xref: /linux/kernel/exit.c (revision b3b77c8caef1750ebeea1054e39e358550ea9f55)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 
54 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/pgtable.h>
57 #include <asm/mmu_context.h>
58 
59 static void exit_mm(struct task_struct * tsk);
60 
61 static void __unhash_process(struct task_struct *p)
62 {
63 	nr_threads--;
64 	detach_pid(p, PIDTYPE_PID);
65 	if (thread_group_leader(p)) {
66 		detach_pid(p, PIDTYPE_PGID);
67 		detach_pid(p, PIDTYPE_SID);
68 
69 		list_del_rcu(&p->tasks);
70 		list_del_init(&p->sibling);
71 		__get_cpu_var(process_counts)--;
72 	}
73 	list_del_rcu(&p->thread_group);
74 }
75 
76 /*
77  * This function expects the tasklist_lock write-locked.
78  */
79 static void __exit_signal(struct task_struct *tsk)
80 {
81 	struct signal_struct *sig = tsk->signal;
82 	struct sighand_struct *sighand;
83 
84 	BUG_ON(!sig);
85 	BUG_ON(!atomic_read(&sig->count));
86 
87 	sighand = rcu_dereference_check(tsk->sighand,
88 					rcu_read_lock_held() ||
89 					lockdep_tasklist_lock_is_held());
90 	spin_lock(&sighand->siglock);
91 
92 	posix_cpu_timers_exit(tsk);
93 	if (atomic_dec_and_test(&sig->count))
94 		posix_cpu_timers_exit_group(tsk);
95 	else {
96 		/*
97 		 * If there is any task waiting for the group exit
98 		 * then notify it:
99 		 */
100 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
101 			wake_up_process(sig->group_exit_task);
102 
103 		if (tsk == sig->curr_target)
104 			sig->curr_target = next_thread(tsk);
105 		/*
106 		 * Accumulate here the counters for all threads but the
107 		 * group leader as they die, so they can be added into
108 		 * the process-wide totals when those are taken.
109 		 * The group leader stays around as a zombie as long
110 		 * as there are other threads.  When it gets reaped,
111 		 * the exit.c code will add its counts into these totals.
112 		 * We won't ever get here for the group leader, since it
113 		 * will have been the last reference on the signal_struct.
114 		 */
115 		sig->utime = cputime_add(sig->utime, tsk->utime);
116 		sig->stime = cputime_add(sig->stime, tsk->stime);
117 		sig->gtime = cputime_add(sig->gtime, tsk->gtime);
118 		sig->min_flt += tsk->min_flt;
119 		sig->maj_flt += tsk->maj_flt;
120 		sig->nvcsw += tsk->nvcsw;
121 		sig->nivcsw += tsk->nivcsw;
122 		sig->inblock += task_io_get_inblock(tsk);
123 		sig->oublock += task_io_get_oublock(tsk);
124 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
125 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
126 		sig = NULL; /* Marker for below. */
127 	}
128 
129 	__unhash_process(tsk);
130 
131 	/*
132 	 * Do this under ->siglock, we can race with another thread
133 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
134 	 */
135 	flush_sigqueue(&tsk->pending);
136 
137 	tsk->signal = NULL;
138 	tsk->sighand = NULL;
139 	spin_unlock(&sighand->siglock);
140 
141 	__cleanup_sighand(sighand);
142 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
143 	if (sig) {
144 		flush_sigqueue(&sig->shared_pending);
145 		taskstats_tgid_free(sig);
146 		/*
147 		 * Make sure ->signal can't go away under rq->lock,
148 		 * see account_group_exec_runtime().
149 		 */
150 		task_rq_unlock_wait(tsk);
151 		__cleanup_signal(sig);
152 	}
153 }
154 
155 static void delayed_put_task_struct(struct rcu_head *rhp)
156 {
157 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
158 
159 #ifdef CONFIG_PERF_EVENTS
160 	WARN_ON_ONCE(tsk->perf_event_ctxp);
161 #endif
162 	trace_sched_process_free(tsk);
163 	put_task_struct(tsk);
164 }
165 
166 
167 void release_task(struct task_struct * p)
168 {
169 	struct task_struct *leader;
170 	int zap_leader;
171 repeat:
172 	tracehook_prepare_release_task(p);
173 	/* don't need to get the RCU readlock here - the process is dead and
174 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
175 	rcu_read_lock();
176 	atomic_dec(&__task_cred(p)->user->processes);
177 	rcu_read_unlock();
178 
179 	proc_flush_task(p);
180 
181 	write_lock_irq(&tasklist_lock);
182 	tracehook_finish_release_task(p);
183 	__exit_signal(p);
184 
185 	/*
186 	 * If we are the last non-leader member of the thread
187 	 * group, and the leader is zombie, then notify the
188 	 * group leader's parent process. (if it wants notification.)
189 	 */
190 	zap_leader = 0;
191 	leader = p->group_leader;
192 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193 		BUG_ON(task_detached(leader));
194 		do_notify_parent(leader, leader->exit_signal);
195 		/*
196 		 * If we were the last child thread and the leader has
197 		 * exited already, and the leader's parent ignores SIGCHLD,
198 		 * then we are the one who should release the leader.
199 		 *
200 		 * do_notify_parent() will have marked it self-reaping in
201 		 * that case.
202 		 */
203 		zap_leader = task_detached(leader);
204 
205 		/*
206 		 * This maintains the invariant that release_task()
207 		 * only runs on a task in EXIT_DEAD, just for sanity.
208 		 */
209 		if (zap_leader)
210 			leader->exit_state = EXIT_DEAD;
211 	}
212 
213 	write_unlock_irq(&tasklist_lock);
214 	release_thread(p);
215 	call_rcu(&p->rcu, delayed_put_task_struct);
216 
217 	p = leader;
218 	if (unlikely(zap_leader))
219 		goto repeat;
220 }
221 
222 /*
223  * This checks not only the pgrp, but falls back on the pid if no
224  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
225  * without this...
226  *
227  * The caller must hold rcu lock or the tasklist lock.
228  */
229 struct pid *session_of_pgrp(struct pid *pgrp)
230 {
231 	struct task_struct *p;
232 	struct pid *sid = NULL;
233 
234 	p = pid_task(pgrp, PIDTYPE_PGID);
235 	if (p == NULL)
236 		p = pid_task(pgrp, PIDTYPE_PID);
237 	if (p != NULL)
238 		sid = task_session(p);
239 
240 	return sid;
241 }
242 
243 /*
244  * Determine if a process group is "orphaned", according to the POSIX
245  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
246  * by terminal-generated stop signals.  Newly orphaned process groups are
247  * to receive a SIGHUP and a SIGCONT.
248  *
249  * "I ask you, have you ever known what it is to be an orphan?"
