1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/freezer.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 #include <linux/writeback.h> 55 #include <linux/shm.h> 56 57 #include <asm/uaccess.h> 58 #include <asm/unistd.h> 59 #include <asm/pgtable.h> 60 #include <asm/mmu_context.h> 61 62 static void __unhash_process(struct task_struct *p, bool group_dead) 63 { 64 nr_threads--; 65 detach_pid(p, PIDTYPE_PID); 66 if (group_dead) { 67 detach_pid(p, PIDTYPE_PGID); 68 detach_pid(p, PIDTYPE_SID); 69 70 list_del_rcu(&p->tasks); 71 list_del_init(&p->sibling); 72 __this_cpu_dec(process_counts); 73 } 74 list_del_rcu(&p->thread_group); 75 list_del_rcu(&p->thread_node); 76 } 77 78 /* 79 * This function expects the tasklist_lock write-locked. 80 */ 81 static void __exit_signal(struct task_struct *tsk) 82 { 83 struct signal_struct *sig = tsk->signal; 84 bool group_dead = thread_group_leader(tsk); 85 struct sighand_struct *sighand; 86 struct tty_struct *uninitialized_var(tty); 87 cputime_t utime, stime; 88 89 sighand = rcu_dereference_check(tsk->sighand, 90 lockdep_tasklist_lock_is_held()); 91 spin_lock(&sighand->siglock); 92 93 posix_cpu_timers_exit(tsk); 94 if (group_dead) { 95 posix_cpu_timers_exit_group(tsk); 96 tty = sig->tty; 97 sig->tty = NULL; 98 } else { 99 /* 100 * This can only happen if the caller is de_thread(). 101 * FIXME: this is the temporary hack, we should teach 102 * posix-cpu-timers to handle this case correctly. 103 */ 104 if (unlikely(has_group_leader_pid(tsk))) 105 posix_cpu_timers_exit_group(tsk); 106 107 /* 108 * If there is any task waiting for the group exit 109 * then notify it: 110 */ 111 if (sig->notify_count > 0 && !--sig->notify_count) 112 wake_up_process(sig->group_exit_task); 113 114 if (tsk == sig->curr_target) 115 sig->curr_target = next_thread(tsk); 116 } 117 118 /* 119 * Accumulate here the counters for all threads as they die. We could 120 * skip the group leader because it is the last user of signal_struct, 121 * but we want to avoid the race with thread_group_cputime() which can 122 * see the empty ->thread_head list. 123 */ 124 task_cputime(tsk, &utime, &stime); 125 write_seqlock(&sig->stats_lock); 126 sig->utime += utime; 127 sig->stime += stime; 128 sig->gtime += task_gtime(tsk); 129 sig->min_flt += tsk->min_flt; 130 sig->maj_flt += tsk->maj_flt; 131 sig->nvcsw += tsk->nvcsw; 132 sig->nivcsw += tsk->nivcsw; 133 sig->inblock += task_io_get_inblock(tsk); 134 sig->oublock += task_io_get_oublock(tsk); 135 task_io_accounting_add(&sig->ioac, &tsk->ioac); 136 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 137 sig->nr_threads--; 138 __unhash_process(tsk, group_dead); 139 write_sequnlock(&sig->stats_lock); 140 141 /* 142 * Do this under ->siglock, we can race with another thread 143 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 144 */ 145 flush_sigqueue(&tsk->pending); 146 tsk->sighand = NULL; 147 spin_unlock(&sighand->siglock); 148 149 __cleanup_sighand(sighand); 150 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 151 if (group_dead) { 152 flush_sigqueue(&sig->shared_pending); 153 tty_kref_put(tty); 154 } 155 } 156 157 static void delayed_put_task_struct(struct rcu_head *rhp) 158 { 159 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 160 161 perf_event_delayed_put(tsk); 162 trace_sched_process_free(tsk); 163 put_task_struct(tsk); 164 } 165 166 167 void release_task(struct task_struct *p) 168 { 169 struct task_struct *leader; 170 int zap_leader; 171 repeat: 172 /* don't need to get the RCU readlock here - the process is dead and 173 * can't be modifying its own credentials. But shut RCU-lockdep up */ 174 rcu_read_lock(); 175 atomic_dec(&__task_cred(p)->user->processes); 176 rcu_read_unlock(); 177 178 proc_flush_task(p); 179 180 write_lock_irq(&tasklist_lock); 181 ptrace_release_task(p); 182 __exit_signal(p); 183 184 /* 185 * If we are the last non-leader member of the thread 186 * group, and the leader is zombie, then notify the 187 * group leader's parent process. (if it wants notification.) 188 */ 189 zap_leader = 0; 190 leader = p->group_leader; 191 if (leader != p && thread_group_empty(leader) 192 && leader->exit_state == EXIT_ZOMBIE) { 193 /* 194 * If we were the last child thread and the leader has 195 * exited already, and the leader's parent ignores SIGCHLD, 196 * then we are the one who should release the leader. 197 */ 198 zap_leader = do_notify_parent(leader, leader->exit_signal); 199 if (zap_leader) 200 leader->exit_state = EXIT_DEAD; 201 } 202 203 write_unlock_irq(&tasklist_lock); 204 release_thread(p); 205 call_rcu(&p->rcu, delayed_put_task_struct); 206 207 p = leader; 208 if (unlikely(zap_leader)) 209 goto repeat; 210 } 211 212 /* 213 * Determine if a process group is "orphaned", according to the POSIX 214 * definition in 2.2.2.52. Orphaned process groups are not to be affected 215 * by terminal-generated stop signals. Newly orphaned process groups are 216 * to receive a SIGHUP and a SIGCONT. 217 * 218 * "I ask you, have you ever known what it is to be an orphan?" 