xref: /linux/kernel/exit.c (revision bf74b964775009071cf12f9d59d4dd5e388fbe0b)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/signalfd.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/cpuset.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
52 
53 extern void sem_exit (void);
54 
55 static void exit_mm(struct task_struct * tsk);
56 
57 static void __unhash_process(struct task_struct *p)
58 {
59 	nr_threads--;
60 	detach_pid(p, PIDTYPE_PID);
61 	if (thread_group_leader(p)) {
62 		detach_pid(p, PIDTYPE_PGID);
63 		detach_pid(p, PIDTYPE_SID);
64 
65 		list_del_rcu(&p->tasks);
66 		__get_cpu_var(process_counts)--;
67 	}
68 	list_del_rcu(&p->thread_group);
69 	remove_parent(p);
70 }
71 
72 /*
73  * This function expects the tasklist_lock write-locked.
74  */
75 static void __exit_signal(struct task_struct *tsk)
76 {
77 	struct signal_struct *sig = tsk->signal;
78 	struct sighand_struct *sighand;
79 
80 	BUG_ON(!sig);
81 	BUG_ON(!atomic_read(&sig->count));
82 
83 	rcu_read_lock();
84 	sighand = rcu_dereference(tsk->sighand);
85 	spin_lock(&sighand->siglock);
86 
87 	/*
88 	 * Notify that this sighand has been detached. This must
89 	 * be called with the tsk->sighand lock held. Also, this
90 	 * access tsk->sighand internally, so it must be called
91 	 * before tsk->sighand is reset.
92 	 */
93 	signalfd_detach_locked(tsk);
94 
95 	posix_cpu_timers_exit(tsk);
96 	if (atomic_dec_and_test(&sig->count))
97 		posix_cpu_timers_exit_group(tsk);
98 	else {
99 		/*
100 		 * If there is any task waiting for the group exit
101 		 * then notify it:
102 		 */
103 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
104 			wake_up_process(sig->group_exit_task);
105 			sig->group_exit_task = NULL;
106 		}
107 		if (tsk == sig->curr_target)
108 			sig->curr_target = next_thread(tsk);
109 		/*
110 		 * Accumulate here the counters for all threads but the
111 		 * group leader as they die, so they can be added into
112 		 * the process-wide totals when those are taken.
113 		 * The group leader stays around as a zombie as long
114 		 * as there are other threads.  When it gets reaped,
115 		 * the exit.c code will add its counts into these totals.
116 		 * We won't ever get here for the group leader, since it
117 		 * will have been the last reference on the signal_struct.
118 		 */
119 		sig->utime = cputime_add(sig->utime, tsk->utime);
120 		sig->stime = cputime_add(sig->stime, tsk->stime);
121 		sig->min_flt += tsk->min_flt;
122 		sig->maj_flt += tsk->maj_flt;
123 		sig->nvcsw += tsk->nvcsw;
124 		sig->nivcsw += tsk->nivcsw;
125 		sig->inblock += task_io_get_inblock(tsk);
126 		sig->oublock += task_io_get_oublock(tsk);
127 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
128 		sig = NULL; /* Marker for below. */
129 	}
130 
131 	__unhash_process(tsk);
132 
133 	tsk->signal = NULL;
134 	tsk->sighand = NULL;
135 	spin_unlock(&sighand->siglock);
136 	rcu_read_unlock();
137 
138 	__cleanup_sighand(sighand);
139 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
140 	flush_sigqueue(&tsk->pending);
141 	if (sig) {
142 		flush_sigqueue(&sig->shared_pending);
143 		taskstats_tgid_free(sig);
144 		__cleanup_signal(sig);
145 	}
146 }
147 
148 static void delayed_put_task_struct(struct rcu_head *rhp)
149 {
150 	put_task_struct(container_of(rhp, struct task_struct, rcu));
151 }
152 
153 void release_task(struct task_struct * p)
154 {
155 	struct task_struct *leader;
156 	int zap_leader;
157 repeat:
158 	atomic_dec(&p->user->processes);
159 	write_lock_irq(&tasklist_lock);
160 	ptrace_unlink(p);
161 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
162 	__exit_signal(p);
163 
164 	/*
165 	 * If we are the last non-leader member of the thread
166 	 * group, and the leader is zombie, then notify the
167 	 * group leader's parent process. (if it wants notification.)
168 	 */
169 	zap_leader = 0;
170 	leader = p->group_leader;
171 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
172 		BUG_ON(leader->exit_signal == -1);
173 		do_notify_parent(leader, leader->exit_signal);
174 		/*
175 		 * If we were the last child thread and the leader has
176 		 * exited already, and the leader's parent ignores SIGCHLD,
177 		 * then we are the one who should release the leader.
178 		 *
179 		 * do_notify_parent() will have marked it self-reaping in
180 		 * that case.
181 		 */
182 		zap_leader = (leader->exit_signal == -1);
183 	}
184 
185 	write_unlock_irq(&tasklist_lock);
186 	proc_flush_task(p);
187 	release_thread(p);
188 	call_rcu(&p->rcu, delayed_put_task_struct);
189 
190 	p = leader;
191 	if (unlikely(zap_leader))
192 		goto repeat;
193 }
194 
195 /*
196  * This checks not only the pgrp, but falls back on the pid if no
197  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
198  * without this...
199  *
200  * The caller must hold rcu lock or the tasklist lock.
201  */
202 struct pid *session_of_pgrp(struct pid *pgrp)
203 {
204 	struct task_struct *p;
205 	struct pid *sid = NULL;
206 
207 	p = pid_task(pgrp, PIDTYPE_PGID);
208 	if (p == NULL)
209 		p = pid_task(pgrp, PIDTYPE_PID);
210 	if (p != NULL)
211 		sid = task_session(p);
212 
213 	return sid;
214 }
215 
216 /*
217  * Determine if a process group is "orphaned", according to the POSIX
218  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
219  * by terminal-generated stop signals.  Newly orphaned process groups are
220  * to receive a SIGHUP and a SIGCONT.
221  *
222  * "I ask you, have you ever known what it is to be an orphan?"
223  */
224 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
225 {
226 	struct task_struct *p;
227 	int ret = 1;
228 
229 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
230 		if (p == ignored_task
231 				|| p->exit_state
232 				|| is_init(p->real_parent))
233 			continue;
234 		if (task_pgrp(p->real_parent) != pgrp &&
235 		    task_session(p->real_parent) == task_session(p)) {
236 			ret = 0;
237 			break;
238 		}
239 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
240 	return ret;	/* (sighing) "Often!" */
241 }
242 
243 int is_current_pgrp_orphaned(void)
244 {
245 	int retval;
246 
247 	read_lock(&tasklist_lock);
248 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
249 	read_unlock(&tasklist_lock);
250 
251 	return retval;
252 }
253 
254 static int has_stopped_jobs(struct pid *pgrp)
255 {
256 	int retval = 0;
257 	struct task_struct *p;
258 
259 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
260 		if (p->state != TASK_STOPPED)
261 			continue;
262 		retval = 1;
263 		break;
264 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
265 	return retval;
266 }
267 
268 /**
269  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
270  *
271  * If a kernel thread is launched as a result of a system call, or if
272  * it ever exits, it should generally reparent itself to kthreadd so it
273  * isn't in the way of other processes and is correctly cleaned up on exit.