250  */
251 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
252 {
253 	struct task_struct *p;
254 
255 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
256 		if ((p == ignored_task) ||
257 		    (p->exit_state && thread_group_empty(p)) ||
258 		    is_global_init(p->real_parent))
259 			continue;
260 
261 		if (task_pgrp(p->real_parent) != pgrp &&
262 		    task_session(p->real_parent) == task_session(p))
263 			return 0;
264 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
265 
266 	return 1;
267 }
268 
269 int is_current_pgrp_orphaned(void)
270 {
271 	int retval;
272 
273 	read_lock(&tasklist_lock);
274 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
275 	read_unlock(&tasklist_lock);
276 
277 	return retval;
278 }
279 
280 static int has_stopped_jobs(struct pid *pgrp)
281 {
282 	int retval = 0;
283 	struct task_struct *p;
284 
285 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
286 		if (!task_is_stopped(p))
287 			continue;
288 		retval = 1;
289 		break;
290 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
291 	return retval;
292 }
293 
294 /*
295  * Check to see if any process groups have become orphaned as
296  * a result of our exiting, and if they have any stopped jobs,
297  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
298  */
299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
301 {
302 	struct pid *pgrp = task_pgrp(tsk);
303 	struct task_struct *ignored_task = tsk;
304 
305 	if (!parent)
306 		 /* exit: our father is in a different pgrp than
307 		  * we are and we were the only connection outside.
308 		  */
309 		parent = tsk->real_parent;
310 	else
311 		/* reparent: our child is in a different pgrp than
312 		 * we are, and it was the only connection outside.
313 		 */
314 		ignored_task = NULL;
315 
316 	if (task_pgrp(parent) != pgrp &&
317 	    task_session(parent) == task_session(tsk) &&
318 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
319 	    has_stopped_jobs(pgrp)) {
320 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
322 	}
323 }
324 
325 /**
326  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
327  *
328  * If a kernel thread is launched as a result of a system call, or if
329  * it ever exits, it should generally reparent itself to kthreadd so it
330  * isn't in the way of other processes and is correctly cleaned up on exit.
331  *
332  * The various task state such as scheduling policy and priority may have
333  * been inherited from a user process, so we reset them to sane values here.
334  *
335  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
336  */
337 static void reparent_to_kthreadd(void)
338 {
339 	write_lock_irq(&tasklist_lock);
340 
341 	ptrace_unlink(current);
342 	/* Reparent to init */
343 	current->real_parent = current->parent = kthreadd_task;
344 	list_move_tail(&current->sibling, &current->real_parent->children);
345 
346 	/* Set the exit signal to SIGCHLD so we signal init on exit */
347 	current->exit_signal = SIGCHLD;
348 
349 	if (task_nice(current) < 0)
350 		set_user_nice(current, 0);
351 	/* cpus_allowed? */
352 	/* rt_priority? */
353 	/* signals? */
354 	memcpy(current->signal->rlim, init_task.signal->rlim,
355 	       sizeof(current->signal->rlim));
356 
357 	atomic_inc(&init_cred.usage);
358 	commit_creds(&init_cred);
359 	write_unlock_irq(&tasklist_lock);
360 }
361 
362 void __set_special_pids(struct pid *pid)
363 {
364 	struct task_struct *curr = current->group_leader;
365 
366 	if (task_session(curr) != pid)
367 		change_pid(curr, PIDTYPE_SID, pid);
368 
369 	if (task_pgrp(curr) != pid)
370 		change_pid(curr, PIDTYPE_PGID, pid);
371 }
372 
373 static void set_special_pids(struct pid *pid)
374 {
375 	write_lock_irq(&tasklist_lock);
376 	__set_special_pids(pid);
377 	write_unlock_irq(&tasklist_lock);
378 }
379 
380 /*
381  * Let kernel threads use this to say that they allow a certain signal.
382  * Must not be used if kthread was cloned with CLONE_SIGHAND.
383  */
384 int allow_signal(int sig)
385 {
386 	if (!valid_signal(sig) || sig < 1)
387 		return -EINVAL;
388 
389 	spin_lock_irq(&current->sighand->siglock);
390 	/* This is only needed for daemonize()'ed kthreads */
391 	sigdelset(&current->blocked, sig);
392 	/*
393 	 * Kernel threads handle their own signals. Let the signal code
394 	 * know it'll be handled, so that they don't get converted to
395 	 * SIGKILL or just silently dropped.
396 	 */
397 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
398 	recalc_sigpending();
399 	spin_unlock_irq(&current->sighand->siglock);
400 	return 0;
401 }
402 
403 EXPORT_SYMBOL(allow_signal);
404 
405 int disallow_signal(int sig)
406 {
407 	if (!valid_signal(sig) || sig < 1)
408 		return -EINVAL;
409 
410 	spin_lock_irq(&current->sighand->siglock);
411 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
412 	recalc_sigpending();
413 	spin_unlock_irq(&current->sighand->siglock);
414 	return 0;
415 }
416 
417 EXPORT_SYMBOL(disallow_signal);
418 
419 /*
420  *	Put all the gunge required to become a kernel thread without
421  *	attached user resources in one place where it belongs.
422  */
423 
424 void daemonize(const char *name, ...)
425 {
426 	va_list args;
427 	sigset_t blocked;
428 
429 	va_start(args, name);
430 	vsnprintf(current->comm, sizeof(current->comm), name, args);
431 	va_end(args);
432 
433 	/*
434 	 * If we were started as result of loading a module, close all of the
435 	 * user space pages.  We don't need them, and if we didn't close them
436 	 * they would be locked into memory.
437 	 */
438 	exit_mm(current);
439 	/*
440 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
441 	 * or suspend transition begins right now.
442 	 */
443 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
444 
445 	if (current->nsproxy != &init_nsproxy) {
446 		get_nsproxy(&init_nsproxy);
447 		switch_task_namespaces(current, &init_nsproxy);
448 	}
449 	set_special_pids(&init_struct_pid);
450 	proc_clear_tty(current);
451 
452 	/* Block and flush all signals */
453 	sigfillset(&blocked);
454 	sigprocmask(SIG_BLOCK, &blocked, NULL);
455 	flush_signals(current);
456 
457 	/* Become as one with the init task */
458 
459 	daemonize_fs_struct();
460 	exit_files(current);
461 	current->files = init_task.files;
462 	atomic_inc(&current->files->count);
463 
464 	reparent_to_kthreadd();
465 }
466 
467 EXPORT_SYMBOL(daemonize);
468 
469 static void close_files(struct files_struct * files)
470 {
471 	int i, j;
472 	struct fdtable *fdt;
473 
474 	j = 0;
475 
476 	/*
477 	 * It is safe to dereference the fd table without RCU or
478 	 * ->file_lock because this is the last reference to the
479 	 * files structure.  But use RCU to shut RCU-lockdep up.