219 */ 220 static int will_become_orphaned_pgrp(struct pid *pgrp, 221 struct task_struct *ignored_task) 222 { 223 struct task_struct *p; 224 225 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 226 if ((p == ignored_task) || 227 (p->exit_state && thread_group_empty(p)) || 228 is_global_init(p->real_parent)) 229 continue; 230 231 if (task_pgrp(p->real_parent) != pgrp && 232 task_session(p->real_parent) == task_session(p)) 233 return 0; 234 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 235 236 return 1; 237 } 238 239 int is_current_pgrp_orphaned(void) 240 { 241 int retval; 242 243 read_lock(&tasklist_lock); 244 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 245 read_unlock(&tasklist_lock); 246 247 return retval; 248 } 249 250 static bool has_stopped_jobs(struct pid *pgrp) 251 { 252 struct task_struct *p; 253 254 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 255 if (p->signal->flags & SIGNAL_STOP_STOPPED) 256 return true; 257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 258 259 return false; 260 } 261 262 /* 263 * Check to see if any process groups have become orphaned as 264 * a result of our exiting, and if they have any stopped jobs, 265 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 266 */ 267 static void 268 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 269 { 270 struct pid *pgrp = task_pgrp(tsk); 271 struct task_struct *ignored_task = tsk; 272 273 if (!parent) 274 /* exit: our father is in a different pgrp than 275 * we are and we were the only connection outside. 276 */ 277 parent = tsk->real_parent; 278 else 279 /* reparent: our child is in a different pgrp than 280 * we are, and it was the only connection outside. 281 */ 282 ignored_task = NULL; 283 284 if (task_pgrp(parent) != pgrp && 285 task_session(parent) == task_session(tsk) && 286 will_become_orphaned_pgrp(pgrp, ignored_task) && 287 has_stopped_jobs(pgrp)) { 288 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 289 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 290 } 291 } 292 293 #ifdef CONFIG_MEMCG 294 /* 295 * A task is exiting. If it owned this mm, find a new owner for the mm. 296 */ 297 void mm_update_next_owner(struct mm_struct *mm) 298 { 299 struct task_struct *c, *g, *p = current; 300 301 retry: 302 /* 303 * If the exiting or execing task is not the owner, it's 304 * someone else's problem. 305 */ 306 if (mm->owner != p) 307 return; 308 /* 309 * The current owner is exiting/execing and there are no other 310 * candidates. Do not leave the mm pointing to a possibly 311 * freed task structure. 312 */ 313 if (atomic_read(&mm->mm_users) <= 1) { 314 mm->owner = NULL; 315 return; 316 } 317 318 read_lock(&tasklist_lock); 319 /* 320 * Search in the children 321 */ 322 list_for_each_entry(c, &p->children, sibling) { 323 if (c->mm == mm) 324 goto assign_new_owner; 325 } 326 327 /* 328 * Search in the siblings 329 */ 330 list_for_each_entry(c, &p->real_parent->children, sibling) { 331 if (c->mm == mm) 332 goto assign_new_owner; 333 } 334 335 /* 336 * Search through everything else, we should not get here often. 337 */ 338 for_each_process(g) { 339 if (g->flags & PF_KTHREAD) 340 continue; 341 for_each_thread(g, c) { 342 if (c->mm == mm) 343 goto assign_new_owner; 344 if (c->mm) 345 break; 346 } 347 } 348 read_unlock(&tasklist_lock); 349 /* 350 * We found no owner yet mm_users > 1: this implies that we are 351 * most likely racing with swapoff (try_to_unuse()) or /proc or 352 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 353 */ 354 mm->owner = NULL; 355 return; 356 357 assign_new_owner: 358 BUG_ON(c == p); 359 get_task_struct(c); 360 /* 361 * The task_lock protects c->mm from changing. 362 * We always want mm->owner->mm == mm 363 */ 364 task_lock(c); 365 /* 366 * Delay read_unlock() till we have the task_lock() 367 * to ensure that c does not slip away underneath us 368 */ 369 read_unlock(&tasklist_lock); 370 if (c->mm != mm) { 371 task_unlock(c); 372 put_task_struct(c); 373 goto retry; 374 } 375 mm->owner = c; 376 task_unlock(c); 377 put_task_struct(c); 378 } 379 #endif /* CONFIG_MEMCG */ 380 381 /* 382 * Turn us into a lazy TLB process if we 383 * aren't already.. 384 */ 385 static void exit_mm(struct task_struct *tsk) 386 { 387 struct mm_struct *mm = tsk->mm; 388 struct core_state *core_state; 389 390 mm_release(tsk, mm); 391 if (!mm) 392 return; 393 sync_mm_rss(mm); 394 /* 395 * Serialize with any possible pending coredump. 396 * We must hold mmap_sem around checking core_state 397 * and clearing tsk->mm. The core-inducing thread 398 * will increment ->nr_threads for each thread in the 399 * group with ->mm != NULL. 400 */ 401 down_read(&mm->mmap_sem); 402 core_state = mm->core_state; 403 if (core_state) { 404 struct core_thread self; 405 406 up_read(&mm->mmap_sem); 407 408 self.task = tsk; 409 self.next = xchg(&core_state->dumper.next, &self); 410 /* 411 * Implies mb(), the result of xchg() must be visible 412 * to core_state->dumper. 413 */ 414 if (atomic_dec_and_test(&core_state->nr_threads)) 415 complete(&core_state->startup); 416 417 for (;;) { 418 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 419 if (!self.task) /* see coredump_finish() */ 420 break; 421 freezable_schedule(); 422 } 423 __set_task_state(tsk, TASK_RUNNING); 424 down_read(&mm->mmap_sem); 425 } 426 atomic_inc(&mm->mm_count); 427 BUG_ON(mm != tsk->active_mm); 428 /* more a memory barrier than a real lock */ 429 task_lock(tsk); 430 tsk->mm = NULL; 431 up_read(&mm->mmap_sem); 432 enter_lazy_tlb(mm, current); 433 task_unlock(tsk); 434 mm_update_next_owner(mm); 435 mmput(mm); 436 if (test_thread_flag(TIF_MEMDIE)) 437 exit_oom_victim(); 438 } 439 440 static struct task_struct *find_alive_thread(struct task_struct *p) 441 { 442 struct task_struct *t; 443 444 for_each_thread(p, t) { 445 if (!