1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 55 #include <asm/uaccess.h> 56 #include <asm/unistd.h> 57 #include <asm/pgtable.h> 58 #include <asm/mmu_context.h> 59 60 static void exit_mm(struct task_struct * tsk); 61 62 static void __unhash_process(struct task_struct *p, bool group_dead) 63 { 64 nr_threads--; 65 detach_pid(p, PIDTYPE_PID); 66 if (group_dead) { 67 detach_pid(p, PIDTYPE_PGID); 68 detach_pid(p, PIDTYPE_SID); 69 70 list_del_rcu(&p->tasks); 71 list_del_init(&p->sibling); 72 __this_cpu_dec(process_counts); 73 } 74 list_del_rcu(&p->thread_group); 75 } 76 77 /* 78 * This function expects the tasklist_lock write-locked. 79 */ 80 static void __exit_signal(struct task_struct *tsk) 81 { 82 struct signal_struct *sig = tsk->signal; 83 bool group_dead = thread_group_leader(tsk); 84 struct sighand_struct *sighand; 85 struct tty_struct *uninitialized_var(tty); 86 87 sighand = rcu_dereference_check(tsk->sighand, 88 lockdep_tasklist_lock_is_held()); 89 spin_lock(&sighand->siglock); 90 91 posix_cpu_timers_exit(tsk); 92 if (group_dead) { 93 posix_cpu_timers_exit_group(tsk); 94 tty = sig->tty; 95 sig->tty = NULL; 96 } else { 97 /* 98 * This can only happen if the caller is de_thread(). 99 * FIXME: this is the temporary hack, we should teach 100 * posix-cpu-timers to handle this case correctly. 101 */ 102 if (unlikely(has_group_leader_pid(tsk))) 103 posix_cpu_timers_exit_group(tsk); 104 105 /* 106 * If there is any task waiting for the group exit 107 * then notify it: 108 */ 109 if (sig->notify_count > 0 && !--sig->notify_count) 110 wake_up_process(sig->group_exit_task); 111 112 if (tsk == sig->curr_target) 113 sig->curr_target = next_thread(tsk); 114 /* 115 * Accumulate here the counters for all threads but the 116 * group leader as they die, so they can be added into 117 * the process-wide totals when those are taken. 118 * The group leader stays around as a zombie as long 119 * as there are other threads. When it gets reaped, 120 * the exit.c code will add its counts into these totals. 121 * We won't ever get here for the group leader, since it 122 * will have been the last reference on the signal_struct. 123 */ 124 sig->utime = cputime_add(sig->utime, tsk->utime); 125 sig->stime = cputime_add(sig->stime, tsk->stime); 126 sig->gtime = cputime_add(sig->gtime, tsk->gtime); 127 sig->min_flt += tsk->min_flt; 128 sig->maj_flt += tsk->maj_flt; 129 sig->nvcsw += tsk->nvcsw; 130 sig->nivcsw += tsk->nivcsw; 131 sig->inblock += task_io_get_inblock(tsk); 132 sig->oublock += task_io_get_oublock(tsk); 133 task_io_accounting_add(&sig->ioac, &tsk->ioac); 134 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 135 } 136 137 sig->nr_threads--; 138 __unhash_process(tsk, group_dead); 139 140 /* 141 * Do this under ->siglock, we can race with another thread 142 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 143 */ 144 flush_sigqueue(&tsk->pending); 145 tsk->sighand = NULL; 146 spin_unlock(&sighand->siglock); 147 148 __cleanup_sighand(sighand); 149 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 150 if (group_dead) { 151 flush_sigqueue(&sig->shared_pending); 152 tty_kref_put(tty); 153 } 154 } 155 156 static void delayed_put_task_struct(struct rcu_head *rhp) 157 { 158 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 159 160 perf_event_delayed_put(tsk); 161 trace_sched_process_free(tsk); 162 put_task_struct(tsk); 163 } 164 165 166 void release_task(struct task_struct * p) 167 { 168 struct task_struct *leader; 169 int zap_leader; 170 repeat: 171 /* don't need to get the RCU readlock here - the process is dead and 172 * can't be modifying its own credentials. But shut RCU-lockdep up */ 173 rcu_read_lock(); 174 atomic_dec(&__task_cred(p)->user->processes); 175 rcu_read_unlock(); 176 177 proc_flush_task(p); 178 179 write_lock_irq(&tasklist_lock); 180 ptrace_release_task(p); 181 __exit_signal(p); 182 183 /* 184 * If we are the last non-leader member of the thread 185 * group, and the leader is zombie, then notify the 186 * group leader's parent process. (if it wants notification.) 187 */ 188 zap_leader = 0; 189 leader = p->group_leader; 190 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 191 /* 192 * If we were the last child thread and the leader has 193 * exited already, and the leader's parent ignores SIGCHLD, 194 * then we are the one who should release the leader. 195 */ 196 zap_leader = do_notify_parent(leader, leader->exit_signal); 197 if (zap_leader) 198 leader->exit_state = EXIT_DEAD; 199 } 200 201 write_unlock_irq(&tasklist_lock); 202 release_thread(p); 203 call_rcu(&p->rcu, delayed_put_task_struct); 204 205 p = leader; 206 if (unlikely(zap_leader)) 207 goto repeat; 208 } 209 210 /* 211 * This checks not only the pgrp, but falls back on the pid if no 212 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 213 * without this... 214 * 215 * The caller must hold rcu lock or the tasklist lock. 216 */ 217 struct pid *session_of_pgrp(struct pid *pgrp) 218 { 219 struct task_struct *p; 220 struct pid *sid = NULL; 221 222 p = pid_task(pgrp, PIDTYPE_PGID); 223 if (p == NULL) 224 p = pid_task(pgrp, PIDTYPE_PID); 225 if (p != NULL) 226 sid = task_session(p); 227 228 return sid; 229 } 230 231 /* 232 * Determine if a process group is "orphaned", according to the POSIX 233 * definition in 2.2.2.52. Orphaned process groups are not to be affected 234 * by terminal-generated stop signals. Newly orphaned process groups are 235 * to receive a SIGHUP and a SIGCONT. 236 * 237 * "I ask you, have you ever known what it is to be an orphan?" 238 */ 239 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 240 { 241 struct task_struct *p; 242 243 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 244 if ((p == ignored_task) || 245 (p->exit_state && thread_group_empty(p)) || 246 is_global_init(p->real_parent)) 247 continue; 248 249 if (task_pgrp(p->real_parent) != pgrp && 250 task_session(p->real_parent) == task_session(p)) 251 return 0; 252 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 253 254 return 1; 255 } 256 257 int is_current_pgrp_orphaned(void) 258 { 259 int retval; 260 261 read_lock(&tasklist_lock); 262 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 263 read_unlock(&tasklist_lock); 264 265 return retval; 266 } 267 268 static bool has_stopped_jobs(struct pid *pgrp) 269 { 270 struct task_struct *p; 271 272 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 273 if (p->signal->flags & SIGNAL_STOP_STOPPED) 274 return true; 275 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 276 277 return false; 278 } 279 280 /* 281 * Check to see if any process groups have become orphaned as 282 * a result of our exiting, and if they have any stopped jobs, 283 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 284 */ 285 static void 286 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 287 { 288 struct pid *pgrp = task_pgrp(tsk); 289 struct task_struct *ignored_task = tsk; 290 291 if (!parent) 292 /* exit: our father is in a different pgrp than 293 * we are and we were the only connection outside. 