1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 #include <linux/writeback.h> 55 #include <linux/shm.h> 56 57 #include <asm/uaccess.h> 58 #include <asm/unistd.h> 59 #include <asm/pgtable.h> 60 #include <asm/mmu_context.h> 61 62 static void exit_mm(struct task_struct * tsk); 63 64 static void __unhash_process(struct task_struct *p, bool group_dead) 65 { 66 nr_threads--; 67 detach_pid(p, PIDTYPE_PID); 68 if (group_dead) { 69 detach_pid(p, PIDTYPE_PGID); 70 detach_pid(p, PIDTYPE_SID); 71 72 list_del_rcu(&p->tasks); 73 list_del_init(&p->sibling); 74 __this_cpu_dec(process_counts); 75 /* 76 * If we are the last child process in a pid namespace to be 77 * reaped, notify the reaper sleeping zap_pid_ns_processes(). 78 */ 79 if (IS_ENABLED(CONFIG_PID_NS)) { 80 struct task_struct *parent = p->real_parent; 81 82 if ((task_active_pid_ns(parent)->child_reaper == parent) && 83 list_empty(&parent->children) && 84 (parent->flags & PF_EXITING)) 85 wake_up_process(parent); 86 } 87 } 88 list_del_rcu(&p->thread_group); 89 } 90 91 /* 92 * This function expects the tasklist_lock write-locked. 93 */ 94 static void __exit_signal(struct task_struct *tsk) 95 { 96 struct signal_struct *sig = tsk->signal; 97 bool group_dead = thread_group_leader(tsk); 98 struct sighand_struct *sighand; 99 struct tty_struct *uninitialized_var(tty); 100 101 sighand = rcu_dereference_check(tsk->sighand, 102 lockdep_tasklist_lock_is_held()); 103 spin_lock(&sighand->siglock); 104 105 posix_cpu_timers_exit(tsk); 106 if (group_dead) { 107 posix_cpu_timers_exit_group(tsk); 108 tty = sig->tty; 109 sig->tty = NULL; 110 } else { 111 /* 112 * This can only happen if the caller is de_thread(). 113 * FIXME: this is the temporary hack, we should teach 114 * posix-cpu-timers to handle this case correctly. 115 */ 116 if (unlikely(has_group_leader_pid(tsk))) 117 posix_cpu_timers_exit_group(tsk); 118 119 /* 120 * If there is any task waiting for the group exit 121 * then notify it: 122 */ 123 if (sig->notify_count > 0 && !--sig->notify_count) 124 wake_up_process(sig->group_exit_task); 125 126 if (tsk == sig->curr_target) 127 sig->curr_target = next_thread(tsk); 128 /* 129 * Accumulate here the counters for all threads but the 130 * group leader as they die, so they can be added into 131 * the process-wide totals when those are taken. 132 * The group leader stays around as a zombie as long 133 * as there are other threads. When it gets reaped, 134 * the exit.c code will add its counts into these totals. 135 * We won't ever get here for the group leader, since it 136 * will have been the last reference on the signal_struct. 137 */ 138 sig->utime += tsk->utime; 139 sig->stime += tsk->stime; 140 sig->gtime += tsk->gtime; 141 sig->min_flt += tsk->min_flt; 142 sig->maj_flt += tsk->maj_flt; 143 sig->nvcsw += tsk->nvcsw; 144 sig->nivcsw += tsk->nivcsw; 145 sig->inblock += task_io_get_inblock(tsk); 146 sig->oublock += task_io_get_oublock(tsk); 147 task_io_accounting_add(&sig->ioac, &tsk->ioac); 148 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 149 } 150 151 sig->nr_threads--; 152 __unhash_process(tsk, group_dead); 153 154 /* 155 * Do this under ->siglock, we can race with another thread 156 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 157 */ 158 flush_sigqueue(&tsk->pending); 159 tsk->sighand = NULL; 160 spin_unlock(&sighand->siglock); 161 162 __cleanup_sighand(sighand); 163 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 164 if (group_dead) { 165 flush_sigqueue(&sig->shared_pending); 166 tty_kref_put(tty); 167 } 168 } 169 170 static void delayed_put_task_struct(struct rcu_head *rhp) 171 { 172 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 173 174 perf_event_delayed_put(tsk); 175 trace_sched_process_free(tsk); 176 put_task_struct(tsk); 177 } 178 179 180 void release_task(struct task_struct * p) 181 { 182 struct task_struct *leader; 183 int zap_leader; 184 repeat: 185 /* don't need to get the RCU readlock here - the process is dead and 186 * can't be modifying its own credentials. But shut RCU-lockdep up */ 187 rcu_read_lock(); 188 atomic_dec(&__task_cred(p)->user->processes); 189 rcu_read_unlock(); 190 191 proc_flush_task(p); 192 193 write_lock_irq(&tasklist_lock); 194 ptrace_release_task(p); 195 __exit_signal(p); 196 197 /* 198 * If we are the last non-leader member of the thread 199 * group, and the leader is zombie, then notify the 200 * group leader's parent process. (if it wants notification.) 201 */ 202 zap_leader = 0; 203 leader = p->group_leader; 204 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 205 /* 206 * If we were the last child thread and the leader has 207 * exited already, and the leader's parent ignores SIGCHLD, 208 * then we are the one who should release the leader. 209 */ 210 zap_leader = do_notify_parent(leader, leader->exit_signal); 211 if (zap_leader) 212 leader->exit_state = EXIT_DEAD; 213 } 214 215 write_unlock_irq(&tasklist_lock); 216 release_thread(p); 217 call_rcu(&p->rcu, delayed_put_task_struct); 218 219 p = leader; 220 if (unlikely(zap_leader)) 221 goto repeat; 222 } 223 224 /* 225 * This checks not only the pgrp, but falls back on the pid if no 226 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 227 * without this... 228 * 229 * The caller must hold rcu lock or the tasklist lock. 230 */ 231 struct pid *session_of_pgrp(struct pid *pgrp) 232 { 233 struct task_struct *p; 234 struct pid *sid = NULL; 235 236 p = pid_task(pgrp, PIDTYPE_PGID); 237 if (p == NULL) 238 p = pid_task(pgrp, PIDTYPE_PID); 239 if (p != NULL) 240 sid = task_session(p); 241 242 return sid; 243 } 244 245 /* 246 * Determine if a process group is "orphaned", according to the POSIX 247 * definition in 2.2.2.52. Orphaned process groups are not to be affected 248 * by terminal-generated stop signals. Newly orphaned process groups are 249 * to receive a SIGHUP and a SIGCONT. 