(t->flags & PF_EXITING)) 446 return t; 447 } 448 return NULL; 449 } 450 451 static struct task_struct *find_child_reaper(struct task_struct *father) 452 __releases(&tasklist_lock) 453 __acquires(&tasklist_lock) 454 { 455 struct pid_namespace *pid_ns = task_active_pid_ns(father); 456 struct task_struct *reaper = pid_ns->child_reaper; 457 458 if (likely(reaper != father)) 459 return reaper; 460 461 reaper = find_alive_thread(father); 462 if (reaper) { 463 pid_ns->child_reaper = reaper; 464 return reaper; 465 } 466 467 write_unlock_irq(&tasklist_lock); 468 if (unlikely(pid_ns == &init_pid_ns)) { 469 panic("Attempted to kill init! exitcode=0x%08x\n", 470 father->signal->group_exit_code ?: father->exit_code); 471 } 472 zap_pid_ns_processes(pid_ns); 473 write_lock_irq(&tasklist_lock); 474 475 return father; 476 } 477 478 /* 479 * When we die, we re-parent all our children, and try to: 480 * 1. give them to another thread in our thread group, if such a member exists 481 * 2. give it to the first ancestor process which prctl'd itself as a 482 * child_subreaper for its children (like a service manager) 483 * 3. give it to the init process (PID 1) in our pid namespace 484 */ 485 static struct task_struct *find_new_reaper(struct task_struct *father, 486 struct task_struct *child_reaper) 487 { 488 struct task_struct *thread, *reaper; 489 490 thread = find_alive_thread(father); 491 if (thread) 492 return thread; 493 494 if (father->signal->has_child_subreaper) { 495 /* 496 * Find the first ->is_child_subreaper ancestor in our pid_ns. 497 * We start from father to ensure we can not look into another 498 * namespace, this is safe because all its threads are dead. 499 */ 500 for (reaper = father; 501 !same_thread_group(reaper, child_reaper); 502 reaper = reaper->real_parent) { 503 /* call_usermodehelper() descendants need this check */ 504 if (reaper == &init_task) 505 break; 506 if (!reaper->signal->is_child_subreaper) 507 continue; 508 thread = find_alive_thread(reaper); 509 if (thread) 510 return thread; 511 } 512 } 513 514 return child_reaper; 515 } 516 517 /* 518 * Any that need to be release_task'd are put on the @dead list. 519 */ 520 static void reparent_leader(struct task_struct *father, struct task_struct *p, 521 struct list_head *dead) 522 { 523 if (unlikely(p->exit_state == EXIT_DEAD)) 524 return; 525 526 /* We don't want people slaying init. */ 527 p->exit_signal = SIGCHLD; 528 529 /* If it has exited notify the new parent about this child's death. */ 530 if (!p->ptrace && 531 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 532 if (do_notify_parent(p, p->exit_signal)) { 533 p->exit_state = EXIT_DEAD; 534 list_add(&p->ptrace_entry, dead); 535 } 536 } 537 538 kill_orphaned_pgrp(p, father); 539 } 540 541 /* 542 * This does two things: 543 * 544 * A. Make init inherit all the child processes 545 * B. Check to see if any process groups have become orphaned 546 * as a result of our exiting, and if they have any stopped 547 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 548 */ 549 static void forget_original_parent(struct task_struct *father, 550 struct list_head *dead) 551 { 552 struct task_struct *p, *t, *reaper; 553 554 if (unlikely(!list_empty(&father->ptraced))) 555 exit_ptrace(father, dead); 556 557 /* Can drop and reacquire tasklist_lock */ 558 reaper = find_child_reaper(father); 559 if (list_empty(&father->children)) 560 return; 561 562 reaper = find_new_reaper(father, reaper); 563 list_for_each_entry(p, &father->children, sibling) { 564 for_each_thread(p, t) { 565 t->real_parent = reaper; 566 BUG_ON((!t->ptrace) != (t->parent == father)); 567 if (likely(!t->ptrace)) 568 t->parent = t->real_parent; 569 if (t->pdeath_signal) 570 group_send_sig_info(t->pdeath_signal, 571 SEND_SIG_NOINFO, t); 572 } 573 /* 574 * If this is a threaded reparent there is no need to 575 * notify anyone anything has happened. 576 */ 577 if (!same_thread_group(reaper, father)) 578 reparent_leader(father, p, dead); 579 } 580 list_splice_tail_init(&father->children, &reaper->children); 581 } 582 583 /* 584 * Send signals to all our closest relatives so that they know 585 * to properly mourn us.. 586 */ 587 static void exit_notify(struct task_struct *tsk, int group_dead) 588 { 589 bool autoreap; 590 struct task_struct *p, *n; 591 LIST_HEAD(dead); 592 593 write_lock_irq(&tasklist_lock); 594 forget_original_parent(tsk, &dead); 595 596 if (group_dead) 597 kill_orphaned_pgrp(tsk->group_leader, NULL); 598 599 if (unlikely(tsk->ptrace)) { 600 int sig = thread_group_leader(tsk) && 601 thread_group_empty(tsk) && 602 !ptrace_reparented(tsk) ? 603 tsk->exit_signal : SIGCHLD; 604 autoreap = do_notify_parent(tsk, sig); 605 } else if (thread_group_leader(tsk)) { 606 autoreap = thread_group_empty(tsk) && 607 do_notify_parent(tsk, tsk->exit_signal); 608 } else { 609 autoreap = true; 610 } 611 612 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 613 if (tsk->exit_state == EXIT_DEAD) 614 list_add(&tsk->ptrace_entry, &dead); 615 616 /* mt-exec, de_thread() is waiting for group leader */ 617 if (unlikely(tsk->signal->notify_count < 0)) 618 wake_up_process(tsk->signal->group_exit_task); 619 write_unlock_irq(&tasklist_lock); 620 621 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 622 list_del_init(&p->ptrace_entry); 623 release_task(p); 624 } 625 } 626 627 #ifdef CONFIG_DEBUG_STACK_USAGE 628 static void check_stack_usage(void) 629 { 630 static DEFINE_SPINLOCK(low_water_lock); 631 static int lowest_to_date = THREAD_SIZE; 632 unsigned long free; 633 634 free = stack_not_used(current); 635 636 if (free >= lowest_to_date) 637 return; 638 639 spin_lock(&low_water_lock); 640 if (free < lowest_to_date) { 641 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n", 642 current->comm, task_pid_nr(current), free); 643 lowest_to_date = free; 644 } 645 spin_unlock(&low_water_lock); 646 } 647 #else 648 static inline void check_stack_usage(void) {} 649 #endif 650 651 void do_exit(long code) 652 { 653 struct task_struct *tsk = current; 654 int group_dead; 655 TASKS_RCU(int tasks_rcu_i); 656 657 profile_task_exit(tsk); 658 659 WARN_ON(blk_needs_flush_plug(tsk)); 660 661 if (unlikely(in_interrupt())) 662 panic("Aiee, killing interrupt handler!"); 663 if (unlikely(!tsk->pid)) 664 panic("Attempted to kill the idle task!"); 665 666 /* 667 * If do_exit is called because this processes oopsed, it's possible 668 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 669 * continuing. Amongst other possible reasons, this is to prevent 670 * mm_release()->clear_child_tid() from writing to a user-controlled 671 * kernel address. 