xref: /linux/kernel/exit.c (revision a234ca0faa65dcd5cc473915bd925130ebb7b74b)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 
54 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/pgtable.h>
57 #include <asm/mmu_context.h>
58 
59 static void exit_mm(struct task_struct * tsk);
60 
61 static void __unhash_process(struct task_struct *p, bool group_dead)
62 {
63 	nr_threads--;
64 	detach_pid(p, PIDTYPE_PID);
65 	if (group_dead) {
66 		detach_pid(p, PIDTYPE_PGID);
67 		detach_pid(p, PIDTYPE_SID);
68 
69 		list_del_rcu(&p->tasks);
70 		list_del_init(&p->sibling);
71 		__get_cpu_var(process_counts)--;
72 	}
73 	list_del_rcu(&p->thread_group);
74 }
75 
76 /*
77  * This function expects the tasklist_lock write-locked.
78  */
79 static void __exit_signal(struct task_struct *tsk)
80 {
81 	struct signal_struct *sig = tsk->signal;
82 	bool group_dead = thread_group_leader(tsk);
83 	struct sighand_struct *sighand;
84 	struct tty_struct *uninitialized_var(tty);
85 
86 	sighand = rcu_dereference_check(tsk->sighand,
87 					rcu_read_lock_held() ||
88 					lockdep_tasklist_lock_is_held());
89 	spin_lock(&sighand->siglock);
90 
91 	posix_cpu_timers_exit(tsk);
92 	if (group_dead) {
93 		posix_cpu_timers_exit_group(tsk);
94 		tty = sig->tty;
95 		sig->tty = NULL;
96 	} else {
97 		/*
98 		 * If there is any task waiting for the group exit
99 		 * then notify it:
100 		 */
101 		if (sig->notify_count > 0 && !--sig->notify_count)
102 			wake_up_process(sig->group_exit_task);
103 
104 		if (tsk == sig->curr_target)
105 			sig->curr_target = next_thread(tsk);
106 		/*
107 		 * Accumulate here the counters for all threads but the
108 		 * group leader as they die, so they can be added into
109 		 * the process-wide totals when those are taken.
110 		 * The group leader stays around as a zombie as long
111 		 * as there are other threads.  When it gets reaped,
112 		 * the exit.c code will add its counts into these totals.
113 		 * We won't ever get here for the group leader, since it
114 		 * will have been the last reference on the signal_struct.
115 		 */
116 		sig->utime = cputime_add(sig->utime, tsk->utime);
117 		sig->stime = cputime_add(sig->stime, tsk->stime);
118 		sig->gtime = cputime_add(sig->gtime, tsk->gtime);
119 		sig->min_flt += tsk->min_flt;
120 		sig->maj_flt += tsk->maj_flt;
121 		sig->nvcsw += tsk->nvcsw;
122 		sig->nivcsw += tsk->nivcsw;
123 		sig->inblock += task_io_get_inblock(tsk);
124 		sig->oublock += task_io_get_oublock(tsk);
125 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
126 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
127 	}
128 
129 	sig->nr_threads--;
130 	__unhash_process(tsk, group_dead);
131 
132 	/*
133 	 * Do this under ->siglock, we can race with another thread
134 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
135 	 */
136 	flush_sigqueue(&tsk->pending);
137 	tsk->sighand = NULL;
138 	spin_unlock(&sighand->siglock);
139 
140 	__cleanup_sighand(sighand);
141 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
142 	if (group_dead) {
143 		flush_sigqueue(&sig->shared_pending);
144 		tty_kref_put(tty);
145 	}
146 }
147 
148 static void delayed_put_task_struct(struct rcu_head *rhp)
149 {
150 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
151 
152 #ifdef CONFIG_PERF_EVENTS
153 	WARN_ON_ONCE(tsk->perf_event_ctxp);
154 #endif
155 	trace_sched_process_free(tsk);
156 	put_task_struct(tsk);
157 }
158 
159 
160 void release_task(struct task_struct * p)
161 {
162 	struct task_struct *leader;
163 	int zap_leader;
164 repeat:
165 	tracehook_prepare_release_task(p);
166 	/* don't need to get the RCU readlock here - the process is dead and
167 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
168 	rcu_read_lock();
169 	atomic_dec(&__task_cred(p)->user->processes);
170 	rcu_read_unlock();
171 
172 	proc_flush_task(p);
173 
174 	write_lock_irq(&tasklist_lock);
175 	tracehook_finish_release_task(p);
176 	__exit_signal(p);
177 
178 	/*
179 	 * If we are the last non-leader member of the thread
180 	 * group, and the leader is zombie, then notify the
181 	 * group leader's parent process. (if it wants notification.)
182 	 */
183 	zap_leader = 0;
184 	leader = p->group_leader;
185 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
186 		BUG_ON(task_detached(leader));
187 		do_notify_parent(leader, leader->exit_signal);
188 		/*
189 		 * If we were the last child thread and the leader has
190 		 * exited already, and the leader's parent ignores SIGCHLD,
191 		 * then we are the one who should release the leader.
192 		 *
193 		 * do_notify_parent() will have marked it self-reaping in
194 		 * that case.
195 		 */
196 		zap_leader = task_detached(leader);
197 
198 		/*
199 		 * This maintains the invariant that release_task()
200 		 * only runs on a task in EXIT_DEAD, just for sanity.
201 		 */
202 		if (zap_leader)
203 			leader->exit_state = EXIT_DEAD;
204 	}
205 
206 	write_unlock_irq(&tasklist_lock);
207 	release_thread(p);
208 	call_rcu(&p->rcu, delayed_put_task_struct);
209 
210 	p = leader;
211 	if (unlikely(zap_leader))
212 		goto repeat;
213 }
214 
215 /*
216  * This checks not only the pgrp, but falls back on the pid if no
217  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
218  * without this...
219  *
220  * The caller must hold rcu lock or the tasklist lock.
221  */
222 struct pid *session_of_pgrp(struct pid *pgrp)
223 {
224 	struct task_struct *p;
225 	struct pid *sid = NULL;
226 
227 	p = pid_task(pgrp, PIDTYPE_PGID);
228 	if (p == NULL)
229 		p = pid_task(pgrp, PIDTYPE_PID);
230 	if (p != NULL)
231 		sid = task_session(p);
232 
233 	return sid;
234 }
235 
236 /*
237  * Determine if a process group is "orphaned", according to the POSIX
238  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
239  * by terminal-generated stop signals.  Newly orphaned process groups are
240  * to receive a SIGHUP and a SIGCONT.
241  *
242  * "I ask you, have you ever known what it is to be an orphan?"