480 	 */
481 	rcu_read_lock();
482 	fdt = files_fdtable(files);
483 	rcu_read_unlock();
484 	for (;;) {
485 		unsigned long set;
486 		i = j * __NFDBITS;
487 		if (i >= fdt->max_fds)
488 			break;
489 		set = fdt->open_fds->fds_bits[j++];
490 		while (set) {
491 			if (set & 1) {
492 				struct file * file = xchg(&fdt->fd[i], NULL);
493 				if (file) {
494 					filp_close(file, files);
495 					cond_resched();
496 				}
497 			}
498 			i++;
499 			set >>= 1;
500 		}
501 	}
502 }
503 
504 struct files_struct *get_files_struct(struct task_struct *task)
505 {
506 	struct files_struct *files;
507 
508 	task_lock(task);
509 	files = task->files;
510 	if (files)
511 		atomic_inc(&files->count);
512 	task_unlock(task);
513 
514 	return files;
515 }
516 
517 void put_files_struct(struct files_struct *files)
518 {
519 	struct fdtable *fdt;
520 
521 	if (atomic_dec_and_test(&files->count)) {
522 		close_files(files);
523 		/*
524 		 * Free the fd and fdset arrays if we expanded them.
525 		 * If the fdtable was embedded, pass files for freeing
526 		 * at the end of the RCU grace period. Otherwise,
527 		 * you can free files immediately.
528 		 */
529 		rcu_read_lock();
530 		fdt = files_fdtable(files);
531 		if (fdt != &files->fdtab)
532 			kmem_cache_free(files_cachep, files);
533 		free_fdtable(fdt);
534 		rcu_read_unlock();
535 	}
536 }
537 
538 void reset_files_struct(struct files_struct *files)
539 {
540 	struct task_struct *tsk = current;
541 	struct files_struct *old;
542 
543 	old = tsk->files;
544 	task_lock(tsk);
545 	tsk->files = files;
546 	task_unlock(tsk);
547 	put_files_struct(old);
548 }
549 
550 void exit_files(struct task_struct *tsk)
551 {
552 	struct files_struct * files = tsk->files;
553 
554 	if (files) {
555 		task_lock(tsk);
556 		tsk->files = NULL;
557 		task_unlock(tsk);
558 		put_files_struct(files);
559 	}
560 }
561 
562 #ifdef CONFIG_MM_OWNER
563 /*
564  * Task p is exiting and it owned mm, lets find a new owner for it
565  */
566 static inline int
567 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
568 {
569 	/*
570 	 * If there are other users of the mm and the owner (us) is exiting
571 	 * we need to find a new owner to take on the responsibility.
572 	 */
573 	if (atomic_read(&mm->mm_users) <= 1)
574 		return 0;
575 	if (mm->owner != p)
576 		return 0;
577 	return 1;
578 }
579 
580 void mm_update_next_owner(struct mm_struct *mm)
581 {
582 	struct task_struct *c, *g, *p = current;
583 
584 retry:
585 	if (!mm_need_new_owner(mm, p))
586 		return;
587 
588 	read_lock(&tasklist_lock);
589 	/*
590 	 * Search in the children
591 	 */
592 	list_for_each_entry(c, &p->children, sibling) {
593 		if (c->mm == mm)
594 			goto assign_new_owner;
595 	}
596 
597 	/*
598 	 * Search in the siblings
599 	 */
600 	list_for_each_entry(c, &p->real_parent->children, sibling) {
601 		if (c->mm == mm)
602 			goto assign_new_owner;
603 	}
604 
605 	/*
606 	 * Search through everything else. We should not get
607 	 * here often
608 	 */
609 	do_each_thread(g, c) {
610 		if (c->mm == mm)
611 			goto assign_new_owner;
612 	} while_each_thread(g, c);
613 
614 	read_unlock(&tasklist_lock);
615 	/*
616 	 * We found no owner yet mm_users > 1: this implies that we are
617 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
618 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
619 	 */
620 	mm->owner = NULL;
621 	return;
622 
623 assign_new_owner:
624 	BUG_ON(c == p);
625 	get_task_struct(c);
626 	/*
627 	 * The task_lock protects c->mm from changing.
628 	 * We always want mm->owner->mm == mm
629 	 */
630 	task_lock(c);
631 	/*
632 	 * Delay read_unlock() till we have the task_lock()
633 	 * to ensure that c does not slip away underneath us
634 	 */
635 	read_unlock(&tasklist_lock);
636 	if (c->mm != mm) {
637 		task_unlock(c);
638 		put_task_struct(c);
639 		goto retry;
640 	}
641 	mm->owner = c;
642 	task_unlock(c);
643 	put_task_struct(c);
644 }
645 #endif /* CONFIG_MM_OWNER */
646 
647 /*
648  * Turn us into a lazy TLB process if we
649  * aren't already..
650  */
651 static void exit_mm(struct task_struct * tsk)
652 {
653 	struct mm_struct *mm = tsk->mm;
654 	struct core_state *core_state;
655 
656 	mm_release(tsk, mm);
657 	if (!mm)
658 		return;
659 	/*
660 	 * Serialize with any possible pending coredump.
661 	 * We must hold mmap_sem around checking core_state
662 	 * and clearing tsk->mm.  The core-inducing thread
663 	 * will increment ->nr_threads for each thread in the
664 	 * group with ->mm != NULL.
665 	 */
666 	down_read(&mm->mmap_sem);
667 	core_state = mm->core_state;
668 	if (core_state) {
669 		struct core_thread self;
670 		up_read(&mm->mmap_sem);
671 
672 		self.task = tsk;
673 		self.next = xchg(&core_state->dumper.next, &self);
674 		/*
675 		 * Implies mb(), the result of xchg() must be visible
676 		 * to core_state->dumper.
677 		 */
678 		if (atomic_dec_and_test(&core_state->nr_threads))
679 			complete(&core_state->startup);
680 
681 		for (;;) {
682 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
683 			if (!self.task) /* see coredump_finish() */
684 				break;
685 			schedule();
686 		}
687 		__set_task_state(tsk, TASK_RUNNING);
688 		down_read(&mm->mmap_sem);
689 	}
690 	atomic_inc(&mm->mm_count);
691 	BUG_ON(mm != tsk->active_mm);
692 	/* more a memory barrier than a real lock */
693 	task_lock(tsk);
694 	tsk->mm = NULL;
695 	up_read(&mm->mmap_sem);
696 	enter_lazy_tlb(mm, current);
697 	/* We don't want this task to be frozen prematurely */
698 	clear_freeze_flag(tsk);
699 	task_unlock(tsk);
700 	mm_update_next_owner(mm);
701 	mmput(mm);
702 }
703 
704 /*
705  * When we die, we re-parent all our children.
706  * Try to give them to another thread in our thread
707  * group, and if no such member exists, give it to
708  * the child reaper process (ie "init") in our pid
709  * space.
710  */
711 static struct task_struct *find_new_reaper(struct task_struct *father)
712 {
713 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
714 	struct task_struct *thread;
715 
716 	thread = father;
717 	while_each_thread(father, thread) {
718 		if (thread->flags & PF_EXITING)
719 			continue;
720 		if (unlikely(pid_ns->child_reaper == father))
721 			pid_ns->child_reaper = thread;
722 		return thread;
723 	}
724 
725 	if (unlikely(pid_ns->child_reaper == father)) {
726 		write_unlock_irq(&tasklist_lock);
727 		if (unlikely(pid_ns == &init_pid_ns))
728 			panic("Attempted to kill init!");
729 
730 		zap_pid_ns_processes(pid_ns);
731 		write_lock_irq(&tasklist_lock);
732 		/*
733 		 * We can not clear ->child_reaper or leave it alone.