672 */ 673 set_fs(USER_DS); 674 675 ptrace_event(PTRACE_EVENT_EXIT, code); 676 677 validate_creds_for_do_exit(tsk); 678 679 /* 680 * We're taking recursive faults here in do_exit. Safest is to just 681 * leave this task alone and wait for reboot. 682 */ 683 if (unlikely(tsk->flags & PF_EXITING)) { 684 pr_alert("Fixing recursive fault but reboot is needed!\n"); 685 /* 686 * We can do this unlocked here. The futex code uses 687 * this flag just to verify whether the pi state 688 * cleanup has been done or not. In the worst case it 689 * loops once more. We pretend that the cleanup was 690 * done as there is no way to return. Either the 691 * OWNER_DIED bit is set by now or we push the blocked 692 * task into the wait for ever nirwana as well. 693 */ 694 tsk->flags |= PF_EXITPIDONE; 695 set_current_state(TASK_UNINTERRUPTIBLE); 696 schedule(); 697 } 698 699 exit_signals(tsk); /* sets PF_EXITING */ 700 /* 701 * tsk->flags are checked in the futex code to protect against 702 * an exiting task cleaning up the robust pi futexes. 703 */ 704 smp_mb(); 705 raw_spin_unlock_wait(&tsk->pi_lock); 706 707 if (unlikely(in_atomic())) { 708 pr_info("note: %s[%d] exited with preempt_count %d\n", 709 current->comm, task_pid_nr(current), 710 preempt_count()); 711 preempt_count_set(PREEMPT_ENABLED); 712 } 713 714 /* sync mm's RSS info before statistics gathering */ 715 if (tsk->mm) 716 sync_mm_rss(tsk->mm); 717 acct_update_integrals(tsk); 718 group_dead = atomic_dec_and_test(&tsk->signal->live); 719 if (group_dead) { 720 hrtimer_cancel(&tsk->signal->real_timer); 721 exit_itimers(tsk->signal); 722 if (tsk->mm) 723 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 724 } 725 acct_collect(code, group_dead); 726 if (group_dead) 727 tty_audit_exit(); 728 audit_free(tsk); 729 730 tsk->exit_code = code; 731 taskstats_exit(tsk, group_dead); 732 733 exit_mm(tsk); 734 735 if (group_dead) 736 acct_process(); 737 trace_sched_process_exit(tsk); 738 739 exit_sem(tsk); 740 exit_shm(tsk); 741 exit_files(tsk); 742 exit_fs(tsk); 743 if (group_dead) 744 disassociate_ctty(1); 745 exit_task_namespaces(tsk); 746 exit_task_work(tsk); 747 exit_thread(); 748 749 /* 750 * Flush inherited counters to the parent - before the parent 751 * gets woken up by child-exit notifications. 752 * 753 * because of cgroup mode, must be called before cgroup_exit() 754 */ 755 perf_event_exit_task(tsk); 756 757 cgroup_exit(tsk); 758 759 /* 760 * FIXME: do that only when needed, using sched_exit tracepoint 761 */ 762 flush_ptrace_hw_breakpoint(tsk); 763 764 TASKS_RCU(preempt_disable()); 765 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu)); 766 TASKS_RCU(preempt_enable()); 767 exit_notify(tsk, group_dead); 768 proc_exit_connector(tsk); 769 #ifdef CONFIG_NUMA 770 task_lock(tsk); 771 mpol_put(tsk->mempolicy); 772 tsk->mempolicy = NULL; 773 task_unlock(tsk); 774 #endif 775 #ifdef CONFIG_FUTEX 776 if (unlikely(current->pi_state_cache)) 777 kfree(current->pi_state_cache); 778 #endif 779 /* 780 * Make sure we are holding no locks: 781 */ 782 debug_check_no_locks_held(); 783 /* 784 * We can do this unlocked here. The futex code uses this flag 785 * just to verify whether the pi state cleanup has been done 786 * or not. In the worst case it loops once more. 787 */ 788 tsk->flags |= PF_EXITPIDONE; 789 790 if (tsk->io_context) 791 exit_io_context(tsk); 792 793 if (tsk->splice_pipe) 794 free_pipe_info(tsk->splice_pipe); 795 796 if (tsk->task_frag.page) 797 put_page(tsk->task_frag.page); 798 799 validate_creds_for_do_exit(tsk); 800 801 check_stack_usage(); 802 preempt_disable(); 803 if (tsk->nr_dirtied) 804 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 805 exit_rcu(); 806 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i)); 807 808 /* 809 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 810 * when the following two conditions become true. 811 * - There is race condition of mmap_sem (It is acquired by 812 * exit_mm()), and 813 * - SMI occurs before setting TASK_RUNINNG. 814 * (or hypervisor of virtual machine switches to other guest) 815 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 816 * 817 * To avoid it, we have to wait for releasing tsk->pi_lock which 818 * is held by try_to_wake_up() 819 */ 820 smp_mb(); 821 raw_spin_unlock_wait(&tsk->pi_lock); 822 823 /* causes final put_task_struct in finish_task_switch(). */ 824 tsk->state = TASK_DEAD; 825 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 826 schedule(); 827 BUG(); 828 /* Avoid "noreturn function does return". */ 829 for (;;) 830 cpu_relax(); /* For when BUG is null */ 831 } 832 EXPORT_SYMBOL_GPL(do_exit); 833 834 void complete_and_exit(struct completion *comp, long code) 835 { 836 if (comp) 837 complete(comp); 838 839 do_exit(code); 840 } 841 EXPORT_SYMBOL(complete_and_exit); 842 843 SYSCALL_DEFINE1(exit, int, error_code) 844 { 845 do_exit((error_code&0xff)<<8); 846 } 847 848 /* 849 * Take down every thread in the group. This is called by fatal signals 850 * as well as by sys_exit_group (below). 