243  */
244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
245 {
246 	struct task_struct *p;
247 
248 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 		if ((p == ignored_task) ||
250 		    (p->exit_state && thread_group_empty(p)) ||
251 		    is_global_init(p->real_parent))
252 			continue;
253 
254 		if (task_pgrp(p->real_parent) != pgrp &&
255 		    task_session(p->real_parent) == task_session(p))
256 			return 0;
257 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258 
259 	return 1;
260 }
261 
262 int is_current_pgrp_orphaned(void)
263 {
264 	int retval;
265 
266 	read_lock(&tasklist_lock);
267 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
268 	read_unlock(&tasklist_lock);
269 
270 	return retval;
271 }
272 
273 static int has_stopped_jobs(struct pid *pgrp)
274 {
275 	int retval = 0;
276 	struct task_struct *p;
277 
278 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
279 		if (!task_is_stopped(p))
280 			continue;
281 		retval = 1;
282 		break;
283 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
284 	return retval;
285 }
286 
287 /*
288  * Check to see if any process groups have become orphaned as
289  * a result of our exiting, and if they have any stopped jobs,
290  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
291  */
292 static void
293 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
294 {
295 	struct pid *pgrp = task_pgrp(tsk);
296 	struct task_struct *ignored_task = tsk;
297 
298 	if (!parent)
299 		 /* exit: our father is in a different pgrp than
300 		  * we are and we were the only connection outside.
301 		  */
302 		parent = tsk->real_parent;
303 	else
304 		/* reparent: our child is in a different pgrp than
305 		 * we are, and it was the only connection outside.
306 		 */
307 		ignored_task = NULL;
308 
309 	if (task_pgrp(parent) != pgrp &&
310 	    task_session(parent) == task_session(tsk) &&
311 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
312 	    has_stopped_jobs(pgrp)) {
313 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
314 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
315 	}
316 }
317 
318 /**
319  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
320  *
321  * If a kernel thread is launched as a result of a system call, or if
322  * it ever exits, it should generally reparent itself to kthreadd so it
323  * isn't in the way of other processes and is correctly cleaned up on exit.
324  *
325  * The various task state such as scheduling policy and priority may have
326  * been inherited from a user process, so we reset them to sane values here.
327  *
328  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
329  */
330 static void reparent_to_kthreadd(void)
331 {
332 	write_lock_irq(&tasklist_lock);
333 
334 	ptrace_unlink(current);
335 	/* Reparent to init */
336 	current->real_parent = current->parent = kthreadd_task;
337 	list_move_tail(&current->sibling, &current->real_parent->children);
338 
339 	/* Set the exit signal to SIGCHLD so we signal init on exit */
340 	current->exit_signal = SIGCHLD;
341 
342 	if (task_nice(current) < 0)
343 		set_user_nice(current, 0);
344 	/* cpus_allowed? */
345 	/* rt_priority? */
346 	/* signals? */
347 	memcpy(current->signal->rlim, init_task.signal->rlim,
348 	       sizeof(current->signal->rlim));
349 
350 	atomic_inc(&init_cred.usage);
351 	commit_creds(&init_cred);
352 	write_unlock_irq(&tasklist_lock);
353 }
354 
355 void __set_special_pids(struct pid *pid)
356 {
357 	struct task_struct *curr = current->group_leader;
358 
359 	if (task_session(curr) != pid)
360 		change_pid(curr, PIDTYPE_SID, pid);
361 
362 	if (task_pgrp(curr) != pid)
363 		change_pid(curr, PIDTYPE_PGID, pid);
364 }
365 
366 static void set_special_pids(struct pid *pid)
367 {
368 	write_lock_irq(&tasklist_lock);
369 	__set_special_pids(pid);
370 	write_unlock_irq(&tasklist_lock);
371 }
372 
373 /*
374  * Let kernel threads use this to say that they allow a certain signal.
375  * Must not be used if kthread was cloned with CLONE_SIGHAND.
376  */
377 int allow_signal(int sig)
378 {
379 	if (!valid_signal(sig) || sig < 1)
380 		return -EINVAL;
381 
382 	spin_lock_irq(&current->sighand->siglock);
383 	/* This is only needed for daemonize()'ed kthreads */
384 	sigdelset(&current->blocked, sig);
385 	/*
386 	 * Kernel threads handle their own signals. Let the signal code
387 	 * know it'll be handled, so that they don't get converted to
388 	 * SIGKILL or just silently dropped.
389 	 */
390 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
391 	recalc_sigpending();
392 	spin_unlock_irq(&current->sighand->siglock);
393 	return 0;
394 }
395 
396 EXPORT_SYMBOL(allow_signal);
397 
398 int disallow_signal(int sig)
399 {
400 	if (!valid_signal(sig) || sig < 1)
401 		return -EINVAL;
402 
403 	spin_lock_irq(&current->sighand->siglock);
404 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
405 	recalc_sigpending();
406 	spin_unlock_irq(&current->sighand->siglock);
407 	return 0;
408 }
409 
410 EXPORT_SYMBOL(disallow_signal);
411 
412 /*
413  *	Put all the gunge required to become a kernel thread without
414  *	attached user resources in one place where it belongs.
415  */
416 
417 void daemonize(const char *name, ...)
418 {
419 	va_list args;
420 	sigset_t blocked;
421 
422 	va_start(args, name);
423 	vsnprintf(current->comm, sizeof(current->comm), name, args);
424 	va_end(args);
425 
426 	/*
427 	 * If we were started as result of loading a module, close all of the
428 	 * user space pages.  We don't need them, and if we didn't close them
429 	 * they would be locked into memory.
430 	 */
431 	exit_mm(current);
432 	/*
433 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
434 	 * or suspend transition begins right now.
435 	 */
436 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
437 
438 	if (current->nsproxy != &init_nsproxy) {
439 		get_nsproxy(&init_nsproxy);
440 		switch_task_namespaces(current, &init_nsproxy);
441 	}
442 	set_special_pids(&init_struct_pid);
443 	proc_clear_tty(current);
444 
445 	/* Block and flush all signals */
446 	sigfillset(&blocked);
447 	sigprocmask(SIG_BLOCK, &blocked, NULL);
448 	flush_signals(current);
449 
450 	/* Become as one with the init task */
451 
452 	daemonize_fs_struct();
453 	exit_files(current);
454 	current->files = init_task.files;
455 	atomic_inc(&current->files->count);
456 
457 	reparent_to_kthreadd();
458 }
459 
460 EXPORT_SYMBOL(daemonize);
461 
462 static void close_files(struct files_struct * files)
463 {
464 	int i, j;
465 	struct fdtable *fdt;
466 
467 	j = 0;
468 
469 	/*
470 	 * It is safe to dereference the fd table without RCU or
471 	 * ->file_lock because this is the last reference to the
472 	 * files structure.  But use RCU to shut RCU-lockdep up.