294 */ 295 parent = tsk->real_parent; 296 else 297 /* reparent: our child is in a different pgrp than 298 * we are, and it was the only connection outside. 299 */ 300 ignored_task = NULL; 301 302 if (task_pgrp(parent) != pgrp && 303 task_session(parent) == task_session(tsk) && 304 will_become_orphaned_pgrp(pgrp, ignored_task) && 305 has_stopped_jobs(pgrp)) { 306 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 307 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 308 } 309 } 310 311 /** 312 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 313 * 314 * If a kernel thread is launched as a result of a system call, or if 315 * it ever exits, it should generally reparent itself to kthreadd so it 316 * isn't in the way of other processes and is correctly cleaned up on exit. 317 * 318 * The various task state such as scheduling policy and priority may have 319 * been inherited from a user process, so we reset them to sane values here. 320 * 321 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 322 */ 323 static void reparent_to_kthreadd(void) 324 { 325 write_lock_irq(&tasklist_lock); 326 327 ptrace_unlink(current); 328 /* Reparent to init */ 329 current->real_parent = current->parent = kthreadd_task; 330 list_move_tail(¤t->sibling, ¤t->real_parent->children); 331 332 /* Set the exit signal to SIGCHLD so we signal init on exit */ 333 current->exit_signal = SIGCHLD; 334 335 if (task_nice(current) < 0) 336 set_user_nice(current, 0); 337 /* cpus_allowed? */ 338 /* rt_priority? */ 339 /* signals? */ 340 memcpy(current->signal->rlim, init_task.signal->rlim, 341 sizeof(current->signal->rlim)); 342 343 atomic_inc(&init_cred.usage); 344 commit_creds(&init_cred); 345 write_unlock_irq(&tasklist_lock); 346 } 347 348 void __set_special_pids(struct pid *pid) 349 { 350 struct task_struct *curr = current->group_leader; 351 352 if (task_session(curr) != pid) 353 change_pid(curr, PIDTYPE_SID, pid); 354 355 if (task_pgrp(curr) != pid) 356 change_pid(curr, PIDTYPE_PGID, pid); 357 } 358 359 static void set_special_pids(struct pid *pid) 360 { 361 write_lock_irq(&tasklist_lock); 362 __set_special_pids(pid); 363 write_unlock_irq(&tasklist_lock); 364 } 365 366 /* 367 * Let kernel threads use this to say that they allow a certain signal. 368 * Must not be used if kthread was cloned with CLONE_SIGHAND. 369 */ 370 int allow_signal(int sig) 371 { 372 if (!valid_signal(sig) || sig < 1) 373 return -EINVAL; 374 375 spin_lock_irq(¤t->sighand->siglock); 376 /* This is only needed for daemonize()'ed kthreads */ 377 sigdelset(¤t->blocked, sig); 378 /* 379 * Kernel threads handle their own signals. Let the signal code 380 * know it'll be handled, so that they don't get converted to 381 * SIGKILL or just silently dropped. 382 */ 383 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 384 recalc_sigpending(); 385 spin_unlock_irq(¤t->sighand->siglock); 386 return 0; 387 } 388 389 EXPORT_SYMBOL(allow_signal); 390 391 int disallow_signal(int sig) 392 { 393 if (!valid_signal(sig) || sig < 1) 394 return -EINVAL; 395 396 spin_lock_irq(¤t->sighand->siglock); 397 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 398 recalc_sigpending(); 399 spin_unlock_irq(¤t->sighand->siglock); 400 return 0; 401 } 402 403 EXPORT_SYMBOL(disallow_signal); 404 405 /* 406 * Put all the gunge required to become a kernel thread without 407 * attached user resources in one place where it belongs. 408 */ 409 410 void daemonize(const char *name, ...) 411 { 412 va_list args; 413 sigset_t blocked; 414 415 va_start(args, name); 416 vsnprintf(current->comm, sizeof(current->comm), name, args); 417 va_end(args); 418 419 /* 420 * If we were started as result of loading a module, close all of the 421 * user space pages. We don't need them, and if we didn't close them 422 * they would be locked into memory. 423 */ 424 exit_mm(current); 425 /* 426 * We don't want to have TIF_FREEZE set if the system-wide hibernation 427 * or suspend transition begins right now. 428 */ 429 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 430 431 if (current->nsproxy != &init_nsproxy) { 432 get_nsproxy(&init_nsproxy); 433 switch_task_namespaces(current, &init_nsproxy); 434 } 435 set_special_pids(&init_struct_pid); 436 proc_clear_tty(current); 437 438 /* Block and flush all signals */ 439 sigfillset(&blocked); 440 sigprocmask(SIG_BLOCK, &blocked, NULL); 441 flush_signals(current); 442 443 /* Become as one with the init task */ 444 445 daemonize_fs_struct(); 446 exit_files(current); 447 current->files = init_task.files; 448 atomic_inc(¤t->files->count); 449 450 reparent_to_kthreadd(); 451 } 452 453 EXPORT_SYMBOL(daemonize); 454 455 static void close_files(struct files_struct * files) 456 { 457 int i, j; 458 struct fdtable *fdt; 459 460 j = 0; 461 462 /* 463 * It is safe to dereference the fd table without RCU or 464 * ->file_lock because this is the last reference to the 465 * files structure. But use RCU to shut RCU-lockdep up. 466 */ 467 rcu_read_lock(); 468 fdt = files_fdtable(files); 469 rcu_read_unlock(); 470 for (;;) { 471 unsigned long set; 472 i = j * __NFDBITS; 473 if (i >= fdt->max_fds) 474 break; 475 set = fdt->open_fds->fds_bits[j++]; 476 while (set) { 477 if (set & 1) { 478 struct file * file = xchg(&fdt->fd[i], NULL); 479 if (file) { 480 filp_close(file, files); 481 cond_resched(); 482 } 483 } 484 i++; 485 set >>= 1; 486 } 487 } 488 } 489 490 struct files_struct *get_files_struct(struct task_struct *task) 491 { 492 struct files_struct *files; 493 494 task_lock(task); 495 files = task->files; 496 if (files) 497 atomic_inc(&files->count); 498 task_unlock(task); 499 500 return files; 501 } 502 503 void put_files_struct(struct files_struct *files) 504 { 505 struct fdtable *fdt; 506 507 if (atomic_dec_and_test(&files->count)) { 508 close_files(files); 509 /* 510 * Free the fd and fdset arrays if we expanded them. 511 * If the fdtable was embedded, pass files for freeing 512 * at the end of the RCU grace period. Otherwise, 513 * you can free files immediately. 