xref: /linux/kernel/exit.c (revision a58130ddc896e5a15e4de2bf50a1d89247118c23)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61 
62 static void exit_mm(struct task_struct * tsk);
63 
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 	nr_threads--;
67 	detach_pid(p, PIDTYPE_PID);
68 	if (group_dead) {
69 		detach_pid(p, PIDTYPE_PGID);
70 		detach_pid(p, PIDTYPE_SID);
71 
72 		list_del_rcu(&p->tasks);
73 		list_del_init(&p->sibling);
74 		__this_cpu_dec(process_counts);
75 		/*
76 		 * If we are the last child process in a pid namespace to be
77 		 * reaped, notify the reaper sleeping zap_pid_ns_processes().
78 		 */
79 		if (IS_ENABLED(CONFIG_PID_NS)) {
80 			struct task_struct *parent = p->real_parent;
81 
82 			if ((task_active_pid_ns(parent)->child_reaper == parent) &&
83 			    list_empty(&parent->children) &&
84 			    (parent->flags & PF_EXITING))
85 				wake_up_process(parent);
86 		}
87 	}
88 	list_del_rcu(&p->thread_group);
89 }
90 
91 /*
92  * This function expects the tasklist_lock write-locked.
93  */
94 static void __exit_signal(struct task_struct *tsk)
95 {
96 	struct signal_struct *sig = tsk->signal;
97 	bool group_dead = thread_group_leader(tsk);
98 	struct sighand_struct *sighand;
99 	struct tty_struct *uninitialized_var(tty);
100 
101 	sighand = rcu_dereference_check(tsk->sighand,
102 					lockdep_tasklist_lock_is_held());
103 	spin_lock(&sighand->siglock);
104 
105 	posix_cpu_timers_exit(tsk);
106 	if (group_dead) {
107 		posix_cpu_timers_exit_group(tsk);
108 		tty = sig->tty;
109 		sig->tty = NULL;
110 	} else {
111 		/*
112 		 * This can only happen if the caller is de_thread().
113 		 * FIXME: this is the temporary hack, we should teach
114 		 * posix-cpu-timers to handle this case correctly.
115 		 */
116 		if (unlikely(has_group_leader_pid(tsk)))
117 			posix_cpu_timers_exit_group(tsk);
118 
119 		/*
120 		 * If there is any task waiting for the group exit
121 		 * then notify it:
122 		 */
123 		if (sig->notify_count > 0 && !--sig->notify_count)
124 			wake_up_process(sig->group_exit_task);
125 
126 		if (tsk == sig->curr_target)
127 			sig->curr_target = next_thread(tsk);
128 		/*
129 		 * Accumulate here the counters for all threads but the
130 		 * group leader as they die, so they can be added into
131 		 * the process-wide totals when those are taken.
132 		 * The group leader stays around as a zombie as long
133 		 * as there are other threads.  When it gets reaped,
134 		 * the exit.c code will add its counts into these totals.
135 		 * We won't ever get here for the group leader, since it
136 		 * will have been the last reference on the signal_struct.
137 		 */
138 		sig->utime += tsk->utime;
139 		sig->stime += tsk->stime;
140 		sig->gtime += tsk->gtime;
141 		sig->min_flt += tsk->min_flt;
142 		sig->maj_flt += tsk->maj_flt;
143 		sig->nvcsw += tsk->nvcsw;
144 		sig->nivcsw += tsk->nivcsw;
145 		sig->inblock += task_io_get_inblock(tsk);
146 		sig->oublock += task_io_get_oublock(tsk);
147 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
148 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
149 	}
150 
151 	sig->nr_threads--;
152 	__unhash_process(tsk, group_dead);
153 
154 	/*
155 	 * Do this under ->siglock, we can race with another thread
156 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
157 	 */
158 	flush_sigqueue(&tsk->pending);
159 	tsk->sighand = NULL;
160 	spin_unlock(&sighand->siglock);
161 
162 	__cleanup_sighand(sighand);
163 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
164 	if (group_dead) {
165 		flush_sigqueue(&sig->shared_pending);
166 		tty_kref_put(tty);
167 	}
168 }
169 
170 static void delayed_put_task_struct(struct rcu_head *rhp)
171 {
172 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
173 
174 	perf_event_delayed_put(tsk);
175 	trace_sched_process_free(tsk);
176 	put_task_struct(tsk);
177 }
178 
179 
180 void release_task(struct task_struct * p)
181 {
182 	struct task_struct *leader;
183 	int zap_leader;
184 repeat:
185 	/* don't need to get the RCU readlock here - the process is dead and
186 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
187 	rcu_read_lock();
188 	atomic_dec(&__task_cred(p)->user->processes);
189 	rcu_read_unlock();
190 
191 	proc_flush_task(p);
192 
193 	write_lock_irq(&tasklist_lock);
194 	ptrace_release_task(p);
195 	__exit_signal(p);
196 
197 	/*
198 	 * If we are the last non-leader member of the thread
199 	 * group, and the leader is zombie, then notify the
200 	 * group leader's parent process. (if it wants notification.)
201 	 */
202 	zap_leader = 0;
203 	leader = p->group_leader;
204 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
205 		/*
206 		 * If we were the last child thread and the leader has
207 		 * exited already, and the leader's parent ignores SIGCHLD,
208 		 * then we are the one who should release the leader.
209 		 */
210 		zap_leader = do_notify_parent(leader, leader->exit_signal);
211 		if (zap_leader)
212 			leader->exit_state = EXIT_DEAD;
213 	}
214 
215 	write_unlock_irq(&tasklist_lock);
216 	release_thread(p);
217 	call_rcu(&p->rcu, delayed_put_task_struct);
218 
219 	p = leader;
220 	if (unlikely(zap_leader))
221 		goto repeat;
222 }
223 
224 /*
225  * This checks not only the pgrp, but falls back on the pid if no
226  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
227  * without this...
228  *
229  * The caller must hold rcu lock or the tasklist lock.
230  */
231 struct pid *session_of_pgrp(struct pid *pgrp)
232 {
233 	struct task_struct *p;
234 	struct pid *sid = NULL;
235 
236 	p = pid_task(pgrp, PIDTYPE_PGID);
237 	if (p == NULL)
238 		p = pid_task(pgrp, PIDTYPE_PID);
239 	if (p != NULL)
240 		sid = task_session(p);
241 
242 	return sid;
243 }
244 
245 /*
246  * Determine if a process group is "orphaned", according to the POSIX
247  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
248  * by terminal-generated stop signals.  Newly orphaned process groups are
249  * to receive a SIGHUP and a SIGCONT.
250  *
251  * "I ask you, have you ever known what it is to be an orphan?"