851 */ 852 void 853 do_group_exit(int exit_code) 854 { 855 struct signal_struct *sig = current->signal; 856 857 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 858 859 if (signal_group_exit(sig)) 860 exit_code = sig->group_exit_code; 861 else if (!thread_group_empty(current)) { 862 struct sighand_struct *const sighand = current->sighand; 863 864 spin_lock_irq(&sighand->siglock); 865 if (signal_group_exit(sig)) 866 /* Another thread got here before we took the lock. */ 867 exit_code = sig->group_exit_code; 868 else { 869 sig->group_exit_code = exit_code; 870 sig->flags = SIGNAL_GROUP_EXIT; 871 zap_other_threads(current); 872 } 873 spin_unlock_irq(&sighand->siglock); 874 } 875 876 do_exit(exit_code); 877 /* NOTREACHED */ 878 } 879 880 /* 881 * this kills every thread in the thread group. Note that any externally 882 * wait4()-ing process will get the correct exit code - even if this 883 * thread is not the thread group leader. 884 */ 885 SYSCALL_DEFINE1(exit_group, int, error_code) 886 { 887 do_group_exit((error_code & 0xff) << 8); 888 /* NOTREACHED */ 889 return 0; 890 } 891 892 struct wait_opts { 893 enum pid_type wo_type; 894 int wo_flags; 895 struct pid *wo_pid; 896 897 struct siginfo __user *wo_info; 898 int __user *wo_stat; 899 struct rusage __user *wo_rusage; 900 901 wait_queue_t child_wait; 902 int notask_error; 903 }; 904 905 static inline 906 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 907 { 908 if (type != PIDTYPE_PID) 909 task = task->group_leader; 910 return task->pids[type].pid; 911 } 912 913 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 914 { 915 return wo->wo_type == PIDTYPE_MAX || 916 task_pid_type(p, wo->wo_type) == wo->wo_pid; 917 } 918 919 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 920 { 921 if (!eligible_pid(wo, p)) 922 return 0; 923 /* Wait for all children (clone and not) if __WALL is set; 924 * otherwise, wait for clone children *only* if __WCLONE is 925 * set; otherwise, wait for non-clone children *only*. (Note: 926 * A "clone" child here is one that reports to its parent 927 * using a signal other than SIGCHLD.) */ 928 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 929 && !(wo->wo_flags & __WALL)) 930 return 0; 931 932 return 1; 933 } 934 935 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 936 pid_t pid, uid_t uid, int why, int status) 937 { 938 struct siginfo __user *infop; 939 int retval = wo->wo_rusage 940 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 941 942 put_task_struct(p); 943 infop = wo->wo_info; 944 if (infop) { 945 if (!retval) 946 retval = put_user(SIGCHLD, &infop->si_signo); 947 if (!retval) 948 retval = put_user(0, &infop->si_errno); 949 if (!retval) 950 retval = put_user((short)why, &infop->si_code); 951 if (!retval) 952 retval = put_user(pid, &infop->si_pid); 953 if (!retval) 954 retval = put_user(uid, &infop->si_uid); 955 if (!retval) 956 retval = put_user(status, &infop->si_status); 957 } 958 if (!retval) 959 retval = pid; 960 return retval; 961 } 962 963 /* 964 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 965 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 966 * the lock and this task is uninteresting. If we return nonzero, we have 967 * released the lock and the system call should return. 968 */ 969 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 970 { 971 int state, retval, status; 972 pid_t pid = task_pid_vnr(p); 973 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 974 struct siginfo __user *infop; 975 976 if (!likely(wo->wo_flags & WEXITED)) 977 return 0; 978 979 if (unlikely(wo->wo_flags & WNOWAIT)) { 980 int exit_code = p->exit_code; 981 int why; 982 983 get_task_struct(p); 984 read_unlock(&tasklist_lock); 985 sched_annotate_sleep(); 986 987 if ((exit_code & 0x7f) == 0) { 988 why = CLD_EXITED; 989 status = exit_code >> 8; 990 } else { 991 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 992 status = exit_code & 0x7f; 993 } 994 return wait_noreap_copyout(wo, p, pid, uid, why, status); 995 } 996 /* 997 * Move the task's state to DEAD/TRACE, only one thread can do this. 998 */ 999 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1000 EXIT_TRACE : EXIT_DEAD; 1001 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1002 return 0; 1003 /* 1004 * We own this thread, nobody else can reap it. 1005 */ 1006 read_unlock(&tasklist_lock); 1007 sched_annotate_sleep(); 1008 1009 /* 1010 * Check thread_group_leader() to exclude the traced sub-threads. 1011 */ 1012 if (state == EXIT_DEAD && thread_group_leader(p)) { 1013 struct signal_struct *sig = p->signal; 1014 struct signal_struct *psig = current->signal; 1015 unsigned long maxrss; 1016 cputime_t tgutime, tgstime; 1017 1018 /* 1019 * The resource counters for the group leader are in its 1020 * own task_struct. Those for dead threads in the group 1021 * are in its signal_struct, as are those for the child 1022 * processes it has previously reaped. All these 1023 * accumulate in the parent's signal_struct c* fields. 1024 * 1025 * We don't bother to take a lock here to protect these 1026 * p->signal fields because the whole thread group is dead 1027 * and nobody can change them. 1028 * 1029 * psig->stats_lock also protects us from our sub-theads 1030 * which can reap other children at the same time. Until 1031 * we change k_getrusage()-like users to rely on this lock 1032 * we have to take ->siglock as well. 1033 * 1034 * We use thread_group_cputime_adjusted() to get times for 1035 * the thread group, which consolidates times for all threads 1036 * in the group including the group leader. 