514 */ 515 rcu_read_lock(); 516 fdt = files_fdtable(files); 517 if (fdt != &files->fdtab) 518 kmem_cache_free(files_cachep, files); 519 free_fdtable(fdt); 520 rcu_read_unlock(); 521 } 522 } 523 524 void reset_files_struct(struct files_struct *files) 525 { 526 struct task_struct *tsk = current; 527 struct files_struct *old; 528 529 old = tsk->files; 530 task_lock(tsk); 531 tsk->files = files; 532 task_unlock(tsk); 533 put_files_struct(old); 534 } 535 536 void exit_files(struct task_struct *tsk) 537 { 538 struct files_struct * files = tsk->files; 539 540 if (files) { 541 task_lock(tsk); 542 tsk->files = NULL; 543 task_unlock(tsk); 544 put_files_struct(files); 545 } 546 } 547 548 #ifdef CONFIG_MM_OWNER 549 /* 550 * A task is exiting. If it owned this mm, find a new owner for the mm. 551 */ 552 void mm_update_next_owner(struct mm_struct *mm) 553 { 554 struct task_struct *c, *g, *p = current; 555 556 retry: 557 /* 558 * If the exiting or execing task is not the owner, it's 559 * someone else's problem. 560 */ 561 if (mm->owner != p) 562 return; 563 /* 564 * The current owner is exiting/execing and there are no other 565 * candidates. Do not leave the mm pointing to a possibly 566 * freed task structure. 567 */ 568 if (atomic_read(&mm->mm_users) <= 1) { 569 mm->owner = NULL; 570 return; 571 } 572 573 read_lock(&tasklist_lock); 574 /* 575 * Search in the children 576 */ 577 list_for_each_entry(c, &p->children, sibling) { 578 if (c->mm == mm) 579 goto assign_new_owner; 580 } 581 582 /* 583 * Search in the siblings 584 */ 585 list_for_each_entry(c, &p->real_parent->children, sibling) { 586 if (c->mm == mm) 587 goto assign_new_owner; 588 } 589 590 /* 591 * Search through everything else. We should not get 592 * here often 593 */ 594 do_each_thread(g, c) { 595 if (c->mm == mm) 596 goto assign_new_owner; 597 } while_each_thread(g, c); 598 599 read_unlock(&tasklist_lock); 600 /* 601 * We found no owner yet mm_users > 1: this implies that we are 602 * most likely racing with swapoff (try_to_unuse()) or /proc or 603 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 604 */ 605 mm->owner = NULL; 606 return; 607 608 assign_new_owner: 609 BUG_ON(c == p); 610 get_task_struct(c); 611 /* 612 * The task_lock protects c->mm from changing. 613 * We always want mm->owner->mm == mm 614 */ 615 task_lock(c); 616 /* 617 * Delay read_unlock() till we have the task_lock() 618 * to ensure that c does not slip away underneath us 619 */ 620 read_unlock(&tasklist_lock); 621 if (c->mm != mm) { 622 task_unlock(c); 623 put_task_struct(c); 624 goto retry; 625 } 626 mm->owner = c; 627 task_unlock(c); 628 put_task_struct(c); 629 } 630 #endif /* CONFIG_MM_OWNER */ 631 632 /* 633 * Turn us into a lazy TLB process if we 634 * aren't already.. 635 */ 636 static void exit_mm(struct task_struct * tsk) 637 { 638 struct mm_struct *mm = tsk->mm; 639 struct core_state *core_state; 640 641 mm_release(tsk, mm); 642 if (!mm) 643 return; 644 /* 645 * Serialize with any possible pending coredump. 646 * We must hold mmap_sem around checking core_state 647 * and clearing tsk->mm. The core-inducing thread 648 * will increment ->nr_threads for each thread in the 649 * group with ->mm != NULL. 650 */ 651 down_read(&mm->mmap_sem); 652 core_state = mm->core_state; 653 if (core_state) { 654 struct core_thread self; 655 up_read(&mm->mmap_sem); 656 657 self.task = tsk; 658 self.next = xchg(&core_state->dumper.next, &self); 659 /* 660 * Implies mb(), the result of xchg() must be visible 661 * to core_state->dumper. 662 */ 663 if (atomic_dec_and_test(&core_state->nr_threads)) 664 complete(&core_state->startup); 665 666 for (;;) { 667 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 668 if (!self.task) /* see coredump_finish() */ 669 break; 670 schedule(); 671 } 672 __set_task_state(tsk, TASK_RUNNING); 673 down_read(&mm->mmap_sem); 674 } 675 atomic_inc(&mm->mm_count); 676 BUG_ON(mm != tsk->active_mm); 677 /* more a memory barrier than a real lock */ 678 task_lock(tsk); 679 tsk->mm = NULL; 680 up_read(&mm->mmap_sem); 681 enter_lazy_tlb(mm, current); 682 /* We don't want this task to be frozen prematurely */ 683 clear_freeze_flag(tsk); 684 task_unlock(tsk); 685 mm_update_next_owner(mm); 686 mmput(mm); 687 } 688 689 /* 690 * When we die, we re-parent all our children. 691 * Try to give them to another thread in our thread 692 * group, and if no such member exists, give it to 693 * the child reaper process (ie "init") in our pid 694 * space. 695 */ 696 static struct task_struct *find_new_reaper(struct task_struct *father) 697 __releases(&tasklist_lock) 698 __acquires(&tasklist_lock) 699 { 700 struct pid_namespace *pid_ns = task_active_pid_ns(father); 701 struct task_struct *thread; 702 703 thread = father; 704 while_each_thread(father, thread) { 705 if (thread->flags & PF_EXITING) 706 continue; 707 if (unlikely(pid_ns->child_reaper == father)) 708 pid_ns->child_reaper = thread; 709 return thread; 710 } 711 712 if (unlikely(pid_ns->child_reaper == father)) { 713 write_unlock_irq(&tasklist_lock); 714 if (unlikely(pid_ns == &init_pid_ns)) 715 panic("Attempted to kill init!"); 716 717 zap_pid_ns_processes(pid_ns); 718 write_lock_irq(&tasklist_lock); 719 /* 720 * We can not clear ->child_reaper or leave it alone. 721 * There may by stealth EXIT_DEAD tasks on ->children, 722 * forget_original_parent() must move them somewhere. 723 */ 724 pid_ns->child_reaper = init_pid_ns.child_reaper; 725 } 726 727 return pid_ns->child_reaper; 728 } 729 730 /* 731 * Any that need to be release_task'd are put on the @dead list. 732 */ 733 static void reparent_leader(struct task_struct *father, struct task_struct *p, 734 struct list_head *dead) 735 { 736 list_move_tail(&p->sibling, &p->real_parent->children); 737 738 if (p->exit_state == EXIT_DEAD) 739 return; 740 /* 741 * If this is a threaded reparent there is no need to 742 * notify anyone anything has happened. 