473 	 */
474 	rcu_read_lock();
475 	fdt = files_fdtable(files);
476 	rcu_read_unlock();
477 	for (;;) {
478 		unsigned long set;
479 		i = j * __NFDBITS;
480 		if (i >= fdt->max_fds)
481 			break;
482 		set = fdt->open_fds->fds_bits[j++];
483 		while (set) {
484 			if (set & 1) {
485 				struct file * file = xchg(&fdt->fd[i], NULL);
486 				if (file) {
487 					filp_close(file, files);
488 					cond_resched();
489 				}
490 			}
491 			i++;
492 			set >>= 1;
493 		}
494 	}
495 }
496 
497 struct files_struct *get_files_struct(struct task_struct *task)
498 {
499 	struct files_struct *files;
500 
501 	task_lock(task);
502 	files = task->files;
503 	if (files)
504 		atomic_inc(&files->count);
505 	task_unlock(task);
506 
507 	return files;
508 }
509 
510 void put_files_struct(struct files_struct *files)
511 {
512 	struct fdtable *fdt;
513 
514 	if (atomic_dec_and_test(&files->count)) {
515 		close_files(files);
516 		/*
517 		 * Free the fd and fdset arrays if we expanded them.
518 		 * If the fdtable was embedded, pass files for freeing
519 		 * at the end of the RCU grace period. Otherwise,
520 		 * you can free files immediately.
521 		 */
522 		rcu_read_lock();
523 		fdt = files_fdtable(files);
524 		if (fdt != &files->fdtab)
525 			kmem_cache_free(files_cachep, files);
526 		free_fdtable(fdt);
527 		rcu_read_unlock();
528 	}
529 }
530 
531 void reset_files_struct(struct files_struct *files)
532 {
533 	struct task_struct *tsk = current;
534 	struct files_struct *old;
535 
536 	old = tsk->files;
537 	task_lock(tsk);
538 	tsk->files = files;
539 	task_unlock(tsk);
540 	put_files_struct(old);
541 }
542 
543 void exit_files(struct task_struct *tsk)
544 {
545 	struct files_struct * files = tsk->files;
546 
547 	if (files) {
548 		task_lock(tsk);
549 		tsk->files = NULL;
550 		task_unlock(tsk);
551 		put_files_struct(files);
552 	}
553 }
554 
555 #ifdef CONFIG_MM_OWNER
556 /*
557  * Task p is exiting and it owned mm, lets find a new owner for it
558  */
559 static inline int
560 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
561 {
562 	/*
563 	 * If there are other users of the mm and the owner (us) is exiting
564 	 * we need to find a new owner to take on the responsibility.
565 	 */
566 	if (atomic_read(&mm->mm_users) <= 1)
567 		return 0;
568 	if (mm->owner != p)
569 		return 0;
570 	return 1;
571 }
572 
573 void mm_update_next_owner(struct mm_struct *mm)
574 {
575 	struct task_struct *c, *g, *p = current;
576 
577 retry:
578 	if (!mm_need_new_owner(mm, p))
579 		return;
580 
581 	read_lock(&tasklist_lock);
582 	/*
583 	 * Search in the children
584 	 */
585 	list_for_each_entry(c, &p->children, sibling) {
586 		if (c->mm == mm)
587 			goto assign_new_owner;
588 	}
589 
590 	/*
591 	 * Search in the siblings
592 	 */
593 	list_for_each_entry(c, &p->real_parent->children, sibling) {
594 		if (c->mm == mm)
595 			goto assign_new_owner;
596 	}
597 
598 	/*
599 	 * Search through everything else. We should not get
600 	 * here often
601 	 */
602 	do_each_thread(g, c) {
603 		if (c->mm == mm)
604 			goto assign_new_owner;
605 	} while_each_thread(g, c);
606 
607 	read_unlock(&tasklist_lock);
608 	/*
609 	 * We found no owner yet mm_users > 1: this implies that we are
610 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
611 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
612 	 */
613 	mm->owner = NULL;
614 	return;
615 
616 assign_new_owner:
617 	BUG_ON(c == p);
618 	get_task_struct(c);
619 	/*
620 	 * The task_lock protects c->mm from changing.
621 	 * We always want mm->owner->mm == mm
622 	 */
623 	task_lock(c);
624 	/*
625 	 * Delay read_unlock() till we have the task_lock()
626 	 * to ensure that c does not slip away underneath us
627 	 */
628 	read_unlock(&tasklist_lock);
629 	if (c->mm != mm) {
630 		task_unlock(c);
631 		put_task_struct(c);
632 		goto retry;
633 	}
634 	mm->owner = c;
635 	task_unlock(c);
636 	put_task_struct(c);
637 }
638 #endif /* CONFIG_MM_OWNER */
639 
640 /*
641  * Turn us into a lazy TLB process if we
642  * aren't already..
643  */
644 static void exit_mm(struct task_struct * tsk)
645 {
646 	struct mm_struct *mm = tsk->mm;
647 	struct core_state *core_state;
648 
649 	mm_release(tsk, mm);
650 	if (!mm)
651 		return;
652 	/*
653 	 * Serialize with any possible pending coredump.
654 	 * We must hold mmap_sem around checking core_state
655 	 * and clearing tsk->mm.  The core-inducing thread
656 	 * will increment ->nr_threads for each thread in the
657 	 * group with ->mm != NULL.
658 	 */
659 	down_read(&mm->mmap_sem);
660 	core_state = mm->core_state;
661 	if (core_state) {
662 		struct core_thread self;
663 		up_read(&mm->mmap_sem);
664 
665 		self.task = tsk;
666 		self.next = xchg(&core_state->dumper.next, &self);
667 		/*
668 		 * Implies mb(), the result of xchg() must be visible
669 		 * to core_state->dumper.
670 		 */
671 		if (atomic_dec_and_test(&core_state->nr_threads))
672 			complete(&core_state->startup);
673 
674 		for (;;) {
675 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
676 			if (!self.task) /* see coredump_finish() */
677 				break;
678 			schedule();
679 		}
680 		__set_task_state(tsk, TASK_RUNNING);
681 		down_read(&mm->mmap_sem);
682 	}
683 	atomic_inc(&mm->mm_count);
684 	BUG_ON(mm != tsk->active_mm);
685 	/* more a memory barrier than a real lock */
686 	task_lock(tsk);
687 	tsk->mm = NULL;
688 	up_read(&mm->mmap_sem);
689 	enter_lazy_tlb(mm, current);
690 	/* We don't want this task to be frozen prematurely */
691 	clear_freeze_flag(tsk);
692 	task_unlock(tsk);
693 	mm_update_next_owner(mm);
694 	mmput(mm);
695 }
696 
697 /*
698  * When we die, we re-parent all our children.