274  *
275  * The various task state such as scheduling policy and priority may have
276  * been inherited from a user process, so we reset them to sane values here.
277  *
278  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
279  */
280 static void reparent_to_kthreadd(void)
281 {
282 	write_lock_irq(&tasklist_lock);
283 
284 	ptrace_unlink(current);
285 	/* Reparent to init */
286 	remove_parent(current);
287 	current->real_parent = current->parent = kthreadd_task;
288 	add_parent(current);
289 
290 	/* Set the exit signal to SIGCHLD so we signal init on exit */
291 	current->exit_signal = SIGCHLD;
292 
293 	if (task_nice(current) < 0)
294 		set_user_nice(current, 0);
295 	/* cpus_allowed? */
296 	/* rt_priority? */
297 	/* signals? */
298 	security_task_reparent_to_init(current);
299 	memcpy(current->signal->rlim, init_task.signal->rlim,
300 	       sizeof(current->signal->rlim));
301 	atomic_inc(&(INIT_USER->__count));
302 	write_unlock_irq(&tasklist_lock);
303 	switch_uid(INIT_USER);
304 }
305 
306 void __set_special_pids(pid_t session, pid_t pgrp)
307 {
308 	struct task_struct *curr = current->group_leader;
309 
310 	if (process_session(curr) != session) {
311 		detach_pid(curr, PIDTYPE_SID);
312 		set_signal_session(curr->signal, session);
313 		attach_pid(curr, PIDTYPE_SID, find_pid(session));
314 	}
315 	if (process_group(curr) != pgrp) {
316 		detach_pid(curr, PIDTYPE_PGID);
317 		curr->signal->pgrp = pgrp;
318 		attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp));
319 	}
320 }
321 
322 static void set_special_pids(pid_t session, pid_t pgrp)
323 {
324 	write_lock_irq(&tasklist_lock);
325 	__set_special_pids(session, pgrp);
326 	write_unlock_irq(&tasklist_lock);
327 }
328 
329 /*
330  * Let kernel threads use this to say that they
331  * allow a certain signal (since daemonize() will
332  * have disabled all of them by default).
333  */
334 int allow_signal(int sig)
335 {
336 	if (!valid_signal(sig) || sig < 1)
337 		return -EINVAL;
338 
339 	spin_lock_irq(&current->sighand->siglock);
340 	sigdelset(&current->blocked, sig);
341 	if (!current->mm) {
342 		/* Kernel threads handle their own signals.
343 		   Let the signal code know it'll be handled, so
344 		   that they don't get converted to SIGKILL or
345 		   just silently dropped */
346 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
347 	}
348 	recalc_sigpending();
349 	spin_unlock_irq(&current->sighand->siglock);
350 	return 0;
351 }
352 
353 EXPORT_SYMBOL(allow_signal);
354 
355 int disallow_signal(int sig)
356 {
357 	if (!valid_signal(sig) || sig < 1)
358 		return -EINVAL;
359 
360 	spin_lock_irq(&current->sighand->siglock);
361 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
362 	recalc_sigpending();
363 	spin_unlock_irq(&current->sighand->siglock);
364 	return 0;
365 }
366 
367 EXPORT_SYMBOL(disallow_signal);
368 
369 /*
370  *	Put all the gunge required to become a kernel thread without
371  *	attached user resources in one place where it belongs.
372  */
373 
374 void daemonize(const char *name, ...)
375 {
376 	va_list args;
377 	struct fs_struct *fs;
378 	sigset_t blocked;
379 
380 	va_start(args, name);
381 	vsnprintf(current->comm, sizeof(current->comm), name, args);
382 	va_end(args);
383 
384 	/*
385 	 * If we were started as result of loading a module, close all of the
386 	 * user space pages.  We don't need them, and if we didn't close them
387 	 * they would be locked into memory.
388 	 */
389 	exit_mm(current);
390 
391 	set_special_pids(1, 1);
392 	proc_clear_tty(current);
393 
394 	/* Block and flush all signals */
395 	sigfillset(&blocked);
396 	sigprocmask(SIG_BLOCK, &blocked, NULL);
397 	flush_signals(current);
398 
399 	/* Become as one with the init task */
400 
401 	exit_fs(current);	/* current->fs->count--; */
402 	fs = init_task.fs;
403 	current->fs = fs;
404 	atomic_inc(&fs->count);
405 
406 	exit_task_namespaces(current);
407 	current->nsproxy = init_task.nsproxy;
408 	get_task_namespaces(current);
409 
410  	exit_files(current);
411 	current->files = init_task.files;
412 	atomic_inc(&current->files->count);
413 
414 	reparent_to_kthreadd();
415 }
416 
417 EXPORT_SYMBOL(daemonize);
418 
419 static void close_files(struct files_struct * files)
420 {
421 	int i, j;
422 	struct fdtable *fdt;
423 
424 	j = 0;
425 
426 	/*
427 	 * It is safe to dereference the fd table without RCU or
428 	 * ->file_lock because this is the last reference to the
429 	 * files structure.
430 	 */
431 	fdt = files_fdtable(files);
432 	for (;;) {
433 		unsigned long set;
434 		i = j * __NFDBITS;
435 		if (i >= fdt->max_fds)
436 			break;
437 		set = fdt->open_fds->fds_bits[j++];
438 		while (set) {
439 			if (set & 1) {
440 				struct file * file = xchg(&fdt->fd[i], NULL);
441 				if (file) {
442 					filp_close(file, files);
443 					cond_resched();
444 				}
445 			}
446 			i++;
447 			set >>= 1;
448 		}
449 	}
450 }
451 
452 struct files_struct *get_files_struct(struct task_struct *task)
453 {
454 	struct files_struct *files;
455 
456 	task_lock(task);
457 	files = task->files;
458 	if (files)
459 		atomic_inc(&files->count);
460 	task_unlock(task);
461 
462 	return files;
463 }
464 
465 void fastcall put_files_struct(struct files_struct *files)
466 {
467 	struct fdtable *fdt;
468 
469 	if (atomic_dec_and_test(&files->count)) {
470 		close_files(files);
471 		/*
472 		 * Free the fd and fdset arrays if we expanded them.
473 		 * If the fdtable was embedded, pass files for freeing
474 		 * at the end of the RCU grace period. Otherwise,
475 		 * you can free files immediately.