743 */ 744 if (same_thread_group(p->real_parent, father)) 745 return; 746 747 /* We don't want people slaying init. */ 748 p->exit_signal = SIGCHLD; 749 750 /* If it has exited notify the new parent about this child's death. */ 751 if (!p->ptrace && 752 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 753 if (do_notify_parent(p, p->exit_signal)) { 754 p->exit_state = EXIT_DEAD; 755 list_move_tail(&p->sibling, dead); 756 } 757 } 758 759 kill_orphaned_pgrp(p, father); 760 } 761 762 static void forget_original_parent(struct task_struct *father) 763 { 764 struct task_struct *p, *n, *reaper; 765 LIST_HEAD(dead_children); 766 767 write_lock_irq(&tasklist_lock); 768 /* 769 * Note that exit_ptrace() and find_new_reaper() might 770 * drop tasklist_lock and reacquire it. 771 */ 772 exit_ptrace(father); 773 reaper = find_new_reaper(father); 774 775 list_for_each_entry_safe(p, n, &father->children, sibling) { 776 struct task_struct *t = p; 777 do { 778 t->real_parent = reaper; 779 if (t->parent == father) { 780 BUG_ON(t->ptrace); 781 t->parent = t->real_parent; 782 } 783 if (t->pdeath_signal) 784 group_send_sig_info(t->pdeath_signal, 785 SEND_SIG_NOINFO, t); 786 } while_each_thread(p, t); 787 reparent_leader(father, p, &dead_children); 788 } 789 write_unlock_irq(&tasklist_lock); 790 791 BUG_ON(!list_empty(&father->children)); 792 793 list_for_each_entry_safe(p, n, &dead_children, sibling) { 794 list_del_init(&p->sibling); 795 release_task(p); 796 } 797 } 798 799 /* 800 * Send signals to all our closest relatives so that they know 801 * to properly mourn us.. 802 */ 803 static void exit_notify(struct task_struct *tsk, int group_dead) 804 { 805 bool autoreap; 806 807 /* 808 * This does two things: 809 * 810 * A. Make init inherit all the child processes 811 * B. Check to see if any process groups have become orphaned 812 * as a result of our exiting, and if they have any stopped 813 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 814 */ 815 forget_original_parent(tsk); 816 exit_task_namespaces(tsk); 817 818 write_lock_irq(&tasklist_lock); 819 if (group_dead) 820 kill_orphaned_pgrp(tsk->group_leader, NULL); 821 822 /* Let father know we died 823 * 824 * Thread signals are configurable, but you aren't going to use 825 * that to send signals to arbitrary processes. 826 * That stops right now. 827 * 828 * If the parent exec id doesn't match the exec id we saved 829 * when we started then we know the parent has changed security 830 * domain. 831 * 832 * If our self_exec id doesn't match our parent_exec_id then 833 * we have changed execution domain as these two values started 834 * the same after a fork. 835 */ 836 if (thread_group_leader(tsk) && tsk->exit_signal != SIGCHLD && 837 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 838 tsk->self_exec_id != tsk->parent_exec_id)) 839 tsk->exit_signal = SIGCHLD; 840 841 if (unlikely(tsk->ptrace)) { 842 int sig = thread_group_leader(tsk) && 843 thread_group_empty(tsk) && 844 !ptrace_reparented(tsk) ? 845 tsk->exit_signal : SIGCHLD; 846 autoreap = do_notify_parent(tsk, sig); 847 } else if (thread_group_leader(tsk)) { 848 autoreap = thread_group_empty(tsk) && 849 do_notify_parent(tsk, tsk->exit_signal); 850 } else { 851 autoreap = true; 852 } 853 854 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 855 856 /* mt-exec, de_thread() is waiting for group leader */ 857 if (unlikely(tsk->signal->notify_count < 0)) 858 wake_up_process(tsk->signal->group_exit_task); 859 write_unlock_irq(&tasklist_lock); 860 861 /* If the process is dead, release it - nobody will wait for it */ 862 if (autoreap) 863 release_task(tsk); 864 } 865 866 #ifdef CONFIG_DEBUG_STACK_USAGE 867 static void check_stack_usage(void) 868 { 869 static DEFINE_SPINLOCK(low_water_lock); 870 static int lowest_to_date = THREAD_SIZE; 871 unsigned long free; 872 873 free = stack_not_used(current); 874 875 if (free >= lowest_to_date) 876 return; 877 878 spin_lock(&low_water_lock); 879 if (free < lowest_to_date) { 880 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 881 "left\n", 882 current->comm, free); 883 lowest_to_date = free; 884 } 885 spin_unlock(&low_water_lock); 886 } 887 #else 888 static inline void check_stack_usage(void) {} 889 #endif 890 891 NORET_TYPE void do_exit(long code) 892 { 893 struct task_struct *tsk = current; 894 int group_dead; 895 896 profile_task_exit(tsk); 897 898 WARN_ON(blk_needs_flush_plug(tsk)); 899 900 if (unlikely(in_interrupt())) 901 panic("Aiee, killing interrupt handler!"); 902 if (unlikely(!tsk->pid)) 903 panic("Attempted to kill the idle task!"); 904 905 /* 906 * If do_exit is called because this processes oopsed, it's possible 907 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 908 * continuing. Amongst other possible reasons, this is to prevent 909 * mm_release()->clear_child_tid() from writing to a user-controlled 910 * kernel address. 911 */ 912 set_fs(USER_DS); 913 914 ptrace_event(PTRACE_EVENT_EXIT, code); 915 916 validate_creds_for_do_exit(tsk); 917 918 /* 919 * We're taking recursive faults here in do_exit. Safest is to just 920 * leave this task alone and wait for reboot. 921 */ 922 if (unlikely(tsk->flags & PF_EXITING)) { 923 printk(KERN_ALERT 924 "Fixing recursive fault but reboot is needed!\n"); 925 /* 926 * We can do this unlocked here. The futex code uses 927 * this flag just to verify whether the pi state 928 * cleanup has been done or not. In the worst case it 929 * loops once more. We pretend that the cleanup was 930 * done as there is no way to return. Either the 931 * OWNER_DIED bit is set by now or we push the blocked 932 * task into the wait for ever nirwana as well. 933 */ 934 tsk->flags |= PF_EXITPIDONE; 935 set_current_state(TASK_UNINTERRUPTIBLE); 936 schedule(); 937 } 938 939 exit_irq_thread(); 940 941 exit_signals(tsk); /* sets PF_EXITING */ 942 /* 943 * tsk->flags are checked in the futex code to protect against 944 * an exiting task cleaning up the robust pi futexes. 945 */ 946 smp_mb(); 947 raw_spin_unlock_wait(&tsk->pi_lock); 948 949 if (unlikely(in_atomic())) 950 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 951 current->comm, task_pid_nr(current), 952 preempt_count()); 953 954 acct_update_integrals(tsk); 955 /* sync mm's RSS info before statistics gathering */ 956 if (tsk->mm) 957 sync_mm_rss(tsk, tsk->mm); 958 group_dead = atomic_dec_and_test(&tsk->signal->live); 959 if (group_dead) { 960 hrtimer_cancel(&tsk->signal->real_timer); 961 exit_itimers(tsk->signal); 962 if (tsk->mm) 963 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 964 } 965 acct_collect(code, group_dead); 966 if (group_dead) 967 tty_audit_exit(); 968 if (unlikely(tsk->audit_context)) 969 audit_free(tsk); 970 971 tsk->exit_code = code; 972 taskstats_exit(tsk, group_dead); 973 974 exit_mm(tsk); 975 976 if (group_dead) 977 acct_process(); 978 trace_sched_process_exit(tsk); 979 980 exit_sem(tsk); 981 exit_shm(tsk); 982 exit_files(tsk); 983 exit_fs(tsk); 984 check_stack_usage(); 985 exit_thread(); 986 987 /* 988 * Flush inherited counters to the parent - before the parent 989 * gets woken up by child-exit notifications. 