699  * Try to give them to another thread in our thread
700  * group, and if no such member exists, give it to
701  * the child reaper process (ie "init") in our pid
702  * space.
703  */
704 static struct task_struct *find_new_reaper(struct task_struct *father)
705 {
706 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
707 	struct task_struct *thread;
708 
709 	thread = father;
710 	while_each_thread(father, thread) {
711 		if (thread->flags & PF_EXITING)
712 			continue;
713 		if (unlikely(pid_ns->child_reaper == father))
714 			pid_ns->child_reaper = thread;
715 		return thread;
716 	}
717 
718 	if (unlikely(pid_ns->child_reaper == father)) {
719 		write_unlock_irq(&tasklist_lock);
720 		if (unlikely(pid_ns == &init_pid_ns))
721 			panic("Attempted to kill init!");
722 
723 		zap_pid_ns_processes(pid_ns);
724 		write_lock_irq(&tasklist_lock);
725 		/*
726 		 * We can not clear ->child_reaper or leave it alone.
727 		 * There may by stealth EXIT_DEAD tasks on ->children,
728 		 * forget_original_parent() must move them somewhere.
729 		 */
730 		pid_ns->child_reaper = init_pid_ns.child_reaper;
731 	}
732 
733 	return pid_ns->child_reaper;
734 }
735 
736 /*
737 * Any that need to be release_task'd are put on the @dead list.
738  */
739 static void reparent_leader(struct task_struct *father, struct task_struct *p,
740 				struct list_head *dead)
741 {
742 	list_move_tail(&p->sibling, &p->real_parent->children);
743 
744 	if (task_detached(p))
745 		return;
746 	/*
747 	 * If this is a threaded reparent there is no need to
748 	 * notify anyone anything has happened.
749 	 */
750 	if (same_thread_group(p->real_parent, father))
751 		return;
752 
753 	/* We don't want people slaying init.  */
754 	p->exit_signal = SIGCHLD;
755 
756 	/* If it has exited notify the new parent about this child's death. */
757 	if (!task_ptrace(p) &&
758 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
759 		do_notify_parent(p, p->exit_signal);
760 		if (task_detached(p)) {
761 			p->exit_state = EXIT_DEAD;
762 			list_move_tail(&p->sibling, dead);
763 		}
764 	}
765 
766 	kill_orphaned_pgrp(p, father);
767 }
768 
769 static void forget_original_parent(struct task_struct *father)
770 {
771 	struct task_struct *p, *n, *reaper;
772 	LIST_HEAD(dead_children);
773 
774 	write_lock_irq(&tasklist_lock);
775 	/*
776 	 * Note that exit_ptrace() and find_new_reaper() might
777 	 * drop tasklist_lock and reacquire it.
778 	 */
779 	exit_ptrace(father);
780 	reaper = find_new_reaper(father);
781 
782 	list_for_each_entry_safe(p, n, &father->children, sibling) {
783 		struct task_struct *t = p;
784 		do {
785 			t->real_parent = reaper;
786 			if (t->parent == father) {
787 				BUG_ON(task_ptrace(t));
788 				t->parent = t->real_parent;
789 			}
790 			if (t->pdeath_signal)
791 				group_send_sig_info(t->pdeath_signal,
792 						    SEND_SIG_NOINFO, t);
793 		} while_each_thread(p, t);
794 		reparent_leader(father, p, &dead_children);
795 	}
796 	write_unlock_irq(&tasklist_lock);
797 
798 	BUG_ON(!list_empty(&father->children));
799 
800 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
801 		list_del_init(&p->sibling);
802 		release_task(p);
803 	}
804 }
805 
806 /*
807  * Send signals to all our closest relatives so that they know
808  * to properly mourn us..
809  */
810 static void exit_notify(struct task_struct *tsk, int group_dead)
811 {
812 	int signal;
813 	void *cookie;
814 
815 	/*
816 	 * This does two things:
817 	 *
818   	 * A.  Make init inherit all the child processes
819 	 * B.  Check to see if any process groups have become orphaned
820 	 *	as a result of our exiting, and if they have any stopped
821 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
822 	 */
823 	forget_original_parent(tsk);
824 	exit_task_namespaces(tsk);
825 
826 	write_lock_irq(&tasklist_lock);
827 	if (group_dead)
828 		kill_orphaned_pgrp(tsk->group_leader, NULL);
829 
830 	/* Let father know we died
831 	 *
832 	 * Thread signals are configurable, but you aren't going to use
833 	 * that to send signals to arbitary processes.
834 	 * That stops right now.
835 	 *
836 	 * If the parent exec id doesn't match the exec id we saved
837 	 * when we started then we know the parent has changed security
838 	 * domain.
839 	 *
840 	 * If our self_exec id doesn't match our parent_exec_id then
841 	 * we have changed execution domain as these two values started
842 	 * the same after a fork.
843 	 */
844 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
845 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
846 	     tsk->self_exec_id != tsk->parent_exec_id))
847 		tsk->exit_signal = SIGCHLD;
848 
849 	signal = tracehook_notify_death(tsk, &cookie, group_dead);
850 	if (signal >= 0)
851 		signal = do_notify_parent(tsk, signal);
852 
853 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
854 
855 	/* mt-exec, de_thread() is waiting for group leader */
856 	if (unlikely(tsk->signal->notify_count < 0))
857 		wake_up_process(tsk->signal->group_exit_task);
858 	write_unlock_irq(&tasklist_lock);
859 
860 	tracehook_report_death(tsk, signal, cookie, group_dead);
861 
862 	/* If the process is dead, release it - nobody will wait for it */
863 	if (signal == DEATH_REAP)
864 		release_task(tsk);
865 }
866 
867 #ifdef CONFIG_DEBUG_STACK_USAGE
868 static void check_stack_usage(void)
869 {
870 	static DEFINE_SPINLOCK(low_water_lock);
871 	static int lowest_to_date = THREAD_SIZE;
872 	unsigned long free;
873 
874 	free = stack_not_used(current);
875 
876 	if (free >= lowest_to_date)
877 		return;
878 
879 	spin_lock(&low_water_lock);
880 	if (free < lowest_to_date) {
881 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
882 				"left\n",
883 				current->comm, free);
884 		lowest_to_date = free;
885 	}
886 	spin_unlock(&low_water_lock);
887 }
888 #else
889 static inline void check_stack_usage(void) {}
890 #endif
891 
892 NORET_TYPE void do_exit(long code)
893 {
894 	struct task_struct *tsk = current;
895 	int group_dead;
896 
897 	profile_task_exit(tsk);
898 
899 	WARN_ON(atomic_read(&tsk->fs_excl));
900 
901 	if (unlikely(in_interrupt()))
902 		panic("Aiee, killing interrupt handler!");
903 	if (unlikely(!tsk->pid))
904 		panic("Attempted to kill the idle task!");
905 
906 	tracehook_report_exit(&code);
907 
908 	validate_creds_for_do_exit(tsk);
909 
910 	/*
911 	 * We're taking recursive faults here in do_exit. Safest is to just
912 	 * leave this task alone and wait for reboot.