252  */
253 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
254 {
255 	struct task_struct *p;
256 
257 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
258 		if ((p == ignored_task) ||
259 		    (p->exit_state && thread_group_empty(p)) ||
260 		    is_global_init(p->real_parent))
261 			continue;
262 
263 		if (task_pgrp(p->real_parent) != pgrp &&
264 		    task_session(p->real_parent) == task_session(p))
265 			return 0;
266 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
267 
268 	return 1;
269 }
270 
271 int is_current_pgrp_orphaned(void)
272 {
273 	int retval;
274 
275 	read_lock(&tasklist_lock);
276 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
277 	read_unlock(&tasklist_lock);
278 
279 	return retval;
280 }
281 
282 static bool has_stopped_jobs(struct pid *pgrp)
283 {
284 	struct task_struct *p;
285 
286 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
287 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
288 			return true;
289 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
290 
291 	return false;
292 }
293 
294 /*
295  * Check to see if any process groups have become orphaned as
296  * a result of our exiting, and if they have any stopped jobs,
297  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
298  */
299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
301 {
302 	struct pid *pgrp = task_pgrp(tsk);
303 	struct task_struct *ignored_task = tsk;
304 
305 	if (!parent)
306 		 /* exit: our father is in a different pgrp than
307 		  * we are and we were the only connection outside.
308 		  */
309 		parent = tsk->real_parent;
310 	else
311 		/* reparent: our child is in a different pgrp than
312 		 * we are, and it was the only connection outside.
313 		 */
314 		ignored_task = NULL;
315 
316 	if (task_pgrp(parent) != pgrp &&
317 	    task_session(parent) == task_session(tsk) &&
318 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
319 	    has_stopped_jobs(pgrp)) {
320 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
322 	}
323 }
324 
325 void __set_special_pids(struct pid *pid)
326 {
327 	struct task_struct *curr = current->group_leader;
328 
329 	if (task_session(curr) != pid)
330 		change_pid(curr, PIDTYPE_SID, pid);
331 
332 	if (task_pgrp(curr) != pid)
333 		change_pid(curr, PIDTYPE_PGID, pid);
334 }
335 
336 /*
337  * Let kernel threads use this to say that they allow a certain signal.
338  * Must not be used if kthread was cloned with CLONE_SIGHAND.
339  */
340 int allow_signal(int sig)
341 {
342 	if (!valid_signal(sig) || sig < 1)
343 		return -EINVAL;
344 
345 	spin_lock_irq(&current->sighand->siglock);
346 	/* This is only needed for daemonize()'ed kthreads */
347 	sigdelset(&current->blocked, sig);
348 	/*
349 	 * Kernel threads handle their own signals. Let the signal code
350 	 * know it'll be handled, so that they don't get converted to
351 	 * SIGKILL or just silently dropped.
352 	 */
353 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
354 	recalc_sigpending();
355 	spin_unlock_irq(&current->sighand->siglock);
356 	return 0;
357 }
358 
359 EXPORT_SYMBOL(allow_signal);
360 
361 int disallow_signal(int sig)
362 {
363 	if (!valid_signal(sig) || sig < 1)
364 		return -EINVAL;
365 
366 	spin_lock_irq(&current->sighand->siglock);
367 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
368 	recalc_sigpending();
369 	spin_unlock_irq(&current->sighand->siglock);
370 	return 0;
371 }
372 
373 EXPORT_SYMBOL(disallow_signal);
374 
375 #ifdef CONFIG_MM_OWNER
376 /*
377  * A task is exiting.   If it owned this mm, find a new owner for the mm.
378  */
379 void mm_update_next_owner(struct mm_struct *mm)
380 {
381 	struct task_struct *c, *g, *p = current;
382 
383 retry:
384 	/*
385 	 * If the exiting or execing task is not the owner, it's
386 	 * someone else's problem.
387 	 */
388 	if (mm->owner != p)
389 		return;
390 	/*
391 	 * The current owner is exiting/execing and there are no other
392 	 * candidates.  Do not leave the mm pointing to a possibly
393 	 * freed task structure.
394 	 */
395 	if (atomic_read(&mm->mm_users) <= 1) {
396 		mm->owner = NULL;
397 		return;
398 	}
399 
400 	read_lock(&tasklist_lock);
401 	/*
402 	 * Search in the children
403 	 */
404 	list_for_each_entry(c, &p->children, sibling) {
405 		if (c->mm == mm)
406 			goto assign_new_owner;
407 	}
408 
409 	/*
410 	 * Search in the siblings
411 	 */
412 	list_for_each_entry(c, &p->real_parent->children, sibling) {
413 		if (c->mm == mm)
414 			goto assign_new_owner;
415 	}
416 
417 	/*
418 	 * Search through everything else. We should not get
419 	 * here often
420 	 */
421 	do_each_thread(g, c) {
422 		if (c->mm == mm)
423 			goto assign_new_owner;
424 	} while_each_thread(g, c);
425 
426 	read_unlock(&tasklist_lock);
427 	/*
428 	 * We found no owner yet mm_users > 1: this implies that we are
429 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
430 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
431 	 */
432 	mm->owner = NULL;
433 	return;
434 
435 assign_new_owner:
436 	BUG_ON(c == p);
437 	get_task_struct(c);
438 	/*
439 	 * The task_lock protects c->mm from changing.
440 	 * We always want mm->owner->mm == mm
441 	 */
442 	task_lock(c);
443 	/*
444 	 * Delay read_unlock() till we have the task_lock()
445 	 * to ensure that c does not slip away underneath us
446 	 */
447 	read_unlock(&tasklist_lock);
448 	if (c->mm != mm) {
449 		task_unlock(c);
450 		put_task_struct(c);
451 		goto retry;
452 	}
453 	mm->owner = c;
454 	task_unlock(c);
455 	put_task_struct(c);
456 }
457 #endif /* CONFIG_MM_OWNER */
458 
459 /*
460  * Turn us into a lazy TLB process if we
461  * aren't already..
462  */
463 static void exit_mm(struct task_struct * tsk)
464 {
465 	struct mm_struct *mm = tsk->mm;
466 	struct core_state *core_state;
467 
468 	mm_release(tsk, mm);
469 	if (!mm)
470 		return;
471 	sync_mm_rss(mm);
472 	/*
473 	 * Serialize with any possible pending coredump.
474 	 * We must hold mmap_sem around checking core_state
475 	 * and clearing tsk->mm.  The core-inducing thread
476 	 * will increment ->nr_threads for each thread in the
477 	 * group with ->mm != NULL.
478 	 */
479 	down_read(&mm->mmap_sem);
480 	core_state = mm->core_state;
481 	if (core_state) {
482 		struct core_thread self;
483 		up_read(&mm->mmap_sem);
484 
485 		self.task = tsk;
486 		self.next = xchg(&core_state->dumper.next, &self);
487 		/*
488 		 * Implies mb(), the result of xchg() must be visible
489 		 * to core_state->dumper.
