1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/smp_lock.h> 11 #include <linux/module.h> 12 #include <linux/capability.h> 13 #include <linux/completion.h> 14 #include <linux/personality.h> 15 #include <linux/tty.h> 16 #include <linux/mnt_namespace.h> 17 #include <linux/key.h> 18 #include <linux/security.h> 19 #include <linux/cpu.h> 20 #include <linux/acct.h> 21 #include <linux/tsacct_kern.h> 22 #include <linux/file.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/mempolicy.h> 31 #include <linux/taskstats_kern.h> 32 #include <linux/delayacct.h> 33 #include <linux/cpuset.h> 34 #include <linux/syscalls.h> 35 #include <linux/signal.h> 36 #include <linux/posix-timers.h> 37 #include <linux/cn_proc.h> 38 #include <linux/mutex.h> 39 #include <linux/futex.h> 40 #include <linux/compat.h> 41 #include <linux/pipe_fs_i.h> 42 #include <linux/audit.h> /* for audit_free() */ 43 #include <linux/resource.h> 44 #include <linux/blkdev.h> 45 46 #include <asm/uaccess.h> 47 #include <asm/unistd.h> 48 #include <asm/pgtable.h> 49 #include <asm/mmu_context.h> 50 51 extern void sem_exit (void); 52 53 static void exit_mm(struct task_struct * tsk); 54 55 static void __unhash_process(struct task_struct *p) 56 { 57 nr_threads--; 58 detach_pid(p, PIDTYPE_PID); 59 if (thread_group_leader(p)) { 60 detach_pid(p, PIDTYPE_PGID); 61 detach_pid(p, PIDTYPE_SID); 62 63 list_del_rcu(&p->tasks); 64 __get_cpu_var(process_counts)--; 65 } 66 list_del_rcu(&p->thread_group); 67 remove_parent(p); 68 } 69 70 /* 71 * This function expects the tasklist_lock write-locked. 72 */ 73 static void __exit_signal(struct task_struct *tsk) 74 { 75 struct signal_struct *sig = tsk->signal; 76 struct sighand_struct *sighand; 77 78 BUG_ON(!sig); 79 BUG_ON(!atomic_read(&sig->count)); 80 81 rcu_read_lock(); 82 sighand = rcu_dereference(tsk->sighand); 83 spin_lock(&sighand->siglock); 84 85 posix_cpu_timers_exit(tsk); 86 if (atomic_dec_and_test(&sig->count)) 87 posix_cpu_timers_exit_group(tsk); 88 else { 89 /* 90 * If there is any task waiting for the group exit 91 * then notify it: 92 */ 93 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) { 94 wake_up_process(sig->group_exit_task); 95 sig->group_exit_task = NULL; 96 } 97 if (tsk == sig->curr_target) 98 sig->curr_target = next_thread(tsk); 99 /* 100 * Accumulate here the counters for all threads but the 101 * group leader as they die, so they can be added into 102 * the process-wide totals when those are taken. 103 * The group leader stays around as a zombie as long 104 * as there are other threads. When it gets reaped, 105 * the exit.c code will add its counts into these totals. 106 * We won't ever get here for the group leader, since it 107 * will have been the last reference on the signal_struct. 108 */ 109 sig->utime = cputime_add(sig->utime, tsk->utime); 110 sig->stime = cputime_add(sig->stime, tsk->stime); 111 sig->min_flt += tsk->min_flt; 112 sig->maj_flt += tsk->maj_flt; 113 sig->nvcsw += tsk->nvcsw; 114 sig->nivcsw += tsk->nivcsw; 115 sig->sched_time += tsk->sched_time; 116 sig = NULL; /* Marker for below. */ 117 } 118 119 __unhash_process(tsk); 120 121 tsk->signal = NULL; 122 tsk->sighand = NULL; 123 spin_unlock(&sighand->siglock); 124 rcu_read_unlock(); 125 126 __cleanup_sighand(sighand); 127 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 128 flush_sigqueue(&tsk->pending); 129 if (sig) { 130 flush_sigqueue(&sig->shared_pending); 131 taskstats_tgid_free(sig); 132 __cleanup_signal(sig); 133 } 134 } 135 136 static void delayed_put_task_struct(struct rcu_head *rhp) 137 { 138 put_task_struct(container_of(rhp, struct task_struct, rcu)); 139 } 140 141 void release_task(struct task_struct * p) 142 { 143 struct task_struct *leader; 144 int zap_leader; 145 repeat: 146 atomic_dec(&p->user->processes); 147 write_lock_irq(&tasklist_lock); 148 ptrace_unlink(p); 149 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); 150 __exit_signal(p); 151 152 /* 153 * If we are the last non-leader member of the thread 154 * group, and the leader is zombie, then notify the 155 * group leader's parent process. (if it wants notification.) 156 */ 157 zap_leader = 0; 158 leader = p->group_leader; 159 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 160 BUG_ON(leader->exit_signal == -1); 161 do_notify_parent(leader, leader->exit_signal); 162 /* 163 * If we were the last child thread and the leader has 164 * exited already, and the leader's parent ignores SIGCHLD, 165 * then we are the one who should release the leader. 166 * 167 * do_notify_parent() will have marked it self-reaping in 168 * that case. 169 */ 170 zap_leader = (leader->exit_signal == -1); 171 } 172 173 sched_exit(p); 174 write_unlock_irq(&tasklist_lock); 175 proc_flush_task(p); 176 release_thread(p); 177 call_rcu(&p->rcu, delayed_put_task_struct); 178 179 p = leader; 180 if (unlikely(zap_leader)) 181 goto repeat; 182 } 183 184 /* 185 * This checks not only the pgrp, but falls back on the pid if no 186 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 187 * without this... 188 */ 189 int session_of_pgrp(int pgrp) 190 { 191 struct task_struct *p; 192 int sid = 0; 193 194 read_lock(&tasklist_lock); 195 196 p = find_task_by_pid_type(PIDTYPE_PGID, pgrp); 197 if (p == NULL) 198 p = find_task_by_pid(pgrp); 199 if (p != NULL) 200 sid = process_session(p); 201 202 read_unlock(&tasklist_lock); 203 204 return sid; 205 } 206 207 /* 208 * Determine if a process group is "orphaned", according to the POSIX 209 * definition in 2.2.2.52. Orphaned process groups are not to be affected 210 * by terminal-generated stop signals. Newly orphaned process groups are 211 * to receive a SIGHUP and a SIGCONT. 212 * 213 * "I ask you, have you ever known what it is to be an orphan?" 