913 	 */
914 	if (unlikely(tsk->flags & PF_EXITING)) {
915 		printk(KERN_ALERT
916 			"Fixing recursive fault but reboot is needed!\n");
917 		/*
918 		 * We can do this unlocked here. The futex code uses
919 		 * this flag just to verify whether the pi state
920 		 * cleanup has been done or not. In the worst case it
921 		 * loops once more. We pretend that the cleanup was
922 		 * done as there is no way to return. Either the
923 		 * OWNER_DIED bit is set by now or we push the blocked
924 		 * task into the wait for ever nirwana as well.
925 		 */
926 		tsk->flags |= PF_EXITPIDONE;
927 		set_current_state(TASK_UNINTERRUPTIBLE);
928 		schedule();
929 	}
930 
931 	exit_irq_thread();
932 
933 	exit_signals(tsk);  /* sets PF_EXITING */
934 	/*
935 	 * tsk->flags are checked in the futex code to protect against
936 	 * an exiting task cleaning up the robust pi futexes.
937 	 */
938 	smp_mb();
939 	raw_spin_unlock_wait(&tsk->pi_lock);
940 
941 	if (unlikely(in_atomic()))
942 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
943 				current->comm, task_pid_nr(current),
944 				preempt_count());
945 
946 	acct_update_integrals(tsk);
947 	/* sync mm's RSS info before statistics gathering */
948 	if (tsk->mm)
949 		sync_mm_rss(tsk, tsk->mm);
950 	group_dead = atomic_dec_and_test(&tsk->signal->live);
951 	if (group_dead) {
952 		hrtimer_cancel(&tsk->signal->real_timer);
953 		exit_itimers(tsk->signal);
954 		if (tsk->mm)
955 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
956 	}
957 	acct_collect(code, group_dead);
958 	if (group_dead)
959 		tty_audit_exit();
960 	if (unlikely(tsk->audit_context))
961 		audit_free(tsk);
962 
963 	tsk->exit_code = code;
964 	taskstats_exit(tsk, group_dead);
965 
966 	exit_mm(tsk);
967 
968 	if (group_dead)
969 		acct_process();
970 	trace_sched_process_exit(tsk);
971 
972 	exit_sem(tsk);
973 	exit_files(tsk);
974 	exit_fs(tsk);
975 	check_stack_usage();
976 	exit_thread();
977 	cgroup_exit(tsk, 1);
978 
979 	if (group_dead)
980 		disassociate_ctty(1);
981 
982 	module_put(task_thread_info(tsk)->exec_domain->module);
983 
984 	proc_exit_connector(tsk);
985 
986 	/*
987 	 * FIXME: do that only when needed, using sched_exit tracepoint
988 	 */
989 	flush_ptrace_hw_breakpoint(tsk);
990 	/*
991 	 * Flush inherited counters to the parent - before the parent
992 	 * gets woken up by child-exit notifications.
993 	 */
994 	perf_event_exit_task(tsk);
995 
996 	exit_notify(tsk, group_dead);
997 #ifdef CONFIG_NUMA
998 	task_lock(tsk);
999 	mpol_put(tsk->mempolicy);
1000 	tsk->mempolicy = NULL;
1001 	task_unlock(tsk);
1002 #endif
1003 #ifdef CONFIG_FUTEX
1004 	if (unlikely(current->pi_state_cache))
1005 		kfree(current->pi_state_cache);
1006 #endif
1007 	/*
1008 	 * Make sure we are holding no locks:
1009 	 */
1010 	debug_check_no_locks_held(tsk);
1011 	/*
1012 	 * We can do this unlocked here. The futex code uses this flag
1013 	 * just to verify whether the pi state cleanup has been done
1014 	 * or not. In the worst case it loops once more.
1015 	 */
1016 	tsk->flags |= PF_EXITPIDONE;
1017 
1018 	if (tsk->io_context)
1019 		exit_io_context(tsk);
1020 
1021 	if (tsk->splice_pipe)
1022 		__free_pipe_info(tsk->splice_pipe);
1023 
1024 	validate_creds_for_do_exit(tsk);
1025 
1026 	preempt_disable();
1027 	exit_rcu();
1028 	/* causes final put_task_struct in finish_task_switch(). */
1029 	tsk->state = TASK_DEAD;
1030 	schedule();
1031 	BUG();
1032 	/* Avoid "noreturn function does return".  */
1033 	for (;;)
1034 		cpu_relax();	/* For when BUG is null */
1035 }
1036 
1037 EXPORT_SYMBOL_GPL(do_exit);
1038 
1039 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1040 {
1041 	if (comp)
1042 		complete(comp);
1043 
1044 	do_exit(code);
1045 }
1046 
1047 EXPORT_SYMBOL(complete_and_exit);
1048 
1049 SYSCALL_DEFINE1(exit, int, error_code)
1050 {
1051 	do_exit((error_code&0xff)<<8);
1052 }
1053 
1054 /*
1055  * Take down every thread in the group.  This is called by fatal signals
1056  * as well as by sys_exit_group (below).
1057  */
1058 NORET_TYPE void
1059 do_group_exit(int exit_code)
1060 {
1061 	struct signal_struct *sig = current->signal;
1062 
1063 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1064 
1065 	if (signal_group_exit(sig))
1066 		exit_code = sig->group_exit_code;
1067 	else if (!thread_group_empty(current)) {
1068 		struct sighand_struct *const sighand = current->sighand;
1069 		spin_lock_irq(&sighand->siglock);
1070 		if (signal_group_exit(sig))
1071 			/* Another thread got here before we took the lock.  */
1072 			exit_code = sig->group_exit_code;
1073 		else {
1074 			sig->group_exit_code = exit_code;
1075 			sig->flags = SIGNAL_GROUP_EXIT;
1076 			zap_other_threads(current);
1077 		}
1078 		spin_unlock_irq(&sighand->siglock);
1079 	}
1080 
1081 	do_exit(exit_code);
1082 	/* NOTREACHED */
1083 }
1084 
1085 /*
1086  * this kills every thread in the thread group. Note that any externally
1087  * wait4()-ing process will get the correct exit code - even if this
1088  * thread is not the thread group leader.