1037 */ 1038 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1039 spin_lock_irq(¤t->sighand->siglock); 1040 write_seqlock(&psig->stats_lock); 1041 psig->cutime += tgutime + sig->cutime; 1042 psig->cstime += tgstime + sig->cstime; 1043 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1044 psig->cmin_flt += 1045 p->min_flt + sig->min_flt + sig->cmin_flt; 1046 psig->cmaj_flt += 1047 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1048 psig->cnvcsw += 1049 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1050 psig->cnivcsw += 1051 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1052 psig->cinblock += 1053 task_io_get_inblock(p) + 1054 sig->inblock + sig->cinblock; 1055 psig->coublock += 1056 task_io_get_oublock(p) + 1057 sig->oublock + sig->coublock; 1058 maxrss = max(sig->maxrss, sig->cmaxrss); 1059 if (psig->cmaxrss < maxrss) 1060 psig->cmaxrss = maxrss; 1061 task_io_accounting_add(&psig->ioac, &p->ioac); 1062 task_io_accounting_add(&psig->ioac, &sig->ioac); 1063 write_sequnlock(&psig->stats_lock); 1064 spin_unlock_irq(¤t->sighand->siglock); 1065 } 1066 1067 retval = wo->wo_rusage 1068 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1069 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1070 ? p->signal->group_exit_code : p->exit_code; 1071 if (!retval && wo->wo_stat) 1072 retval = put_user(status, wo->wo_stat); 1073 1074 infop = wo->wo_info; 1075 if (!retval && infop) 1076 retval = put_user(SIGCHLD, &infop->si_signo); 1077 if (!retval && infop) 1078 retval = put_user(0, &infop->si_errno); 1079 if (!retval && infop) { 1080 int why; 1081 1082 if ((status & 0x7f) == 0) { 1083 why = CLD_EXITED; 1084 status >>= 8; 1085 } else { 1086 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1087 status &= 0x7f; 1088 } 1089 retval = put_user((short)why, &infop->si_code); 1090 if (!retval) 1091 retval = put_user(status, &infop->si_status); 1092 } 1093 if (!retval && infop) 1094 retval = put_user(pid, &infop->si_pid); 1095 if (!retval && infop) 1096 retval = put_user(uid, &infop->si_uid); 1097 if (!retval) 1098 retval = pid; 1099 1100 if (state == EXIT_TRACE) { 1101 write_lock_irq(&tasklist_lock); 1102 /* We dropped tasklist, ptracer could die and untrace */ 1103 ptrace_unlink(p); 1104 1105 /* If parent wants a zombie, don't release it now */ 1106 state = EXIT_ZOMBIE; 1107 if (do_notify_parent(p, p->exit_signal)) 1108 state = EXIT_DEAD; 1109 p->exit_state = state; 1110 write_unlock_irq(&tasklist_lock); 1111 } 1112 if (state == EXIT_DEAD) 1113 release_task(p); 1114 1115 return retval; 1116 } 1117 1118 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1119 { 1120 if (ptrace) { 1121 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1122 return &p->exit_code; 1123 } else { 1124 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1125 return &p->signal->group_exit_code; 1126 } 1127 return NULL; 1128 } 1129 1130 /** 1131 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1132 * @wo: wait options 1133 * @ptrace: is the wait for ptrace 1134 * @p: task to wait for 1135 * 1136 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1137 * 1138 * CONTEXT: 1139 * read_lock(&tasklist_lock), which is released if return value is 1140 * non-zero. Also, grabs and releases @p->sighand->siglock. 1141 * 1142 * RETURNS: 1143 * 0 if wait condition didn't exist and search for other wait conditions 1144 * should continue. Non-zero return, -errno on failure and @p's pid on 1145 * success, implies that tasklist_lock is released and wait condition 1146 * search should terminate. 1147 */ 1148 static int wait_task_stopped(struct wait_opts *wo, 1149 int ptrace, struct task_struct *p) 1150 { 1151 struct siginfo __user *infop; 1152 int retval, exit_code, *p_code, why; 1153 uid_t uid = 0; /* unneeded, required by compiler */ 1154 pid_t pid; 1155 1156 /* 1157 * Traditionally we see ptrace'd stopped tasks regardless of options. 1158 */ 1159 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1160 return 0; 1161 1162 if (!task_stopped_code(p, ptrace)) 1163 return 0; 1164 1165 exit_code = 0; 1166 spin_lock_irq(&p->sighand->siglock); 1167 1168 p_code = task_stopped_code(p, ptrace); 1169 if (unlikely(!p_code)) 1170 goto unlock_sig; 1171 1172 exit_code = *p_code; 1173 if (!exit_code) 1174 goto unlock_sig; 1175 1176 if (!unlikely(wo->wo_flags & WNOWAIT)) 1177 *p_code = 0; 1178 1179 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1180 unlock_sig: 1181 spin_unlock_irq(&p->sighand->siglock); 1182 if (!exit_code) 1183 return 0; 1184 1185 /* 1186 * Now we are pretty sure this task is interesting. 1187 * Make sure it doesn't get reaped out from under us while we 1188 * give up the lock and then examine it below. We don't want to 1189 * keep holding onto the tasklist_lock while we call getrusage and 1190 * possibly take page faults for user memory. 1191 */ 1192 get_task_struct(p); 1193 pid = task_pid_vnr(p); 1194 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1195 read_unlock(&tasklist_lock); 1196 sched_annotate_sleep(); 1197 1198 if (unlikely(wo->wo_flags & WNOWAIT)) 1199 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1200 1201 retval = wo->wo_rusage 1202 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1203 if (!retval && wo->wo_stat) 1204 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1205 1206 infop = wo->wo_info; 1207 if (!retval && infop) 1208 retval = put_user(SIGCHLD, &infop->si_signo); 1209 if (!retval && infop) 1210 retval = put_user(0, &infop->si_errno); 1211 if (!retval && infop) 1212 retval = put_user((short)why, &infop->si_code); 1213 if (!retval && infop) 1214 retval = put_user(exit_code, &infop->si_status); 1215 if (!retval && infop) 1216 retval = put_user(pid, &infop->si_pid); 1217 if (!retval && infop) 1218 retval = put_user(uid, &infop->si_uid); 1219 if (!retval) 1220 retval = pid; 1221 put_task_struct(p); 1222 1223 BUG_ON(!retval); 1224 return retval; 1225 } 1226 1227 /* 1228 * Handle do_wait work for one task in a live, non-stopped state. 