250 * 251 * "I ask you, have you ever known what it is to be an orphan?" 252 */ 253 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 254 { 255 struct task_struct *p; 256 257 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 258 if ((p == ignored_task) || 259 (p->exit_state && thread_group_empty(p)) || 260 is_global_init(p->real_parent)) 261 continue; 262 263 if (task_pgrp(p->real_parent) != pgrp && 264 task_session(p->real_parent) == task_session(p)) 265 return 0; 266 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 267 268 return 1; 269 } 270 271 int is_current_pgrp_orphaned(void) 272 { 273 int retval; 274 275 read_lock(&tasklist_lock); 276 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 277 read_unlock(&tasklist_lock); 278 279 return retval; 280 } 281 282 static bool has_stopped_jobs(struct pid *pgrp) 283 { 284 struct task_struct *p; 285 286 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 287 if (p->signal->flags & SIGNAL_STOP_STOPPED) 288 return true; 289 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 290 291 return false; 292 } 293 294 /* 295 * Check to see if any process groups have become orphaned as 296 * a result of our exiting, and if they have any stopped jobs, 297 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 298 */ 299 static void 300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 301 { 302 struct pid *pgrp = task_pgrp(tsk); 303 struct task_struct *ignored_task = tsk; 304 305 if (!parent) 306 /* exit: our father is in a different pgrp than 307 * we are and we were the only connection outside. 308 */ 309 parent = tsk->real_parent; 310 else 311 /* reparent: our child is in a different pgrp than 312 * we are, and it was the only connection outside. 313 */ 314 ignored_task = NULL; 315 316 if (task_pgrp(parent) != pgrp && 317 task_session(parent) == task_session(tsk) && 318 will_become_orphaned_pgrp(pgrp, ignored_task) && 319 has_stopped_jobs(pgrp)) { 320 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 321 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 322 } 323 } 324 325 void __set_special_pids(struct pid *pid) 326 { 327 struct task_struct *curr = current->group_leader; 328 329 if (task_session(curr) != pid) 330 change_pid(curr, PIDTYPE_SID, pid); 331 332 if (task_pgrp(curr) != pid) 333 change_pid(curr, PIDTYPE_PGID, pid); 334 } 335 336 /* 337 * Let kernel threads use this to say that they allow a certain signal. 338 * Must not be used if kthread was cloned with CLONE_SIGHAND. 339 */ 340 int allow_signal(int sig) 341 { 342 if (!valid_signal(sig) || sig < 1) 343 return -EINVAL; 344 345 spin_lock_irq(¤t->sighand->siglock); 346 /* This is only needed for daemonize()'ed kthreads */ 347 sigdelset(¤t->blocked, sig); 348 /* 349 * Kernel threads handle their own signals. Let the signal code 350 * know it'll be handled, so that they don't get converted to 351 * SIGKILL or just silently dropped. 352 */ 353 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 354 recalc_sigpending(); 355 spin_unlock_irq(¤t->sighand->siglock); 356 return 0; 357 } 358 359 EXPORT_SYMBOL(allow_signal); 360 361 int disallow_signal(int sig) 362 { 363 if (!valid_signal(sig) || sig < 1) 364 return -EINVAL; 365 366 spin_lock_irq(¤t->sighand->siglock); 367 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 368 recalc_sigpending(); 369 spin_unlock_irq(¤t->sighand->siglock); 370 return 0; 371 } 372 373 EXPORT_SYMBOL(disallow_signal); 374 375 #ifdef CONFIG_MM_OWNER 376 /* 377 * A task is exiting. If it owned this mm, find a new owner for the mm. 378 */ 379 void mm_update_next_owner(struct mm_struct *mm) 380 { 381 struct task_struct *c, *g, *p = current; 382 383 retry: 384 /* 385 * If the exiting or execing task is not the owner, it's 386 * someone else's problem. 387 */ 388 if (mm->owner != p) 389 return; 390 /* 391 * The current owner is exiting/execing and there are no other 392 * candidates. Do not leave the mm pointing to a possibly 393 * freed task structure. 394 */ 395 if (atomic_read(&mm->mm_users) <= 1) { 396 mm->owner = NULL; 397 return; 398 } 399 400 read_lock(&tasklist_lock); 401 /* 402 * Search in the children 403 */ 404 list_for_each_entry(c, &p->children, sibling) { 405 if (c->mm == mm) 406 goto assign_new_owner; 407 } 408 409 /* 410 * Search in the siblings 411 */ 412 list_for_each_entry(c, &p->real_parent->children, sibling) { 413 if (c->mm == mm) 414 goto assign_new_owner; 415 } 416 417 /* 418 * Search through everything else. We should not get 419 * here often 420 */ 421 do_each_thread(g, c) { 422 if (c->mm == mm) 423 goto assign_new_owner; 424 } while_each_thread(g, c); 425 426 read_unlock(&tasklist_lock); 427 /* 428 * We found no owner yet mm_users > 1: this implies that we are 429 * most likely racing with swapoff (try_to_unuse()) or /proc or 430 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 431 */ 432 mm->owner = NULL; 433 return; 434 435 assign_new_owner: 436 BUG_ON(c == p); 437 get_task_struct(c); 438 /* 439 * The task_lock protects c->mm from changing. 440 * We always want mm->owner->mm == mm 441 */ 442 task_lock(c); 443 /* 444 * Delay read_unlock() till we have the task_lock() 445 * to ensure that c does not slip away underneath us 446 */ 447 read_unlock(&tasklist_lock); 448 if (c->mm != mm) { 449 task_unlock(c); 450 put_task_struct(c); 451 goto retry; 452 } 453 mm->owner = c; 454 task_unlock(c); 455 put_task_struct(c); 456 } 457 #endif /* CONFIG_MM_OWNER */ 458 459 /* 460 * Turn us into a lazy TLB process if we 461 * aren't already.. 462 */ 463 static void exit_mm(struct task_struct * tsk) 464 { 465 struct mm_struct *mm = tsk->mm; 466 struct core_state *core_state; 467 468 mm_release(tsk, mm); 469 if (!mm) 470 return; 471 sync_mm_rss(mm); 472 /* 473 * Serialize with any possible pending coredump. 