214 */ 215 static int will_become_orphaned_pgrp(int pgrp, struct task_struct *ignored_task) 216 { 217 struct task_struct *p; 218 int ret = 1; 219 220 do_each_task_pid(pgrp, PIDTYPE_PGID, p) { 221 if (p == ignored_task 222 || p->exit_state 223 || is_init(p->real_parent)) 224 continue; 225 if (process_group(p->real_parent) != pgrp && 226 process_session(p->real_parent) == process_session(p)) { 227 ret = 0; 228 break; 229 } 230 } while_each_task_pid(pgrp, PIDTYPE_PGID, p); 231 return ret; /* (sighing) "Often!" */ 232 } 233 234 int is_orphaned_pgrp(int pgrp) 235 { 236 int retval; 237 238 read_lock(&tasklist_lock); 239 retval = will_become_orphaned_pgrp(pgrp, NULL); 240 read_unlock(&tasklist_lock); 241 242 return retval; 243 } 244 245 static int has_stopped_jobs(int pgrp) 246 { 247 int retval = 0; 248 struct task_struct *p; 249 250 do_each_task_pid(pgrp, PIDTYPE_PGID, p) { 251 if (p->state != TASK_STOPPED) 252 continue; 253 retval = 1; 254 break; 255 } while_each_task_pid(pgrp, PIDTYPE_PGID, p); 256 return retval; 257 } 258 259 /** 260 * reparent_to_init - Reparent the calling kernel thread to the init task 261 * of the pid space that the thread belongs to. 262 * 263 * If a kernel thread is launched as a result of a system call, or if 264 * it ever exits, it should generally reparent itself to init so that 265 * it is correctly cleaned up on exit. 266 * 267 * The various task state such as scheduling policy and priority may have 268 * been inherited from a user process, so we reset them to sane values here. 269 * 270 * NOTE that reparent_to_init() gives the caller full capabilities. 271 */ 272 static void reparent_to_init(void) 273 { 274 write_lock_irq(&tasklist_lock); 275 276 ptrace_unlink(current); 277 /* Reparent to init */ 278 remove_parent(current); 279 current->parent = child_reaper(current); 280 current->real_parent = child_reaper(current); 281 add_parent(current); 282 283 /* Set the exit signal to SIGCHLD so we signal init on exit */ 284 current->exit_signal = SIGCHLD; 285 286 if (!has_rt_policy(current) && (task_nice(current) < 0)) 287 set_user_nice(current, 0); 288 /* cpus_allowed? */ 289 /* rt_priority? */ 290 /* signals? */ 291 security_task_reparent_to_init(current); 292 memcpy(current->signal->rlim, init_task.signal->rlim, 293 sizeof(current->signal->rlim)); 294 atomic_inc(&(INIT_USER->__count)); 295 write_unlock_irq(&tasklist_lock); 296 switch_uid(INIT_USER); 297 } 298 299 void __set_special_pids(pid_t session, pid_t pgrp) 300 { 301 struct task_struct *curr = current->group_leader; 302 303 if (process_session(curr) != session) { 304 detach_pid(curr, PIDTYPE_SID); 305 set_signal_session(curr->signal, session); 306 attach_pid(curr, PIDTYPE_SID, session); 307 } 308 if (process_group(curr) != pgrp) { 309 detach_pid(curr, PIDTYPE_PGID); 310 curr->signal->pgrp = pgrp; 311 attach_pid(curr, PIDTYPE_PGID, pgrp); 312 } 313 } 314 315 static void set_special_pids(pid_t session, pid_t pgrp) 316 { 317 write_lock_irq(&tasklist_lock); 318 __set_special_pids(session, pgrp); 319 write_unlock_irq(&tasklist_lock); 320 } 321 322 /* 323 * Let kernel threads use this to say that they 324 * allow a certain signal (since daemonize() will 325 * have disabled all of them by default). 326 */ 327 int allow_signal(int sig) 328 { 329 if (!valid_signal(sig) || sig < 1) 330 return -EINVAL; 331 332 spin_lock_irq(¤t->sighand->siglock); 333 sigdelset(¤t->blocked, sig); 334 if (!current->mm) { 335 /* Kernel threads handle their own signals. 336 Let the signal code know it'll be handled, so 337 that they don't get converted to SIGKILL or 338 just silently dropped */ 339 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 340 } 341 recalc_sigpending(); 342 spin_unlock_irq(¤t->sighand->siglock); 343 return 0; 344 } 345 346 EXPORT_SYMBOL(allow_signal); 347 348 int disallow_signal(int sig) 349 { 350 if (!valid_signal(sig) || sig < 1) 351 return -EINVAL; 352 353 spin_lock_irq(¤t->sighand->siglock); 354 sigaddset(¤t->blocked, sig); 355 recalc_sigpending(); 356 spin_unlock_irq(¤t->sighand->siglock); 357 return 0; 358 } 359 360 EXPORT_SYMBOL(disallow_signal); 361 362 /* 363 * Put all the gunge required to become a kernel thread without 364 * attached user resources in one place where it belongs. 365 */ 366 367 void daemonize(const char *name, ...) 368 { 369 va_list args; 370 struct fs_struct *fs; 371 sigset_t blocked; 372 373 va_start(args, name); 374 vsnprintf(current->comm, sizeof(current->comm), name, args); 375 va_end(args); 376 377 /* 378 * If we were started as result of loading a module, close all of the 379 * user space pages. We don't need them, and if we didn't close them 380 * they would be locked into memory. 381 */ 382 exit_mm(current); 383 384 set_special_pids(1, 1); 385 proc_clear_tty(current); 386 387 /* Block and flush all signals */ 388 sigfillset(&blocked); 389 sigprocmask(SIG_BLOCK, &blocked, NULL); 390 flush_signals(current); 391 392 /* Become as one with the init task */ 393 394 exit_fs(current); /* current->fs->count--; */ 395 fs = init_task.fs; 396 current->fs = fs; 397 atomic_inc(&fs->count); 398 399 exit_task_namespaces(current); 400 current->nsproxy = init_task.nsproxy; 401 get_task_namespaces(current); 402 403 exit_files(current); 404 current->files = init_task.files; 405 atomic_inc(¤t->files->count); 406 407 reparent_to_init(); 408 } 409 410 EXPORT_SYMBOL(daemonize); 411 412 static void close_files(struct files_struct * files) 413 { 414 int i, j; 415 struct fdtable *fdt; 416 417 j = 0; 418 419 /* 420 * It is safe to dereference the fd table without RCU or 421 * ->file_lock because this is the last reference to the 422 * files structure. 