1229 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1230 * the lock and this task is uninteresting. If we return nonzero, we have 1231 * released the lock and the system call should return. 1232 */ 1233 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1234 { 1235 int retval; 1236 pid_t pid; 1237 uid_t uid; 1238 1239 if (!unlikely(wo->wo_flags & WCONTINUED)) 1240 return 0; 1241 1242 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1243 return 0; 1244 1245 spin_lock_irq(&p->sighand->siglock); 1246 /* Re-check with the lock held. */ 1247 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1248 spin_unlock_irq(&p->sighand->siglock); 1249 return 0; 1250 } 1251 if (!unlikely(wo->wo_flags & WNOWAIT)) 1252 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1253 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1254 spin_unlock_irq(&p->sighand->siglock); 1255 1256 pid = task_pid_vnr(p); 1257 get_task_struct(p); 1258 read_unlock(&tasklist_lock); 1259 sched_annotate_sleep(); 1260 1261 if (!wo->wo_info) { 1262 retval = wo->wo_rusage 1263 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1264 put_task_struct(p); 1265 if (!retval && wo->wo_stat) 1266 retval = put_user(0xffff, wo->wo_stat); 1267 if (!retval) 1268 retval = pid; 1269 } else { 1270 retval = wait_noreap_copyout(wo, p, pid, uid, 1271 CLD_CONTINUED, SIGCONT); 1272 BUG_ON(retval == 0); 1273 } 1274 1275 return retval; 1276 } 1277 1278 /* 1279 * Consider @p for a wait by @parent. 1280 * 1281 * -ECHILD should be in ->notask_error before the first call. 1282 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1283 * Returns zero if the search for a child should continue; 1284 * then ->notask_error is 0 if @p is an eligible child, 1285 * or another error from security_task_wait(), or still -ECHILD. 1286 */ 1287 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1288 struct task_struct *p) 1289 { 1290 /* 1291 * We can race with wait_task_zombie() from another thread. 1292 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1293 * can't confuse the checks below. 1294 */ 1295 int exit_state = ACCESS_ONCE(p->exit_state); 1296 int ret; 1297 1298 if (unlikely(exit_state == EXIT_DEAD)) 1299 return 0; 1300 1301 ret = eligible_child(wo, p); 1302 if (!ret) 1303 return ret; 1304 1305 ret = security_task_wait(p); 1306 if (unlikely(ret < 0)) { 1307 /* 1308 * If we have not yet seen any eligible child, 1309 * then let this error code replace -ECHILD. 1310 * A permission error will give the user a clue 1311 * to look for security policy problems, rather 1312 * than for mysterious wait bugs. 1313 */ 1314 if (wo->notask_error) 1315 wo->notask_error = ret; 1316 return 0; 1317 } 1318 1319 if (unlikely(exit_state == EXIT_TRACE)) { 1320 /* 1321 * ptrace == 0 means we are the natural parent. In this case 1322 * we should clear notask_error, debugger will notify us. 1323 */ 1324 if (likely(!ptrace)) 1325 wo->notask_error = 0; 1326 return 0; 1327 } 1328 1329 if (likely(!ptrace) && unlikely(p->ptrace)) { 1330 /* 1331 * If it is traced by its real parent's group, just pretend 1332 * the caller is ptrace_do_wait() and reap this child if it 1333 * is zombie. 1334 * 1335 * This also hides group stop state from real parent; otherwise 1336 * a single stop can be reported twice as group and ptrace stop. 1337 * If a ptracer wants to distinguish these two events for its 1338 * own children it should create a separate process which takes 1339 * the role of real parent. 1340 */ 1341 if (!ptrace_reparented(p)) 1342 ptrace = 1; 1343 } 1344 1345 /* slay zombie? */ 1346 if (exit_state == EXIT_ZOMBIE) { 1347 /* we don't reap group leaders with subthreads */ 1348 if (!delay_group_leader(p)) { 1349 /* 1350 * A zombie ptracee is only visible to its ptracer. 1351 * Notification and reaping will be cascaded to the 1352 * real parent when the ptracer detaches. 1353 */ 1354 if (unlikely(ptrace) || likely(!p->ptrace)) 1355 return wait_task_zombie(wo, p); 1356 } 1357 1358 /* 1359 * Allow access to stopped/continued state via zombie by 1360 * falling through. Clearing of notask_error is complex. 1361 * 1362 * When !@ptrace: 1363 * 1364 * If WEXITED is set, notask_error should naturally be 1365 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1366 * so, if there are live subthreads, there are events to 1367 * wait for. If all subthreads are dead, it's still safe 1368 * to clear - this function will be called again in finite 1369 * amount time once all the subthreads are released and 1370 * will then return without clearing. 1371 * 1372 * When @ptrace: 1373 * 1374 * Stopped state is per-task and thus can't change once the 1375 * target task dies. Only continued and exited can happen. 1376 * Clear notask_error if WCONTINUED | WEXITED. 1377 */ 1378 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1379 wo->notask_error = 0; 1380 } else { 1381 /* 1382 * @p is alive and it's gonna stop, continue or exit, so 1383 * there always is something to wait for. 1384 */ 1385 wo->notask_error = 0; 1386 } 1387 1388 /* 1389 * Wait for stopped. Depending on @ptrace, different stopped state 1390 * is used and the two don't interact with each other. 1391 */ 1392 ret = wait_task_stopped(wo, ptrace, p); 1393 if (ret) 1394 return ret; 1395 1396 /* 1397 * Wait for continued. There's only one continued state and the 1398 * ptracer can consume it which can confuse the real parent. Don't 1399 * use WCONTINUED from ptracer. You don't need or want it. 1400 */ 1401 return wait_task_continued(wo, p); 1402 } 1403 1404 /* 1405 * Do the work of do_wait() for one thread in the group, @tsk. 1406 * 1407 * -ECHILD should be in ->notask_error before the first call. 1408 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1409 * Returns zero if the search for a child should continue; then 1410 * ->notask_error is 0 if there were any eligible children, 1411 * or another error from security_task_wait(), or still -ECHILD. 