474 * We must hold mmap_sem around checking core_state 475 * and clearing tsk->mm. The core-inducing thread 476 * will increment ->nr_threads for each thread in the 477 * group with ->mm != NULL. 478 */ 479 down_read(&mm->mmap_sem); 480 core_state = mm->core_state; 481 if (core_state) { 482 struct core_thread self; 483 up_read(&mm->mmap_sem); 484 485 self.task = tsk; 486 self.next = xchg(&core_state->dumper.next, &self); 487 /* 488 * Implies mb(), the result of xchg() must be visible 489 * to core_state->dumper. 490 */ 491 if (atomic_dec_and_test(&core_state->nr_threads)) 492 complete(&core_state->startup); 493 494 for (;;) { 495 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 496 if (!self.task) /* see coredump_finish() */ 497 break; 498 schedule(); 499 } 500 __set_task_state(tsk, TASK_RUNNING); 501 down_read(&mm->mmap_sem); 502 } 503 atomic_inc(&mm->mm_count); 504 BUG_ON(mm != tsk->active_mm); 505 /* more a memory barrier than a real lock */ 506 task_lock(tsk); 507 tsk->mm = NULL; 508 up_read(&mm->mmap_sem); 509 enter_lazy_tlb(mm, current); 510 task_unlock(tsk); 511 mm_update_next_owner(mm); 512 mmput(mm); 513 } 514 515 /* 516 * When we die, we re-parent all our children, and try to: 517 * 1. give them to another thread in our thread group, if such a member exists 518 * 2. give it to the first ancestor process which prctl'd itself as a 519 * child_subreaper for its children (like a service manager) 520 * 3. give it to the init process (PID 1) in our pid namespace 521 */ 522 static struct task_struct *find_new_reaper(struct task_struct *father) 523 __releases(&tasklist_lock) 524 __acquires(&tasklist_lock) 525 { 526 struct pid_namespace *pid_ns = task_active_pid_ns(father); 527 struct task_struct *thread; 528 529 thread = father; 530 while_each_thread(father, thread) { 531 if (thread->flags & PF_EXITING) 532 continue; 533 if (unlikely(pid_ns->child_reaper == father)) 534 pid_ns->child_reaper = thread; 535 return thread; 536 } 537 538 if (unlikely(pid_ns->child_reaper == father)) { 539 write_unlock_irq(&tasklist_lock); 540 if (unlikely(pid_ns == &init_pid_ns)) { 541 panic("Attempted to kill init! exitcode=0x%08x\n", 542 father->signal->group_exit_code ?: 543 father->exit_code); 544 } 545 546 zap_pid_ns_processes(pid_ns); 547 write_lock_irq(&tasklist_lock); 548 } else if (father->signal->has_child_subreaper) { 549 struct task_struct *reaper; 550 551 /* 552 * Find the first ancestor marked as child_subreaper. 553 * Note that the code below checks same_thread_group(reaper, 554 * pid_ns->child_reaper). This is what we need to DTRT in a 555 * PID namespace. However we still need the check above, see 556 * http://marc.info/?l=linux-kernel&m=131385460420380 557 */ 558 for (reaper = father->real_parent; 559 reaper != &init_task; 560 reaper = reaper->real_parent) { 561 if (same_thread_group(reaper, pid_ns->child_reaper)) 562 break; 563 if (!reaper->signal->is_child_subreaper) 564 continue; 565 thread = reaper; 566 do { 567 if (!(thread->flags & PF_EXITING)) 568 return reaper; 569 } while_each_thread(reaper, thread); 570 } 571 } 572 573 return pid_ns->child_reaper; 574 } 575 576 /* 577 * Any that need to be release_task'd are put on the @dead list. 578 */ 579 static void reparent_leader(struct task_struct *father, struct task_struct *p, 580 struct list_head *dead) 581 { 582 list_move_tail(&p->sibling, &p->real_parent->children); 583 584 if (p->exit_state == EXIT_DEAD) 585 return; 586 /* 587 * If this is a threaded reparent there is no need to 588 * notify anyone anything has happened. 589 */ 590 if (same_thread_group(p->real_parent, father)) 591 return; 592 593 /* We don't want people slaying init. */ 594 p->exit_signal = SIGCHLD; 595 596 /* If it has exited notify the new parent about this child's death. */ 597 if (!p->ptrace && 598 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 599 if (do_notify_parent(p, p->exit_signal)) { 600 p->exit_state = EXIT_DEAD; 601 list_move_tail(&p->sibling, dead); 602 } 603 } 604 605 kill_orphaned_pgrp(p, father); 606 } 607 608 static void forget_original_parent(struct task_struct *father) 609 { 610 struct task_struct *p, *n, *reaper; 611 LIST_HEAD(dead_children); 612 613 write_lock_irq(&tasklist_lock); 614 /* 615 * Note that exit_ptrace() and find_new_reaper() might 616 * drop tasklist_lock and reacquire it. 617 */ 618 exit_ptrace(father); 619 reaper = find_new_reaper(father); 620 621 list_for_each_entry_safe(p, n, &father->children, sibling) { 622 struct task_struct *t = p; 623 do { 624 t->real_parent = reaper; 625 if (t->parent == father) { 626 BUG_ON(t->ptrace); 627 t->parent = t->real_parent; 628 } 629 if (t->pdeath_signal) 630 group_send_sig_info(t->pdeath_signal, 631 SEND_SIG_NOINFO, t); 632 } while_each_thread(p, t); 633 reparent_leader(father, p, &dead_children); 634 } 635 write_unlock_irq(&tasklist_lock); 636 637 BUG_ON(!list_empty(&father->children)); 638 639 list_for_each_entry_safe(p, n, &dead_children, sibling) { 640 list_del_init(&p->sibling); 641 release_task(p); 642 } 643 } 644 645 /* 646 * Send signals to all our closest relatives so that they know 647 * to properly mourn us.. 648 */ 649 static void exit_notify(struct task_struct *tsk, int group_dead) 650 { 651 bool autoreap; 652 653 /* 654 * This does two things: 655 * 656 * A. Make init inherit all the child processes 657 * B. Check to see if any process groups have become orphaned 658 * as a result of our exiting, and if they have any stopped 659 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 660 */ 661 forget_original_parent(tsk); 662 exit_task_namespaces(tsk); 663 664 write_lock_irq(&tasklist_lock); 665 if (group_dead) 666 kill_orphaned_pgrp(tsk->group_leader, NULL); 667 668 if (unlikely(tsk->ptrace)) { 669 int sig = thread_group_leader(tsk) && 670 thread_group_empty(tsk) && 671 !ptrace_reparented(tsk) ? 