423 */ 424 fdt = files_fdtable(files); 425 for (;;) { 426 unsigned long set; 427 i = j * __NFDBITS; 428 if (i >= fdt->max_fds) 429 break; 430 set = fdt->open_fds->fds_bits[j++]; 431 while (set) { 432 if (set & 1) { 433 struct file * file = xchg(&fdt->fd[i], NULL); 434 if (file) 435 filp_close(file, files); 436 } 437 i++; 438 set >>= 1; 439 } 440 } 441 } 442 443 struct files_struct *get_files_struct(struct task_struct *task) 444 { 445 struct files_struct *files; 446 447 task_lock(task); 448 files = task->files; 449 if (files) 450 atomic_inc(&files->count); 451 task_unlock(task); 452 453 return files; 454 } 455 456 void fastcall put_files_struct(struct files_struct *files) 457 { 458 struct fdtable *fdt; 459 460 if (atomic_dec_and_test(&files->count)) { 461 close_files(files); 462 /* 463 * Free the fd and fdset arrays if we expanded them. 464 * If the fdtable was embedded, pass files for freeing 465 * at the end of the RCU grace period. Otherwise, 466 * you can free files immediately. 467 */ 468 fdt = files_fdtable(files); 469 if (fdt != &files->fdtab) 470 kmem_cache_free(files_cachep, files); 471 free_fdtable(fdt); 472 } 473 } 474 475 EXPORT_SYMBOL(put_files_struct); 476 477 void reset_files_struct(struct task_struct *tsk, struct files_struct *files) 478 { 479 struct files_struct *old; 480 481 old = tsk->files; 482 task_lock(tsk); 483 tsk->files = files; 484 task_unlock(tsk); 485 put_files_struct(old); 486 } 487 EXPORT_SYMBOL(reset_files_struct); 488 489 static inline void __exit_files(struct task_struct *tsk) 490 { 491 struct files_struct * files = tsk->files; 492 493 if (files) { 494 task_lock(tsk); 495 tsk->files = NULL; 496 task_unlock(tsk); 497 put_files_struct(files); 498 } 499 } 500 501 void exit_files(struct task_struct *tsk) 502 { 503 __exit_files(tsk); 504 } 505 506 static inline void __put_fs_struct(struct fs_struct *fs) 507 { 508 /* No need to hold fs->lock if we are killing it */ 509 if (atomic_dec_and_test(&fs->count)) { 510 dput(fs->root); 511 mntput(fs->rootmnt); 512 dput(fs->pwd); 513 mntput(fs->pwdmnt); 514 if (fs->altroot) { 515 dput(fs->altroot); 516 mntput(fs->altrootmnt); 517 } 518 kmem_cache_free(fs_cachep, fs); 519 } 520 } 521 522 void put_fs_struct(struct fs_struct *fs) 523 { 524 __put_fs_struct(fs); 525 } 526 527 static inline void __exit_fs(struct task_struct *tsk) 528 { 529 struct fs_struct * fs = tsk->fs; 530 531 if (fs) { 532 task_lock(tsk); 533 tsk->fs = NULL; 534 task_unlock(tsk); 535 __put_fs_struct(fs); 536 } 537 } 538 539 void exit_fs(struct task_struct *tsk) 540 { 541 __exit_fs(tsk); 542 } 543 544 EXPORT_SYMBOL_GPL(exit_fs); 545 546 /* 547 * Turn us into a lazy TLB process if we 548 * aren't already.. 549 */ 550 static void exit_mm(struct task_struct * tsk) 551 { 552 struct mm_struct *mm = tsk->mm; 553 554 mm_release(tsk, mm); 555 if (!mm) 556 return; 557 /* 558 * Serialize with any possible pending coredump. 559 * We must hold mmap_sem around checking core_waiters 560 * and clearing tsk->mm. The core-inducing thread 561 * will increment core_waiters for each thread in the 562 * group with ->mm != NULL. 563 */ 564 down_read(&mm->mmap_sem); 565 if (mm->core_waiters) { 566 up_read(&mm->mmap_sem); 567 down_write(&mm->mmap_sem); 568 if (!--mm->core_waiters) 569 complete(mm->core_startup_done); 570 up_write(&mm->mmap_sem); 571 572 wait_for_completion(&mm->core_done); 573 down_read(&mm->mmap_sem); 574 } 575 atomic_inc(&mm->mm_count); 576 BUG_ON(mm != tsk->active_mm); 577 /* more a memory barrier than a real lock */ 578 task_lock(tsk); 579 tsk->mm = NULL; 580 up_read(&mm->mmap_sem); 581 enter_lazy_tlb(mm, current); 582 task_unlock(tsk); 583 mmput(mm); 584 } 585 586 static inline void 587 choose_new_parent(struct task_struct *p, struct task_struct *reaper) 588 { 589 /* 590 * Make sure we're not reparenting to ourselves and that 591 * the parent is not a zombie. 592 */ 593 BUG_ON(p == reaper || reaper->exit_state); 594 p->real_parent = reaper; 595 } 596 597 static void 598 reparent_thread(struct task_struct *p, struct task_struct *father, int traced) 599 { 600 if (p->pdeath_signal) 601 /* We already hold the tasklist_lock here. */ 602 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 603 604 /* Move the child from its dying parent to the new one. */ 605 if (unlikely(traced)) { 606 /* Preserve ptrace links if someone else is tracing this child. */ 607 list_del_init(&p->ptrace_list); 608 if (p->parent != p->real_parent) 609 list_add(&p->ptrace_list, &p->real_parent->ptrace_children); 610 } else { 611 /* If this child is being traced, then we're the one tracing it 612 * anyway, so let go of it. 613 */ 614 p->ptrace = 0; 615 remove_parent(p); 616 p->parent = p->real_parent; 617 add_parent(p); 618 619 if (p->state == TASK_TRACED) { 620 /* 621 * If it was at a trace stop, turn it into 622 * a normal stop since it's no longer being 623 * traced. 624 */ 625 ptrace_untrace(p); 626 } 627 } 628 629 /* If this is a threaded reparent there is no need to 630 * notify anyone anything has happened. 631 */ 632 if (p->real_parent->group_leader == father->group_leader) 633 return; 634 635 /* We don't want people slaying init. */ 636 if (p->exit_signal != -1) 637 p->exit_signal = SIGCHLD; 638 639 /* If we'd notified the old parent about this child's death, 640 * also notify the new parent. 641 */ 642 if (!traced && p->exit_state == EXIT_ZOMBIE && 643 p->exit_signal != -1 && thread_group_empty(p)) 644 do_notify_parent(p, p->exit_signal); 645 646 /* 647 * process group orphan check 648 * Case ii: Our child is in a different pgrp 649 * than we are, and it was the only connection 650 * outside, so the child pgrp is now orphaned. 651 */ 652 if ((process_group(p) != process_group(father)) && 653 (process_session(p) == process_session(father))) { 654 int pgrp = process_group(p); 655 656 if (will_become_orphaned_pgrp(pgrp, NULL) && 657 has_stopped_jobs(pgrp)) { 658 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp); 659 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp); 660 } 661 } 662 } 663 664 /* 665 * When we die, we re-parent all our children. 