476 		 */
477 		fdt = files_fdtable(files);
478 		if (fdt != &files->fdtab)
479 			kmem_cache_free(files_cachep, files);
480 		free_fdtable(fdt);
481 	}
482 }
483 
484 EXPORT_SYMBOL(put_files_struct);
485 
486 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
487 {
488 	struct files_struct *old;
489 
490 	old = tsk->files;
491 	task_lock(tsk);
492 	tsk->files = files;
493 	task_unlock(tsk);
494 	put_files_struct(old);
495 }
496 EXPORT_SYMBOL(reset_files_struct);
497 
498 static inline void __exit_files(struct task_struct *tsk)
499 {
500 	struct files_struct * files = tsk->files;
501 
502 	if (files) {
503 		task_lock(tsk);
504 		tsk->files = NULL;
505 		task_unlock(tsk);
506 		put_files_struct(files);
507 	}
508 }
509 
510 void exit_files(struct task_struct *tsk)
511 {
512 	__exit_files(tsk);
513 }
514 
515 static inline void __put_fs_struct(struct fs_struct *fs)
516 {
517 	/* No need to hold fs->lock if we are killing it */
518 	if (atomic_dec_and_test(&fs->count)) {
519 		dput(fs->root);
520 		mntput(fs->rootmnt);
521 		dput(fs->pwd);
522 		mntput(fs->pwdmnt);
523 		if (fs->altroot) {
524 			dput(fs->altroot);
525 			mntput(fs->altrootmnt);
526 		}
527 		kmem_cache_free(fs_cachep, fs);
528 	}
529 }
530 
531 void put_fs_struct(struct fs_struct *fs)
532 {
533 	__put_fs_struct(fs);
534 }
535 
536 static inline void __exit_fs(struct task_struct *tsk)
537 {
538 	struct fs_struct * fs = tsk->fs;
539 
540 	if (fs) {
541 		task_lock(tsk);
542 		tsk->fs = NULL;
543 		task_unlock(tsk);
544 		__put_fs_struct(fs);
545 	}
546 }
547 
548 void exit_fs(struct task_struct *tsk)
549 {
550 	__exit_fs(tsk);
551 }
552 
553 EXPORT_SYMBOL_GPL(exit_fs);
554 
555 /*
556  * Turn us into a lazy TLB process if we
557  * aren't already..
558  */
559 static void exit_mm(struct task_struct * tsk)
560 {
561 	struct mm_struct *mm = tsk->mm;
562 
563 	mm_release(tsk, mm);
564 	if (!mm)
565 		return;
566 	/*
567 	 * Serialize with any possible pending coredump.
568 	 * We must hold mmap_sem around checking core_waiters
569 	 * and clearing tsk->mm.  The core-inducing thread
570 	 * will increment core_waiters for each thread in the
571 	 * group with ->mm != NULL.
572 	 */
573 	down_read(&mm->mmap_sem);
574 	if (mm->core_waiters) {
575 		up_read(&mm->mmap_sem);
576 		down_write(&mm->mmap_sem);
577 		if (!--mm->core_waiters)
578 			complete(mm->core_startup_done);
579 		up_write(&mm->mmap_sem);
580 
581 		wait_for_completion(&mm->core_done);
582 		down_read(&mm->mmap_sem);
583 	}
584 	atomic_inc(&mm->mm_count);
585 	BUG_ON(mm != tsk->active_mm);
586 	/* more a memory barrier than a real lock */
587 	task_lock(tsk);
588 	tsk->mm = NULL;
589 	up_read(&mm->mmap_sem);
590 	enter_lazy_tlb(mm, current);
591 	task_unlock(tsk);
592 	mmput(mm);
593 }
594 
595 static inline void
596 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
597 {
598 	/*
599 	 * Make sure we're not reparenting to ourselves and that
600 	 * the parent is not a zombie.
601 	 */
602 	BUG_ON(p == reaper || reaper->exit_state);
603 	p->real_parent = reaper;
604 }
605 
606 static void
607 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
608 {
609 	if (p->pdeath_signal)
610 		/* We already hold the tasklist_lock here.  */
611 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
612 
613 	/* Move the child from its dying parent to the new one.  */
614 	if (unlikely(traced)) {
615 		/* Preserve ptrace links if someone else is tracing this child.  */
616 		list_del_init(&p->ptrace_list);
617 		if (p->parent != p->real_parent)
618 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
619 	} else {
620 		/* If this child is being traced, then we're the one tracing it
621 		 * anyway, so let go of it.
622 		 */
623 		p->ptrace = 0;
624 		remove_parent(p);
625 		p->parent = p->real_parent;
626 		add_parent(p);
627 
628 		if (p->state == TASK_TRACED) {
629 			/*
630 			 * If it was at a trace stop, turn it into
631 			 * a normal stop since it's no longer being
632 			 * traced.
633 			 */
634 			ptrace_untrace(p);
635 		}
636 	}
637 
638 	/* If this is a threaded reparent there is no need to
639 	 * notify anyone anything has happened.
640 	 */
641 	if (p->real_parent->group_leader == father->group_leader)
642 		return;
643 
644 	/* We don't want people slaying init.  */
645 	if (p->exit_signal != -1)
646 		p->exit_signal = SIGCHLD;
647 
648 	/* If we'd notified the old parent about this child's death,
649 	 * also notify the new parent.
650 	 */
651 	if (!traced && p->exit_state == EXIT_ZOMBIE &&
652 	    p->exit_signal != -1 && thread_group_empty(p))
653 		do_notify_parent(p, p->exit_signal);
654 
655 	/*
656 	 * process group orphan check
657 	 * Case ii: Our child is in a different pgrp
658 	 * than we are, and it was the only connection
659 	 * outside, so the child pgrp is now orphaned.
660 	 */
661 	if ((task_pgrp(p) != task_pgrp(father)) &&
662 	    (task_session(p) == task_session(father))) {
663 		struct pid *pgrp = task_pgrp(p);
664 
665 		if (will_become_orphaned_pgrp(pgrp, NULL) &&
666 		    has_stopped_jobs(pgrp)) {
667 			__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
668 			__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
669 		}
670 	}
671 }
672 
673 /*
674  * When we die, we re-parent all our children.
675  * Try to give them to another thread in our thread
676  * group, and if no such member exists, give it to
677  * the child reaper process (ie "init") in our pid
678  * space.
679  */
680 static void
681 forget_original_parent(struct task_struct *father, struct list_head *to_release)
682 {
683 	struct task_struct *p, *reaper = father;
684 	struct list_head *_p, *_n;
685 
686 	do {
687 		reaper = next_thread(reaper);
688 		if (reaper == father) {
689 			reaper = child_reaper(father);
690 			break;
691 		}
692 	} while (reaper->exit_state);
693 
694 	/*
695 	 * There are only two places where our children can be:
696 	 *
697 	 * - in our child list
698 	 * - in our ptraced child list
699 	 *
700 	 * Search them and reparent children.