672 tsk->exit_signal : SIGCHLD; 673 autoreap = do_notify_parent(tsk, sig); 674 } else if (thread_group_leader(tsk)) { 675 autoreap = thread_group_empty(tsk) && 676 do_notify_parent(tsk, tsk->exit_signal); 677 } else { 678 autoreap = true; 679 } 680 681 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 682 683 /* mt-exec, de_thread() is waiting for group leader */ 684 if (unlikely(tsk->signal->notify_count < 0)) 685 wake_up_process(tsk->signal->group_exit_task); 686 write_unlock_irq(&tasklist_lock); 687 688 /* If the process is dead, release it - nobody will wait for it */ 689 if (autoreap) 690 release_task(tsk); 691 } 692 693 #ifdef CONFIG_DEBUG_STACK_USAGE 694 static void check_stack_usage(void) 695 { 696 static DEFINE_SPINLOCK(low_water_lock); 697 static int lowest_to_date = THREAD_SIZE; 698 unsigned long free; 699 700 free = stack_not_used(current); 701 702 if (free >= lowest_to_date) 703 return; 704 705 spin_lock(&low_water_lock); 706 if (free < lowest_to_date) { 707 printk(KERN_WARNING "%s (%d) used greatest stack depth: " 708 "%lu bytes left\n", 709 current->comm, task_pid_nr(current), free); 710 lowest_to_date = free; 711 } 712 spin_unlock(&low_water_lock); 713 } 714 #else 715 static inline void check_stack_usage(void) {} 716 #endif 717 718 void do_exit(long code) 719 { 720 struct task_struct *tsk = current; 721 int group_dead; 722 723 profile_task_exit(tsk); 724 725 WARN_ON(blk_needs_flush_plug(tsk)); 726 727 if (unlikely(in_interrupt())) 728 panic("Aiee, killing interrupt handler!"); 729 if (unlikely(!tsk->pid)) 730 panic("Attempted to kill the idle task!"); 731 732 /* 733 * If do_exit is called because this processes oopsed, it's possible 734 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 735 * continuing. Amongst other possible reasons, this is to prevent 736 * mm_release()->clear_child_tid() from writing to a user-controlled 737 * kernel address. 738 */ 739 set_fs(USER_DS); 740 741 ptrace_event(PTRACE_EVENT_EXIT, code); 742 743 validate_creds_for_do_exit(tsk); 744 745 /* 746 * We're taking recursive faults here in do_exit. Safest is to just 747 * leave this task alone and wait for reboot. 748 */ 749 if (unlikely(tsk->flags & PF_EXITING)) { 750 printk(KERN_ALERT 751 "Fixing recursive fault but reboot is needed!\n"); 752 /* 753 * We can do this unlocked here. The futex code uses 754 * this flag just to verify whether the pi state 755 * cleanup has been done or not. In the worst case it 756 * loops once more. We pretend that the cleanup was 757 * done as there is no way to return. Either the 758 * OWNER_DIED bit is set by now or we push the blocked 759 * task into the wait for ever nirwana as well. 760 */ 761 tsk->flags |= PF_EXITPIDONE; 762 set_current_state(TASK_UNINTERRUPTIBLE); 763 schedule(); 764 } 765 766 exit_signals(tsk); /* sets PF_EXITING */ 767 /* 768 * tsk->flags are checked in the futex code to protect against 769 * an exiting task cleaning up the robust pi futexes. 770 */ 771 smp_mb(); 772 raw_spin_unlock_wait(&tsk->pi_lock); 773 774 if (unlikely(in_atomic())) 775 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 776 current->comm, task_pid_nr(current), 777 preempt_count()); 778 779 acct_update_integrals(tsk); 780 /* sync mm's RSS info before statistics gathering */ 781 if (tsk->mm) 782 sync_mm_rss(tsk->mm); 783 group_dead = atomic_dec_and_test(&tsk->signal->live); 784 if (group_dead) { 785 hrtimer_cancel(&tsk->signal->real_timer); 786 exit_itimers(tsk->signal); 787 if (tsk->mm) 788 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 789 } 790 acct_collect(code, group_dead); 791 if (group_dead) 792 tty_audit_exit(); 793 audit_free(tsk); 794 795 tsk->exit_code = code; 796 taskstats_exit(tsk, group_dead); 797 798 exit_mm(tsk); 799 800 if (group_dead) 801 acct_process(); 802 trace_sched_process_exit(tsk); 803 804 exit_sem(tsk); 805 exit_shm(tsk); 806 exit_files(tsk); 807 exit_fs(tsk); 808 exit_task_work(tsk); 809 check_stack_usage(); 810 exit_thread(); 811 812 /* 813 * Flush inherited counters to the parent - before the parent 814 * gets woken up by child-exit notifications. 815 * 816 * because of cgroup mode, must be called before cgroup_exit() 817 */ 818 perf_event_exit_task(tsk); 819 820 cgroup_exit(tsk, 1); 821 822 if (group_dead) 823 disassociate_ctty(1); 824 825 module_put(task_thread_info(tsk)->exec_domain->module); 826 827 proc_exit_connector(tsk); 828 829 /* 830 * FIXME: do that only when needed, using sched_exit tracepoint 831 */ 832 ptrace_put_breakpoints(tsk); 833 834 exit_notify(tsk, group_dead); 835 #ifdef CONFIG_NUMA 836 task_lock(tsk); 837 mpol_put(tsk->mempolicy); 838 tsk->mempolicy = NULL; 839 task_unlock(tsk); 840 #endif 841 #ifdef CONFIG_FUTEX 842 if (unlikely(current->pi_state_cache)) 843 kfree(current->pi_state_cache); 844 #endif 845 /* 846 * Make sure we are holding no locks: 847 */ 848 debug_check_no_locks_held(tsk); 849 /* 850 * We can do this unlocked here. The futex code uses this flag 851 * just to verify whether the pi state cleanup has been done 852 * or not. In the worst case it loops once more. 853 */ 854 tsk->flags |= PF_EXITPIDONE; 855 856 if (tsk->io_context) 857 exit_io_context(tsk); 858 859 if (tsk->splice_pipe) 860 __free_pipe_info(tsk->splice_pipe); 861 862 if (tsk->task_frag.page) 863 put_page(tsk->task_frag.page); 864 865 validate_creds_for_do_exit(tsk); 866 867 preempt_disable(); 868 if (tsk->nr_dirtied) 869 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 870 exit_rcu(); 871 872 /* 873 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 874 * when the following two conditions become true. 875 * - There is race condition of mmap_sem (It is acquired by 876 * exit_mm()), and 877 * - SMI occurs before setting TASK_RUNINNG. 