHILD; 1619 if (unlikely(denied) && !allowed) 1620 retval = denied; 1621 end: 1622 current->state = TASK_RUNNING; 1623 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1624 if (infop) { 1625 if (retval > 0) 1626 retval = 0; 1627 else { 1628 /* 1629 * For a WNOHANG return, clear out all the fields 1630 * we would set so the user can easily tell the 1631 * difference. 1632 */ 1633 if (!retval) 1634 retval = put_user(0, &infop->si_signo); 1635 if (!retval) 1636 retval = put_user(0, &infop->si_errno); 1637 if (!retval) 1638 retval = put_user(0, &infop->si_code); 1639 if (!retval) 1640 retval = put_user(0, &infop->si_pid); 1641 if (!retval) 1642 retval = put_user(0, &infop->si_uid); 1643 if (!retval) 1644 retval = put_user(0, &infop->si_status); 1645 } 1646 } 1647 return retval; 1648 } 1649 1650 asmlinkage long sys_waitid(int which, pid_t pid, 1651 struct siginfo __user *infop, int options, 1652 struct rusage __user *ru) 1653 { 1654 long ret; 1655 1656 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1657 return -EINVAL; 1658 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1659 return -EINVAL; 1660 1661 switch (which) { 1662 case P_ALL: 1663 pid = -1; 1664 break; 1665 case P_PID: 1666 if (pid <= 0) 1667 return -EINVAL; 1668 break; 1669 case P_PGID: 1670 if (pid <= 0) 1671 return -EINVAL; 1672 pid = -pid; 1673 break; 1674 default: 1675 return -EINVAL; 1676 } 1677 1678 ret = do_wait(pid, options, infop, NULL, ru); 1679 1680 /* avoid REGPARM breakage on x86: */ 1681 prevent_tail_call(ret); 1682 return ret; 1683 } 1684 1685 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr, 1686 int options, struct rusage __user *ru) 1687 { 1688 long ret; 1689 1690 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1691 __WNOTHREAD|__WCLONE|__WALL)) 1692 return -EINVAL; 1693 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru); 1694 1695 /* avoid REGPARM breakage on x86: */ 1696 prevent_tail_call(ret); 1697 return ret; 1698 } 1699 1700 #ifdef __ARCH_WANT_SYS_WAITPID 1701 1702 /* 1703 * sys_waitpid() remains for compatibility. waitpid() should be 1704 * implemented by calling sys_wait4() from libc.a. 1705 */ 1706 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1707 { 1708 return sys_wait4(pid, stat_addr, options, NULL); 1709 } 1710 1711 #endif 1712