701 	 */
702 	list_for_each_safe(_p, _n, &father->children) {
703 		int ptrace;
704 		p = list_entry(_p, struct task_struct, sibling);
705 
706 		ptrace = p->ptrace;
707 
708 		/* if father isn't the real parent, then ptrace must be enabled */
709 		BUG_ON(father != p->real_parent && !ptrace);
710 
711 		if (father == p->real_parent) {
712 			/* reparent with a reaper, real father it's us */
713 			choose_new_parent(p, reaper);
714 			reparent_thread(p, father, 0);
715 		} else {
716 			/* reparent ptraced task to its real parent */
717 			__ptrace_unlink (p);
718 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
719 			    thread_group_empty(p))
720 				do_notify_parent(p, p->exit_signal);
721 		}
722 
723 		/*
724 		 * if the ptraced child is a zombie with exit_signal == -1
725 		 * we must collect it before we exit, or it will remain
726 		 * zombie forever since we prevented it from self-reap itself
727 		 * while it was being traced by us, to be able to see it in wait4.
728 		 */
729 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
730 			list_add(&p->ptrace_list, to_release);
731 	}
732 	list_for_each_safe(_p, _n, &father->ptrace_children) {
733 		p = list_entry(_p, struct task_struct, ptrace_list);
734 		choose_new_parent(p, reaper);
735 		reparent_thread(p, father, 1);
736 	}
737 }
738 
739 /*
740  * Send signals to all our closest relatives so that they know
741  * to properly mourn us..
742  */
743 static void exit_notify(struct task_struct *tsk)
744 {
745 	int state;
746 	struct task_struct *t;
747 	struct list_head ptrace_dead, *_p, *_n;
748 	struct pid *pgrp;
749 
750 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
751 	    && !thread_group_empty(tsk)) {
752 		/*
753 		 * This occurs when there was a race between our exit
754 		 * syscall and a group signal choosing us as the one to
755 		 * wake up.  It could be that we are the only thread
756 		 * alerted to check for pending signals, but another thread
757 		 * should be woken now to take the signal since we will not.
758 		 * Now we'll wake all the threads in the group just to make
759 		 * sure someone gets all the pending signals.
760 		 */
761 		read_lock(&tasklist_lock);
762 		spin_lock_irq(&tsk->sighand->siglock);
763 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
764 			if (!signal_pending(t) && !(t->flags & PF_EXITING))
765 				recalc_sigpending_and_wake(t);
766 		spin_unlock_irq(&tsk->sighand->siglock);
767 		read_unlock(&tasklist_lock);
768 	}
769 
770 	write_lock_irq(&tasklist_lock);
771 
772 	/*
773 	 * This does two things:
774 	 *
775   	 * A.  Make init inherit all the child processes
776 	 * B.  Check to see if any process groups have become orphaned
777 	 *	as a result of our exiting, and if they have any stopped
778 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
779 	 */
780 
781 	INIT_LIST_HEAD(&ptrace_dead);
782 	forget_original_parent(tsk, &ptrace_dead);
783 	BUG_ON(!list_empty(&tsk->children));
784 	BUG_ON(!list_empty(&tsk->ptrace_children));
785 
786 	/*
787 	 * Check to see if any process groups have become orphaned
788 	 * as a result of our exiting, and if they have any stopped
789 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
790 	 *
791 	 * Case i: Our father is in a different pgrp than we are
792 	 * and we were the only connection outside, so our pgrp
793 	 * is about to become orphaned.
794 	 */
795 
796 	t = tsk->real_parent;
797 
798 	pgrp = task_pgrp(tsk);
799 	if ((task_pgrp(t) != pgrp) &&
800 	    (task_session(t) == task_session(tsk)) &&
801 	    will_become_orphaned_pgrp(pgrp, tsk) &&
802 	    has_stopped_jobs(pgrp)) {
803 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
804 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
805 	}
806 
807 	/* Let father know we died
808 	 *
809 	 * Thread signals are configurable, but you aren't going to use
810 	 * that to send signals to arbitary processes.
811 	 * That stops right now.
812 	 *
813 	 * If the parent exec id doesn't match the exec id we saved
814 	 * when we started then we know the parent has changed security
815 	 * domain.
816 	 *
817 	 * If our self_exec id doesn't match our parent_exec_id then
818 	 * we have changed execution domain as these two values started
819 	 * the same after a fork.
820 	 *
821 	 */
822 
823 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
824 	    ( tsk->parent_exec_id != t->self_exec_id  ||
825 	      tsk->self_exec_id != tsk->parent_exec_id)
826 	    && !capable(CAP_KILL))
827 		tsk->exit_signal = SIGCHLD;
828 
829 
830 	/* If something other than our normal parent is ptracing us, then
831 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
832 	 * only has special meaning to our real parent.
833 	 */
834 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
835 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
836 		do_notify_parent(tsk, signal);
837 	} else if (tsk->ptrace) {
838 		do_notify_parent(tsk, SIGCHLD);
839 	}
840 
841 	state = EXIT_ZOMBIE;
842 	if (tsk->exit_signal == -1 &&
843 	    (likely(tsk->ptrace == 0) ||
844 	     unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
845 		state = EXIT_DEAD;
846 	tsk->exit_state = state;
847 
848 	write_unlock_irq(&tasklist_lock);
849 
850 	list_for_each_safe(_p, _n, &ptrace_dead) {
851 		list_del_init(_p);
852 		t = list_entry(_p, struct task_struct, ptrace_list);
853 		release_task(t);
854 	}
855 
856 	/* If the process is dead, release it - nobody will wait for it */
857 	if (state == EXIT_DEAD)
858 		release_task(tsk);
859 }
860 
861 fastcall NORET_TYPE void do_exit(long code)
862 {
863 	struct task_struct *tsk = current;
864 	int group_dead;
865 
866 	profile_task_exit(tsk);
867 
868 	WARN_ON(atomic_read(&tsk->fs_excl));
869 
870 	if (unlikely(in_interrupt()))
871 		panic("Aiee, killing interrupt handler!");
872 	if (unlikely(!tsk->pid))
873 		panic("Attempted to kill the idle task!");
874 	if (unlikely(tsk == child_reaper(tsk))) {
875 		if (tsk->nsproxy->pid_ns != &init_pid_ns)
876 			tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper;
877 		else
878 			panic("Attempted to kill init!");
879 	}
880 
881 
882 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
883 		current->ptrace_message = code;
884 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
885 	}
886 
887 	/*
888 	 * We're taking recursive faults here in do_exit. Safest is to just
889 	 * leave this task alone and wait for reboot.