1089  */
1090 SYSCALL_DEFINE1(exit_group, int, error_code)
1091 {
1092 	do_group_exit((error_code & 0xff) << 8);
1093 	/* NOTREACHED */
1094 	return 0;
1095 }
1096 
1097 struct wait_opts {
1098 	enum pid_type		wo_type;
1099 	int			wo_flags;
1100 	struct pid		*wo_pid;
1101 
1102 	struct siginfo __user	*wo_info;
1103 	int __user		*wo_stat;
1104 	struct rusage __user	*wo_rusage;
1105 
1106 	wait_queue_t		child_wait;
1107 	int			notask_error;
1108 };
1109 
1110 static inline
1111 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1112 {
1113 	if (type != PIDTYPE_PID)
1114 		task = task->group_leader;
1115 	return task->pids[type].pid;
1116 }
1117 
1118 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1119 {
1120 	return	wo->wo_type == PIDTYPE_MAX ||
1121 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1122 }
1123 
1124 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1125 {
1126 	if (!eligible_pid(wo, p))
1127 		return 0;
1128 	/* Wait for all children (clone and not) if __WALL is set;
1129 	 * otherwise, wait for clone children *only* if __WCLONE is
1130 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1131 	 * A "clone" child here is one that reports to its parent
1132 	 * using a signal other than SIGCHLD.) */
1133 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1134 	    && !(wo->wo_flags & __WALL))
1135 		return 0;
1136 
1137 	return 1;
1138 }
1139 
1140 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1141 				pid_t pid, uid_t uid, int why, int status)
1142 {
1143 	struct siginfo __user *infop;
1144 	int retval = wo->wo_rusage
1145 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1146 
1147 	put_task_struct(p);
1148 	infop = wo->wo_info;
1149 	if (infop) {
1150 		if (!retval)
1151 			retval = put_user(SIGCHLD, &infop->si_signo);
1152 		if (!retval)
1153 			retval = put_user(0, &infop->si_errno);
1154 		if (!retval)
1155 			retval = put_user((short)why, &infop->si_code);
1156 		if (!retval)
1157 			retval = put_user(pid, &infop->si_pid);
1158 		if (!retval)
1159 			retval = put_user(uid, &infop->si_uid);
1160 		if (!retval)
1161 			retval = put_user(status, &infop->si_status);
1162 	}
1163 	if (!retval)
1164 		retval = pid;
1165 	return retval;
1166 }
1167 
1168 /*
1169  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1170  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1171  * the lock and this task is uninteresting.  If we return nonzero, we have
1172  * released the lock and the system call should return.
1173  */
1174 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1175 {
1176 	unsigned long state;
1177 	int retval, status, traced;
1178 	pid_t pid = task_pid_vnr(p);
1179 	uid_t uid = __task_cred(p)->uid;
1180 	struct siginfo __user *infop;
1181 
1182 	if (!likely(wo->wo_flags & WEXITED))
1183 		return 0;
1184 
1185 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1186 		int exit_code = p->exit_code;
1187 		int why;
1188 
1189 		get_task_struct(p);
1190 		read_unlock(&tasklist_lock);
1191 		if ((exit_code & 0x7f) == 0) {
1192 			why = CLD_EXITED;
1193 			status = exit_code >> 8;
1194 		} else {
1195 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1196 			status = exit_code & 0x7f;
1197 		}
1198 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1199 	}
1200 
1201 	/*
1202 	 * Try to move the task's state to DEAD
1203 	 * only one thread is allowed to do this:
1204 	 */
1205 	state = xchg(&p->exit_state, EXIT_DEAD);
1206 	if (state != EXIT_ZOMBIE) {
1207 		BUG_ON(state != EXIT_DEAD);
1208 		return 0;
1209 	}
1210 
1211 	traced = ptrace_reparented(p);
1212 	/*
1213 	 * It can be ptraced but not reparented, check
1214 	 * !task_detached() to filter out sub-threads.
1215 	 */
1216 	if (likely(!traced) && likely(!task_detached(p))) {
1217 		struct signal_struct *psig;
1218 		struct signal_struct *sig;
1219 		unsigned long maxrss;
1220 		cputime_t tgutime, tgstime;
1221 
1222 		/*
1223 		 * The resource counters for the group leader are in its
1224 		 * own task_struct.  Those for dead threads in the group
1225 		 * are in its signal_struct, as are those for the child
1226 		 * processes it has previously reaped.  All these
1227 		 * accumulate in the parent's signal_struct c* fields.
1228 		 *
1229 		 * We don't bother to take a lock here to protect these
1230 		 * p->signal fields, because they are only touched by
1231 		 * __exit_signal, which runs with tasklist_lock
1232 		 * write-locked anyway, and so is excluded here.  We do
1233 		 * need to protect the access to parent->signal fields,
1234 		 * as other threads in the parent group can be right
1235 		 * here reaping other children at the same time.
1236 		 *
1237 		 * We use thread_group_times() to get times for the thread
1238 		 * group, which consolidates times for all threads in the
1239 		 * group including the group leader.
1240 		 */
1241 		thread_group_times(p, &tgutime, &tgstime);
1242 		spin_lock_irq(&p->real_parent->sighand->siglock);
1243 		psig = p->real_parent->signal;
1244 		sig = p->signal;
1245 		psig->cutime =
1246 			cputime_add(psig->cutime,
1247 			cputime_add(tgutime,
1248 				    sig->cutime));
1249 		psig->cstime =
1250 			cputime_add(psig->cstime,
1251 			cputime_add(tgstime,
1252 				    sig->cstime));
1253 		psig->cgtime =
1254 			cputime_add(psig->cgtime,
1255 			cputime_add(p->gtime,
1256 			cputime_add(sig->gtime,
1257 				    sig->cgtime)));
1258 		psig->cmin_flt +=
1259 			p->min_flt + sig->min_flt + sig->cmin_flt;
1260 		psig->cmaj_flt +=
1261 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1262 		psig->cnvcsw +=
1263 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1264 		psig->cnivcsw +=
1265 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1266 		psig->cinblock +=
1267 			task_io_get_inblock(p) +
1268 			sig->inblock + sig->cinblock;
1269 		psig->coublock +=
1270 			task_io_get_oublock(p) +
1271 			sig->oublock + sig->coublock;
1272 		maxrss = max(sig->maxrss, sig->cmaxrss);
1273 		if (psig->cmaxrss < maxrss)
1274 			psig->cmaxrss = maxrss;
1275 		task_io_accounting_add(&psig->ioac, &p->ioac);
1276 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1277 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1278 	}
1279 
1280 	/*
1281 	 * Now we are sure this task is interesting, and no other
1282 	 * thread can reap it because we set its state to EXIT_DEAD.