878 * (or hypervisor of virtual machine switches to other guest) 879 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 880 * 881 * To avoid it, we have to wait for releasing tsk->pi_lock which 882 * is held by try_to_wake_up() 883 */ 884 smp_mb(); 885 raw_spin_unlock_wait(&tsk->pi_lock); 886 887 /* causes final put_task_struct in finish_task_switch(). */ 888 tsk->state = TASK_DEAD; 889 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 890 schedule(); 891 BUG(); 892 /* Avoid "noreturn function does return". */ 893 for (;;) 894 cpu_relax(); /* For when BUG is null */ 895 } 896 897 EXPORT_SYMBOL_GPL(do_exit); 898 899 void complete_and_exit(struct completion *comp, long code) 900 { 901 if (comp) 902 complete(comp); 903 904 do_exit(code); 905 } 906 907 EXPORT_SYMBOL(complete_and_exit); 908 909 SYSCALL_DEFINE1(exit, int, error_code) 910 { 911 do_exit((error_code&0xff)<<8); 912 } 913 914 /* 915 * Take down every thread in the group. This is called by fatal signals 916 * as well as by sys_exit_group (below). 917 */ 918 void 919 do_group_exit(int exit_code) 920 { 921 struct signal_struct *sig = current->signal; 922 923 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 924 925 if (signal_group_exit(sig)) 926 exit_code = sig->group_exit_code; 927 else if (!thread_group_empty(current)) { 928 struct sighand_struct *const sighand = current->sighand; 929 spin_lock_irq(&sighand->siglock); 930 if (signal_group_exit(sig)) 931 /* Another thread got here before we took the lock. */ 932 exit_code = sig->group_exit_code; 933 else { 934 sig->group_exit_code = exit_code; 935 sig->flags = SIGNAL_GROUP_EXIT; 936 zap_other_threads(current); 937 } 938 spin_unlock_irq(&sighand->siglock); 939 } 940 941 do_exit(exit_code); 942 /* NOTREACHED */ 943 } 944 945 /* 946 * this kills every thread in the thread group. Note that any externally 947 * wait4()-ing process will get the correct exit code - even if this 948 * thread is not the thread group leader. 949 */ 950 SYSCALL_DEFINE1(exit_group, int, error_code) 951 { 952 do_group_exit((error_code & 0xff) << 8); 953 /* NOTREACHED */ 954 return 0; 955 } 956 957 struct wait_opts { 958 enum pid_type wo_type; 959 int wo_flags; 960 struct pid *wo_pid; 961 962 struct siginfo __user *wo_info; 963 int __user *wo_stat; 964 struct rusage __user *wo_rusage; 965 966 wait_queue_t child_wait; 967 int notask_error; 968 }; 969 970 static inline 971 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 972 { 973 if (type != PIDTYPE_PID) 974 task = task->group_leader; 975 return task->pids[type].pid; 976 } 977 978 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 979 { 980 return wo->wo_type == PIDTYPE_MAX || 981 task_pid_type(p, wo->wo_type) == wo->wo_pid; 982 } 983 984 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 985 { 986 if (!eligible_pid(wo, p)) 987 return 0; 988 /* Wait for all children (clone and not) if __WALL is set; 989 * otherwise, wait for clone children *only* if __WCLONE is 990 * set; otherwise, wait for non-clone children *only*. (Note: 991 * A "clone" child here is one that reports to its parent 992 * using a signal other than SIGCHLD.) */ 993 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 994 && !(wo->wo_flags & __WALL)) 995 return 0; 996 997 return 1; 998 } 999 1000 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1001 pid_t pid, uid_t uid, int why, int status) 1002 { 1003 struct siginfo __user *infop; 1004 int retval = wo->wo_rusage 1005 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1006 1007 put_task_struct(p); 1008 infop = wo->wo_info; 1009 if (infop) { 1010 if (!retval) 1011 retval = put_user(SIGCHLD, &infop->si_signo); 1012 if (!retval) 1013 retval = put_user(0, &infop->si_errno); 1014 if (!retval) 1015 retval = put_user((short)why, &infop->si_code); 1016 if (!retval) 1017 retval = put_user(pid, &infop->si_pid); 1018 if (!retval) 1019 retval = put_user(uid, &infop->si_uid); 1020 if (!retval) 1021 retval = put_user(status, &infop->si_status); 1022 } 1023 if (!retval) 1024 retval = pid; 1025 return retval; 1026 } 1027 1028 /* 1029 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1030 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1031 * the lock and this task is uninteresting. If we return nonzero, we have 1032 * released the lock and the system call should return. 1033 */ 1034 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1035 { 1036 unsigned long state; 1037 int retval, status, traced; 1038 pid_t pid = task_pid_vnr(p); 1039 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1040 struct siginfo __user *infop; 1041 1042 if (!likely(wo->wo_flags & WEXITED)) 1043 return 0; 1044 1045 if (unlikely(wo->wo_flags & WNOWAIT)) { 1046 int exit_code = p->exit_code; 1047 int why; 1048 1049 get_task_struct(p); 1050 read_unlock(&tasklist_lock); 1051 if ((exit_code & 0x7f) == 0) { 1052 why = CLD_EXITED; 1053 status = exit_code >> 8; 1054 } else { 1055 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1056 status = exit_code & 0x7f; 1057 } 1058 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1059 } 1060 1061 /* 1062 * Try to move the task's state to DEAD 1063 * only one thread is allowed to do this: 1064 */ 1065 state = xchg(&p->exit_state, EXIT_DEAD); 1066 if (state != EXIT_ZOMBIE) { 1067 BUG_ON(state != EXIT_DEAD); 1068 return 0; 1069 } 1070 1071 traced = ptrace_reparented(p); 1072 /* 1073 * It can be ptraced but not reparented, check 1074 * thread_group_leader() to filter out sub-threads. 1075 */ 1076 if (likely(!traced) && thread_group_leader(p)) { 1077 struct signal_struct *psig; 1078 struct signal_struct *sig; 1079 unsigned long maxrss; 1080 cputime_t tgutime, tgstime; 1081 1082 /* 1083 * The resource counters for the group leader are in its 1084 * own task_struct. Those for dead threads in the group 1085 * are in its signal_struct, as are those for the child 1086 * processes it has previously reaped. All these 1087 * accumulate in the parent's signal_struct c* fields. 1088 * 1089 * We don't bother to take a lock here to protect these 1090 * p->signal fields, because they are only touched by 1091 * __exit_signal, which runs with tasklist_lock 1092 * write-locked anyway, and so is excluded here. We do 1093 * need to protect the access to parent->signal fields, 1094 * as other threads in the parent group can be right 1095 * here reaping other children at the same time. 1096 * 1097 * We use thread_group_cputime_adjusted() to get times for the thread 1098 * group, which consolidates times for all threads in the 1099 * group including the group leader. 