734 		 * There may by stealth EXIT_DEAD tasks on ->children,
735 		 * forget_original_parent() must move them somewhere.
736 		 */
737 		pid_ns->child_reaper = init_pid_ns.child_reaper;
738 	}
739 
740 	return pid_ns->child_reaper;
741 }
742 
743 /*
744 * Any that need to be release_task'd are put on the @dead list.
745  */
746 static void reparent_leader(struct task_struct *father, struct task_struct *p,
747 				struct list_head *dead)
748 {
749 	list_move_tail(&p->sibling, &p->real_parent->children);
750 
751 	if (task_detached(p))
752 		return;
753 	/*
754 	 * If this is a threaded reparent there is no need to
755 	 * notify anyone anything has happened.
756 	 */
757 	if (same_thread_group(p->real_parent, father))
758 		return;
759 
760 	/* We don't want people slaying init.  */
761 	p->exit_signal = SIGCHLD;
762 
763 	/* If it has exited notify the new parent about this child's death. */
764 	if (!task_ptrace(p) &&
765 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
766 		do_notify_parent(p, p->exit_signal);
767 		if (task_detached(p)) {
768 			p->exit_state = EXIT_DEAD;
769 			list_move_tail(&p->sibling, dead);
770 		}
771 	}
772 
773 	kill_orphaned_pgrp(p, father);
774 }
775 
776 static void forget_original_parent(struct task_struct *father)
777 {
778 	struct task_struct *p, *n, *reaper;
779 	LIST_HEAD(dead_children);
780 
781 	exit_ptrace(father);
782 
783 	write_lock_irq(&tasklist_lock);
784 	reaper = find_new_reaper(father);
785 
786 	list_for_each_entry_safe(p, n, &father->children, sibling) {
787 		struct task_struct *t = p;
788 		do {
789 			t->real_parent = reaper;
790 			if (t->parent == father) {
791 				BUG_ON(task_ptrace(t));
792 				t->parent = t->real_parent;
793 			}
794 			if (t->pdeath_signal)
795 				group_send_sig_info(t->pdeath_signal,
796 						    SEND_SIG_NOINFO, t);
797 		} while_each_thread(p, t);
798 		reparent_leader(father, p, &dead_children);
799 	}
800 	write_unlock_irq(&tasklist_lock);
801 
802 	BUG_ON(!list_empty(&father->children));
803 
804 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
805 		list_del_init(&p->sibling);
806 		release_task(p);
807 	}
808 }
809 
810 /*
811  * Send signals to all our closest relatives so that they know
812  * to properly mourn us..
813  */
814 static void exit_notify(struct task_struct *tsk, int group_dead)
815 {
816 	int signal;
817 	void *cookie;
818 
819 	/*
820 	 * This does two things:
821 	 *
822   	 * A.  Make init inherit all the child processes
823 	 * B.  Check to see if any process groups have become orphaned
824 	 *	as a result of our exiting, and if they have any stopped
825 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
826 	 */
827 	forget_original_parent(tsk);
828 	exit_task_namespaces(tsk);
829 
830 	write_lock_irq(&tasklist_lock);
831 	if (group_dead)
832 		kill_orphaned_pgrp(tsk->group_leader, NULL);
833 
834 	/* Let father know we died
835 	 *
836 	 * Thread signals are configurable, but you aren't going to use
837 	 * that to send signals to arbitary processes.
838 	 * That stops right now.
839 	 *
840 	 * If the parent exec id doesn't match the exec id we saved
841 	 * when we started then we know the parent has changed security
842 	 * domain.
843 	 *
844 	 * If our self_exec id doesn't match our parent_exec_id then
845 	 * we have changed execution domain as these two values started
846 	 * the same after a fork.
847 	 */
848 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
849 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
850 	     tsk->self_exec_id != tsk->parent_exec_id))
851 		tsk->exit_signal = SIGCHLD;
852 
853 	signal = tracehook_notify_death(tsk, &cookie, group_dead);
854 	if (signal >= 0)
855 		signal = do_notify_parent(tsk, signal);
856 
857 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
858 
859 	/* mt-exec, de_thread() is waiting for us */
860 	if (thread_group_leader(tsk) &&
861 	    tsk->signal->group_exit_task &&
862 	    tsk->signal->notify_count < 0)
863 		wake_up_process(tsk->signal->group_exit_task);
864 
865 	write_unlock_irq(&tasklist_lock);
866 
867 	tracehook_report_death(tsk, signal, cookie, group_dead);
868 
869 	/* If the process is dead, release it - nobody will wait for it */
870 	if (signal == DEATH_REAP)
871 		release_task(tsk);
872 }
873 
874 #ifdef CONFIG_DEBUG_STACK_USAGE
875 static void check_stack_usage(void)
876 {
877 	static DEFINE_SPINLOCK(low_water_lock);
878 	static int lowest_to_date = THREAD_SIZE;
879 	unsigned long free;
880 
881 	free = stack_not_used(current);
882 
883 	if (free >= lowest_to_date)
884 		return;
885 
886 	spin_lock(&low_water_lock);
887 	if (free < lowest_to_date) {
888 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
889 				"left\n",
890 				current->comm, free);
891 		lowest_to_date = free;
892 	}
893 	spin_unlock(&low_water_lock);
894 }
895 #else
896 static inline void check_stack_usage(void) {}
897 #endif
898 
899 NORET_TYPE void do_exit(long code)
900 {
901 	struct task_struct *tsk = current;
902 	int group_dead;
903 
904 	profile_task_exit(tsk);
905 
906 	WARN_ON(atomic_read(&tsk->fs_excl));
907 
908 	if (unlikely(in_interrupt()))
909 		panic("Aiee, killing interrupt handler!");
910 	if (unlikely(!tsk->pid))
911 		panic("Attempted to kill the idle task!");
912 
913 	tracehook_report_exit(&code);
914 
915 	validate_creds_for_do_exit(tsk);
916 
917 	/*
918 	 * We're taking recursive faults here in do_exit. Safest is to just
919 	 * leave this task alone and wait for reboot.
920 	 */
921 	if (unlikely(tsk->flags & PF_EXITING)) {
922 		printk(KERN_ALERT
923 			"Fixing recursive fault but reboot is needed!\n");
924 		/*
925 		 * We can do this unlocked here. The futex code uses
926 		 * this flag just to verify whether the pi state
927 		 * cleanup has been done or not. In the worst case it
928 		 * loops once more. We pretend that the cleanup was
929 		 * done as there is no way to return. Either the
930 		 * OWNER_DIED bit is set by now or we push the blocked
931 		 * task into the wait for ever nirwana as well.