490 		 */
491 		if (atomic_dec_and_test(&core_state->nr_threads))
492 			complete(&core_state->startup);
493 
494 		for (;;) {
495 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
496 			if (!self.task) /* see coredump_finish() */
497 				break;
498 			schedule();
499 		}
500 		__set_task_state(tsk, TASK_RUNNING);
501 		down_read(&mm->mmap_sem);
502 	}
503 	atomic_inc(&mm->mm_count);
504 	BUG_ON(mm != tsk->active_mm);
505 	/* more a memory barrier than a real lock */
506 	task_lock(tsk);
507 	tsk->mm = NULL;
508 	up_read(&mm->mmap_sem);
509 	enter_lazy_tlb(mm, current);
510 	task_unlock(tsk);
511 	mm_update_next_owner(mm);
512 	mmput(mm);
513 }
514 
515 /*
516  * When we die, we re-parent all our children, and try to:
517  * 1. give them to another thread in our thread group, if such a member exists
518  * 2. give it to the first ancestor process which prctl'd itself as a
519  *    child_subreaper for its children (like a service manager)
520  * 3. give it to the init process (PID 1) in our pid namespace
521  */
522 static struct task_struct *find_new_reaper(struct task_struct *father)
523 	__releases(&tasklist_lock)
524 	__acquires(&tasklist_lock)
525 {
526 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
527 	struct task_struct *thread;
528 
529 	thread = father;
530 	while_each_thread(father, thread) {
531 		if (thread->flags & PF_EXITING)
532 			continue;
533 		if (unlikely(pid_ns->child_reaper == father))
534 			pid_ns->child_reaper = thread;
535 		return thread;
536 	}
537 
538 	if (unlikely(pid_ns->child_reaper == father)) {
539 		write_unlock_irq(&tasklist_lock);
540 		if (unlikely(pid_ns == &init_pid_ns)) {
541 			panic("Attempted to kill init! exitcode=0x%08x\n",
542 				father->signal->group_exit_code ?:
543 					father->exit_code);
544 		}
545 
546 		zap_pid_ns_processes(pid_ns);
547 		write_lock_irq(&tasklist_lock);
548 	} else if (father->signal->has_child_subreaper) {
549 		struct task_struct *reaper;
550 
551 		/*
552 		 * Find the first ancestor marked as child_subreaper.
553 		 * Note that the code below checks same_thread_group(reaper,
554 		 * pid_ns->child_reaper).  This is what we need to DTRT in a
555 		 * PID namespace. However we still need the check above, see
556 		 * http://marc.info/?l=linux-kernel&m=131385460420380
557 		 */
558 		for (reaper = father->real_parent;
559 		     reaper != &init_task;
560 		     reaper = reaper->real_parent) {
561 			if (same_thread_group(reaper, pid_ns->child_reaper))
562 				break;
563 			if (!reaper->signal->is_child_subreaper)
564 				continue;
565 			thread = reaper;
566 			do {
567 				if (!(thread->flags & PF_EXITING))
568 					return reaper;
569 			} while_each_thread(reaper, thread);
570 		}
571 	}
572 
573 	return pid_ns->child_reaper;
574 }
575 
576 /*
577 * Any that need to be release_task'd are put on the @dead list.
578  */
579 static void reparent_leader(struct task_struct *father, struct task_struct *p,
580 				struct list_head *dead)
581 {
582 	list_move_tail(&p->sibling, &p->real_parent->children);
583 
584 	if (p->exit_state == EXIT_DEAD)
585 		return;
586 	/*
587 	 * If this is a threaded reparent there is no need to
588 	 * notify anyone anything has happened.
589 	 */
590 	if (same_thread_group(p->real_parent, father))
591 		return;
592 
593 	/* We don't want people slaying init.  */
594 	p->exit_signal = SIGCHLD;
595 
596 	/* If it has exited notify the new parent about this child's death. */
597 	if (!p->ptrace &&
598 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
599 		if (do_notify_parent(p, p->exit_signal)) {
600 			p->exit_state = EXIT_DEAD;
601 			list_move_tail(&p->sibling, dead);
602 		}
603 	}
604 
605 	kill_orphaned_pgrp(p, father);
606 }
607 
608 static void forget_original_parent(struct task_struct *father)
609 {
610 	struct task_struct *p, *n, *reaper;
611 	LIST_HEAD(dead_children);
612 
613 	write_lock_irq(&tasklist_lock);
614 	/*
615 	 * Note that exit_ptrace() and find_new_reaper() might
616 	 * drop tasklist_lock and reacquire it.
617 	 */
618 	exit_ptrace(father);
619 	reaper = find_new_reaper(father);
620 
621 	list_for_each_entry_safe(p, n, &father->children, sibling) {
622 		struct task_struct *t = p;
623 		do {
624 			t->real_parent = reaper;
625 			if (t->parent == father) {
626 				BUG_ON(t->ptrace);
627 				t->parent = t->real_parent;
628 			}
629 			if (t->pdeath_signal)
630 				group_send_sig_info(t->pdeath_signal,
631 						    SEND_SIG_NOINFO, t);
632 		} while_each_thread(p, t);
633 		reparent_leader(father, p, &dead_children);
634 	}
635 	write_unlock_irq(&tasklist_lock);
636 
637 	BUG_ON(!list_empty(&father->children));
638 
639 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
640 		list_del_init(&p->sibling);
641 		release_task(p);
642 	}
643 }
644 
645 /*
646  * Send signals to all our closest relatives so that they know
647  * to properly mourn us..
648  */
649 static void exit_notify(struct task_struct *tsk, int group_dead)
650 {
651 	bool autoreap;
652 
653 	/*
654 	 * This does two things:
655 	 *
656   	 * A.  Make init inherit all the child processes
657 	 * B.  Check to see if any process groups have become orphaned
658 	 *	as a result of our exiting, and if they have any stopped
659 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
660 	 */
661 	forget_original_parent(tsk);
662 	exit_task_namespaces(tsk);
663 
664 	write_lock_irq(&tasklist_lock);
665 	if (group_dead)
666 		kill_orphaned_pgrp(tsk->group_leader, NULL);
667 
668 	if (unlikely(tsk->ptrace)) {
669 		int sig = thread_group_leader(tsk) &&
670 				thread_group_empty(tsk) &&
671 				!ptrace_reparented(tsk) ?