1100 */ 1101 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1102 spin_lock_irq(&p->real_parent->sighand->siglock); 1103 psig = p->real_parent->signal; 1104 sig = p->signal; 1105 psig->cutime += tgutime + sig->cutime; 1106 psig->cstime += tgstime + sig->cstime; 1107 psig->cgtime += p->gtime + sig->gtime + sig->cgtime; 1108 psig->cmin_flt += 1109 p->min_flt + sig->min_flt + sig->cmin_flt; 1110 psig->cmaj_flt += 1111 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1112 psig->cnvcsw += 1113 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1114 psig->cnivcsw += 1115 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1116 psig->cinblock += 1117 task_io_get_inblock(p) + 1118 sig->inblock + sig->cinblock; 1119 psig->coublock += 1120 task_io_get_oublock(p) + 1121 sig->oublock + sig->coublock; 1122 maxrss = max(sig->maxrss, sig->cmaxrss); 1123 if (psig->cmaxrss < maxrss) 1124 psig->cmaxrss = maxrss; 1125 task_io_accounting_add(&psig->ioac, &p->ioac); 1126 task_io_accounting_add(&psig->ioac, &sig->ioac); 1127 spin_unlock_irq(&p->real_parent->sighand->siglock); 1128 } 1129 1130 /* 1131 * Now we are sure this task is interesting, and no other 1132 * thread can reap it because we set its state to EXIT_DEAD. 1133 */ 1134 read_unlock(&tasklist_lock); 1135 1136 retval = wo->wo_rusage 1137 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1138 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1139 ? p->signal->group_exit_code : p->exit_code; 1140 if (!retval && wo->wo_stat) 1141 retval = put_user(status, wo->wo_stat); 1142 1143 infop = wo->wo_info; 1144 if (!retval && infop) 1145 retval = put_user(SIGCHLD, &infop->si_signo); 1146 if (!retval && infop) 1147 retval = put_user(0, &infop->si_errno); 1148 if (!retval && infop) { 1149 int why; 1150 1151 if ((status & 0x7f) == 0) { 1152 why = CLD_EXITED; 1153 status >>= 8; 1154 } else { 1155 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1156 status &= 0x7f; 1157 } 1158 retval = put_user((short)why, &infop->si_code); 1159 if (!retval) 1160 retval = put_user(status, &infop->si_status); 1161 } 1162 if (!retval && infop) 1163 retval = put_user(pid, &infop->si_pid); 1164 if (!retval && infop) 1165 retval = put_user(uid, &infop->si_uid); 1166 if (!retval) 1167 retval = pid; 1168 1169 if (traced) { 1170 write_lock_irq(&tasklist_lock); 1171 /* We dropped tasklist, ptracer could die and untrace */ 1172 ptrace_unlink(p); 1173 /* 1174 * If this is not a sub-thread, notify the parent. 1175 * If parent wants a zombie, don't release it now. 1176 */ 1177 if (thread_group_leader(p) && 1178 !do_notify_parent(p, p->exit_signal)) { 1179 p->exit_state = EXIT_ZOMBIE; 1180 p = NULL; 1181 } 1182 write_unlock_irq(&tasklist_lock); 1183 } 1184 if (p != NULL) 1185 release_task(p); 1186 1187 return retval; 1188 } 1189 1190 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1191 { 1192 if (ptrace) { 1193 if (task_is_stopped_or_traced(p) && 1194 !(p->jobctl & JOBCTL_LISTENING)) 1195 return &p->exit_code; 1196 } else { 1197 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1198 return &p->signal->group_exit_code; 1199 } 1200 return NULL; 1201 } 1202 1203 /** 1204 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1205 * @wo: wait options 1206 * @ptrace: is the wait for ptrace 1207 * @p: task to wait for 1208 * 1209 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1210 * 1211 * CONTEXT: 1212 * read_lock(&tasklist_lock), which is released if return value is 1213 * non-zero. Also, grabs and releases @p->sighand->siglock. 1214 * 1215 * RETURNS: 1216 * 0 if wait condition didn't exist and search for other wait conditions 1217 * should continue. Non-zero return, -errno on failure and @p's pid on 1218 * success, implies that tasklist_lock is released and wait condition 1219 * search should terminate. 1220 */ 1221 static int wait_task_stopped(struct wait_opts *wo, 1222 int ptrace, struct task_struct *p) 1223 { 1224 struct siginfo __user *infop; 1225 int retval, exit_code, *p_code, why; 1226 uid_t uid = 0; /* unneeded, required by compiler */ 1227 pid_t pid; 1228 1229 /* 1230 * Traditionally we see ptrace'd stopped tasks regardless of options. 1231 */ 1232 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1233 return 0; 1234 1235 if (!task_stopped_code(p, ptrace)) 1236 return 0; 1237 1238 exit_code = 0; 1239 spin_lock_irq(&p->sighand->siglock); 1240 1241 p_code = task_stopped_code(p, ptrace); 1242 if (unlikely(!p_code)) 1243 goto unlock_sig; 1244 1245 exit_code = *p_code; 1246 if (!exit_code) 1247 goto unlock_sig; 1248 1249 if (!unlikely(wo->wo_flags & WNOWAIT)) 1250 *p_code = 0; 1251 1252 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1253 unlock_sig: 1254 spin_unlock_irq(&p->sighand->siglock); 1255 if (!exit_code) 1256 return 0; 1257 1258 /* 1259 * Now we are pretty sure this task is interesting. 1260 * Make sure it doesn't get reaped out from under us while we 1261 * give up the lock and then examine it below. We don't want to 1262 * keep holding onto the tasklist_lock while we call getrusage and 1263 * possibly take page faults for user memory. 