890 	 */
891 	if (unlikely(tsk->flags & PF_EXITING)) {
892 		printk(KERN_ALERT
893 			"Fixing recursive fault but reboot is needed!\n");
894 		/*
895 		 * We can do this unlocked here. The futex code uses
896 		 * this flag just to verify whether the pi state
897 		 * cleanup has been done or not. In the worst case it
898 		 * loops once more. We pretend that the cleanup was
899 		 * done as there is no way to return. Either the
900 		 * OWNER_DIED bit is set by now or we push the blocked
901 		 * task into the wait for ever nirwana as well.
902 		 */
903 		tsk->flags |= PF_EXITPIDONE;
904 		if (tsk->io_context)
905 			exit_io_context();
906 		set_current_state(TASK_UNINTERRUPTIBLE);
907 		schedule();
908 	}
909 
910 	/*
911 	 * tsk->flags are checked in the futex code to protect against
912 	 * an exiting task cleaning up the robust pi futexes.
913 	 */
914 	spin_lock_irq(&tsk->pi_lock);
915 	tsk->flags |= PF_EXITING;
916 	spin_unlock_irq(&tsk->pi_lock);
917 
918 	if (unlikely(in_atomic()))
919 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
920 				current->comm, current->pid,
921 				preempt_count());
922 
923 	acct_update_integrals(tsk);
924 	if (tsk->mm) {
925 		update_hiwater_rss(tsk->mm);
926 		update_hiwater_vm(tsk->mm);
927 	}
928 	group_dead = atomic_dec_and_test(&tsk->signal->live);
929 	if (group_dead) {
930 		hrtimer_cancel(&tsk->signal->real_timer);
931 		exit_itimers(tsk->signal);
932 	}
933 	acct_collect(code, group_dead);
934 	if (unlikely(tsk->robust_list))
935 		exit_robust_list(tsk);
936 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
937 	if (unlikely(tsk->compat_robust_list))
938 		compat_exit_robust_list(tsk);
939 #endif
940 	if (unlikely(tsk->audit_context))
941 		audit_free(tsk);
942 
943 	taskstats_exit(tsk, group_dead);
944 
945 	exit_mm(tsk);
946 
947 	if (group_dead)
948 		acct_process();
949 	exit_sem(tsk);
950 	__exit_files(tsk);
951 	__exit_fs(tsk);
952 	exit_thread();
953 	cpuset_exit(tsk);
954 	exit_keys(tsk);
955 
956 	if (group_dead && tsk->signal->leader)
957 		disassociate_ctty(1);
958 
959 	module_put(task_thread_info(tsk)->exec_domain->module);
960 	if (tsk->binfmt)
961 		module_put(tsk->binfmt->module);
962 
963 	tsk->exit_code = code;
964 	proc_exit_connector(tsk);
965 	exit_task_namespaces(tsk);
966 	exit_notify(tsk);
967 #ifdef CONFIG_NUMA
968 	mpol_free(tsk->mempolicy);
969 	tsk->mempolicy = NULL;
970 #endif
971 	/*
972 	 * This must happen late, after the PID is not
973 	 * hashed anymore:
974 	 */
975 	if (unlikely(!list_empty(&tsk->pi_state_list)))
976 		exit_pi_state_list(tsk);
977 	if (unlikely(current->pi_state_cache))
978 		kfree(current->pi_state_cache);
979 	/*
980 	 * Make sure we are holding no locks:
981 	 */
982 	debug_check_no_locks_held(tsk);
983 	/*
984 	 * We can do this unlocked here. The futex code uses this flag
985 	 * just to verify whether the pi state cleanup has been done
986 	 * or not. In the worst case it loops once more.
987 	 */
988 	tsk->flags |= PF_EXITPIDONE;
989 
990 	if (tsk->io_context)
991 		exit_io_context();
992 
993 	if (tsk->splice_pipe)
994 		__free_pipe_info(tsk->splice_pipe);
995 
996 	preempt_disable();
997 	/* causes final put_task_struct in finish_task_switch(). */
998 	tsk->state = TASK_DEAD;
999 
1000 	schedule();
1001 	BUG();
1002 	/* Avoid "noreturn function does return".  */
1003 	for (;;)
1004 		cpu_relax();	/* For when BUG is null */
1005 }
1006 
1007 EXPORT_SYMBOL_GPL(do_exit);
1008 
1009 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1010 {
1011 	if (comp)
1012 		complete(comp);
1013 
1014 	do_exit(code);
1015 }
1016 
1017 EXPORT_SYMBOL(complete_and_exit);
1018 
1019 asmlinkage long sys_exit(int error_code)
1020 {
1021 	do_exit((error_code&0xff)<<8);
1022 }
1023 
1024 /*
1025  * Take down every thread in the group.  This is called by fatal signals
1026  * as well as by sys_exit_group (below).
1027  */
1028 NORET_TYPE void
1029 do_group_exit(int exit_code)
1030 {
1031 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1032 
1033 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1034 		exit_code = current->signal->group_exit_code;
1035 	else if (!thread_group_empty(current)) {
1036 		struct signal_struct *const sig = current->signal;
1037 		struct sighand_struct *const sighand = current->sighand;
1038 		spin_lock_irq(&sighand->siglock);
1039 		if (sig->flags & SIGNAL_GROUP_EXIT)
1040 			/* Another thread got here before we took the lock.  */
1041 			exit_code = sig->group_exit_code;
1042 		else {
1043 			sig->group_exit_code = exit_code;
1044 			zap_other_threads(current);
1045 		}
1046 		spin_unlock_irq(&sighand->siglock);
1047 	}
1048 
1049 	do_exit(exit_code);
1050 	/* NOTREACHED */
1051 }
1052 
1053 /*
1054  * this kills every thread in the thread group. Note that any externally
1055  * wait4()-ing process will get the correct exit code - even if this
1056  * thread is not the thread group leader.
1057  */
1058 asmlinkage void sys_exit_group(int error_code)
1059 {
1060 	do_group_exit((error_code & 0xff) << 8);
1061 }
1062 
1063 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1064 {
1065 	int err;
1066 
1067 	if (pid > 0) {
1068 		if (p->pid != pid)
1069 			return 0;
1070 	} else if (!pid) {
1071 		if (process_group(p) != process_group(current))
1072 			return 0;
1073 	} else if (pid != -1) {
1074 		if (process_group(p) != -pid)
1075 			return 0;
1076 	}
1077 
1078 	/*
1079 	 * Do not consider detached threads that are
1080 	 * not ptraced:
1081 	 */
1082 	if (p->exit_signal == -1 && !p->ptrace)
1083 		return 0;
1084 
1085 	/* Wait for all children (clone and not) if __WALL is set;
1086 	 * otherwise, wait for clone children *only* if __WCLONE is
1087 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1088 	 * A "clone" child here is one that reports to its parent
1089 	 * using a signal other than SIGCHLD.) */
1090 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1091 	    && !(options & __WALL))
1092 		return 0;
1093 	/*
1094 	 * Do not consider thread group leaders that are
1095 	 * in a non-empty thread group:
1096 	 */
1097 	if (delay_group_leader(p))
1098 		return 2;
1099 
1100 	err = security_task_wait(p);
1101 	if (err)
1102 		return err;
1103 
1104 	return 1;
1105 }
1106 
1107 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1108 			       int why, int status,
1109 			       struct siginfo __user *infop,
1110 			       struct rusage __user *rusagep)
1111 {
1112 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1113 
1114 	put_task_struct(p);
1115 	if (!retval)
1116 		retval = put_user(SIGCHLD, &infop->si_signo);
1117 	if (!retval)
1118 		retval = put_user(0, &infop->si_errno);
1119 	if (!retval)
1120 		retval = put_user((short)why, &infop->si_code);
1121 	if (!retval)
1122 		retval = put_user(pid, &infop->si_pid);
1123 	if (!retval)
1124 		retval = put_user(uid, &infop->si_uid);
1125 	if (!retval)
1126 		retval = put_user(status, &infop->si_status);
1127 	if (!retval)
1128 		retval = pid;
1129 	return retval;
1130 }
1131 
1132 /*
1133  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1134  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1135  * the lock and this task is uninteresting.  If we return nonzero, we have
1136  * released the lock and the system call should return.