672 			tsk->exit_signal : SIGCHLD;
673 		autoreap = do_notify_parent(tsk, sig);
674 	} else if (thread_group_leader(tsk)) {
675 		autoreap = thread_group_empty(tsk) &&
676 			do_notify_parent(tsk, tsk->exit_signal);
677 	} else {
678 		autoreap = true;
679 	}
680 
681 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
682 
683 	/* mt-exec, de_thread() is waiting for group leader */
684 	if (unlikely(tsk->signal->notify_count < 0))
685 		wake_up_process(tsk->signal->group_exit_task);
686 	write_unlock_irq(&tasklist_lock);
687 
688 	/* If the process is dead, release it - nobody will wait for it */
689 	if (autoreap)
690 		release_task(tsk);
691 }
692 
693 #ifdef CONFIG_DEBUG_STACK_USAGE
694 static void check_stack_usage(void)
695 {
696 	static DEFINE_SPINLOCK(low_water_lock);
697 	static int lowest_to_date = THREAD_SIZE;
698 	unsigned long free;
699 
700 	free = stack_not_used(current);
701 
702 	if (free >= lowest_to_date)
703 		return;
704 
705 	spin_lock(&low_water_lock);
706 	if (free < lowest_to_date) {
707 		printk(KERN_WARNING "%s (%d) used greatest stack depth: "
708 				"%lu bytes left\n",
709 				current->comm, task_pid_nr(current), free);
710 		lowest_to_date = free;
711 	}
712 	spin_unlock(&low_water_lock);
713 }
714 #else
715 static inline void check_stack_usage(void) {}
716 #endif
717 
718 void do_exit(long code)
719 {
720 	struct task_struct *tsk = current;
721 	int group_dead;
722 
723 	profile_task_exit(tsk);
724 
725 	WARN_ON(blk_needs_flush_plug(tsk));
726 
727 	if (unlikely(in_interrupt()))
728 		panic("Aiee, killing interrupt handler!");
729 	if (unlikely(!tsk->pid))
730 		panic("Attempted to kill the idle task!");
731 
732 	/*
733 	 * If do_exit is called because this processes oopsed, it's possible
734 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
735 	 * continuing. Amongst other possible reasons, this is to prevent
736 	 * mm_release()->clear_child_tid() from writing to a user-controlled
737 	 * kernel address.
738 	 */
739 	set_fs(USER_DS);
740 
741 	ptrace_event(PTRACE_EVENT_EXIT, code);
742 
743 	validate_creds_for_do_exit(tsk);
744 
745 	/*
746 	 * We're taking recursive faults here in do_exit. Safest is to just
747 	 * leave this task alone and wait for reboot.
748 	 */
749 	if (unlikely(tsk->flags & PF_EXITING)) {
750 		printk(KERN_ALERT
751 			"Fixing recursive fault but reboot is needed!\n");
752 		/*
753 		 * We can do this unlocked here. The futex code uses
754 		 * this flag just to verify whether the pi state
755 		 * cleanup has been done or not. In the worst case it
756 		 * loops once more. We pretend that the cleanup was
757 		 * done as there is no way to return. Either the
758 		 * OWNER_DIED bit is set by now or we push the blocked
759 		 * task into the wait for ever nirwana as well.
760 		 */
761 		tsk->flags |= PF_EXITPIDONE;
762 		set_current_state(TASK_UNINTERRUPTIBLE);
763 		schedule();
764 	}
765 
766 	exit_signals(tsk);  /* sets PF_EXITING */
767 	/*
768 	 * tsk->flags are checked in the futex code to protect against
769 	 * an exiting task cleaning up the robust pi futexes.
770 	 */
771 	smp_mb();
772 	raw_spin_unlock_wait(&tsk->pi_lock);
773 
774 	if (unlikely(in_atomic()))
775 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
776 				current->comm, task_pid_nr(current),
777 				preempt_count());
778 
779 	acct_update_integrals(tsk);
780 	/* sync mm's RSS info before statistics gathering */
781 	if (tsk->mm)
782 		sync_mm_rss(tsk->mm);
783 	group_dead = atomic_dec_and_test(&tsk->signal->live);
784 	if (group_dead) {
785 		hrtimer_cancel(&tsk->signal->real_timer);
786 		exit_itimers(tsk->signal);
787 		if (tsk->mm)
788 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
789 	}
790 	acct_collect(code, group_dead);
791 	if (group_dead)
792 		tty_audit_exit();
793 	audit_free(tsk);
794 
795 	tsk->exit_code = code;
796 	taskstats_exit(tsk, group_dead);
797 
798 	exit_mm(tsk);
799 
800 	if (group_dead)
801 		acct_process();
802 	trace_sched_process_exit(tsk);
803 
804 	exit_sem(tsk);
805 	exit_shm(tsk);
806 	exit_files(tsk);
807 	exit_fs(tsk);
808 	exit_task_work(tsk);
809 	check_stack_usage();
810 	exit_thread();
811 
812 	/*
813 	 * Flush inherited counters to the parent - before the parent
814 	 * gets woken up by child-exit notifications.
815 	 *
816 	 * because of cgroup mode, must be called before cgroup_exit()
817 	 */
818 	perf_event_exit_task(tsk);
819 
820 	cgroup_exit(tsk, 1);
821 
822 	if (group_dead)
823 		disassociate_ctty(1);
824 
825 	module_put(task_thread_info(tsk)->exec_domain->module);
826 
827 	proc_exit_connector(tsk);
828 
829 	/*
830 	 * FIXME: do that only when needed, using sched_exit tracepoint
831 	 */
832 	ptrace_put_breakpoints(tsk);
833 
834 	exit_notify(tsk, group_dead);
835 #ifdef CONFIG_NUMA
836 	task_lock(tsk);
837 	mpol_put(tsk->mempolicy);
838 	tsk->mempolicy = NULL;
839 	task_unlock(tsk);
840 #endif
841 #ifdef CONFIG_FUTEX
842 	if (unlikely(current->pi_state_cache))
843 		kfree(current->pi_state_cache);
844 #endif
845 	/*
846 	 * Make sure we are holding no locks:
847 	 */
848 	debug_check_no_locks_held(tsk);
849 	/*
850 	 * We can do this unlocked here. The futex code uses this flag
851 	 * just to verify whether the pi state cleanup has been done
852 	 * or not. In the worst case it loops once more.
853 	 */
854 	tsk->flags |= PF_EXITPIDONE;
855 
856 	if (tsk->io_context)
857 		exit_io_context(tsk);
858 
859 	if (tsk->splice_pipe)
860 		__free_pipe_info(tsk->splice_pipe);
861 
862 	if (tsk->task_frag.page)
863 		put_page(tsk->task_frag.page);
864 
865 	validate_creds_for_do_exit(tsk);
866 
867 	preempt_disable();
868 	if (tsk->nr_dirtied)
869 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
870 	exit_rcu();
871 
872 	/*
873 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
874 	 * when the following two conditions become true.