1412 */ 1413 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1414 { 1415 struct task_struct *p; 1416 1417 list_for_each_entry(p, &tsk->children, sibling) { 1418 int ret = wait_consider_task(wo, 0, p); 1419 1420 if (ret) 1421 return ret; 1422 } 1423 1424 return 0; 1425 } 1426 1427 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1428 { 1429 struct task_struct *p; 1430 1431 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1432 int ret = wait_consider_task(wo, 1, p); 1433 1434 if (ret) 1435 return ret; 1436 } 1437 1438 return 0; 1439 } 1440 1441 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1442 int sync, void *key) 1443 { 1444 struct wait_opts *wo = container_of(wait, struct wait_opts, 1445 child_wait); 1446 struct task_struct *p = key; 1447 1448 if (!eligible_pid(wo, p)) 1449 return 0; 1450 1451 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1452 return 0; 1453 1454 return default_wake_function(wait, mode, sync, key); 1455 } 1456 1457 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1458 { 1459 __wake_up_sync_key(&parent->signal->wait_chldexit, 1460 TASK_INTERRUPTIBLE, 1, p); 1461 } 1462 1463 static long do_wait(struct wait_opts *wo) 1464 { 1465 struct task_struct *tsk; 1466 int retval; 1467 1468 trace_sched_process_wait(wo->wo_pid); 1469 1470 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1471 wo->child_wait.private = current; 1472 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1473 repeat: 1474 /* 1475 * If there is nothing that can match our criteria, just get out. 1476 * We will clear ->notask_error to zero if we see any child that 1477 * might later match our criteria, even if we are not able to reap 1478 * it yet. 1479 */ 1480 wo->notask_error = -ECHILD; 1481 if ((wo->wo_type < PIDTYPE_MAX) && 1482 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1483 goto notask; 1484 1485 set_current_state(TASK_INTERRUPTIBLE); 1486 read_lock(&tasklist_lock); 1487 tsk = current; 1488 do { 1489 retval = do_wait_thread(wo, tsk); 1490 if (retval) 1491 goto end; 1492 1493 retval = ptrace_do_wait(wo, tsk); 1494 if (retval) 1495 goto end; 1496 1497 if (wo->wo_flags & __WNOTHREAD) 1498 break; 1499 } while_each_thread(current, tsk); 1500 read_unlock(&tasklist_lock); 1501 1502 notask: 1503 retval = wo->notask_error; 1504 if (!retval && !(wo->wo_flags & WNOHANG)) { 1505 retval = -ERESTARTSYS; 1506 if (!signal_pending(current)) { 1507 schedule(); 1508 goto repeat; 1509 } 1510 } 1511 end: 1512 __set_current_state(TASK_RUNNING); 1513 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1514 return retval; 1515 } 1516 1517 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1518 infop, int, options, struct rusage __user *, ru) 1519 { 1520 struct wait_opts wo; 1521 struct pid *pid = NULL; 1522 enum pid_type type; 1523 long ret; 1524 1525 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1526 return -EINVAL; 1527 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1528 return -EINVAL; 1529 1530 switch (which) { 1531 case P_ALL: 1532 type = PIDTYPE_MAX; 1533 break; 1534 case P_PID: 1535 type = PIDTYPE_PID; 1536 if (upid <= 0) 1537 return -EINVAL; 1538 break; 1539 case P_PGID: 1540 type = PIDTYPE_PGID; 1541 if (upid <= 0) 1542 return -EINVAL; 1543 break; 1544 default: 1545 return -EINVAL; 1546 } 1547 1548 if (type < PIDTYPE_MAX) 1549 pid = find_get_pid(upid); 1550 1551 wo.wo_type = type; 1552 wo.wo_pid = pid; 1553 wo.wo_flags = options; 1554 wo.wo_info = infop; 1555 wo.wo_stat = NULL; 1556 wo.wo_rusage = ru; 1557 ret = do_wait(&wo); 1558 1559 if (ret > 0) { 1560 ret = 0; 1561 } else if (infop) { 1562 /* 1563 * For a WNOHANG return, clear out all the fields 1564 * we would set so the user can easily tell the 1565 * difference. 1566 */ 1567 if (!ret) 1568 ret = put_user(0, &infop->si_signo); 1569 if (!ret) 1570 ret = put_user(0, &infop->si_errno); 1571 if (!ret) 1572 ret = put_user(0, &infop->si_code); 1573 if (!ret) 1574 ret = put_user(0, &infop->si_pid); 1575 if (!ret) 1576 ret = put_user(0, &infop->si_uid); 1577 if (!ret) 1578 ret = put_user(0, &infop->si_status); 1579 } 1580 1581 put_pid(pid); 1582 return ret; 1583 } 1584 1585 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1586 int, options, struct rusage __user *, ru) 1587 { 1588 struct wait_opts wo; 1589 struct pid *pid = NULL; 1590 enum pid_type type; 1591 long ret; 1592 1593 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1594 __WNOTHREAD|__WCLONE|__WALL)) 1595 return -EINVAL; 1596 1597 if (upid == -1) 1598 type = PIDTYPE_MAX; 1599 else if (upid < 0) { 1600 type = PIDTYPE_PGID; 1601 pid = find_get_pid(-upid); 1602 } else if (upid == 0) { 1603 type = PIDTYPE_PGID; 1604 pid = get_task_pid(current, PIDTYPE_PGID); 1605 } else /* upid > 0 */ { 1606 type = PIDTYPE_PID; 1607 pid = find_get_pid(upid); 1608 } 1609 1610 wo.wo_type = type; 1611 wo.wo_pid = pid; 1612 wo.wo_flags = options | WEXITED; 1613 wo.wo_info = NULL; 1614 wo.wo_stat = stat_addr; 1615 wo.wo_rusage = ru; 1616 ret = do_wait(&wo); 1617 put_pid(pid); 1618 1619 return ret; 1620 } 1621 1622 #ifdef __ARCH_WANT_SYS_WAITPID 1623 1624 /* 1625 * sys_waitpid() remains for compatibility. waitpid() should be 1626 * implemented by calling sys_wait4() from libc.a. 1627 */ 1628 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1629 { 1630 return sys_wait4(pid, stat_addr, options, NULL); 1631 } 1632 1633 #endif 1634