932 		 */
933 		tsk->flags |= PF_EXITPIDONE;
934 		set_current_state(TASK_UNINTERRUPTIBLE);
935 		schedule();
936 	}
937 
938 	exit_irq_thread();
939 
940 	exit_signals(tsk);  /* sets PF_EXITING */
941 	/*
942 	 * tsk->flags are checked in the futex code to protect against
943 	 * an exiting task cleaning up the robust pi futexes.
944 	 */
945 	smp_mb();
946 	raw_spin_unlock_wait(&tsk->pi_lock);
947 
948 	if (unlikely(in_atomic()))
949 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
950 				current->comm, task_pid_nr(current),
951 				preempt_count());
952 
953 	acct_update_integrals(tsk);
954 	/* sync mm's RSS info before statistics gathering */
955 	if (tsk->mm)
956 		sync_mm_rss(tsk, tsk->mm);
957 	group_dead = atomic_dec_and_test(&tsk->signal->live);
958 	if (group_dead) {
959 		hrtimer_cancel(&tsk->signal->real_timer);
960 		exit_itimers(tsk->signal);
961 		if (tsk->mm)
962 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
963 	}
964 	acct_collect(code, group_dead);
965 	if (group_dead)
966 		tty_audit_exit();
967 	if (unlikely(tsk->audit_context))
968 		audit_free(tsk);
969 
970 	tsk->exit_code = code;
971 	taskstats_exit(tsk, group_dead);
972 
973 	exit_mm(tsk);
974 
975 	if (group_dead)
976 		acct_process();
977 	trace_sched_process_exit(tsk);
978 
979 	exit_sem(tsk);
980 	exit_files(tsk);
981 	exit_fs(tsk);
982 	check_stack_usage();
983 	exit_thread();
984 	cgroup_exit(tsk, 1);
985 
986 	if (group_dead)
987 		disassociate_ctty(1);
988 
989 	module_put(task_thread_info(tsk)->exec_domain->module);
990 
991 	proc_exit_connector(tsk);
992 
993 	/*
994 	 * FIXME: do that only when needed, using sched_exit tracepoint
995 	 */
996 	flush_ptrace_hw_breakpoint(tsk);
997 	/*
998 	 * Flush inherited counters to the parent - before the parent
999 	 * gets woken up by child-exit notifications.
1000 	 */
1001 	perf_event_exit_task(tsk);
1002 
1003 	exit_notify(tsk, group_dead);
1004 #ifdef CONFIG_NUMA
1005 	task_lock(tsk);
1006 	mpol_put(tsk->mempolicy);
1007 	tsk->mempolicy = NULL;
1008 	task_unlock(tsk);
1009 #endif
1010 #ifdef CONFIG_FUTEX
1011 	if (unlikely(current->pi_state_cache))
1012 		kfree(current->pi_state_cache);
1013 #endif
1014 	/*
1015 	 * Make sure we are holding no locks:
1016 	 */
1017 	debug_check_no_locks_held(tsk);
1018 	/*
1019 	 * We can do this unlocked here. The futex code uses this flag
1020 	 * just to verify whether the pi state cleanup has been done
1021 	 * or not. In the worst case it loops once more.
1022 	 */
1023 	tsk->flags |= PF_EXITPIDONE;
1024 
1025 	if (tsk->io_context)
1026 		exit_io_context(tsk);
1027 
1028 	if (tsk->splice_pipe)
1029 		__free_pipe_info(tsk->splice_pipe);
1030 
1031 	validate_creds_for_do_exit(tsk);
1032 
1033 	preempt_disable();
1034 	exit_rcu();
1035 	/* causes final put_task_struct in finish_task_switch(). */
1036 	tsk->state = TASK_DEAD;
1037 	schedule();
1038 	BUG();
1039 	/* Avoid "noreturn function does return".  */
1040 	for (;;)
1041 		cpu_relax();	/* For when BUG is null */
1042 }
1043 
1044 EXPORT_SYMBOL_GPL(do_exit);
1045 
1046 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1047 {
1048 	if (comp)
1049 		complete(comp);
1050 
1051 	do_exit(code);
1052 }
1053 
1054 EXPORT_SYMBOL(complete_and_exit);
1055 
1056 SYSCALL_DEFINE1(exit, int, error_code)
1057 {
1058 	do_exit((error_code&0xff)<<8);
1059 }
1060 
1061 /*
1062  * Take down every thread in the group.  This is called by fatal signals
1063  * as well as by sys_exit_group (below).
1064  */
1065 NORET_TYPE void
1066 do_group_exit(int exit_code)
1067 {
1068 	struct signal_struct *sig = current->signal;
1069 
1070 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1071 
1072 	if (signal_group_exit(sig))
1073 		exit_code = sig->group_exit_code;
1074 	else if (!thread_group_empty(current)) {
1075 		struct sighand_struct *const sighand = current->sighand;
1076 		spin_lock_irq(&sighand->siglock);
1077 		if (signal_group_exit(sig))
1078 			/* Another thread got here before we took the lock.  */
1079 			exit_code = sig->group_exit_code;
1080 		else {
1081 			sig->group_exit_code = exit_code;
1082 			sig->flags = SIGNAL_GROUP_EXIT;
1083 			zap_other_threads(current);
1084 		}
1085 		spin_unlock_irq(&sighand->siglock);
1086 	}
1087 
1088 	do_exit(exit_code);
1089 	/* NOTREACHED */
1090 }
1091 
1092 /*
1093  * this kills every thread in the thread group. Note that any externally
1094  * wait4()-ing process will get the correct exit code - even if this
1095  * thread is not the thread group leader.
1096  */
1097 SYSCALL_DEFINE1(exit_group, int, error_code)
1098 {
1099 	do_group_exit((error_code & 0xff) << 8);
1100 	/* NOTREACHED */
1101 	return 0;
1102 }
1103 
1104 struct wait_opts {
1105 	enum pid_type		wo_type;
1106 	int			wo_flags;
1107 	struct pid		*wo_pid;
1108 
1109 	struct siginfo __user	*wo_info;
1110 	int __user		*wo_stat;
1111 	struct rusage __user	*wo_rusage;
1112 
1113 	wait_queue_t		child_wait;
1114 	int			notask_error;
1115 };
1116 
1117 static inline
1118 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1119 {
1120 	if (type != PIDTYPE_PID)
1121 		task = task->group_leader;
1122 	return task->pids[type].pid;
1123 }
1124 
1125 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1126 {
1127 	return	wo->wo_type == PIDTYPE_MAX ||
1128 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1129 }
1130 
1131 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1132 {
1133 	if (!eligible_pid(wo, p))
1134 		return 0;
1135 	/* Wait for all children (clone and not) if __WALL is set;
1136 	 * otherwise, wait for clone children *only* if __WCLONE is
1137 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1138 	 * A "clone" child here is one that reports to its parent
1139 	 * using a signal other than SIGCHLD.) */
1140 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1141 	    && !(wo->wo_flags & __WALL))
1142 		return 0;
1143 
1144 	return 1;
1145 }
1146 
1147 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1148 				pid_t pid, uid_t uid, int why, int status)
1149 {
1150 	struct siginfo __user *infop;
1151 	int retval = wo->wo_rusage
1152 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1153 
1154 	put_task_struct(p);
1155 	infop = wo->wo_info;
1156 	if (infop) {
1157 		if (!retval)
1158 			retval = put_user(SIGCHLD, &infop->si_signo);
1159 		if (!retval)
1160 			retval = put_user(0, &infop->si_errno);
1161 		if (!retval)
1162 			retval = put_user((short)why, &infop->si_code);
1163 		if (!retval)
1164 			retval = put_user(pid, &infop->si_pid);
1165 		if (!retval)
1166 			retval = put_user(uid, &infop->si_uid);
1167 		if (!retval)
1168 			retval = put_user(status, &infop->si_status);
1169 	}
1170 	if (!retval)
1171 		retval = pid;
1172 	return retval;
1173 }
1174 
1175 /*
1176  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1177  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1178  * the lock and this task is uninteresting.  If we return nonzero, we have
1179  * released the lock and the system call should return.