875 	 *   - There is race condition of mmap_sem (It is acquired by
876 	 *     exit_mm()), and
877 	 *   - SMI occurs before setting TASK_RUNINNG.
878 	 *     (or hypervisor of virtual machine switches to other guest)
879 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
880 	 *
881 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
882 	 * is held by try_to_wake_up()
883 	 */
884 	smp_mb();
885 	raw_spin_unlock_wait(&tsk->pi_lock);
886 
887 	/* causes final put_task_struct in finish_task_switch(). */
888 	tsk->state = TASK_DEAD;
889 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
890 	schedule();
891 	BUG();
892 	/* Avoid "noreturn function does return".  */
893 	for (;;)
894 		cpu_relax();	/* For when BUG is null */
895 }
896 
897 EXPORT_SYMBOL_GPL(do_exit);
898 
899 void complete_and_exit(struct completion *comp, long code)
900 {
901 	if (comp)
902 		complete(comp);
903 
904 	do_exit(code);
905 }
906 
907 EXPORT_SYMBOL(complete_and_exit);
908 
909 SYSCALL_DEFINE1(exit, int, error_code)
910 {
911 	do_exit((error_code&0xff)<<8);
912 }
913 
914 /*
915  * Take down every thread in the group.  This is called by fatal signals
916  * as well as by sys_exit_group (below).
917  */
918 void
919 do_group_exit(int exit_code)
920 {
921 	struct signal_struct *sig = current->signal;
922 
923 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
924 
925 	if (signal_group_exit(sig))
926 		exit_code = sig->group_exit_code;
927 	else if (!thread_group_empty(current)) {
928 		struct sighand_struct *const sighand = current->sighand;
929 		spin_lock_irq(&sighand->siglock);
930 		if (signal_group_exit(sig))
931 			/* Another thread got here before we took the lock.  */
932 			exit_code = sig->group_exit_code;
933 		else {
934 			sig->group_exit_code = exit_code;
935 			sig->flags = SIGNAL_GROUP_EXIT;
936 			zap_other_threads(current);
937 		}
938 		spin_unlock_irq(&sighand->siglock);
939 	}
940 
941 	do_exit(exit_code);
942 	/* NOTREACHED */
943 }
944 
945 /*
946  * this kills every thread in the thread group. Note that any externally
947  * wait4()-ing process will get the correct exit code - even if this
948  * thread is not the thread group leader.
949  */
950 SYSCALL_DEFINE1(exit_group, int, error_code)
951 {
952 	do_group_exit((error_code & 0xff) << 8);
953 	/* NOTREACHED */
954 	return 0;
955 }
956 
957 struct wait_opts {
958 	enum pid_type		wo_type;
959 	int			wo_flags;
960 	struct pid		*wo_pid;
961 
962 	struct siginfo __user	*wo_info;
963 	int __user		*wo_stat;
964 	struct rusage __user	*wo_rusage;
965 
966 	wait_queue_t		child_wait;
967 	int			notask_error;
968 };
969 
970 static inline
971 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
972 {
973 	if (type != PIDTYPE_PID)
974 		task = task->group_leader;
975 	return task->pids[type].pid;
976 }
977 
978 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
979 {
980 	return	wo->wo_type == PIDTYPE_MAX ||
981 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
982 }
983 
984 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
985 {
986 	if (!eligible_pid(wo, p))
987 		return 0;
988 	/* Wait for all children (clone and not) if __WALL is set;
989 	 * otherwise, wait for clone children *only* if __WCLONE is
990 	 * set; otherwise, wait for non-clone children *only*.  (Note:
991 	 * A "clone" child here is one that reports to its parent
992 	 * using a signal other than SIGCHLD.) */
993 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
994 	    && !(wo->wo_flags & __WALL))
995 		return 0;
996 
997 	return 1;
998 }
999 
1000 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1001 				pid_t pid, uid_t uid, int why, int status)
1002 {
1003 	struct siginfo __user *infop;
1004 	int retval = wo->wo_rusage
1005 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1006 
1007 	put_task_struct(p);
1008 	infop = wo->wo_info;
1009 	if (infop) {
1010 		if (!retval)
1011 			retval = put_user(SIGCHLD, &infop->si_signo);
1012 		if (!retval)
1013 			retval = put_user(0, &infop->si_errno);
1014 		if (!retval)
1015 			retval = put_user((short)why, &infop->si_code);
1016 		if (!retval)
1017 			retval = put_user(pid, &infop->si_pid);
1018 		if (!retval)
1019 			retval = put_user(uid, &infop->si_uid);
1020 		if (!retval)
1021 			retval = put_user(status, &infop->si_status);
1022 	}
1023 	if (!retval)
1024 		retval = pid;
1025 	return retval;
1026 }
1027 
1028 /*
1029  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1030  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1031  * the lock and this task is uninteresting.  If we return nonzero, we have
1032  * released the lock and the system call should return.
1033  */
1034 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1035 {
1036 	unsigned long state;
1037 	int retval, status, traced;
1038 	pid_t pid = task_pid_vnr(p);
1039 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1040 	struct siginfo __user *infop;
1041 
1042 	if (!likely(wo->wo_flags & WEXITED))
1043 		return 0;
1044 
1045 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1046 		int exit_code = p->exit_code;
1047 		int why;
1048 
1049 		get_task_struct(p);
1050 		read_unlock(&tasklist_lock);
1051 		if ((exit_code & 0x7f) == 0) {
1052 			why = CLD_EXITED;
1053 			status = exit_code >> 8;
1054 		} else {
1055 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1056 			status = exit_code & 0x7f;
1057 		}
1058 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1059 	}
1060 
1061 	/*
1062 	 * Try to move the task's state to DEAD
1063 	 * only one thread is allowed to do this:
1064 	 */
1065 	state = xchg(&p->exit_state, EXIT_DEAD);
1066 	if (state != EXIT_ZOMBIE) {
1067 		BUG_ON(state != EXIT_DEAD);
1068 		return 0;
1069 	}
1070 
1071 	traced = ptrace_reparented(p);
1072 	/*
1073 	 * It can be ptraced but not reparented, check
1074 	 * thread_group_leader() to filter out sub-threads.
1075 	 */
1076 	if (likely(!traced) && thread_group_leader(p)) {
1077 		struct signal_struct *psig;
1078 		struct signal_struct *sig;
1079 		unsigned long maxrss;
1080 		cputime_t tgutime, tgstime;
1081 
1082 		/*
1083 		 * The resource counters for the group leader are in its
1084 		 * own task_struct.  Those for dead threads in the group
1085 		 * are in its signal_struct, as are those for the child
1086 		 * processes it has previously reaped.  All these
1087 		 * accumulate in the parent's signal_struct c* fields.