666 * Try to give them to another thread in our thread 667 * group, and if no such member exists, give it to 668 * the child reaper process (ie "init") in our pid 669 * space. 670 */ 671 static void 672 forget_original_parent(struct task_struct *father, struct list_head *to_release) 673 { 674 struct task_struct *p, *reaper = father; 675 struct list_head *_p, *_n; 676 677 do { 678 reaper = next_thread(reaper); 679 if (reaper == father) { 680 reaper = child_reaper(father); 681 break; 682 } 683 } while (reaper->exit_state); 684 685 /* 686 * There are only two places where our children can be: 687 * 688 * - in our child list 689 * - in our ptraced child list 690 * 691 * Search them and reparent children. 692 */ 693 list_for_each_safe(_p, _n, &father->children) { 694 int ptrace; 695 p = list_entry(_p, struct task_struct, sibling); 696 697 ptrace = p->ptrace; 698 699 /* if father isn't the real parent, then ptrace must be enabled */ 700 BUG_ON(father != p->real_parent && !ptrace); 701 702 if (father == p->real_parent) { 703 /* reparent with a reaper, real father it's us */ 704 choose_new_parent(p, reaper); 705 reparent_thread(p, father, 0); 706 } else { 707 /* reparent ptraced task to its real parent */ 708 __ptrace_unlink (p); 709 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && 710 thread_group_empty(p)) 711 do_notify_parent(p, p->exit_signal); 712 } 713 714 /* 715 * if the ptraced child is a zombie with exit_signal == -1 716 * we must collect it before we exit, or it will remain 717 * zombie forever since we prevented it from self-reap itself 718 * while it was being traced by us, to be able to see it in wait4. 719 */ 720 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) 721 list_add(&p->ptrace_list, to_release); 722 } 723 list_for_each_safe(_p, _n, &father->ptrace_children) { 724 p = list_entry(_p, struct task_struct, ptrace_list); 725 choose_new_parent(p, reaper); 726 reparent_thread(p, father, 1); 727 } 728 } 729 730 /* 731 * Send signals to all our closest relatives so that they know 732 * to properly mourn us.. 733 */ 734 static void exit_notify(struct task_struct *tsk) 735 { 736 int state; 737 struct task_struct *t; 738 struct list_head ptrace_dead, *_p, *_n; 739 740 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT) 741 && !thread_group_empty(tsk)) { 742 /* 743 * This occurs when there was a race between our exit 744 * syscall and a group signal choosing us as the one to 745 * wake up. It could be that we are the only thread 746 * alerted to check for pending signals, but another thread 747 * should be woken now to take the signal since we will not. 748 * Now we'll wake all the threads in the group just to make 749 * sure someone gets all the pending signals. 750 */ 751 read_lock(&tasklist_lock); 752 spin_lock_irq(&tsk->sighand->siglock); 753 for (t = next_thread(tsk); t != tsk; t = next_thread(t)) 754 if (!signal_pending(t) && !(t->flags & PF_EXITING)) { 755 recalc_sigpending_tsk(t); 756 if (signal_pending(t)) 757 signal_wake_up(t, 0); 758 } 759 spin_unlock_irq(&tsk->sighand->siglock); 760 read_unlock(&tasklist_lock); 761 } 762 763 write_lock_irq(&tasklist_lock); 764 765 /* 766 * This does two things: 767 * 768 * A. Make init inherit all the child processes 769 * B. Check to see if any process groups have become orphaned 770 * as a result of our exiting, and if they have any stopped 771 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 772 */ 773 774 INIT_LIST_HEAD(&ptrace_dead); 775 forget_original_parent(tsk, &ptrace_dead); 776 BUG_ON(!list_empty(&tsk->children)); 777 BUG_ON(!list_empty(&tsk->ptrace_children)); 778 779 /* 780 * Check to see if any process groups have become orphaned 781 * as a result of our exiting, and if they have any stopped 782 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 783 * 784 * Case i: Our father is in a different pgrp than we are 785 * and we were the only connection outside, so our pgrp 786 * is about to become orphaned. 787 */ 788 789 t = tsk->real_parent; 790 791 if ((process_group(t) != process_group(tsk)) && 792 (process_session(t) == process_session(tsk)) && 793 will_become_orphaned_pgrp(process_group(tsk), tsk) && 794 has_stopped_jobs(process_group(tsk))) { 795 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk)); 796 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk)); 797 } 798 799 /* Let father know we died 800 * 801 * Thread signals are configurable, but you aren't going to use 802 * that to send signals to arbitary processes. 803 * That stops right now. 804 * 805 * If the parent exec id doesn't match the exec id we saved 806 * when we started then we know the parent has changed security 807 * domain. 808 * 809 * If our self_exec id doesn't match our parent_exec_id then 810 * we have changed execution domain as these two values started 811 * the same after a fork. 812 * 813 */ 814 815 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && 816 ( tsk->parent_exec_id != t->self_exec_id || 817 tsk->self_exec_id != tsk->parent_exec_id) 818 && !capable(CAP_KILL)) 819 tsk->exit_signal = SIGCHLD; 820 821 822 /* If something other than our normal parent is ptracing us, then 823 * send it a SIGCHLD instead of honoring exit_signal. exit_signal 824 * only has special meaning to our real parent. 