1137  */
1138 static int wait_task_zombie(struct task_struct *p, int noreap,
1139 			    struct siginfo __user *infop,
1140 			    int __user *stat_addr, struct rusage __user *ru)
1141 {
1142 	unsigned long state;
1143 	int retval;
1144 	int status;
1145 
1146 	if (unlikely(noreap)) {
1147 		pid_t pid = p->pid;
1148 		uid_t uid = p->uid;
1149 		int exit_code = p->exit_code;
1150 		int why, status;
1151 
1152 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1153 			return 0;
1154 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1155 			return 0;
1156 		get_task_struct(p);
1157 		read_unlock(&tasklist_lock);
1158 		if ((exit_code & 0x7f) == 0) {
1159 			why = CLD_EXITED;
1160 			status = exit_code >> 8;
1161 		} else {
1162 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1163 			status = exit_code & 0x7f;
1164 		}
1165 		return wait_noreap_copyout(p, pid, uid, why,
1166 					   status, infop, ru);
1167 	}
1168 
1169 	/*
1170 	 * Try to move the task's state to DEAD
1171 	 * only one thread is allowed to do this:
1172 	 */
1173 	state = xchg(&p->exit_state, EXIT_DEAD);
1174 	if (state != EXIT_ZOMBIE) {
1175 		BUG_ON(state != EXIT_DEAD);
1176 		return 0;
1177 	}
1178 	if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1179 		/*
1180 		 * This can only happen in a race with a ptraced thread
1181 		 * dying on another processor.
1182 		 */
1183 		return 0;
1184 	}
1185 
1186 	if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1187 		struct signal_struct *psig;
1188 		struct signal_struct *sig;
1189 
1190 		/*
1191 		 * The resource counters for the group leader are in its
1192 		 * own task_struct.  Those for dead threads in the group
1193 		 * are in its signal_struct, as are those for the child
1194 		 * processes it has previously reaped.  All these
1195 		 * accumulate in the parent's signal_struct c* fields.
1196 		 *
1197 		 * We don't bother to take a lock here to protect these
1198 		 * p->signal fields, because they are only touched by
1199 		 * __exit_signal, which runs with tasklist_lock
1200 		 * write-locked anyway, and so is excluded here.  We do
1201 		 * need to protect the access to p->parent->signal fields,
1202 		 * as other threads in the parent group can be right
1203 		 * here reaping other children at the same time.
1204 		 */
1205 		spin_lock_irq(&p->parent->sighand->siglock);
1206 		psig = p->parent->signal;
1207 		sig = p->signal;
1208 		psig->cutime =
1209 			cputime_add(psig->cutime,
1210 			cputime_add(p->utime,
1211 			cputime_add(sig->utime,
1212 				    sig->cutime)));
1213 		psig->cstime =
1214 			cputime_add(psig->cstime,
1215 			cputime_add(p->stime,
1216 			cputime_add(sig->stime,
1217 				    sig->cstime)));
1218 		psig->cmin_flt +=
1219 			p->min_flt + sig->min_flt + sig->cmin_flt;
1220 		psig->cmaj_flt +=
1221 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1222 		psig->cnvcsw +=
1223 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1224 		psig->cnivcsw +=
1225 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1226 		psig->cinblock +=
1227 			task_io_get_inblock(p) +
1228 			sig->inblock + sig->cinblock;
1229 		psig->coublock +=
1230 			task_io_get_oublock(p) +
1231 			sig->oublock + sig->coublock;
1232 		spin_unlock_irq(&p->parent->sighand->siglock);
1233 	}
1234 
1235 	/*
1236 	 * Now we are sure this task is interesting, and no other
1237 	 * thread can reap it because we set its state to EXIT_DEAD.
1238 	 */
1239 	read_unlock(&tasklist_lock);
1240 
1241 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1242 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1243 		? p->signal->group_exit_code : p->exit_code;
1244 	if (!retval && stat_addr)
1245 		retval = put_user(status, stat_addr);
1246 	if (!retval && infop)
1247 		retval = put_user(SIGCHLD, &infop->si_signo);
1248 	if (!retval && infop)
1249 		retval = put_user(0, &infop->si_errno);
1250 	if (!retval && infop) {
1251 		int why;
1252 
1253 		if ((status & 0x7f) == 0) {
1254 			why = CLD_EXITED;
1255 			status >>= 8;
1256 		} else {
1257 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1258 			status &= 0x7f;
1259 		}
1260 		retval = put_user((short)why, &infop->si_code);
1261 		if (!retval)
1262 			retval = put_user(status, &infop->si_status);
1263 	}
1264 	if (!retval && infop)
1265 		retval = put_user(p->pid, &infop->si_pid);
1266 	if (!retval && infop)
1267 		retval = put_user(p->uid, &infop->si_uid);
1268 	if (retval) {
1269 		// TODO: is this safe?
1270 		p->exit_state = EXIT_ZOMBIE;
1271 		return retval;
1272 	}
1273 	retval = p->pid;
1274 	if (p->real_parent != p->parent) {
1275 		write_lock_irq(&tasklist_lock);
1276 		/* Double-check with lock held.  */
1277 		if (p->real_parent != p->parent) {
1278 			__ptrace_unlink(p);
1279 			// TODO: is this safe?
1280 			p->exit_state = EXIT_ZOMBIE;
1281 			/*
1282 			 * If this is not a detached task, notify the parent.
1283 			 * If it's still not detached after that, don't release
1284 			 * it now.
1285 			 */
1286 			if (p->exit_signal != -1) {
1287 				do_notify_parent(p, p->exit_signal);
1288 				if (p->exit_signal != -1)
1289 					p = NULL;
1290 			}
1291 		}
1292 		write_unlock_irq(&tasklist_lock);
1293 	}
1294 	if (p != NULL)
1295 		release_task(p);
1296 	BUG_ON(!retval);
1297 	return retval;
1298 }
1299 
1300 /*
1301  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1302  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1303  * the lock and this task is uninteresting.  If we return nonzero, we have
1304  * released the lock and the system call should return.