1088 		 *
1089 		 * We don't bother to take a lock here to protect these
1090 		 * p->signal fields, because they are only touched by
1091 		 * __exit_signal, which runs with tasklist_lock
1092 		 * write-locked anyway, and so is excluded here.  We do
1093 		 * need to protect the access to parent->signal fields,
1094 		 * as other threads in the parent group can be right
1095 		 * here reaping other children at the same time.
1096 		 *
1097 		 * We use thread_group_cputime_adjusted() to get times for the thread
1098 		 * group, which consolidates times for all threads in the
1099 		 * group including the group leader.
1100 		 */
1101 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1102 		spin_lock_irq(&p->real_parent->sighand->siglock);
1103 		psig = p->real_parent->signal;
1104 		sig = p->signal;
1105 		psig->cutime += tgutime + sig->cutime;
1106 		psig->cstime += tgstime + sig->cstime;
1107 		psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1108 		psig->cmin_flt +=
1109 			p->min_flt + sig->min_flt + sig->cmin_flt;
1110 		psig->cmaj_flt +=
1111 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1112 		psig->cnvcsw +=
1113 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1114 		psig->cnivcsw +=
1115 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1116 		psig->cinblock +=
1117 			task_io_get_inblock(p) +
1118 			sig->inblock + sig->cinblock;
1119 		psig->coublock +=
1120 			task_io_get_oublock(p) +
1121 			sig->oublock + sig->coublock;
1122 		maxrss = max(sig->maxrss, sig->cmaxrss);
1123 		if (psig->cmaxrss < maxrss)
1124 			psig->cmaxrss = maxrss;
1125 		task_io_accounting_add(&psig->ioac, &p->ioac);
1126 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1127 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1128 	}
1129 
1130 	/*
1131 	 * Now we are sure this task is interesting, and no other
1132 	 * thread can reap it because we set its state to EXIT_DEAD.
1133 	 */
1134 	read_unlock(&tasklist_lock);
1135 
1136 	retval = wo->wo_rusage
1137 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1138 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1139 		? p->signal->group_exit_code : p->exit_code;
1140 	if (!retval && wo->wo_stat)
1141 		retval = put_user(status, wo->wo_stat);
1142 
1143 	infop = wo->wo_info;
1144 	if (!retval && infop)
1145 		retval = put_user(SIGCHLD, &infop->si_signo);
1146 	if (!retval && infop)
1147 		retval = put_user(0, &infop->si_errno);
1148 	if (!retval && infop) {
1149 		int why;
1150 
1151 		if ((status & 0x7f) == 0) {
1152 			why = CLD_EXITED;
1153 			status >>= 8;
1154 		} else {
1155 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1156 			status &= 0x7f;
1157 		}
1158 		retval = put_user((short)why, &infop->si_code);
1159 		if (!retval)
1160 			retval = put_user(status, &infop->si_status);
1161 	}
1162 	if (!retval && infop)
1163 		retval = put_user(pid, &infop->si_pid);
1164 	if (!retval && infop)
1165 		retval = put_user(uid, &infop->si_uid);
1166 	if (!retval)
1167 		retval = pid;
1168 
1169 	if (traced) {
1170 		write_lock_irq(&tasklist_lock);
1171 		/* We dropped tasklist, ptracer could die and untrace */
1172 		ptrace_unlink(p);
1173 		/*
1174 		 * If this is not a sub-thread, notify the parent.
1175 		 * If parent wants a zombie, don't release it now.
1176 		 */
1177 		if (thread_group_leader(p) &&
1178 		    !do_notify_parent(p, p->exit_signal)) {
1179 			p->exit_state = EXIT_ZOMBIE;
1180 			p = NULL;
1181 		}
1182 		write_unlock_irq(&tasklist_lock);
1183 	}
1184 	if (p != NULL)
1185 		release_task(p);
1186 
1187 	return retval;
1188 }
1189 
1190 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1191 {
1192 	if (ptrace) {
1193 		if (task_is_stopped_or_traced(p) &&
1194 		    !(p->jobctl & JOBCTL_LISTENING))
1195 			return &p->exit_code;
1196 	} else {
1197 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1198 			return &p->signal->group_exit_code;
1199 	}
1200 	return NULL;
1201 }
1202 
1203 /**
1204  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1205  * @wo: wait options
1206  * @ptrace: is the wait for ptrace
1207  * @p: task to wait for
1208  *
1209  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1210  *
1211  * CONTEXT:
1212  * read_lock(&tasklist_lock), which is released if return value is
1213  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1214  *
1215  * RETURNS:
1216  * 0 if wait condition didn't exist and search for other wait conditions
1217  * should continue.  Non-zero return, -errno on failure and @p's pid on
1218  * success, implies that tasklist_lock is released and wait condition
1219  * search should terminate.
1220  */
1221 static int wait_task_stopped(struct wait_opts *wo,
1222 				int ptrace, struct task_struct *p)
1223 {
1224 	struct siginfo __user *infop;
1225 	int retval, exit_code, *p_code, why;
1226 	uid_t uid = 0; /* unneeded, required by compiler */
1227 	pid_t pid;
1228 
1229 	/*
1230 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1231 	 */
1232 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1233 		return 0;
1234 
1235 	if (!task_stopped_code(p, ptrace))
1236 		return 0;
1237 
1238 	exit_code = 0;
1239 	spin_lock_irq(&p->sighand->siglock);
1240 
1241 	p_code = task_stopped_code(p, ptrace);
1242 	if (unlikely(!p_code))
1243 		goto unlock_sig;
1244 
1245 	exit_code = *p_code;
1246 	if (!exit_code)
1247 		goto unlock_sig;
1248 
1249 	if (!unlikely(wo->wo_flags & WNOWAIT))
1250 		*p_code = 0;
1251 
1252 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1253 unlock_sig:
1254 	spin_unlock_irq(&p->sighand->siglock);
1255 	if (!exit_code)
1256 		return 0;
1257 
1258 	/*
1259 	 * Now we are pretty sure this task is interesting.
1260 	 * Make sure it doesn't get reaped out from under us while we
1261 	 * give up the lock and then examine it below.  We don't want to
1262 	 * keep holding onto the tasklist_lock while we call getrusage and
1263 	 * possibly take page faults for user memory.