1180  */
1181 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1182 {
1183 	unsigned long state;
1184 	int retval, status, traced;
1185 	pid_t pid = task_pid_vnr(p);
1186 	uid_t uid = __task_cred(p)->uid;
1187 	struct siginfo __user *infop;
1188 
1189 	if (!likely(wo->wo_flags & WEXITED))
1190 		return 0;
1191 
1192 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1193 		int exit_code = p->exit_code;
1194 		int why;
1195 
1196 		get_task_struct(p);
1197 		read_unlock(&tasklist_lock);
1198 		if ((exit_code & 0x7f) == 0) {
1199 			why = CLD_EXITED;
1200 			status = exit_code >> 8;
1201 		} else {
1202 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1203 			status = exit_code & 0x7f;
1204 		}
1205 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1206 	}
1207 
1208 	/*
1209 	 * Try to move the task's state to DEAD
1210 	 * only one thread is allowed to do this:
1211 	 */
1212 	state = xchg(&p->exit_state, EXIT_DEAD);
1213 	if (state != EXIT_ZOMBIE) {
1214 		BUG_ON(state != EXIT_DEAD);
1215 		return 0;
1216 	}
1217 
1218 	traced = ptrace_reparented(p);
1219 	/*
1220 	 * It can be ptraced but not reparented, check
1221 	 * !task_detached() to filter out sub-threads.
1222 	 */
1223 	if (likely(!traced) && likely(!task_detached(p))) {
1224 		struct signal_struct *psig;
1225 		struct signal_struct *sig;
1226 		unsigned long maxrss;
1227 		cputime_t tgutime, tgstime;
1228 
1229 		/*
1230 		 * The resource counters for the group leader are in its
1231 		 * own task_struct.  Those for dead threads in the group
1232 		 * are in its signal_struct, as are those for the child
1233 		 * processes it has previously reaped.  All these
1234 		 * accumulate in the parent's signal_struct c* fields.
1235 		 *
1236 		 * We don't bother to take a lock here to protect these
1237 		 * p->signal fields, because they are only touched by
1238 		 * __exit_signal, which runs with tasklist_lock
1239 		 * write-locked anyway, and so is excluded here.  We do
1240 		 * need to protect the access to parent->signal fields,
1241 		 * as other threads in the parent group can be right
1242 		 * here reaping other children at the same time.
1243 		 *
1244 		 * We use thread_group_times() to get times for the thread
1245 		 * group, which consolidates times for all threads in the
1246 		 * group including the group leader.
1247 		 */
1248 		thread_group_times(p, &tgutime, &tgstime);
1249 		spin_lock_irq(&p->real_parent->sighand->siglock);
1250 		psig = p->real_parent->signal;
1251 		sig = p->signal;
1252 		psig->cutime =
1253 			cputime_add(psig->cutime,
1254 			cputime_add(tgutime,
1255 				    sig->cutime));
1256 		psig->cstime =
1257 			cputime_add(psig->cstime,
1258 			cputime_add(tgstime,
1259 				    sig->cstime));
1260 		psig->cgtime =
1261 			cputime_add(psig->cgtime,
1262 			cputime_add(p->gtime,
1263 			cputime_add(sig->gtime,
1264 				    sig->cgtime)));
1265 		psig->cmin_flt +=
1266 			p->min_flt + sig->min_flt + sig->cmin_flt;
1267 		psig->cmaj_flt +=
1268 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1269 		psig->cnvcsw +=
1270 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1271 		psig->cnivcsw +=
1272 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1273 		psig->cinblock +=
1274 			task_io_get_inblock(p) +
1275 			sig->inblock + sig->cinblock;
1276 		psig->coublock +=
1277 			task_io_get_oublock(p) +
1278 			sig->oublock + sig->coublock;
1279 		maxrss = max(sig->maxrss, sig->cmaxrss);
1280 		if (psig->cmaxrss < maxrss)
1281 			psig->cmaxrss = maxrss;
1282 		task_io_accounting_add(&psig->ioac, &p->ioac);
1283 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1284 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1285 	}
1286 
1287 	/*
1288 	 * Now we are sure this task is interesting, and no other
1289 	 * thread can reap it because we set its state to EXIT_DEAD.
1290 	 */
1291 	read_unlock(&tasklist_lock);
1292 
1293 	retval = wo->wo_rusage
1294 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1295 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1296 		? p->signal->group_exit_code : p->exit_code;
1297 	if (!retval && wo->wo_stat)
1298 		retval = put_user(status, wo->wo_stat);
1299 
1300 	infop = wo->wo_info;
1301 	if (!retval && infop)
1302 		retval = put_user(SIGCHLD, &infop->si_signo);
1303 	if (!retval && infop)
1304 		retval = put_user(0, &infop->si_errno);
1305 	if (!retval && infop) {
1306 		int why;
1307 
1308 		if ((status & 0x7f) == 0) {
1309 			why = CLD_EXITED;
1310 			status >>= 8;
1311 		} else {
1312 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1313 			status &= 0x7f;
1314 		}
1315 		retval = put_user((short)why, &infop->si_code);
1316 		if (!retval)
1317 			retval = put_user(status, &infop->si_status);
1318 	}
1319 	if (!retval && infop)
1320 		retval = put_user(pid, &infop->si_pid);
1321 	if (!retval && infop)
1322 		retval = put_user(uid, &infop->si_uid);
1323 	if (!retval)
1324 		retval = pid;
1325 
1326 	if (traced) {
1327 		write_lock_irq(&tasklist_lock);
1328 		/* We dropped tasklist, ptracer could die and untrace */
1329 		ptrace_unlink(p);
1330 		/*
1331 		 * If this is not a detached task, notify the parent.
1332 		 * If it's still not detached after that, don't release
1333 		 * it now.