825 */ 826 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { 827 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; 828 do_notify_parent(tsk, signal); 829 } else if (tsk->ptrace) { 830 do_notify_parent(tsk, SIGCHLD); 831 } 832 833 state = EXIT_ZOMBIE; 834 if (tsk->exit_signal == -1 && 835 (likely(tsk->ptrace == 0) || 836 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT))) 837 state = EXIT_DEAD; 838 tsk->exit_state = state; 839 840 write_unlock_irq(&tasklist_lock); 841 842 list_for_each_safe(_p, _n, &ptrace_dead) { 843 list_del_init(_p); 844 t = list_entry(_p, struct task_struct, ptrace_list); 845 release_task(t); 846 } 847 848 /* If the process is dead, release it - nobody will wait for it */ 849 if (state == EXIT_DEAD) 850 release_task(tsk); 851 } 852 853 fastcall NORET_TYPE void do_exit(long code) 854 { 855 struct task_struct *tsk = current; 856 int group_dead; 857 858 profile_task_exit(tsk); 859 860 WARN_ON(atomic_read(&tsk->fs_excl)); 861 862 if (unlikely(in_interrupt())) 863 panic("Aiee, killing interrupt handler!"); 864 if (unlikely(!tsk->pid)) 865 panic("Attempted to kill the idle task!"); 866 if (unlikely(tsk == child_reaper(tsk))) { 867 if (tsk->nsproxy->pid_ns != &init_pid_ns) 868 tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper; 869 else 870 panic("Attempted to kill init!"); 871 } 872 873 874 if (unlikely(current->ptrace & PT_TRACE_EXIT)) { 875 current->ptrace_message = code; 876 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); 877 } 878 879 /* 880 * We're taking recursive faults here in do_exit. Safest is to just 881 * leave this task alone and wait for reboot. 882 */ 883 if (unlikely(tsk->flags & PF_EXITING)) { 884 printk(KERN_ALERT 885 "Fixing recursive fault but reboot is needed!\n"); 886 if (tsk->io_context) 887 exit_io_context(); 888 set_current_state(TASK_UNINTERRUPTIBLE); 889 schedule(); 890 } 891 892 tsk->flags |= PF_EXITING; 893 894 if (unlikely(in_atomic())) 895 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 896 current->comm, current->pid, 897 preempt_count()); 898 899 acct_update_integrals(tsk); 900 if (tsk->mm) { 901 update_hiwater_rss(tsk->mm); 902 update_hiwater_vm(tsk->mm); 903 } 904 group_dead = atomic_dec_and_test(&tsk->signal->live); 905 if (group_dead) { 906 hrtimer_cancel(&tsk->signal->real_timer); 907 exit_itimers(tsk->signal); 908 } 909 acct_collect(code, group_dead); 910 if (unlikely(tsk->robust_list)) 911 exit_robust_list(tsk); 912 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT) 913 if (unlikely(tsk->compat_robust_list)) 914 compat_exit_robust_list(tsk); 915 #endif 916 if (unlikely(tsk->audit_context)) 917 audit_free(tsk); 918 919 taskstats_exit(tsk, group_dead); 920 921 exit_mm(tsk); 922 923 if (group_dead) 924 acct_process(); 925 exit_sem(tsk); 926 __exit_files(tsk); 927 __exit_fs(tsk); 928 exit_thread(); 929 cpuset_exit(tsk); 930 exit_keys(tsk); 931 932 if (group_dead && tsk->signal->leader) 933 disassociate_ctty(1); 934 935 module_put(task_thread_info(tsk)->exec_domain->module); 936 if (tsk->binfmt) 937 module_put(tsk->binfmt->module); 938 939 tsk->exit_code = code; 940 proc_exit_connector(tsk); 941 exit_task_namespaces(tsk); 942 exit_notify(tsk); 943 #ifdef CONFIG_NUMA 944 mpol_free(tsk->mempolicy); 945 tsk->mempolicy = NULL; 946 #endif 947 /* 948 * This must happen late, after the PID is not 949 * hashed anymore: 950 */ 951 if (unlikely(!list_empty(&tsk->pi_state_list))) 952 exit_pi_state_list(tsk); 953 if (unlikely(current->pi_state_cache)) 954 kfree(current->pi_state_cache); 955 /* 956 * Make sure we are holding no locks: 957 */ 958 debug_check_no_locks_held(tsk); 959 960 if (tsk->io_context) 961 exit_io_context(); 962 963 if (tsk->splice_pipe) 964 __free_pipe_info(tsk->splice_pipe); 965 966 preempt_disable(); 967 /* causes final put_task_struct in finish_task_switch(). */ 968 tsk->state = TASK_DEAD; 969 970 schedule(); 971 BUG(); 972 /* Avoid "noreturn function does return". */ 973 for (;;) 974 cpu_relax(); /* For when BUG is null */ 975 } 976 977 EXPORT_SYMBOL_GPL(do_exit); 978 979 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 980 { 981 if (comp) 982 complete(comp); 983 984 do_exit(code); 985 } 986 987 EXPORT_SYMBOL(complete_and_exit); 988 989 asmlinkage long sys_exit(int error_code) 990 { 991 do_exit((error_code&0xff)<<8); 992 } 993 994 /* 995 * Take down every thread in the group. This is called by fatal signals 996 * as well as by sys_exit_group (below). 997 */ 998 NORET_TYPE void 999 do_group_exit(int exit_code) 1000 { 1001 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1002 1003 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1004 exit_code = current->signal->group_exit_code; 1005 else if (!thread_group_empty(current)) { 1006 struct signal_struct *const sig = current->signal; 1007 struct sighand_struct *const sighand = current->sighand; 1008 spin_lock_irq(&sighand->siglock); 1009 if (sig->flags & SIGNAL_GROUP_EXIT) 1010 /* Another thread got here before we took the lock. */ 1011 exit_code = sig->group_exit_code; 1012 else { 1013 sig->group_exit_code = exit_code; 1014 zap_other_threads(current); 1015 } 1016 spin_unlock_irq(&sighand->siglock); 1017 } 1018 1019 do_exit(exit_code); 1020 /* NOTREACHED */ 1021 } 1022 1023 /* 1024 * this kills every thread in the thread group. Note that any externally 1025 * wait4()-ing process will get the correct exit code - even if this 1026 * thread is not the thread group leader. 1027 */ 1028 asmlinkage void sys_exit_group(int error_code) 1029 { 1030 do_group_exit((error_code & 0xff) << 8); 1031 } 1032 1033 static int eligible_child(pid_t pid, int options, struct task_struct *p) 1034 { 1035 if (pid > 0) { 1036 if (p->pid != pid) 1037 return 0; 1038 } else if (!pid) { 1039 if (process_group(p) != process_group(current)) 1040 return 0; 1041 } else if (pid != -1) { 1042 if (process_group(p) != -pid) 1043 return 0; 1044 } 1045 1046 /* 1047 * Do not consider detached threads that are 1048 * not ptraced: 1049 */ 1050 if (p->exit_signal == -1 && !p->ptrace) 1051 return 0; 1052 1053 /* Wait for all children (clone and not) if __WALL is set; 1054 * otherwise, wait for clone children *only* if __WCLONE is 1055 * set; otherwise, wait for non-clone children *only*. (Note: 1056 * A "clone" child here is one that reports to its parent 1057 * using a signal other than SIGCHLD.) */ 1058 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1059 && !