1264 	 */
1265 	get_task_struct(p);
1266 	pid = task_pid_vnr(p);
1267 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1268 	read_unlock(&tasklist_lock);
1269 
1270 	if (unlikely(wo->wo_flags & WNOWAIT))
1271 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1272 
1273 	retval = wo->wo_rusage
1274 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1275 	if (!retval && wo->wo_stat)
1276 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1277 
1278 	infop = wo->wo_info;
1279 	if (!retval && infop)
1280 		retval = put_user(SIGCHLD, &infop->si_signo);
1281 	if (!retval && infop)
1282 		retval = put_user(0, &infop->si_errno);
1283 	if (!retval && infop)
1284 		retval = put_user((short)why, &infop->si_code);
1285 	if (!retval && infop)
1286 		retval = put_user(exit_code, &infop->si_status);
1287 	if (!retval && infop)
1288 		retval = put_user(pid, &infop->si_pid);
1289 	if (!retval && infop)
1290 		retval = put_user(uid, &infop->si_uid);
1291 	if (!retval)
1292 		retval = pid;
1293 	put_task_struct(p);
1294 
1295 	BUG_ON(!retval);
1296 	return retval;
1297 }
1298 
1299 /*
1300  * Handle do_wait work for one task in a live, non-stopped state.
1301  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1302  * the lock and this task is uninteresting.  If we return nonzero, we have
1303  * released the lock and the system call should return.
1304  */
1305 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1306 {
1307 	int retval;
1308 	pid_t pid;
1309 	uid_t uid;
1310 
1311 	if (!unlikely(wo->wo_flags & WCONTINUED))
1312 		return 0;
1313 
1314 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1315 		return 0;
1316 
1317 	spin_lock_irq(&p->sighand->siglock);
1318 	/* Re-check with the lock held.  */
1319 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1320 		spin_unlock_irq(&p->sighand->siglock);
1321 		return 0;
1322 	}
1323 	if (!unlikely(wo->wo_flags & WNOWAIT))
1324 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1325 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1326 	spin_unlock_irq(&p->sighand->siglock);
1327 
1328 	pid = task_pid_vnr(p);
1329 	get_task_struct(p);
1330 	read_unlock(&tasklist_lock);
1331 
1332 	if (!wo->wo_info) {
1333 		retval = wo->wo_rusage
1334 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1335 		put_task_struct(p);
1336 		if (!retval && wo->wo_stat)
1337 			retval = put_user(0xffff, wo->wo_stat);
1338 		if (!retval)
1339 			retval = pid;
1340 	} else {
1341 		retval = wait_noreap_copyout(wo, p, pid, uid,
1342 					     CLD_CONTINUED, SIGCONT);
1343 		BUG_ON(retval == 0);
1344 	}
1345 
1346 	return retval;
1347 }
1348 
1349 /*
1350  * Consider @p for a wait by @parent.
1351  *
1352  * -ECHILD should be in ->notask_error before the first call.
1353  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1354  * Returns zero if the search for a child should continue;
1355  * then ->notask_error is 0 if @p is an eligible child,
1356  * or another error from security_task_wait(), or still -ECHILD.
1357  */
1358 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1359 				struct task_struct *p)
1360 {
1361 	int ret = eligible_child(wo, p);
1362 	if (!ret)
1363 		return ret;
1364 
1365 	ret = security_task_wait(p);
1366 	if (unlikely(ret < 0)) {
1367 		/*
1368 		 * If we have not yet seen any eligible child,
1369 		 * then let this error code replace -ECHILD.
1370 		 * A permission error will give the user a clue
1371 		 * to look for security policy problems, rather
1372 		 * than for mysterious wait bugs.
1373 		 */
1374 		if (wo->notask_error)
1375 			wo->notask_error = ret;
1376 		return 0;
1377 	}
1378 
1379 	/* dead body doesn't have much to contribute */
1380 	if (unlikely(p->exit_state == EXIT_DEAD)) {
1381 		/*
1382 		 * But do not ignore this task until the tracer does
1383 		 * wait_task_zombie()->do_notify_parent().
1384 		 */
1385 		if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1386 			wo->notask_error = 0;
1387 		return 0;
1388 	}
1389 
1390 	/* slay zombie? */
1391 	if (p->exit_state == EXIT_ZOMBIE) {
1392 		/*
1393 		 * A zombie ptracee is only visible to its ptracer.
1394 		 * Notification and reaping will be cascaded to the real
1395 		 * parent when the ptracer detaches.
1396 		 */
1397 		if (likely(!ptrace) && unlikely(p->ptrace)) {
1398 			/* it will become visible, clear notask_error */
1399 			wo->notask_error = 0;
1400 			return 0;
1401 		}
1402 
1403 		/* we don't reap group leaders with subthreads */
1404 		if (!delay_group_leader(p))
1405 			return wait_task_zombie(wo, p);
1406 
1407 		/*
1408 		 * Allow access to stopped/continued state via zombie by
1409 		 * falling through.  Clearing of notask_error is complex.
1410 		 *
1411 		 * When !@ptrace:
1412 		 *
1413 		 * If WEXITED is set, notask_error should naturally be
1414 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1415 		 * so, if there are live subthreads, there are events to
1416 		 * wait for.  If all subthreads are dead, it's still safe
1417 		 * to clear - this function will be called again in finite
1418 		 * amount time once all the subthreads are released and
1419 		 * will then return without clearing.
1420 		 *
1421 		 * When @ptrace:
1422 		 *
1423 		 * Stopped state is per-task and thus can't change once the
1424 		 * target task dies.  Only continued and exited can happen.
1425 		 * Clear notask_error if WCONTINUED | WEXITED.
1426 		 */
1427 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1428 			wo->notask_error = 0;
1429 	} else {
1430 		/*
1431 		 * If @p is ptraced by a task in its real parent's group,
1432 		 * hide group stop/continued state when looking at @p as
1433 		 * the real parent; otherwise, a single stop can be
1434 		 * reported twice as group and ptrace stops.
1435 		 *
1436 		 * If a ptracer wants to distinguish the two events for its
1437 		 * own children, it should create a separate process which
1438 		 * takes the role of real parent.
1439 		 */
1440 		if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1441 			return 0;
1442 
1443 		/*
1444 		 * @p is alive and it's gonna stop, continue or exit, so
1445 		 * there always is something to wait for.
1446 		 */
1447 		wo->notask_error = 0;
1448 	}
1449 
1450 	/*
1451 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1452 	 * is used and the two don't interact with each other.
1453 	 */
1454 	ret = wait_task_stopped(wo, ptrace, p);
1455 	if (ret)
1456 		return ret;
1457 
1458 	/*
1459 	 * Wait for continued.  There's only one continued state and the
1460 	 * ptracer can consume it which can confuse the real parent.  Don't
1461 	 * use WCONTINUED from ptracer.  You don't need or want it.
1462 	 */
1463 	return wait_task_continued(wo, p);
1464 }
1465 
1466 /*
1467  * Do the work of do_wait() for one thread in the group, @tsk.
1468  *
1469  * -ECHILD should be in ->notask_error before the first call.