990 * 991 * because of cgroup mode, must be called before cgroup_exit() 992 */ 993 perf_event_exit_task(tsk); 994 995 cgroup_exit(tsk, 1); 996 997 if (group_dead) 998 disassociate_ctty(1); 999 1000 module_put(task_thread_info(tsk)->exec_domain->module); 1001 1002 proc_exit_connector(tsk); 1003 1004 /* 1005 * FIXME: do that only when needed, using sched_exit tracepoint 1006 */ 1007 ptrace_put_breakpoints(tsk); 1008 1009 exit_notify(tsk, group_dead); 1010 #ifdef CONFIG_NUMA 1011 task_lock(tsk); 1012 mpol_put(tsk->mempolicy); 1013 tsk->mempolicy = NULL; 1014 task_unlock(tsk); 1015 #endif 1016 #ifdef CONFIG_FUTEX 1017 if (unlikely(current->pi_state_cache)) 1018 kfree(current->pi_state_cache); 1019 #endif 1020 /* 1021 * Make sure we are holding no locks: 1022 */ 1023 debug_check_no_locks_held(tsk); 1024 /* 1025 * We can do this unlocked here. The futex code uses this flag 1026 * just to verify whether the pi state cleanup has been done 1027 * or not. In the worst case it loops once more. 1028 */ 1029 tsk->flags |= PF_EXITPIDONE; 1030 1031 if (tsk->io_context) 1032 exit_io_context(tsk); 1033 1034 if (tsk->splice_pipe) 1035 __free_pipe_info(tsk->splice_pipe); 1036 1037 validate_creds_for_do_exit(tsk); 1038 1039 preempt_disable(); 1040 exit_rcu(); 1041 /* causes final put_task_struct in finish_task_switch(). */ 1042 tsk->state = TASK_DEAD; 1043 schedule(); 1044 BUG(); 1045 /* Avoid "noreturn function does return". */ 1046 for (;;) 1047 cpu_relax(); /* For when BUG is null */ 1048 } 1049 1050 EXPORT_SYMBOL_GPL(do_exit); 1051 1052 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1053 { 1054 if (comp) 1055 complete(comp); 1056 1057 do_exit(code); 1058 } 1059 1060 EXPORT_SYMBOL(complete_and_exit); 1061 1062 SYSCALL_DEFINE1(exit, int, error_code) 1063 { 1064 do_exit((error_code&0xff)<<8); 1065 } 1066 1067 /* 1068 * Take down every thread in the group. This is called by fatal signals 1069 * as well as by sys_exit_group (below). 1070 */ 1071 NORET_TYPE void 1072 do_group_exit(int exit_code) 1073 { 1074 struct signal_struct *sig = current->signal; 1075 1076 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1077 1078 if (signal_group_exit(sig)) 1079 exit_code = sig->group_exit_code; 1080 else if (!thread_group_empty(current)) { 1081 struct sighand_struct *const sighand = current->sighand; 1082 spin_lock_irq(&sighand->siglock); 1083 if (signal_group_exit(sig)) 1084 /* Another thread got here before we took the lock. */ 1085 exit_code = sig->group_exit_code; 1086 else { 1087 sig->group_exit_code = exit_code; 1088 sig->flags = SIGNAL_GROUP_EXIT; 1089 zap_other_threads(current); 1090 } 1091 spin_unlock_irq(&sighand->siglock); 1092 } 1093 1094 do_exit(exit_code); 1095 /* NOTREACHED */ 1096 } 1097 1098 /* 1099 * this kills every thread in the thread group. Note that any externally 1100 * wait4()-ing process will get the correct exit code - even if this 1101 * thread is not the thread group leader. 1102 */ 1103 SYSCALL_DEFINE1(exit_group, int, error_code) 1104 { 1105 do_group_exit((error_code & 0xff) << 8); 1106 /* NOTREACHED */ 1107 return 0; 1108 } 1109 1110 struct wait_opts { 1111 enum pid_type wo_type; 1112 int wo_flags; 1113 struct pid *wo_pid; 1114 1115 struct siginfo __user *wo_info; 1116 int __user *wo_stat; 1117 struct rusage __user *wo_rusage; 1118 1119 wait_queue_t child_wait; 1120 int notask_error; 1121 }; 1122 1123 static inline 1124 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1125 { 1126 if (type != PIDTYPE_PID) 1127 task = task->group_leader; 1128 return task->pids[type].pid; 1129 } 1130 1131 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1132 { 1133 return wo->wo_type == PIDTYPE_MAX || 1134 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1135 } 1136 1137 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 1138 { 1139 if (!eligible_pid(wo, p)) 1140 return 0; 1141 /* Wait for all children (clone and not) if __WALL is set; 1142 * otherwise, wait for clone children *only* if __WCLONE is 1143 * set; otherwise, wait for non-clone children *only*. (Note: 1144 * A "clone" child here is one that reports to its parent 1145 * using a signal other than SIGCHLD.) */ 1146 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1147 && !(wo->wo_flags & __WALL)) 1148 return 0; 1149 1150 return 1; 1151 } 1152 1153 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1154 pid_t pid, uid_t uid, int why, int status) 1155 { 1156 struct siginfo __user *infop; 1157 int retval = wo->wo_rusage 1158 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1159 1160 put_task_struct(p); 1161 infop = wo->wo_info; 1162 if (infop) { 1163 if (!retval) 1164 retval = put_user(SIGCHLD, &infop->si_signo); 1165 if (!retval) 1166 retval = put_user(0, &infop->si_errno); 1167 if (!retval) 1168 retval = put_user((short)why, &infop->si_code); 1169 if (!retval) 1170 retval = put_user(pid, &infop->si_pid); 1171 if (!retval) 1172 retval = put_user(uid, &infop->si_uid); 1173 if (!retval) 1174 retval = put_user(status, &infop->si_status); 1175 } 1176 if (!retval) 1177 retval = pid; 1178 return retval; 1179 } 1180 1181 /* 1182 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1183 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1184 * the lock and this task is uninteresting. If we return nonzero, we have 1185 * released the lock and the system call should return. 