(options & __WALL)) 1060 return 0; 1061 /* 1062 * Do not consider thread group leaders that are 1063 * in a non-empty thread group: 1064 */ 1065 if (delay_group_leader(p)) 1066 return 2; 1067 1068 if (security_task_wait(p)) 1069 return 0; 1070 1071 return 1; 1072 } 1073 1074 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1075 int why, int status, 1076 struct siginfo __user *infop, 1077 struct rusage __user *rusagep) 1078 { 1079 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1080 1081 put_task_struct(p); 1082 if (!retval) 1083 retval = put_user(SIGCHLD, &infop->si_signo); 1084 if (!retval) 1085 retval = put_user(0, &infop->si_errno); 1086 if (!retval) 1087 retval = put_user((short)why, &infop->si_code); 1088 if (!retval) 1089 retval = put_user(pid, &infop->si_pid); 1090 if (!retval) 1091 retval = put_user(uid, &infop->si_uid); 1092 if (!retval) 1093 retval = put_user(status, &infop->si_status); 1094 if (!retval) 1095 retval = pid; 1096 return retval; 1097 } 1098 1099 /* 1100 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1101 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1102 * the lock and this task is uninteresting. If we return nonzero, we have 1103 * released the lock and the system call should return. 1104 */ 1105 static int wait_task_zombie(struct task_struct *p, int noreap, 1106 struct siginfo __user *infop, 1107 int __user *stat_addr, struct rusage __user *ru) 1108 { 1109 unsigned long state; 1110 int retval; 1111 int status; 1112 1113 if (unlikely(noreap)) { 1114 pid_t pid = p->pid; 1115 uid_t uid = p->uid; 1116 int exit_code = p->exit_code; 1117 int why, status; 1118 1119 if (unlikely(p->exit_state != EXIT_ZOMBIE)) 1120 return 0; 1121 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) 1122 return 0; 1123 get_task_struct(p); 1124 read_unlock(&tasklist_lock); 1125 if ((exit_code & 0x7f) == 0) { 1126 why = CLD_EXITED; 1127 status = exit_code >> 8; 1128 } else { 1129 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1130 status = exit_code & 0x7f; 1131 } 1132 return wait_noreap_copyout(p, pid, uid, why, 1133 status, infop, ru); 1134 } 1135 1136 /* 1137 * Try to move the task's state to DEAD 1138 * only one thread is allowed to do this: 1139 */ 1140 state = xchg(&p->exit_state, EXIT_DEAD); 1141 if (state != EXIT_ZOMBIE) { 1142 BUG_ON(state != EXIT_DEAD); 1143 return 0; 1144 } 1145 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) { 1146 /* 1147 * This can only happen in a race with a ptraced thread 1148 * dying on another processor. 1149 */ 1150 return 0; 1151 } 1152 1153 if (likely(p->real_parent == p->parent) && likely(p->signal)) { 1154 struct signal_struct *psig; 1155 struct signal_struct *sig; 1156 1157 /* 1158 * The resource counters for the group leader are in its 1159 * own task_struct. Those for dead threads in the group 1160 * are in its signal_struct, as are those for the child 1161 * processes it has previously reaped. All these 1162 * accumulate in the parent's signal_struct c* fields. 1163 * 1164 * We don't bother to take a lock here to protect these 1165 * p->signal fields, because they are only touched by 1166 * __exit_signal, which runs with tasklist_lock 1167 * write-locked anyway, and so is excluded here. We do 1168 * need to protect the access to p->parent->signal fields, 1169 * as other threads in the parent group can be right 1170 * here reaping other children at the same time. 1171 */ 1172 spin_lock_irq(&p->parent->sighand->siglock); 1173 psig = p->parent->signal; 1174 sig = p->signal; 1175 psig->cutime = 1176 cputime_add(psig->cutime, 1177 cputime_add(p->utime, 1178 cputime_add(sig->utime, 1179 sig->cutime))); 1180 psig->cstime = 1181 cputime_add(psig->cstime, 1182 cputime_add(p->stime, 1183 cputime_add(sig->stime, 1184 sig->cstime))); 1185 psig->cmin_flt += 1186 p->min_flt + sig->min_flt + sig->cmin_flt; 1187 psig->cmaj_flt += 1188 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1189 psig->cnvcsw += 1190 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1191 psig->cnivcsw += 1192 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1193 spin_unlock_irq(&p->parent->sighand->siglock); 1194 } 1195 1196 /* 1197 * Now we are sure this task is interesting, and no other 1198 * thread can reap it because we set its state to EXIT_DEAD. 1199 */ 1200 read_unlock(&tasklist_lock); 1201 1202 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1203 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1204 ? p->signal->group_exit_code : p->exit_code; 1205 if (!retval && stat_addr) 1206 retval = put_user(status, stat_addr); 1207 if (!retval && infop) 1208 retval = put_user(SIGCHLD, &infop->si_signo); 1209 if (!retval && infop) 1210 retval = put_user(0, &infop->si_errno); 1211 if (!retval && infop) { 1212 int why; 1213 1214 if ((status & 0x7f) == 0) { 1215 why = CLD_EXITED; 1216 status >>= 8; 1217 } else { 1218 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1219 status &= 0x7f; 1220 } 1221 retval = put_user((short)why, &infop->si_code); 1222 if (!retval) 1223 retval = put_user(status, &infop->si_status); 1224 } 1225 if (!retval && infop) 1226 retval = put_user(p->pid, &infop->si_pid); 1227 if (!retval && infop) 1228 retval = put_user(p->uid, &infop->si_uid); 1229 if (retval) { 1230 // TODO: is this safe? 1231 p->exit_state = EXIT_ZOMBIE; 1232 return retval; 1233 } 1234 retval = p->pid; 1235 if (p->real_parent != p->parent) { 1236 write_lock_irq(&tasklist_lock); 1237 /* Double-check with lock held. */ 1238 if (p->real_parent != p->parent) { 1239 __ptrace_unlink(p); 1240 // TODO: is this safe? 1241 p->exit_state = EXIT_ZOMBIE; 1242 /* 1243 * If this is not a detached task, notify the parent. 