1283 	 */
1284 	read_unlock(&tasklist_lock);
1285 
1286 	retval = wo->wo_rusage
1287 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1288 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1289 		? p->signal->group_exit_code : p->exit_code;
1290 	if (!retval && wo->wo_stat)
1291 		retval = put_user(status, wo->wo_stat);
1292 
1293 	infop = wo->wo_info;
1294 	if (!retval && infop)
1295 		retval = put_user(SIGCHLD, &infop->si_signo);
1296 	if (!retval && infop)
1297 		retval = put_user(0, &infop->si_errno);
1298 	if (!retval && infop) {
1299 		int why;
1300 
1301 		if ((status & 0x7f) == 0) {
1302 			why = CLD_EXITED;
1303 			status >>= 8;
1304 		} else {
1305 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1306 			status &= 0x7f;
1307 		}
1308 		retval = put_user((short)why, &infop->si_code);
1309 		if (!retval)
1310 			retval = put_user(status, &infop->si_status);
1311 	}
1312 	if (!retval && infop)
1313 		retval = put_user(pid, &infop->si_pid);
1314 	if (!retval && infop)
1315 		retval = put_user(uid, &infop->si_uid);
1316 	if (!retval)
1317 		retval = pid;
1318 
1319 	if (traced) {
1320 		write_lock_irq(&tasklist_lock);
1321 		/* We dropped tasklist, ptracer could die and untrace */
1322 		ptrace_unlink(p);
1323 		/*
1324 		 * If this is not a detached task, notify the parent.
1325 		 * If it's still not detached after that, don't release
1326 		 * it now.
1327 		 */
1328 		if (!task_detached(p)) {
1329 			do_notify_parent(p, p->exit_signal);
1330 			if (!task_detached(p)) {
1331 				p->exit_state = EXIT_ZOMBIE;
1332 				p = NULL;
1333 			}
1334 		}
1335 		write_unlock_irq(&tasklist_lock);
1336 	}
1337 	if (p != NULL)
1338 		release_task(p);
1339 
1340 	return retval;
1341 }
1342 
1343 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1344 {
1345 	if (ptrace) {
1346 		if (task_is_stopped_or_traced(p))
1347 			return &p->exit_code;
1348 	} else {
1349 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1350 			return &p->signal->group_exit_code;
1351 	}
1352 	return NULL;
1353 }
1354 
1355 /*
1356  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1357  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1358  * the lock and this task is uninteresting.  If we return nonzero, we have
1359  * released the lock and the system call should return.
1360  */
1361 static int wait_task_stopped(struct wait_opts *wo,
1362 				int ptrace, struct task_struct *p)
1363 {
1364 	struct siginfo __user *infop;
1365 	int retval, exit_code, *p_code, why;
1366 	uid_t uid = 0; /* unneeded, required by compiler */
1367 	pid_t pid;
1368 
1369 	/*
1370 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1371 	 */
1372 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1373 		return 0;
1374 
1375 	exit_code = 0;
1376 	spin_lock_irq(&p->sighand->siglock);
1377 
1378 	p_code = task_stopped_code(p, ptrace);
1379 	if (unlikely(!p_code))
1380 		goto unlock_sig;
1381 
1382 	exit_code = *p_code;
1383 	if (!exit_code)
1384 		goto unlock_sig;
1385 
1386 	if (!unlikely(wo->wo_flags & WNOWAIT))
1387 		*p_code = 0;
1388 
1389 	uid = task_uid(p);
1390 unlock_sig:
1391 	spin_unlock_irq(&p->sighand->siglock);
1392 	if (!exit_code)
1393 		return 0;
1394 
1395 	/*
1396 	 * Now we are pretty sure this task is interesting.
1397 	 * Make sure it doesn't get reaped out from under us while we
1398 	 * give up the lock and then examine it below.  We don't want to
1399 	 * keep holding onto the tasklist_lock while we call getrusage and
1400 	 * possibly take page faults for user memory.
1401 	 */
1402 	get_task_struct(p);
1403 	pid = task_pid_vnr(p);
1404 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1405 	read_unlock(&tasklist_lock);
1406 
1407 	if (unlikely(wo->wo_flags & WNOWAIT))
1408 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1409 
1410 	retval = wo->wo_rusage
1411 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1412 	if (!retval && wo->wo_stat)
1413 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1414 
1415 	infop = wo->wo_info;
1416 	if (!retval && infop)
1417 		retval = put_user(SIGCHLD, &infop->si_signo);
1418 	if (!retval && infop)
1419 		retval = put_user(0, &infop->si_errno);
1420 	if (!retval && infop)
1421 		retval = put_user((short)why, &infop->si_code);
1422 	if (!retval && infop)
1423 		retval = put_user(exit_code, &infop->si_status);
1424 	if (!retval && infop)
1425 		retval = put_user(pid, &infop->si_pid);
1426 	if (!retval && infop)
1427 		retval = put_user(uid, &infop->si_uid);
1428 	if (!retval)
1429 		retval = pid;
1430 	put_task_struct(p);
1431 
1432 	BUG_ON(!retval);
1433 	return retval;
1434 }
1435 
1436 /*
1437  * Handle do_wait work for one task in a live, non-stopped state.
1438  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1439  * the lock and this task is uninteresting.  If we return nonzero, we have
1440  * released the lock and the system call should return.
1441  */
1442 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1443 {
1444 	int retval;
1445 	pid_t pid;
1446 	uid_t uid;
1447 
1448 	if (!unlikely(wo->wo_flags & WCONTINUED))
1449 		return 0;
1450 
1451 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1452 		return 0;
1453 
1454 	spin_lock_irq(&p->sighand->siglock);
1455 	/* Re-check with the lock held.  */
1456 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1457 		spin_unlock_irq(&p->sighand->siglock);
1458 		return 0;
1459 	}
1460 	if (!unlikely(wo->wo_flags & WNOWAIT))
1461 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1462 	uid = task_uid(p);
1463 	spin_unlock_irq(&p->sighand->siglock);
1464 
1465 	pid = task_pid_vnr(p);
1466 	get_task_struct(p);
1467 	read_unlock(&tasklist_lock);
1468 
1469 	if (!wo->wo_info) {
1470 		retval = wo->wo_rusage
1471 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1472 		put_task_struct(p);
1473 		if (!retval && wo->wo_stat)
1474 			retval = put_user(0xffff, wo->wo_stat);
1475 		if (!retval)
1476 			retval = pid;
1477 	} else {
1478 		retval = wait_noreap_copyout(wo, p, pid, uid,
1479 					     CLD_CONTINUED, SIGCONT);
1480 		BUG_ON(retval == 0);
1481 	}
1482 
1483 	return retval;
1484 }
1485 
1486 /*
1487  * Consider @p for a wait by @parent.