1334 		 */
1335 		if (!task_detached(p)) {
1336 			do_notify_parent(p, p->exit_signal);
1337 			if (!task_detached(p)) {
1338 				p->exit_state = EXIT_ZOMBIE;
1339 				p = NULL;
1340 			}
1341 		}
1342 		write_unlock_irq(&tasklist_lock);
1343 	}
1344 	if (p != NULL)
1345 		release_task(p);
1346 
1347 	return retval;
1348 }
1349 
1350 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1351 {
1352 	if (ptrace) {
1353 		if (task_is_stopped_or_traced(p))
1354 			return &p->exit_code;
1355 	} else {
1356 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1357 			return &p->signal->group_exit_code;
1358 	}
1359 	return NULL;
1360 }
1361 
1362 /*
1363  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1364  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1365  * the lock and this task is uninteresting.  If we return nonzero, we have
1366  * released the lock and the system call should return.
1367  */
1368 static int wait_task_stopped(struct wait_opts *wo,
1369 				int ptrace, struct task_struct *p)
1370 {
1371 	struct siginfo __user *infop;
1372 	int retval, exit_code, *p_code, why;
1373 	uid_t uid = 0; /* unneeded, required by compiler */
1374 	pid_t pid;
1375 
1376 	/*
1377 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1378 	 */
1379 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1380 		return 0;
1381 
1382 	exit_code = 0;
1383 	spin_lock_irq(&p->sighand->siglock);
1384 
1385 	p_code = task_stopped_code(p, ptrace);
1386 	if (unlikely(!p_code))
1387 		goto unlock_sig;
1388 
1389 	exit_code = *p_code;
1390 	if (!exit_code)
1391 		goto unlock_sig;
1392 
1393 	if (!unlikely(wo->wo_flags & WNOWAIT))
1394 		*p_code = 0;
1395 
1396 	/* don't need the RCU readlock here as we're holding a spinlock */
1397 	uid = __task_cred(p)->uid;
1398 unlock_sig:
1399 	spin_unlock_irq(&p->sighand->siglock);
1400 	if (!exit_code)
1401 		return 0;
1402 
1403 	/*
1404 	 * Now we are pretty sure this task is interesting.
1405 	 * Make sure it doesn't get reaped out from under us while we
1406 	 * give up the lock and then examine it below.  We don't want to
1407 	 * keep holding onto the tasklist_lock while we call getrusage and
1408 	 * possibly take page faults for user memory.
1409 	 */
1410 	get_task_struct(p);
1411 	pid = task_pid_vnr(p);
1412 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1413 	read_unlock(&tasklist_lock);
1414 
1415 	if (unlikely(wo->wo_flags & WNOWAIT))
1416 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1417 
1418 	retval = wo->wo_rusage
1419 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1420 	if (!retval && wo->wo_stat)
1421 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1422 
1423 	infop = wo->wo_info;
1424 	if (!retval && infop)
1425 		retval = put_user(SIGCHLD, &infop->si_signo);
1426 	if (!retval && infop)
1427 		retval = put_user(0, &infop->si_errno);
1428 	if (!retval && infop)
1429 		retval = put_user((short)why, &infop->si_code);
1430 	if (!retval && infop)
1431 		retval = put_user(exit_code, &infop->si_status);
1432 	if (!retval && infop)
1433 		retval = put_user(pid, &infop->si_pid);
1434 	if (!retval && infop)
1435 		retval = put_user(uid, &infop->si_uid);
1436 	if (!retval)
1437 		retval = pid;
1438 	put_task_struct(p);
1439 
1440 	BUG_ON(!retval);
1441 	return retval;
1442 }
1443 
1444 /*
1445  * Handle do_wait work for one task in a live, non-stopped state.
1446  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1447  * the lock and this task is uninteresting.  If we return nonzero, we have
1448  * released the lock and the system call should return.
1449  */
1450 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1451 {
1452 	int retval;
1453 	pid_t pid;
1454 	uid_t uid;
1455 
1456 	if (!unlikely(wo->wo_flags & WCONTINUED))
1457 		return 0;
1458 
1459 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1460 		return 0;
1461 
1462 	spin_lock_irq(&p->sighand->siglock);
1463 	/* Re-check with the lock held.  */
1464 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1465 		spin_unlock_irq(&p->sighand->siglock);
1466 		return 0;
1467 	}
1468 	if (!unlikely(wo->wo_flags & WNOWAIT))
1469 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1470 	uid = __task_cred(p)->uid;
1471 	spin_unlock_irq(&p->sighand->siglock);
1472 
1473 	pid = task_pid_vnr(p);
1474 	get_task_struct(p);
1475 	read_unlock(&tasklist_lock);
1476 
1477 	if (!wo->wo_info) {
1478 		retval = wo->wo_rusage
1479 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1480 		put_task_struct(p);
1481 		if (!retval && wo->wo_stat)
1482 			retval = put_user(0xffff, wo->wo_stat);
1483 		if (!retval)
1484 			retval = pid;
1485 	} else {
1486 		retval = wait_noreap_copyout(wo, p, pid, uid,
1487 					     CLD_CONTINUED, SIGCONT);
1488 		BUG_ON(retval == 0);
1489 	}
1490 
1491 	return retval;
1492 }
1493 
1494 /*
1495  * Consider @p for a wait by @parent.
1496  *
1497  * -ECHILD should be in ->notask_error before the first call.
1498  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1499  * Returns zero if the search for a child should continue;
1500  * then ->notask_error is 0 if @p is an eligible child,
1501  * or another error from security_task_wait(), or still -ECHILD.
1502  */
1503 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1504 				struct task_struct *p)
1505 {
1506 	int ret = eligible_child(wo, p);
1507 	if (!ret)
1508 		return ret;
1509 
1510 	ret = security_task_wait(p);
1511 	if (unlikely(ret < 0)) {
1512 		/*
1513 		 * If we have not yet seen any eligible child,
1514 		 * then let this error code replace -ECHILD.
1515 		 * A permission error will give the user a clue
1516 		 * to look for security policy problems, rather
1517 		 * than for mysterious wait bugs.
1518 		 */
1519 		if (wo->notask_error)
1520 			wo->notask_error = ret;
1521 		return 0;
1522 	}
1523 
1524 	if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1525 		/*
1526 		 * This child is hidden by ptrace.
1527 		 * We aren't allowed to see it now, but eventually we will.
1528 		 */
1529 		wo->notask_error = 0;
1530 		return 0;
1531 	}
1532 
1533 	if (p->exit_state == EXIT_DEAD)
1534 		return 0;
1535 
1536 	/*
1537 	 * We don't reap group leaders with subthreads.
1538 	 */
1539 	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1540 		return wait_task_zombie(wo, p);
1541 
1542 	/*
1543 	 * It's stopped or running now, so it might
1544 	 * later continue, exit, or stop again.
1545 	 */
1546 	wo->notask_error = 0;
1547 
1548 	if (task_stopped_code(p, ptrace))
1549 		return wait_task_stopped(wo, ptrace, p);
1550 
1551 	return wait_task_continued(wo, p);
1552 }
1553 
1554 /*
1555  * Do the work of do_wait() for one thread in the group, @tsk.