1305  */
1306 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1307 			     int noreap, struct siginfo __user *infop,
1308 			     int __user *stat_addr, struct rusage __user *ru)
1309 {
1310 	int retval, exit_code;
1311 
1312 	if (!p->exit_code)
1313 		return 0;
1314 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1315 	    p->signal && p->signal->group_stop_count > 0)
1316 		/*
1317 		 * A group stop is in progress and this is the group leader.
1318 		 * We won't report until all threads have stopped.
1319 		 */
1320 		return 0;
1321 
1322 	/*
1323 	 * Now we are pretty sure this task is interesting.
1324 	 * Make sure it doesn't get reaped out from under us while we
1325 	 * give up the lock and then examine it below.  We don't want to
1326 	 * keep holding onto the tasklist_lock while we call getrusage and
1327 	 * possibly take page faults for user memory.
1328 	 */
1329 	get_task_struct(p);
1330 	read_unlock(&tasklist_lock);
1331 
1332 	if (unlikely(noreap)) {
1333 		pid_t pid = p->pid;
1334 		uid_t uid = p->uid;
1335 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1336 
1337 		exit_code = p->exit_code;
1338 		if (unlikely(!exit_code) ||
1339 		    unlikely(p->state & TASK_TRACED))
1340 			goto bail_ref;
1341 		return wait_noreap_copyout(p, pid, uid,
1342 					   why, (exit_code << 8) | 0x7f,
1343 					   infop, ru);
1344 	}
1345 
1346 	write_lock_irq(&tasklist_lock);
1347 
1348 	/*
1349 	 * This uses xchg to be atomic with the thread resuming and setting
1350 	 * it.  It must also be done with the write lock held to prevent a
1351 	 * race with the EXIT_ZOMBIE case.
1352 	 */
1353 	exit_code = xchg(&p->exit_code, 0);
1354 	if (unlikely(p->exit_state)) {
1355 		/*
1356 		 * The task resumed and then died.  Let the next iteration
1357 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1358 		 * already be zero here if it resumed and did _exit(0).
1359 		 * The task itself is dead and won't touch exit_code again;
1360 		 * other processors in this function are locked out.
1361 		 */
1362 		p->exit_code = exit_code;
1363 		exit_code = 0;
1364 	}
1365 	if (unlikely(exit_code == 0)) {
1366 		/*
1367 		 * Another thread in this function got to it first, or it
1368 		 * resumed, or it resumed and then died.
1369 		 */
1370 		write_unlock_irq(&tasklist_lock);
1371 bail_ref:
1372 		put_task_struct(p);
1373 		/*
1374 		 * We are returning to the wait loop without having successfully
1375 		 * removed the process and having released the lock. We cannot
1376 		 * continue, since the "p" task pointer is potentially stale.
1377 		 *
1378 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1379 		 * beginning. Do _not_ re-acquire the lock.
1380 		 */
1381 		return -EAGAIN;
1382 	}
1383 
1384 	/* move to end of parent's list to avoid starvation */
1385 	remove_parent(p);
1386 	add_parent(p);
1387 
1388 	write_unlock_irq(&tasklist_lock);
1389 
1390 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1391 	if (!retval && stat_addr)
1392 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1393 	if (!retval && infop)
1394 		retval = put_user(SIGCHLD, &infop->si_signo);
1395 	if (!retval && infop)
1396 		retval = put_user(0, &infop->si_errno);
1397 	if (!retval && infop)
1398 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1399 					  ? CLD_TRAPPED : CLD_STOPPED),
1400 				  &infop->si_code);
1401 	if (!retval && infop)
1402 		retval = put_user(exit_code, &infop->si_status);
1403 	if (!retval && infop)
1404 		retval = put_user(p->pid, &infop->si_pid);
1405 	if (!retval && infop)
1406 		retval = put_user(p->uid, &infop->si_uid);
1407 	if (!retval)
1408 		retval = p->pid;
1409 	put_task_struct(p);
1410 
1411 	BUG_ON(!retval);
1412 	return retval;
1413 }
1414 
1415 /*
1416  * Handle do_wait work for one task in a live, non-stopped state.
1417  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1418  * the lock and this task is uninteresting.  If we return nonzero, we have
1419  * released the lock and the system call should return.
1420  */
1421 static int wait_task_continued(struct task_struct *p, int noreap,
1422 			       struct siginfo __user *infop,
1423 			       int __user *stat_addr, struct rusage __user *ru)
1424 {
1425 	int retval;
1426 	pid_t pid;
1427 	uid_t uid;
1428 
1429 	if (unlikely(!p->signal))
1430 		return 0;
1431 
1432 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1433 		return 0;
1434 
1435 	spin_lock_irq(&p->sighand->siglock);
1436 	/* Re-check with the lock held.  */
1437 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1438 		spin_unlock_irq(&p->sighand->siglock);
1439 		return 0;
1440 	}
1441 	if (!noreap)
1442 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1443 	spin_unlock_irq(&p->sighand->siglock);
1444 
1445 	pid = p->pid;
1446 	uid = p->uid;
1447 	get_task_struct(p);
1448 	read_unlock(&tasklist_lock);
1449 
1450 	if (!infop) {
1451 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1452 		put_task_struct(p);
1453 		if (!retval && stat_addr)
1454 			retval = put_user(0xffff, stat_addr);
1455 		if (!retval)
1456 			retval = p->pid;
1457 	} else {
1458 		retval = wait_noreap_copyout(p, pid, uid,
1459 					     CLD_CONTINUED, SIGCONT,
1460 					     infop, ru);
1461 		BUG_ON(retval == 0);
1462 	}
1463 
1464 	return retval;
1465 }
1466 
1467 
1468 static inline int my_ptrace_child(struct task_struct *p)
1469 {
1470 	if (!(p->ptrace & PT_PTRACED))
1471 		return 0;
1472 	if (!(p->ptrace & PT_ATTACHED))
1473 		return 1;
1474 	/*
1475 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1476 	 * we are the attacher.  If we are the real parent, this is a race
1477 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1478 	 * which we have to switch the parent links, but has already set
1479 	 * the flags in p->ptrace.
1480 	 */
1481 	return (p->parent != p->real_parent);
1482 }
1483 
1484 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1485 		    int __user *stat_addr, struct rusage __user *ru)
1486 {
1487 	DECLARE_WAITQUEUE(wait, current);
1488 	struct task_struct *tsk;
1489 	int flag, retval;
1490 	int allowed, denied;
1491 
1492 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1493 repeat:
1494 	/*
1495 	 * We will set this flag if we see any child that might later
1496 	 * match our criteria, even if we are not able to reap it yet.