1186 */ 1187 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1188 { 1189 unsigned long state; 1190 int retval, status, traced; 1191 pid_t pid = task_pid_vnr(p); 1192 uid_t uid = __task_cred(p)->uid; 1193 struct siginfo __user *infop; 1194 1195 if (!likely(wo->wo_flags & WEXITED)) 1196 return 0; 1197 1198 if (unlikely(wo->wo_flags & WNOWAIT)) { 1199 int exit_code = p->exit_code; 1200 int why; 1201 1202 get_task_struct(p); 1203 read_unlock(&tasklist_lock); 1204 if ((exit_code & 0x7f) == 0) { 1205 why = CLD_EXITED; 1206 status = exit_code >> 8; 1207 } else { 1208 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1209 status = exit_code & 0x7f; 1210 } 1211 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1212 } 1213 1214 /* 1215 * Try to move the task's state to DEAD 1216 * only one thread is allowed to do this: 1217 */ 1218 state = xchg(&p->exit_state, EXIT_DEAD); 1219 if (state != EXIT_ZOMBIE) { 1220 BUG_ON(state != EXIT_DEAD); 1221 return 0; 1222 } 1223 1224 traced = ptrace_reparented(p); 1225 /* 1226 * It can be ptraced but not reparented, check 1227 * thread_group_leader() to filter out sub-threads. 1228 */ 1229 if (likely(!traced) && thread_group_leader(p)) { 1230 struct signal_struct *psig; 1231 struct signal_struct *sig; 1232 unsigned long maxrss; 1233 cputime_t tgutime, tgstime; 1234 1235 /* 1236 * The resource counters for the group leader are in its 1237 * own task_struct. Those for dead threads in the group 1238 * are in its signal_struct, as are those for the child 1239 * processes it has previously reaped. All these 1240 * accumulate in the parent's signal_struct c* fields. 1241 * 1242 * We don't bother to take a lock here to protect these 1243 * p->signal fields, because they are only touched by 1244 * __exit_signal, which runs with tasklist_lock 1245 * write-locked anyway, and so is excluded here. We do 1246 * need to protect the access to parent->signal fields, 1247 * as other threads in the parent group can be right 1248 * here reaping other children at the same time. 1249 * 1250 * We use thread_group_times() to get times for the thread 1251 * group, which consolidates times for all threads in the 1252 * group including the group leader. 1253 */ 1254 thread_group_times(p, &tgutime, &tgstime); 1255 spin_lock_irq(&p->real_parent->sighand->siglock); 1256 psig = p->real_parent->signal; 1257 sig = p->signal; 1258 psig->cutime = 1259 cputime_add(psig->cutime, 1260 cputime_add(tgutime, 1261 sig->cutime)); 1262 psig->cstime = 1263 cputime_add(psig->cstime, 1264 cputime_add(tgstime, 1265 sig->cstime)); 1266 psig->cgtime = 1267 cputime_add(psig->cgtime, 1268 cputime_add(p->gtime, 1269 cputime_add(sig->gtime, 1270 sig->cgtime))); 1271 psig->cmin_flt += 1272 p->min_flt + sig->min_flt + sig->cmin_flt; 1273 psig->cmaj_flt += 1274 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1275 psig->cnvcsw += 1276 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1277 psig->cnivcsw += 1278 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1279 psig->cinblock += 1280 task_io_get_inblock(p) + 1281 sig->inblock + sig->cinblock; 1282 psig->coublock += 1283 task_io_get_oublock(p) + 1284 sig->oublock + sig->coublock; 1285 maxrss = max(sig->maxrss, sig->cmaxrss); 1286 if (psig->cmaxrss < maxrss) 1287 psig->cmaxrss = maxrss; 1288 task_io_accounting_add(&psig->ioac, &p->ioac); 1289 task_io_accounting_add(&psig->ioac, &sig->ioac); 1290 spin_unlock_irq(&p->real_parent->sighand->siglock); 1291 } 1292 1293 /* 1294 * Now we are sure this task is interesting, and no other 1295 * thread can reap it because we set its state to EXIT_DEAD. 1296 */ 1297 read_unlock(&tasklist_lock); 1298 1299 retval = wo->wo_rusage 1300 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1301 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1302 ? p->signal->group_exit_code : p->exit_code; 1303 if (!retval && wo->wo_stat) 1304 retval = put_user(status, wo->wo_stat); 1305 1306 infop = wo->wo_info; 1307 if (!retval && infop) 1308 retval = put_user(SIGCHLD, &infop->si_signo); 1309 if (!retval && infop) 1310 retval = put_user(0, &infop->si_errno); 1311 if (!retval && infop) { 1312 int why; 1313 1314 if ((status & 0x7f) == 0) { 1315 why = CLD_EXITED; 1316 status >>= 8; 1317 } else { 1318 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1319 status &= 0x7f; 1320 } 1321 retval = put_user((short)why, &infop->si_code); 1322 if (!retval) 1323 retval = put_user(status, &infop->si_status); 1324 } 1325 if (!retval && infop) 1326 retval = put_user(pid, &infop->si_pid); 1327 if (!retval && infop) 1328 retval = put_user(uid, &infop->si_uid); 1329 if (!retval) 1330 retval = pid; 1331 1332 if (traced) { 1333 write_lock_irq(&tasklist_lock); 1334 /* We dropped tasklist, ptracer could die and untrace */ 1335 ptrace_unlink(p); 1336 /* 1337 * If this is not a sub-thread, notify the parent. 1338 * If parent wants a zombie, don't release it now. 1339 */ 1340 if (thread_group_leader(p) && 1341 !do_notify_parent(p, p->exit_signal)) { 1342 p->exit_state = EXIT_ZOMBIE; 1343 p = NULL; 1344 } 1345 write_unlock_irq(&tasklist_lock); 1346 } 1347 if (p != NULL) 1348 release_task(p); 1349 1350 return retval; 1351 } 1352 1353 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1354 { 1355 if (ptrace) { 1356 if (task_is_stopped_or_traced(p) && 1357 !(p->jobctl & JOBCTL_LISTENING)) 1358 return &p->exit_code; 1359 } else { 1360 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1361 return &p->signal->group_exit_code; 1362 } 1363 return NULL; 1364 } 1365 1366 /** 1367 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1368 * @wo: wait options 1369 * @ptrace: is the wait for ptrace 1370 * @p: task to wait for 1371 * 1372 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1373 * 1374 * CONTEXT: 1375 * read_lock(&tasklist_lock), which is released if return value is 1376 * non-zero. Also, grabs and releases @p->sighand->siglock. 1377 * 1378 * RETURNS: 1379 * 0 if wait condition didn't exist and search for other wait conditions 1380 * should continue. Non-zero return, -errno on failure and @p's pid on 1381 * success, implies that tasklist_lock is released and wait condition 1382 * search should terminate. 1383 */ 1384 static int wait_task_stopped(struct wait_opts *wo, 1385 int ptrace, struct task_struct *p) 1386 { 1387 struct siginfo __user *infop; 1388 int retval, exit_code, *p_code, why; 1389 uid_t uid = 0; /* unneeded, required by compiler */ 1390 pid_t pid; 1391 1392 /* 1393 * Traditionally we see ptrace'd stopped tasks regardless of options. 1394 */ 1395 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1396 return 0; 1397 1398 if (!task_stopped_code(p, ptrace)) 1399 return 0; 1400 1401 exit_code = 0; 1402 spin_lock_irq(&p->sighand->siglock); 1403 1404 p_code = task_stopped_code(p, ptrace); 1405 if (unlikely(!p_code)) 1406 goto unlock_sig; 1407 1408 exit_code = *p_code; 1409 if (!exit_code) 1410 goto unlock_sig; 1411 1412 if (!unlikely(wo->wo_flags & WNOWAIT)) 1413 *p_code = 0; 1414 1415 uid = task_uid(p); 1416 unlock_sig: 1417 spin_unlock_irq(&p->sighand->siglock); 1418 if (!exit_code) 1419 return 0; 1420 1421 /* 1422 * Now we are pretty sure this task is interesting. 