1556  *
1557  * -ECHILD should be in ->notask_error before the first call.
1558  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1559  * Returns zero if the search for a child should continue; then
1560  * ->notask_error is 0 if there were any eligible children,
1561  * or another error from security_task_wait(), or still -ECHILD.
1562  */
1563 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1564 {
1565 	struct task_struct *p;
1566 
1567 	list_for_each_entry(p, &tsk->children, sibling) {
1568 		int ret = wait_consider_task(wo, 0, p);
1569 		if (ret)
1570 			return ret;
1571 	}
1572 
1573 	return 0;
1574 }
1575 
1576 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1577 {
1578 	struct task_struct *p;
1579 
1580 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1581 		int ret = wait_consider_task(wo, 1, p);
1582 		if (ret)
1583 			return ret;
1584 	}
1585 
1586 	return 0;
1587 }
1588 
1589 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1590 				int sync, void *key)
1591 {
1592 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1593 						child_wait);
1594 	struct task_struct *p = key;
1595 
1596 	if (!eligible_pid(wo, p))
1597 		return 0;
1598 
1599 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1600 		return 0;
1601 
1602 	return default_wake_function(wait, mode, sync, key);
1603 }
1604 
1605 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1606 {
1607 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1608 				TASK_INTERRUPTIBLE, 1, p);
1609 }
1610 
1611 static long do_wait(struct wait_opts *wo)
1612 {
1613 	struct task_struct *tsk;
1614 	int retval;
1615 
1616 	trace_sched_process_wait(wo->wo_pid);
1617 
1618 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1619 	wo->child_wait.private = current;
1620 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1621 repeat:
1622 	/*
1623 	 * If there is nothing that can match our critiera just get out.
1624 	 * We will clear ->notask_error to zero if we see any child that
1625 	 * might later match our criteria, even if we are not able to reap
1626 	 * it yet.
1627 	 */
1628 	wo->notask_error = -ECHILD;
1629 	if ((wo->wo_type < PIDTYPE_MAX) &&
1630 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1631 		goto notask;
1632 
1633 	set_current_state(TASK_INTERRUPTIBLE);
1634 	read_lock(&tasklist_lock);
1635 	tsk = current;
1636 	do {
1637 		retval = do_wait_thread(wo, tsk);
1638 		if (retval)
1639 			goto end;
1640 
1641 		retval = ptrace_do_wait(wo, tsk);
1642 		if (retval)
1643 			goto end;
1644 
1645 		if (wo->wo_flags & __WNOTHREAD)
1646 			break;
1647 	} while_each_thread(current, tsk);
1648 	read_unlock(&tasklist_lock);
1649 
1650 notask:
1651 	retval = wo->notask_error;
1652 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1653 		retval = -ERESTARTSYS;
1654 		if (!signal_pending(current)) {
1655 			schedule();
1656 			goto repeat;
1657 		}
1658 	}
1659 end:
1660 	__set_current_state(TASK_RUNNING);
1661 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1662 	return retval;
1663 }
1664 
1665 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1666 		infop, int, options, struct rusage __user *, ru)
1667 {
1668 	struct wait_opts wo;
1669 	struct pid *pid = NULL;
1670 	enum pid_type type;
1671 	long ret;
1672 
1673 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1674 		return -EINVAL;
1675 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1676 		return -EINVAL;
1677 
1678 	switch (which) {
1679 	case P_ALL:
1680 		type = PIDTYPE_MAX;
1681 		break;
1682 	case P_PID:
1683 		type = PIDTYPE_PID;
1684 		if (upid <= 0)
1685 			return -EINVAL;
1686 		break;
1687 	case P_PGID:
1688 		type = PIDTYPE_PGID;
1689 		if (upid <= 0)
1690 			return -EINVAL;
1691 		break;
1692 	default:
1693 		return -EINVAL;
1694 	}
1695 
1696 	if (type < PIDTYPE_MAX)
1697 		pid = find_get_pid(upid);
1698 
1699 	wo.wo_type	= type;
1700 	wo.wo_pid	= pid;
1701 	wo.wo_flags	= options;
1702 	wo.wo_info	= infop;
1703 	wo.wo_stat	= NULL;
1704 	wo.wo_rusage	= ru;
1705 	ret = do_wait(&wo);
1706 
1707 	if (ret > 0) {
1708 		ret = 0;
1709 	} else if (infop) {
1710 		/*
1711 		 * For a WNOHANG return, clear out all the fields
1712 		 * we would set so the user can easily tell the
1713 		 * difference.
1714 		 */
1715 		if (!ret)
1716 			ret = put_user(0, &infop->si_signo);
1717 		if (!ret)
1718 			ret = put_user(0, &infop->si_errno);
1719 		if (!ret)
1720 			ret = put_user(0, &infop->si_code);
1721 		if (!ret)
1722 			ret = put_user(0, &infop->si_pid);
1723 		if (!ret)
1724 			ret = put_user(0, &infop->si_uid);
1725 		if (!ret)
1726 			ret = put_user(0, &infop->si_status);
1727 	}
1728 
1729 	put_pid(pid);
1730 
1731 	/* avoid REGPARM breakage on x86: */
1732 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1733 	return ret;
1734 }
1735 
1736 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1737 		int, options, struct rusage __user *, ru)
1738 {
1739 	struct wait_opts wo;
1740 	struct pid *pid = NULL;
1741 	enum pid_type type;
1742 	long ret;
1743 
1744 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1745 			__WNOTHREAD|__WCLONE|__WALL))
1746 		return -EINVAL;
1747 
1748 	if (upid == -1)
1749 		type = PIDTYPE_MAX;
1750 	else if (upid < 0) {
1751 		type = PIDTYPE_PGID;
1752 		pid = find_get_pid(-upid);
1753 	} else if (upid == 0) {
1754 		type = PIDTYPE_PGID;
1755 		pid = get_task_pid(current, PIDTYPE_PGID);
1756 	} else /* upid > 0 */ {
1757 		type = PIDTYPE_PID;
1758 		pid = find_get_pid(upid);
1759 	}
1760 
1761 	wo.wo_type	= type;
1762 	wo.wo_pid	= pid;
1763 	wo.wo_flags	= options | WEXITED;
1764 	wo.wo_info	= NULL;
1765 	wo.wo_stat	= stat_addr;
1766 	wo.wo_rusage	= ru;
1767 	ret = do_wait(&wo);
1768 	put_pid(pid);
1769 
1770 	/* avoid REGPARM breakage on x86: */
1771 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1772 	return ret;
1773 }
1774 
1775 #ifdef __ARCH_WANT_SYS_WAITPID
1776 
1777 /*
1778  * sys_waitpid() remains for compatibility. waitpid() should be
1779  * implemented by calling sys_wait4() from libc.a.
1780  */
1781 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1782 {
1783 	return sys_wait4(pid, stat_addr, options, NULL);
1784 }
1785 
1786 #endif
1787