1470  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1471  * Returns zero if the search for a child should continue; then
1472  * ->notask_error is 0 if there were any eligible children,
1473  * or another error from security_task_wait(), or still -ECHILD.
1474  */
1475 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1476 {
1477 	struct task_struct *p;
1478 
1479 	list_for_each_entry(p, &tsk->children, sibling) {
1480 		int ret = wait_consider_task(wo, 0, p);
1481 		if (ret)
1482 			return ret;
1483 	}
1484 
1485 	return 0;
1486 }
1487 
1488 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1489 {
1490 	struct task_struct *p;
1491 
1492 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1493 		int ret = wait_consider_task(wo, 1, p);
1494 		if (ret)
1495 			return ret;
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1502 				int sync, void *key)
1503 {
1504 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1505 						child_wait);
1506 	struct task_struct *p = key;
1507 
1508 	if (!eligible_pid(wo, p))
1509 		return 0;
1510 
1511 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1512 		return 0;
1513 
1514 	return default_wake_function(wait, mode, sync, key);
1515 }
1516 
1517 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1518 {
1519 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1520 				TASK_INTERRUPTIBLE, 1, p);
1521 }
1522 
1523 static long do_wait(struct wait_opts *wo)
1524 {
1525 	struct task_struct *tsk;
1526 	int retval;
1527 
1528 	trace_sched_process_wait(wo->wo_pid);
1529 
1530 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1531 	wo->child_wait.private = current;
1532 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1533 repeat:
1534 	/*
1535 	 * If there is nothing that can match our critiera just get out.
1536 	 * We will clear ->notask_error to zero if we see any child that
1537 	 * might later match our criteria, even if we are not able to reap
1538 	 * it yet.
1539 	 */
1540 	wo->notask_error = -ECHILD;
1541 	if ((wo->wo_type < PIDTYPE_MAX) &&
1542 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1543 		goto notask;
1544 
1545 	set_current_state(TASK_INTERRUPTIBLE);
1546 	read_lock(&tasklist_lock);
1547 	tsk = current;
1548 	do {
1549 		retval = do_wait_thread(wo, tsk);
1550 		if (retval)
1551 			goto end;
1552 
1553 		retval = ptrace_do_wait(wo, tsk);
1554 		if (retval)
1555 			goto end;
1556 
1557 		if (wo->wo_flags & __WNOTHREAD)
1558 			break;
1559 	} while_each_thread(current, tsk);
1560 	read_unlock(&tasklist_lock);
1561 
1562 notask:
1563 	retval = wo->notask_error;
1564 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1565 		retval = -ERESTARTSYS;
1566 		if (!signal_pending(current)) {
1567 			schedule();
1568 			goto repeat;
1569 		}
1570 	}
1571 end:
1572 	__set_current_state(TASK_RUNNING);
1573 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1574 	return retval;
1575 }
1576 
1577 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1578 		infop, int, options, struct rusage __user *, ru)
1579 {
1580 	struct wait_opts wo;
1581 	struct pid *pid = NULL;
1582 	enum pid_type type;
1583 	long ret;
1584 
1585 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1586 		return -EINVAL;
1587 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1588 		return -EINVAL;
1589 
1590 	switch (which) {
1591 	case P_ALL:
1592 		type = PIDTYPE_MAX;
1593 		break;
1594 	case P_PID:
1595 		type = PIDTYPE_PID;
1596 		if (upid <= 0)
1597 			return -EINVAL;
1598 		break;
1599 	case P_PGID:
1600 		type = PIDTYPE_PGID;
1601 		if (upid <= 0)
1602 			return -EINVAL;
1603 		break;
1604 	default:
1605 		return -EINVAL;
1606 	}
1607 
1608 	if (type < PIDTYPE_MAX)
1609 		pid = find_get_pid(upid);
1610 
1611 	wo.wo_type	= type;
1612 	wo.wo_pid	= pid;
1613 	wo.wo_flags	= options;
1614 	wo.wo_info	= infop;
1615 	wo.wo_stat	= NULL;
1616 	wo.wo_rusage	= ru;
1617 	ret = do_wait(&wo);
1618 
1619 	if (ret > 0) {
1620 		ret = 0;
1621 	} else if (infop) {
1622 		/*
1623 		 * For a WNOHANG return, clear out all the fields
1624 		 * we would set so the user can easily tell the
1625 		 * difference.
1626 		 */
1627 		if (!ret)
1628 			ret = put_user(0, &infop->si_signo);
1629 		if (!ret)
1630 			ret = put_user(0, &infop->si_errno);
1631 		if (!ret)
1632 			ret = put_user(0, &infop->si_code);
1633 		if (!ret)
1634 			ret = put_user(0, &infop->si_pid);
1635 		if (!ret)
1636 			ret = put_user(0, &infop->si_uid);
1637 		if (!ret)
1638 			ret = put_user(0, &infop->si_status);
1639 	}
1640 
1641 	put_pid(pid);
1642 
1643 	/* avoid REGPARM breakage on x86: */
1644 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1645 	return ret;
1646 }
1647 
1648 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1649 		int, options, struct rusage __user *, ru)
1650 {
1651 	struct wait_opts wo;
1652 	struct pid *pid = NULL;
1653 	enum pid_type type;
1654 	long ret;
1655 
1656 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1657 			__WNOTHREAD|__WCLONE|__WALL))
1658 		return -EINVAL;
1659 
1660 	if (upid == -1)
1661 		type = PIDTYPE_MAX;
1662 	else if (upid < 0) {
1663 		type = PIDTYPE_PGID;
1664 		pid = find_get_pid(-upid);
1665 	} else if (upid == 0) {
1666 		type = PIDTYPE_PGID;
1667 		pid = get_task_pid(current, PIDTYPE_PGID);
1668 	} else /* upid > 0 */ {
1669 		type = PIDTYPE_PID;
1670 		pid = find_get_pid(upid);
1671 	}
1672 
1673 	wo.wo_type	= type;
1674 	wo.wo_pid	= pid;
1675 	wo.wo_flags	= options | WEXITED;
1676 	wo.wo_info	= NULL;
1677 	wo.wo_stat	= stat_addr;
1678 	wo.wo_rusage	= ru;
1679 	ret = do_wait(&wo);
1680 	put_pid(pid);
1681 
1682 	/* avoid REGPARM breakage on x86: */
1683 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1684 	return ret;
1685 }
1686 
1687 #ifdef __ARCH_WANT_SYS_WAITPID
1688 
1689 /*
1690  * sys_waitpid() remains for compatibility. waitpid() should be
1691  * implemented by calling sys_wait4() from libc.a.
1692  */
1693 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1694 {
1695 	return sys_wait4(pid, stat_addr, options, NULL);
1696 }
1697 
1698 #endif
1699