1244 * If it's still not detached after that, don't release 1245 * it now. 1246 */ 1247 if (p->exit_signal != -1) { 1248 do_notify_parent(p, p->exit_signal); 1249 if (p->exit_signal != -1) 1250 p = NULL; 1251 } 1252 } 1253 write_unlock_irq(&tasklist_lock); 1254 } 1255 if (p != NULL) 1256 release_task(p); 1257 BUG_ON(!retval); 1258 return retval; 1259 } 1260 1261 /* 1262 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1263 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1264 * the lock and this task is uninteresting. If we return nonzero, we have 1265 * released the lock and the system call should return. 1266 */ 1267 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader, 1268 int noreap, struct siginfo __user *infop, 1269 int __user *stat_addr, struct rusage __user *ru) 1270 { 1271 int retval, exit_code; 1272 1273 if (!p->exit_code) 1274 return 0; 1275 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) && 1276 p->signal && p->signal->group_stop_count > 0) 1277 /* 1278 * A group stop is in progress and this is the group leader. 1279 * We won't report until all threads have stopped. 1280 */ 1281 return 0; 1282 1283 /* 1284 * Now we are pretty sure this task is interesting. 1285 * Make sure it doesn't get reaped out from under us while we 1286 * give up the lock and then examine it below. We don't want to 1287 * keep holding onto the tasklist_lock while we call getrusage and 1288 * possibly take page faults for user memory. 1289 */ 1290 get_task_struct(p); 1291 read_unlock(&tasklist_lock); 1292 1293 if (unlikely(noreap)) { 1294 pid_t pid = p->pid; 1295 uid_t uid = p->uid; 1296 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; 1297 1298 exit_code = p->exit_code; 1299 if (unlikely(!exit_code) || 1300 unlikely(p->state & TASK_TRACED)) 1301 goto bail_ref; 1302 return wait_noreap_copyout(p, pid, uid, 1303 why, (exit_code << 8) | 0x7f, 1304 infop, ru); 1305 } 1306 1307 write_lock_irq(&tasklist_lock); 1308 1309 /* 1310 * This uses xchg to be atomic with the thread resuming and setting 1311 * it. It must also be done with the write lock held to prevent a 1312 * race with the EXIT_ZOMBIE case. 1313 */ 1314 exit_code = xchg(&p->exit_code, 0); 1315 if (unlikely(p->exit_state)) { 1316 /* 1317 * The task resumed and then died. Let the next iteration 1318 * catch it in EXIT_ZOMBIE. Note that exit_code might 1319 * already be zero here if it resumed and did _exit(0). 1320 * The task itself is dead and won't touch exit_code again; 1321 * other processors in this function are locked out. 1322 */ 1323 p->exit_code = exit_code; 1324 exit_code = 0; 1325 } 1326 if (unlikely(exit_code == 0)) { 1327 /* 1328 * Another thread in this function got to it first, or it 1329 * resumed, or it resumed and then died. 1330 */ 1331 write_unlock_irq(&tasklist_lock); 1332 bail_ref: 1333 put_task_struct(p); 1334 /* 1335 * We are returning to the wait loop without having successfully 1336 * removed the process and having released the lock. We cannot 1337 * continue, since the "p" task pointer is potentially stale. 1338 * 1339 * Return -EAGAIN, and do_wait() will restart the loop from the 1340 * beginning. Do _not_ re-acquire the lock. 1341 */ 1342 return -EAGAIN; 1343 } 1344 1345 /* move to end of parent's list to avoid starvation */ 1346 remove_parent(p); 1347 add_parent(p); 1348 1349 write_unlock_irq(&tasklist_lock); 1350 1351 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1352 if (!retval && stat_addr) 1353 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1354 if (!retval && infop) 1355 retval = put_user(SIGCHLD, &infop->si_signo); 1356 if (!retval && infop) 1357 retval = put_user(0, &infop->si_errno); 1358 if (!retval && infop) 1359 retval = put_user((short)((p->ptrace & PT_PTRACED) 1360 ? CLD_TRAPPED : CLD_STOPPED), 1361 &infop->si_code); 1362 if (!retval && infop) 1363 retval = put_user(exit_code, &infop->si_status); 1364 if (!retval && infop) 1365 retval = put_user(p->pid, &infop->si_pid); 1366 if (!retval && infop) 1367 retval = put_user(p->uid, &infop->si_uid); 1368 if (!retval) 1369 retval = p->pid; 1370 put_task_struct(p); 1371 1372 BUG_ON(!retval); 1373 return retval; 1374 } 1375 1376 /* 1377 * Handle do_wait work for one task in a live, non-stopped state. 1378 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1379 * the lock and this task is uninteresting. If we return nonzero, we have 1380 * released the lock and the system call should return. 1381 */ 1382 static int wait_task_continued(struct task_struct *p, int noreap, 1383 struct siginfo __user *infop, 1384 int __user *stat_addr, struct rusage __user *ru) 1385 { 1386 int retval; 1387 pid_t pid; 1388 uid_t uid; 1389 1390 if (unlikely(!p->signal)) 1391 return 0; 1392 1393 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1394 return 0; 1395 1396 spin_lock_irq(&p->sighand->siglock); 1397 /* Re-check with the lock held. */ 1398 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1399 spin_unlock_irq(&p->sighand->siglock); 1400 return 0; 1401 } 1402 if (!noreap) 1403 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1404 spin_unlock_irq(&p->sighand->siglock); 1405 1406 pid = p->pid; 1407 uid = p->uid; 1408 get_task_struct(p); 1409 read_unlock(&tasklist_lock); 1410 1411 if (!infop) { 1412 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1413 put_task_struct(p); 1414 if (!retval && stat_addr) 1415 retval = put_user(0xffff, stat_addr); 1416 if (!retval) 1417 retval = p->pid; 1418 } else { 1419 retval = wait_noreap_copyout(p, pid, uid, 1420 CLD_CONTINUED, SIGCONT, 1421 infop, ru); 1422 BUG_ON(retval == 0); 1423 } 1424 1425 return retval; 1426 } 1427 1428 1429 static inline int my_ptrace_child(struct task_struct *p) 1430 { 1431 if (!(p->ptrace & PT_PTRACED)) 1432 return 0; 1433 if (!