1264 */ 1265 get_task_struct(p); 1266 pid = task_pid_vnr(p); 1267 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1268 read_unlock(&tasklist_lock); 1269 1270 if (unlikely(wo->wo_flags & WNOWAIT)) 1271 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1272 1273 retval = wo->wo_rusage 1274 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1275 if (!retval && wo->wo_stat) 1276 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1277 1278 infop = wo->wo_info; 1279 if (!retval && infop) 1280 retval = put_user(SIGCHLD, &infop->si_signo); 1281 if (!retval && infop) 1282 retval = put_user(0, &infop->si_errno); 1283 if (!retval && infop) 1284 retval = put_user((short)why, &infop->si_code); 1285 if (!retval && infop) 1286 retval = put_user(exit_code, &infop->si_status); 1287 if (!retval && infop) 1288 retval = put_user(pid, &infop->si_pid); 1289 if (!retval && infop) 1290 retval = put_user(uid, &infop->si_uid); 1291 if (!retval) 1292 retval = pid; 1293 put_task_struct(p); 1294 1295 BUG_ON(!retval); 1296 return retval; 1297 } 1298 1299 /* 1300 * Handle do_wait work for one task in a live, non-stopped state. 1301 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1302 * the lock and this task is uninteresting. If we return nonzero, we have 1303 * released the lock and the system call should return. 1304 */ 1305 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1306 { 1307 int retval; 1308 pid_t pid; 1309 uid_t uid; 1310 1311 if (!unlikely(wo->wo_flags & WCONTINUED)) 1312 return 0; 1313 1314 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1315 return 0; 1316 1317 spin_lock_irq(&p->sighand->siglock); 1318 /* Re-check with the lock held. */ 1319 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1320 spin_unlock_irq(&p->sighand->siglock); 1321 return 0; 1322 } 1323 if (!unlikely(wo->wo_flags & WNOWAIT)) 1324 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1325 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1326 spin_unlock_irq(&p->sighand->siglock); 1327 1328 pid = task_pid_vnr(p); 1329 get_task_struct(p); 1330 read_unlock(&tasklist_lock); 1331 1332 if (!wo->wo_info) { 1333 retval = wo->wo_rusage 1334 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1335 put_task_struct(p); 1336 if (!retval && wo->wo_stat) 1337 retval = put_user(0xffff, wo->wo_stat); 1338 if (!retval) 1339 retval = pid; 1340 } else { 1341 retval = wait_noreap_copyout(wo, p, pid, uid, 1342 CLD_CONTINUED, SIGCONT); 1343 BUG_ON(retval == 0); 1344 } 1345 1346 return retval; 1347 } 1348 1349 /* 1350 * Consider @p for a wait by @parent. 1351 * 1352 * -ECHILD should be in ->notask_error before the first call. 1353 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1354 * Returns zero if the search for a child should continue; 1355 * then ->notask_error is 0 if @p is an eligible child, 1356 * or another error from security_task_wait(), or still -ECHILD. 1357 */ 1358 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1359 struct task_struct *p) 1360 { 1361 int ret = eligible_child(wo, p); 1362 if (!ret) 1363 return ret; 1364 1365 ret = security_task_wait(p); 1366 if (unlikely(ret < 0)) { 1367 /* 1368 * If we have not yet seen any eligible child, 1369 * then let this error code replace -ECHILD. 1370 * A permission error will give the user a clue 1371 * to look for security policy problems, rather 1372 * than for mysterious wait bugs. 1373 */ 1374 if (wo->notask_error) 1375 wo->notask_error = ret; 1376 return 0; 1377 } 1378 1379 /* dead body doesn't have much to contribute */ 1380 if (unlikely(p->exit_state == EXIT_DEAD)) { 1381 /* 1382 * But do not ignore this task until the tracer does 1383 * wait_task_zombie()->do_notify_parent(). 1384 */ 1385 if (likely(!ptrace) && unlikely(ptrace_reparented(p))) 1386 wo->notask_error = 0; 1387 return 0; 1388 } 1389 1390 /* slay zombie? */ 1391 if (p->exit_state == EXIT_ZOMBIE) { 1392 /* 1393 * A zombie ptracee is only visible to its ptracer. 1394 * Notification and reaping will be cascaded to the real 1395 * parent when the ptracer detaches. 1396 */ 1397 if (likely(!ptrace) && unlikely(p->ptrace)) { 1398 /* it will become visible, clear notask_error */ 1399 wo->notask_error = 0; 1400 return 0; 1401 } 1402 1403 /* we don't reap group leaders with subthreads */ 1404 if (!delay_group_leader(p)) 1405 return wait_task_zombie(wo, p); 1406 1407 /* 1408 * Allow access to stopped/continued state via zombie by 1409 * falling through. Clearing of notask_error is complex. 1410 * 1411 * When !@ptrace: 1412 * 1413 * If WEXITED is set, notask_error should naturally be 1414 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1415 * so, if there are live subthreads, there are events to 1416 * wait for. If all subthreads are dead, it's still safe 1417 * to clear - this function will be called again in finite 1418 * amount time once all the subthreads are released and 1419 * will then return without clearing. 1420 * 1421 * When @ptrace: 1422 * 1423 * Stopped state is per-task and thus can't change once the 1424 * target task dies. Only continued and exited can happen. 1425 * Clear notask_error if WCONTINUED | WEXITED. 1426 */ 1427 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1428 wo->notask_error = 0; 1429 } else { 1430 /* 1431 * If @p is ptraced by a task in its real parent's group, 1432 * hide group stop/continued state when looking at @p as 1433 * the real parent; otherwise, a single stop can be 1434 * reported twice as group and ptrace stops. 1435 * 1436 * If a ptracer wants to distinguish the two events for its 1437 * own children, it should create a separate process which 1438 * takes the role of real parent. 1439 */ 1440 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p)) 1441 return 0; 1442 1443 /* 1444 * @p is alive and it's gonna stop, continue or exit, so 1445 * there always is something to wait for. 1446 */ 1447 wo->notask_error = 0; 1448 } 1449 1450 /* 1451 * Wait for stopped. Depending on @ptrace, different stopped state 1452 * is used and the two don't interact with each other. 1453 */ 1454 ret = wait_task_stopped(wo, ptrace, p); 1455 if (ret) 1456 return ret; 1457 1458 /* 1459 * Wait for continued. There's only one continued state and the 1460 * ptracer can consume it which can confuse the real parent. Don't 1461 * use WCONTINUED from ptracer. You don't need or want it. 1462 */ 1463 return wait_task_continued(wo, p); 1464 } 1465 1466 /* 1467 * Do the work of do_wait() for one thread in the group, @tsk. 1468 * 1469 * -ECHILD should be in ->notask_error before the first call. 1470 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1471 * Returns zero if the search for a child should continue; then 1472 * ->notask_error is 0 if there were any eligible children, 1473 * or another error from security_task_wait(), or still -ECHILD. 