1423 * Make sure it doesn't get reaped out from under us while we 1424 * give up the lock and then examine it below. We don't want to 1425 * keep holding onto the tasklist_lock while we call getrusage and 1426 * possibly take page faults for user memory. 1427 */ 1428 get_task_struct(p); 1429 pid = task_pid_vnr(p); 1430 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1431 read_unlock(&tasklist_lock); 1432 1433 if (unlikely(wo->wo_flags & WNOWAIT)) 1434 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1435 1436 retval = wo->wo_rusage 1437 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1438 if (!retval && wo->wo_stat) 1439 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1440 1441 infop = wo->wo_info; 1442 if (!retval && infop) 1443 retval = put_user(SIGCHLD, &infop->si_signo); 1444 if (!retval && infop) 1445 retval = put_user(0, &infop->si_errno); 1446 if (!retval && infop) 1447 retval = put_user((short)why, &infop->si_code); 1448 if (!retval && infop) 1449 retval = put_user(exit_code, &infop->si_status); 1450 if (!retval && infop) 1451 retval = put_user(pid, &infop->si_pid); 1452 if (!retval && infop) 1453 retval = put_user(uid, &infop->si_uid); 1454 if (!retval) 1455 retval = pid; 1456 put_task_struct(p); 1457 1458 BUG_ON(!retval); 1459 return retval; 1460 } 1461 1462 /* 1463 * Handle do_wait work for one task in a live, non-stopped state. 1464 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1465 * the lock and this task is uninteresting. If we return nonzero, we have 1466 * released the lock and the system call should return. 1467 */ 1468 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1469 { 1470 int retval; 1471 pid_t pid; 1472 uid_t uid; 1473 1474 if (!unlikely(wo->wo_flags & WCONTINUED)) 1475 return 0; 1476 1477 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1478 return 0; 1479 1480 spin_lock_irq(&p->sighand->siglock); 1481 /* Re-check with the lock held. */ 1482 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1483 spin_unlock_irq(&p->sighand->siglock); 1484 return 0; 1485 } 1486 if (!unlikely(wo->wo_flags & WNOWAIT)) 1487 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1488 uid = task_uid(p); 1489 spin_unlock_irq(&p->sighand->siglock); 1490 1491 pid = task_pid_vnr(p); 1492 get_task_struct(p); 1493 read_unlock(&tasklist_lock); 1494 1495 if (!wo->wo_info) { 1496 retval = wo->wo_rusage 1497 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1498 put_task_struct(p); 1499 if (!retval && wo->wo_stat) 1500 retval = put_user(0xffff, wo->wo_stat); 1501 if (!retval) 1502 retval = pid; 1503 } else { 1504 retval = wait_noreap_copyout(wo, p, pid, uid, 1505 CLD_CONTINUED, SIGCONT); 1506 BUG_ON(retval == 0); 1507 } 1508 1509 return retval; 1510 } 1511 1512 /* 1513 * Consider @p for a wait by @parent. 1514 * 1515 * -ECHILD should be in ->notask_error before the first call. 1516 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1517 * Returns zero if the search for a child should continue; 1518 * then ->notask_error is 0 if @p is an eligible child, 1519 * or another error from security_task_wait(), or still -ECHILD. 1520 */ 1521 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1522 struct task_struct *p) 1523 { 1524 int ret = eligible_child(wo, p); 1525 if (!ret) 1526 return ret; 1527 1528 ret = security_task_wait(p); 1529 if (unlikely(ret < 0)) { 1530 /* 1531 * If we have not yet seen any eligible child, 1532 * then let this error code replace -ECHILD. 1533 * A permission error will give the user a clue 1534 * to look for security policy problems, rather 1535 * than for mysterious wait bugs. 1536 */ 1537 if (wo->notask_error) 1538 wo->notask_error = ret; 1539 return 0; 1540 } 1541 1542 /* dead body doesn't have much to contribute */ 1543 if (unlikely(p->exit_state == EXIT_DEAD)) { 1544 /* 1545 * But do not ignore this task until the tracer does 1546 * wait_task_zombie()->do_notify_parent(). 1547 */ 1548 if (likely(!ptrace) && unlikely(ptrace_reparented(p))) 1549 wo->notask_error = 0; 1550 return 0; 1551 } 1552 1553 /* slay zombie? */ 1554 if (p->exit_state == EXIT_ZOMBIE) { 1555 /* 1556 * A zombie ptracee is only visible to its ptracer. 1557 * Notification and reaping will be cascaded to the real 1558 * parent when the ptracer detaches. 1559 */ 1560 if (likely(!ptrace) && unlikely(p->ptrace)) { 1561 /* it will become visible, clear notask_error */ 1562 wo->notask_error = 0; 1563 return 0; 1564 } 1565 1566 /* we don't reap group leaders with subthreads */ 1567 if (!delay_group_leader(p)) 1568 return wait_task_zombie(wo, p); 1569 1570 /* 1571 * Allow access to stopped/continued state via zombie by 1572 * falling through. Clearing of notask_error is complex. 1573 * 1574 * When !@ptrace: 1575 * 1576 * If WEXITED is set, notask_error should naturally be 1577 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1578 * so, if there are live subthreads, there are events to 1579 * wait for. If all subthreads are dead, it's still safe 1580 * to clear - this function will be called again in finite 1581 * amount time once all the subthreads are released and 1582 * will then return without clearing. 1583 * 1584 * When @ptrace: 1585 * 1586 * Stopped state is per-task and thus can't change once the 1587 * target task dies. Only continued and exited can happen. 1588 * Clear notask_error if WCONTINUED | WEXITED. 1589 */ 1590 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1591 wo->notask_error = 0; 1592 } else { 1593 /* 1594 * If @p is ptraced by a task in its real parent's group, 1595 * hide group stop/continued state when looking at @p as 1596 * the real parent; otherwise, a single stop can be 1597 * reported twice as group and ptrace stops. 1598 * 1599 * If a ptracer wants to distinguish the two events for its 1600 * own children, it should create a separate process which 1601 * takes the role of real parent. 1602 */ 1603 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p)) 1604 return 0; 1605 1606 /* 1607 * @p is alive and it's gonna stop, continue or exit, so 1608 * there always is something to wait for. 1609 */ 1610 wo->notask_error = 0; 1611 } 1612 1613 /* 1614 * Wait for stopped. Depending on @ptrace, different stopped state 1615 * is used and the two don't interact with each other. 