(p->ptrace & PT_ATTACHED)) 1434 return 1; 1435 /* 1436 * This child was PTRACE_ATTACH'd. We should be seeing it only if 1437 * we are the attacher. If we are the real parent, this is a race 1438 * inside ptrace_attach. It is waiting for the tasklist_lock, 1439 * which we have to switch the parent links, but has already set 1440 * the flags in p->ptrace. 1441 */ 1442 return (p->parent != p->real_parent); 1443 } 1444 1445 static long do_wait(pid_t pid, int options, struct siginfo __user *infop, 1446 int __user *stat_addr, struct rusage __user *ru) 1447 { 1448 DECLARE_WAITQUEUE(wait, current); 1449 struct task_struct *tsk; 1450 int flag, retval; 1451 1452 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1453 repeat: 1454 /* 1455 * We will set this flag if we see any child that might later 1456 * match our criteria, even if we are not able to reap it yet. 1457 */ 1458 flag = 0; 1459 current->state = TASK_INTERRUPTIBLE; 1460 read_lock(&tasklist_lock); 1461 tsk = current; 1462 do { 1463 struct task_struct *p; 1464 struct list_head *_p; 1465 int ret; 1466 1467 list_for_each(_p,&tsk->children) { 1468 p = list_entry(_p, struct task_struct, sibling); 1469 1470 ret = eligible_child(pid, options, p); 1471 if (!ret) 1472 continue; 1473 1474 switch (p->state) { 1475 case TASK_TRACED: 1476 /* 1477 * When we hit the race with PTRACE_ATTACH, 1478 * we will not report this child. But the 1479 * race means it has not yet been moved to 1480 * our ptrace_children list, so we need to 1481 * set the flag here to avoid a spurious ECHILD 1482 * when the race happens with the only child. 1483 */ 1484 flag = 1; 1485 if (!my_ptrace_child(p)) 1486 continue; 1487 /*FALLTHROUGH*/ 1488 case TASK_STOPPED: 1489 /* 1490 * It's stopped now, so it might later 1491 * continue, exit, or stop again. 1492 */ 1493 flag = 1; 1494 if (!(options & WUNTRACED) && 1495 !my_ptrace_child(p)) 1496 continue; 1497 retval = wait_task_stopped(p, ret == 2, 1498 (options & WNOWAIT), 1499 infop, 1500 stat_addr, ru); 1501 if (retval == -EAGAIN) 1502 goto repeat; 1503 if (retval != 0) /* He released the lock. */ 1504 goto end; 1505 break; 1506 default: 1507 // case EXIT_DEAD: 1508 if (p->exit_state == EXIT_DEAD) 1509 continue; 1510 // case EXIT_ZOMBIE: 1511 if (p->exit_state == EXIT_ZOMBIE) { 1512 /* 1513 * Eligible but we cannot release 1514 * it yet: 1515 */ 1516 if (ret == 2) 1517 goto check_continued; 1518 if (!likely(options & WEXITED)) 1519 continue; 1520 retval = wait_task_zombie( 1521 p, (options & WNOWAIT), 1522 infop, stat_addr, ru); 1523 /* He released the lock. */ 1524 if (retval != 0) 1525 goto end; 1526 break; 1527 } 1528 check_continued: 1529 /* 1530 * It's running now, so it might later 1531 * exit, stop, or stop and then continue. 1532 */ 1533 flag = 1; 1534 if (!unlikely(options & WCONTINUED)) 1535 continue; 1536 retval = wait_task_continued( 1537 p, (options & WNOWAIT), 1538 infop, stat_addr, ru); 1539 if (retval != 0) /* He released the lock. */ 1540 goto end; 1541 break; 1542 } 1543 } 1544 if (!flag) { 1545 list_for_each(_p, &tsk->ptrace_children) { 1546 p = list_entry(_p, struct task_struct, 1547 ptrace_list); 1548 if (!eligible_child(pid, options, p)) 1549 continue; 1550 flag = 1; 1551 break; 1552 } 1553 } 1554 if (options & __WNOTHREAD) 1555 break; 1556 tsk = next_thread(tsk); 1557 BUG_ON(tsk->signal != current->signal); 1558 } while (tsk != current); 1559 1560 read_unlock(&tasklist_lock); 1561 if (flag) { 1562 retval = 0; 1563 if (options & WNOHANG) 1564 goto end; 1565 retval = -ERESTARTSYS; 1566 if (signal_pending(current)) 1567 goto end; 1568 schedule(); 1569 goto repeat; 1570 } 1571 retval = -ECHILD; 1572 end: 1573 current->state = TASK_RUNNING; 1574 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1575 if (infop) { 1576 if (retval > 0) 1577 retval = 0; 1578 else { 1579 /* 1580 * For a WNOHANG return, clear out all the fields 1581 * we would set so the user can easily tell the 1582 * difference. 1583 */ 1584 if (!retval) 1585 retval = put_user(0, &infop->si_signo); 1586 if (!retval) 1587 retval = put_user(0, &infop->si_errno); 1588 if (!retval) 1589 retval = put_user(0, &infop->si_code); 1590 if (!retval) 1591 retval = put_user(0, &infop->si_pid); 1592 if (!retval) 1593 retval = put_user(0, &infop->si_uid); 1594 if (!retval) 1595 retval = put_user(0, &infop->si_status); 1596 } 1597 } 1598 return retval; 1599 } 1600 1601 asmlinkage long sys_waitid(int which, pid_t pid, 1602 struct siginfo __user *infop, int options, 1603 struct rusage __user *ru) 1604 { 1605 long ret; 1606 1607 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1608 return -EINVAL; 1609 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1610 return -EINVAL; 1611 1612 switch (which) { 1613 case P_ALL: 1614 pid = -1; 1615 break; 1616 case P_PID: 1617 if (pid <= 0) 1618 return -EINVAL; 1619 break; 1620 case P_PGID: 1621 if (pid <= 0) 1622 return -EINVAL; 1623 pid = -pid; 1624 break; 1625 default: 1626 return -EINVAL; 1627 } 1628 1629 ret = do_wait(pid, options, infop, NULL, ru); 1630 1631 /* avoid REGPARM breakage on x86: */ 1632 prevent_tail_call(ret); 1633 return ret; 1634 } 1635 1636 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr, 1637 int options, struct rusage __user *ru) 1638 { 1639 long ret; 1640 1641 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1642 __WNOTHREAD|__WCLONE|__WALL)) 1643 return -EINVAL; 1644 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru); 1645 1646 /* avoid REGPARM breakage on x86: */ 1647 prevent_tail_call(ret); 1648 return ret; 1649 } 1650 1651 #ifdef __ARCH_WANT_SYS_WAITPID 1652 1653 /* 1654 * sys_waitpid() remains for compatibility. waitpid() should be 1655 * implemented by calling sys_wait4() from libc.a. 1656 */ 1657 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1658 { 1659 return sys_wait4(pid, stat_addr, options, NULL); 1660 } 1661 1662 #endif 1663