1474 */ 1475 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1476 { 1477 struct task_struct *p; 1478 1479 list_for_each_entry(p, &tsk->children, sibling) { 1480 int ret = wait_consider_task(wo, 0, p); 1481 if (ret) 1482 return ret; 1483 } 1484 1485 return 0; 1486 } 1487 1488 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1489 { 1490 struct task_struct *p; 1491 1492 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1493 int ret = wait_consider_task(wo, 1, p); 1494 if (ret) 1495 return ret; 1496 } 1497 1498 return 0; 1499 } 1500 1501 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1502 int sync, void *key) 1503 { 1504 struct wait_opts *wo = container_of(wait, struct wait_opts, 1505 child_wait); 1506 struct task_struct *p = key; 1507 1508 if (!eligible_pid(wo, p)) 1509 return 0; 1510 1511 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1512 return 0; 1513 1514 return default_wake_function(wait, mode, sync, key); 1515 } 1516 1517 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1518 { 1519 __wake_up_sync_key(&parent->signal->wait_chldexit, 1520 TASK_INTERRUPTIBLE, 1, p); 1521 } 1522 1523 static long do_wait(struct wait_opts *wo) 1524 { 1525 struct task_struct *tsk; 1526 int retval; 1527 1528 trace_sched_process_wait(wo->wo_pid); 1529 1530 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1531 wo->child_wait.private = current; 1532 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1533 repeat: 1534 /* 1535 * If there is nothing that can match our critiera just get out. 1536 * We will clear ->notask_error to zero if we see any child that 1537 * might later match our criteria, even if we are not able to reap 1538 * it yet. 1539 */ 1540 wo->notask_error = -ECHILD; 1541 if ((wo->wo_type < PIDTYPE_MAX) && 1542 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1543 goto notask; 1544 1545 set_current_state(TASK_INTERRUPTIBLE); 1546 read_lock(&tasklist_lock); 1547 tsk = current; 1548 do { 1549 retval = do_wait_thread(wo, tsk); 1550 if (retval) 1551 goto end; 1552 1553 retval = ptrace_do_wait(wo, tsk); 1554 if (retval) 1555 goto end; 1556 1557 if (wo->wo_flags & __WNOTHREAD) 1558 break; 1559 } while_each_thread(current, tsk); 1560 read_unlock(&tasklist_lock); 1561 1562 notask: 1563 retval = wo->notask_error; 1564 if (!retval && !(wo->wo_flags & WNOHANG)) { 1565 retval = -ERESTARTSYS; 1566 if (!signal_pending(current)) { 1567 schedule(); 1568 goto repeat; 1569 } 1570 } 1571 end: 1572 __set_current_state(TASK_RUNNING); 1573 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1574 return retval; 1575 } 1576 1577 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1578 infop, int, options, struct rusage __user *, ru) 1579 { 1580 struct wait_opts wo; 1581 struct pid *pid = NULL; 1582 enum pid_type type; 1583 long ret; 1584 1585 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1586 return -EINVAL; 1587 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1588 return -EINVAL; 1589 1590 switch (which) { 1591 case P_ALL: 1592 type = PIDTYPE_MAX; 1593 break; 1594 case P_PID: 1595 type = PIDTYPE_PID; 1596 if (upid <= 0) 1597 return -EINVAL; 1598 break; 1599 case P_PGID: 1600 type = PIDTYPE_PGID; 1601 if (upid <= 0) 1602 return -EINVAL; 1603 break; 1604 default: 1605 return -EINVAL; 1606 } 1607 1608 if (type < PIDTYPE_MAX) 1609 pid = find_get_pid(upid); 1610 1611 wo.wo_type = type; 1612 wo.wo_pid = pid; 1613 wo.wo_flags = options; 1614 wo.wo_info = infop; 1615 wo.wo_stat = NULL; 1616 wo.wo_rusage = ru; 1617 ret = do_wait(&wo); 1618 1619 if (ret > 0) { 1620 ret = 0; 1621 } else if (infop) { 1622 /* 1623 * For a WNOHANG return, clear out all the fields 1624 * we would set so the user can easily tell the 1625 * difference. 1626 */ 1627 if (!ret) 1628 ret = put_user(0, &infop->si_signo); 1629 if (!ret) 1630 ret = put_user(0, &infop->si_errno); 1631 if (!ret) 1632 ret = put_user(0, &infop->si_code); 1633 if (!ret) 1634 ret = put_user(0, &infop->si_pid); 1635 if (!ret) 1636 ret = put_user(0, &infop->si_uid); 1637 if (!ret) 1638 ret = put_user(0, &infop->si_status); 1639 } 1640 1641 put_pid(pid); 1642 1643 /* avoid REGPARM breakage on x86: */ 1644 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1645 return ret; 1646 } 1647 1648 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1649 int, options, struct rusage __user *, ru) 1650 { 1651 struct wait_opts wo; 1652 struct pid *pid = NULL; 1653 enum pid_type type; 1654 long ret; 1655 1656 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1657 __WNOTHREAD|__WCLONE|__WALL)) 1658 return -EINVAL; 1659 1660 if (upid == -1) 1661 type = PIDTYPE_MAX; 1662 else if (upid < 0) { 1663 type = PIDTYPE_PGID; 1664 pid = find_get_pid(-upid); 1665 } else if (upid == 0) { 1666 type = PIDTYPE_PGID; 1667 pid = get_task_pid(current, PIDTYPE_PGID); 1668 } else /* upid > 0 */ { 1669 type = PIDTYPE_PID; 1670 pid = find_get_pid(upid); 1671 } 1672 1673 wo.wo_type = type; 1674 wo.wo_pid = pid; 1675 wo.wo_flags = options | WEXITED; 1676 wo.wo_info = NULL; 1677 wo.wo_stat = stat_addr; 1678 wo.wo_rusage = ru; 1679 ret = do_wait(&wo); 1680 put_pid(pid); 1681 1682 /* avoid REGPARM breakage on x86: */ 1683 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1684 return ret; 1685 } 1686 1687 #ifdef __ARCH_WANT_SYS_WAITPID 1688 1689 /* 1690 * sys_waitpid() remains for compatibility. waitpid() should be 1691 * implemented by calling sys_wait4() from libc.a. 1692 */ 1693 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1694 { 1695 return sys_wait4(pid, stat_addr, options, NULL); 1696 } 1697 1698 #endif 1699