1616 */ 1617 ret = wait_task_stopped(wo, ptrace, p); 1618 if (ret) 1619 return ret; 1620 1621 /* 1622 * Wait for continued. There's only one continued state and the 1623 * ptracer can consume it which can confuse the real parent. Don't 1624 * use WCONTINUED from ptracer. You don't need or want it. 1625 */ 1626 return wait_task_continued(wo, p); 1627 } 1628 1629 /* 1630 * Do the work of do_wait() for one thread in the group, @tsk. 1631 * 1632 * -ECHILD should be in ->notask_error before the first call. 1633 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1634 * Returns zero if the search for a child should continue; then 1635 * ->notask_error is 0 if there were any eligible children, 1636 * or another error from security_task_wait(), or still -ECHILD. 1637 */ 1638 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1639 { 1640 struct task_struct *p; 1641 1642 list_for_each_entry(p, &tsk->children, sibling) { 1643 int ret = wait_consider_task(wo, 0, p); 1644 if (ret) 1645 return ret; 1646 } 1647 1648 return 0; 1649 } 1650 1651 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1652 { 1653 struct task_struct *p; 1654 1655 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1656 int ret = wait_consider_task(wo, 1, p); 1657 if (ret) 1658 return ret; 1659 } 1660 1661 return 0; 1662 } 1663 1664 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1665 int sync, void *key) 1666 { 1667 struct wait_opts *wo = container_of(wait, struct wait_opts, 1668 child_wait); 1669 struct task_struct *p = key; 1670 1671 if (!eligible_pid(wo, p)) 1672 return 0; 1673 1674 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1675 return 0; 1676 1677 return default_wake_function(wait, mode, sync, key); 1678 } 1679 1680 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1681 { 1682 __wake_up_sync_key(&parent->signal->wait_chldexit, 1683 TASK_INTERRUPTIBLE, 1, p); 1684 } 1685 1686 static long do_wait(struct wait_opts *wo) 1687 { 1688 struct task_struct *tsk; 1689 int retval; 1690 1691 trace_sched_process_wait(wo->wo_pid); 1692 1693 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1694 wo->child_wait.private = current; 1695 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1696 repeat: 1697 /* 1698 * If there is nothing that can match our critiera just get out. 1699 * We will clear ->notask_error to zero if we see any child that 1700 * might later match our criteria, even if we are not able to reap 1701 * it yet. 1702 */ 1703 wo->notask_error = -ECHILD; 1704 if ((wo->wo_type < PIDTYPE_MAX) && 1705 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1706 goto notask; 1707 1708 set_current_state(TASK_INTERRUPTIBLE); 1709 read_lock(&tasklist_lock); 1710 tsk = current; 1711 do { 1712 retval = do_wait_thread(wo, tsk); 1713 if (retval) 1714 goto end; 1715 1716 retval = ptrace_do_wait(wo, tsk); 1717 if (retval) 1718 goto end; 1719 1720 if (wo->wo_flags & __WNOTHREAD) 1721 break; 1722 } while_each_thread(current, tsk); 1723 read_unlock(&tasklist_lock); 1724 1725 notask: 1726 retval = wo->notask_error; 1727 if (!retval && !(wo->wo_flags & WNOHANG)) { 1728 retval = -ERESTARTSYS; 1729 if (!signal_pending(current)) { 1730 schedule(); 1731 goto repeat; 1732 } 1733 } 1734 end: 1735 __set_current_state(TASK_RUNNING); 1736 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1737 return retval; 1738 } 1739 1740 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1741 infop, int, options, struct rusage __user *, ru) 1742 { 1743 struct wait_opts wo; 1744 struct pid *pid = NULL; 1745 enum pid_type type; 1746 long ret; 1747 1748 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1749 return -EINVAL; 1750 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1751 return -EINVAL; 1752 1753 switch (which) { 1754 case P_ALL: 1755 type = PIDTYPE_MAX; 1756 break; 1757 case P_PID: 1758 type = PIDTYPE_PID; 1759 if (upid <= 0) 1760 return -EINVAL; 1761 break; 1762 case P_PGID: 1763 type = PIDTYPE_PGID; 1764 if (upid <= 0) 1765 return -EINVAL; 1766 break; 1767 default: 1768 return -EINVAL; 1769 } 1770 1771 if (type < PIDTYPE_MAX) 1772 pid = find_get_pid(upid); 1773 1774 wo.wo_type = type; 1775 wo.wo_pid = pid; 1776 wo.wo_flags = options; 1777 wo.wo_info = infop; 1778 wo.wo_stat = NULL; 1779 wo.wo_rusage = ru; 1780 ret = do_wait(&wo); 1781 1782 if (ret > 0) { 1783 ret = 0; 1784 } else if (infop) { 1785 /* 1786 * For a WNOHANG return, clear out all the fields 1787 * we would set so the user can easily tell the 1788 * difference. 1789 */ 1790 if (!ret) 1791 ret = put_user(0, &infop->si_signo); 1792 if (!ret) 1793 ret = put_user(0, &infop->si_errno); 1794 if (!ret) 1795 ret = put_user(0, &infop->si_code); 1796 if (!ret) 1797 ret = put_user(0, &infop->si_pid); 1798 if (!ret) 1799 ret = put_user(0, &infop->si_uid); 1800 if (!ret) 1801 ret = put_user(0, &infop->si_status); 1802 } 1803 1804 put_pid(pid); 1805 1806 /* avoid REGPARM breakage on x86: */ 1807 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1808 return ret; 1809 } 1810 1811 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1812 int, options, struct rusage __user *, ru) 1813 { 1814 struct wait_opts wo; 1815 struct pid *pid = NULL; 1816 enum pid_type type; 1817 long ret; 1818 1819 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1820 __WNOTHREAD|__WCLONE|__WALL)) 1821 return -EINVAL; 1822 1823 if (upid == -1) 1824 type = PIDTYPE_MAX; 1825 else if (upid < 0) { 1826 type = PIDTYPE_PGID; 1827 pid = find_get_pid(-upid); 1828 } else if (upid == 0) { 1829 type = PIDTYPE_PGID; 1830 pid = get_task_pid(current, PIDTYPE_PGID); 1831 } else /* upid > 0 */ { 1832 type = PIDTYPE_PID; 1833 pid = find_get_pid(upid); 1834 } 1835 1836 wo.wo_type = type; 1837 wo.wo_pid = pid; 1838 wo.wo_flags = options | WEXITED; 1839 wo.wo_info = NULL; 1840 wo.wo_stat = stat_addr; 1841 wo.wo_rusage = ru; 1842 ret = do_wait(&wo); 1843 put_pid(pid); 1844 1845 /* avoid REGPARM breakage on x86: */ 1846 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1847 return ret; 1848 } 1849 1850 #ifdef __ARCH_WANT_SYS_WAITPID 1851 1852 /* 1853 * sys_waitpid() remains for compatibility. waitpid() should be 1854 * implemented by calling sys_wait4() from libc.a. 1855 */ 1856 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1857 { 1858 return sys_wait4(pid, stat_addr, options, NULL); 1859 } 1860 1861 #endif 1862