1497 	 */
1498 	flag = 0;
1499 	allowed = denied = 0;
1500 	current->state = TASK_INTERRUPTIBLE;
1501 	read_lock(&tasklist_lock);
1502 	tsk = current;
1503 	do {
1504 		struct task_struct *p;
1505 		struct list_head *_p;
1506 		int ret;
1507 
1508 		list_for_each(_p,&tsk->children) {
1509 			p = list_entry(_p, struct task_struct, sibling);
1510 
1511 			ret = eligible_child(pid, options, p);
1512 			if (!ret)
1513 				continue;
1514 
1515 			if (unlikely(ret < 0)) {
1516 				denied = ret;
1517 				continue;
1518 			}
1519 			allowed = 1;
1520 
1521 			switch (p->state) {
1522 			case TASK_TRACED:
1523 				/*
1524 				 * When we hit the race with PTRACE_ATTACH,
1525 				 * we will not report this child.  But the
1526 				 * race means it has not yet been moved to
1527 				 * our ptrace_children list, so we need to
1528 				 * set the flag here to avoid a spurious ECHILD
1529 				 * when the race happens with the only child.
1530 				 */
1531 				flag = 1;
1532 				if (!my_ptrace_child(p))
1533 					continue;
1534 				/*FALLTHROUGH*/
1535 			case TASK_STOPPED:
1536 				/*
1537 				 * It's stopped now, so it might later
1538 				 * continue, exit, or stop again.
1539 				 */
1540 				flag = 1;
1541 				if (!(options & WUNTRACED) &&
1542 				    !my_ptrace_child(p))
1543 					continue;
1544 				retval = wait_task_stopped(p, ret == 2,
1545 							   (options & WNOWAIT),
1546 							   infop,
1547 							   stat_addr, ru);
1548 				if (retval == -EAGAIN)
1549 					goto repeat;
1550 				if (retval != 0) /* He released the lock.  */
1551 					goto end;
1552 				break;
1553 			default:
1554 			// case EXIT_DEAD:
1555 				if (p->exit_state == EXIT_DEAD)
1556 					continue;
1557 			// case EXIT_ZOMBIE:
1558 				if (p->exit_state == EXIT_ZOMBIE) {
1559 					/*
1560 					 * Eligible but we cannot release
1561 					 * it yet:
1562 					 */
1563 					if (ret == 2)
1564 						goto check_continued;
1565 					if (!likely(options & WEXITED))
1566 						continue;
1567 					retval = wait_task_zombie(
1568 						p, (options & WNOWAIT),
1569 						infop, stat_addr, ru);
1570 					/* He released the lock.  */
1571 					if (retval != 0)
1572 						goto end;
1573 					break;
1574 				}
1575 check_continued:
1576 				/*
1577 				 * It's running now, so it might later
1578 				 * exit, stop, or stop and then continue.
1579 				 */
1580 				flag = 1;
1581 				if (!unlikely(options & WCONTINUED))
1582 					continue;
1583 				retval = wait_task_continued(
1584 					p, (options & WNOWAIT),
1585 					infop, stat_addr, ru);
1586 				if (retval != 0) /* He released the lock.  */
1587 					goto end;
1588 				break;
1589 			}
1590 		}
1591 		if (!flag) {
1592 			list_for_each(_p, &tsk->ptrace_children) {
1593 				p = list_entry(_p, struct task_struct,
1594 						ptrace_list);
1595 				if (!eligible_child(pid, options, p))
1596 					continue;
1597 				flag = 1;
1598 				break;
1599 			}
1600 		}
1601 		if (options & __WNOTHREAD)
1602 			break;
1603 		tsk = next_thread(tsk);
1604 		BUG_ON(tsk->signal != current->signal);
1605 	} while (tsk != current);
1606 
1607 	read_unlock(&tasklist_lock);
1608 	if (flag) {
1609 		retval = 0;
1610 		if (options & WNOHANG)
1611 			goto end;
1612 		retval = -ERESTARTSYS;
1613 		if (signal_pending(current))
1614 			goto end;
1615 		schedule();
1616 		goto repeat;
1617 	}
1618 	retval = -ECHILD;
1619 	if (unlikely(denied) && !allowed)
1620 		retval = denied;
1621 end:
1622 	current->state = TASK_RUNNING;
1623 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1624 	if (infop) {
1625 		if (retval > 0)
1626 		retval = 0;
1627 		else {
1628 			/*
1629 			 * For a WNOHANG return, clear out all the fields
1630 			 * we would set so the user can easily tell the
1631 			 * difference.
1632 			 */
1633 			if (!retval)
1634 				retval = put_user(0, &infop->si_signo);
1635 			if (!retval)
1636 				retval = put_user(0, &infop->si_errno);
1637 			if (!retval)
1638 				retval = put_user(0, &infop->si_code);
1639 			if (!retval)
1640 				retval = put_user(0, &infop->si_pid);
1641 			if (!retval)
1642 				retval = put_user(0, &infop->si_uid);
1643 			if (!retval)
1644 				retval = put_user(0, &infop->si_status);
1645 		}
1646 	}
1647 	return retval;
1648 }
1649 
1650 asmlinkage long sys_waitid(int which, pid_t pid,
1651 			   struct siginfo __user *infop, int options,
1652 			   struct rusage __user *ru)
1653 {
1654 	long ret;
1655 
1656 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1657 		return -EINVAL;
1658 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1659 		return -EINVAL;
1660 
1661 	switch (which) {
1662 	case P_ALL:
1663 		pid = -1;
1664 		break;
1665 	case P_PID:
1666 		if (pid <= 0)
1667 			return -EINVAL;
1668 		break;
1669 	case P_PGID:
1670 		if (pid <= 0)
1671 			return -EINVAL;
1672 		pid = -pid;
1673 		break;
1674 	default:
1675 		return -EINVAL;
1676 	}
1677 
1678 	ret = do_wait(pid, options, infop, NULL, ru);
1679 
1680 	/* avoid REGPARM breakage on x86: */
1681 	prevent_tail_call(ret);
1682 	return ret;
1683 }
1684 
1685 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1686 			  int options, struct rusage __user *ru)
1687 {
1688 	long ret;
1689 
1690 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1691 			__WNOTHREAD|__WCLONE|__WALL))
1692 		return -EINVAL;
1693 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1694 
1695 	/* avoid REGPARM breakage on x86: */
1696 	prevent_tail_call(ret);
1697 	return ret;
1698 }
1699 
1700 #ifdef __ARCH_WANT_SYS_WAITPID
1701 
1702 /*
1703  * sys_waitpid() remains for compatibility. waitpid() should be
1704  * implemented by calling sys_wait4() from libc.a.
1705  */
1706 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1707 {
1708 	return sys_wait4(pid, stat_addr, options, NULL);
1709 }
1710 
1711 #endif
1712