1488  *
1489  * -ECHILD should be in ->notask_error before the first call.
1490  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1491  * Returns zero if the search for a child should continue;
1492  * then ->notask_error is 0 if @p is an eligible child,
1493  * or another error from security_task_wait(), or still -ECHILD.
1494  */
1495 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1496 				struct task_struct *p)
1497 {
1498 	int ret = eligible_child(wo, p);
1499 	if (!ret)
1500 		return ret;
1501 
1502 	ret = security_task_wait(p);
1503 	if (unlikely(ret < 0)) {
1504 		/*
1505 		 * If we have not yet seen any eligible child,
1506 		 * then let this error code replace -ECHILD.
1507 		 * A permission error will give the user a clue
1508 		 * to look for security policy problems, rather
1509 		 * than for mysterious wait bugs.
1510 		 */
1511 		if (wo->notask_error)
1512 			wo->notask_error = ret;
1513 		return 0;
1514 	}
1515 
1516 	if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1517 		/*
1518 		 * This child is hidden by ptrace.
1519 		 * We aren't allowed to see it now, but eventually we will.
1520 		 */
1521 		wo->notask_error = 0;
1522 		return 0;
1523 	}
1524 
1525 	if (p->exit_state == EXIT_DEAD)
1526 		return 0;
1527 
1528 	/*
1529 	 * We don't reap group leaders with subthreads.
1530 	 */
1531 	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1532 		return wait_task_zombie(wo, p);
1533 
1534 	/*
1535 	 * It's stopped or running now, so it might
1536 	 * later continue, exit, or stop again.
1537 	 */
1538 	wo->notask_error = 0;
1539 
1540 	if (task_stopped_code(p, ptrace))
1541 		return wait_task_stopped(wo, ptrace, p);
1542 
1543 	return wait_task_continued(wo, p);
1544 }
1545 
1546 /*
1547  * Do the work of do_wait() for one thread in the group, @tsk.
1548  *
1549  * -ECHILD should be in ->notask_error before the first call.
1550  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1551  * Returns zero if the search for a child should continue; then
1552  * ->notask_error is 0 if there were any eligible children,
1553  * or another error from security_task_wait(), or still -ECHILD.
1554  */
1555 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1556 {
1557 	struct task_struct *p;
1558 
1559 	list_for_each_entry(p, &tsk->children, sibling) {
1560 		int ret = wait_consider_task(wo, 0, p);
1561 		if (ret)
1562 			return ret;
1563 	}
1564 
1565 	return 0;
1566 }
1567 
1568 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1569 {
1570 	struct task_struct *p;
1571 
1572 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1573 		int ret = wait_consider_task(wo, 1, p);
1574 		if (ret)
1575 			return ret;
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1582 				int sync, void *key)
1583 {
1584 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1585 						child_wait);
1586 	struct task_struct *p = key;
1587 
1588 	if (!eligible_pid(wo, p))
1589 		return 0;
1590 
1591 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1592 		return 0;
1593 
1594 	return default_wake_function(wait, mode, sync, key);
1595 }
1596 
1597 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1598 {
1599 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1600 				TASK_INTERRUPTIBLE, 1, p);
1601 }
1602 
1603 static long do_wait(struct wait_opts *wo)
1604 {
1605 	struct task_struct *tsk;
1606 	int retval;
1607 
1608 	trace_sched_process_wait(wo->wo_pid);
1609 
1610 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1611 	wo->child_wait.private = current;
1612 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1613 repeat:
1614 	/*
1615 	 * If there is nothing that can match our critiera just get out.
1616 	 * We will clear ->notask_error to zero if we see any child that
1617 	 * might later match our criteria, even if we are not able to reap
1618 	 * it yet.
1619 	 */
1620 	wo->notask_error = -ECHILD;
1621 	if ((wo->wo_type < PIDTYPE_MAX) &&
1622 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1623 		goto notask;
1624 
1625 	set_current_state(TASK_INTERRUPTIBLE);
1626 	read_lock(&tasklist_lock);
1627 	tsk = current;
1628 	do {
1629 		retval = do_wait_thread(wo, tsk);
1630 		if (retval)
1631 			goto end;
1632 
1633 		retval = ptrace_do_wait(wo, tsk);
1634 		if (retval)
1635 			goto end;
1636 
1637 		if (wo->wo_flags & __WNOTHREAD)
1638 			break;
1639 	} while_each_thread(current, tsk);
1640 	read_unlock(&tasklist_lock);
1641 
1642 notask:
1643 	retval = wo->notask_error;
1644 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1645 		retval = -ERESTARTSYS;
1646 		if (!signal_pending(current)) {
1647 			schedule();
1648 			goto repeat;
1649 		}
1650 	}
1651 end:
1652 	__set_current_state(TASK_RUNNING);
1653 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1654 	return retval;
1655 }
1656 
1657 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1658 		infop, int, options, struct rusage __user *, ru)
1659 {
1660 	struct wait_opts wo;
1661 	struct pid *pid = NULL;
1662 	enum pid_type type;
1663 	long ret;
1664 
1665 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1666 		return -EINVAL;
1667 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1668 		return -EINVAL;
1669 
1670 	switch (which) {
1671 	case P_ALL:
1672 		type = PIDTYPE_MAX;
1673 		break;
1674 	case P_PID:
1675 		type = PIDTYPE_PID;
1676 		if (upid <= 0)
1677 			return -EINVAL;
1678 		break;
1679 	case P_PGID:
1680 		type = PIDTYPE_PGID;
1681 		if (upid <= 0)
1682 			return -EINVAL;
1683 		break;
1684 	default:
1685 		return -EINVAL;
1686 	}
1687 
1688 	if (type < PIDTYPE_MAX)
1689 		pid = find_get_pid(upid);
1690 
1691 	wo.wo_type	= type;
1692 	wo.wo_pid	= pid;
1693 	wo.wo_flags	= options;
1694 	wo.wo_info	= infop;
1695 	wo.wo_stat	= NULL;
1696 	wo.wo_rusage	= ru;
1697 	ret = do_wait(&wo);
1698 
1699 	if (ret > 0) {
1700 		ret = 0;
1701 	} else if (infop) {
1702 		/*
1703 		 * For a WNOHANG return, clear out all the fields
1704 		 * we would set so the user can easily tell the
1705 		 * difference.
1706 		 */
1707 		if (!ret)
1708 			ret = put_user(0, &infop->si_signo);
1709 		if (!ret)
1710 			ret = put_user(0, &infop->si_errno);
1711 		if (!ret)
1712 			ret = put_user(0, &infop->si_code);
1713 		if (!ret)
1714 			ret = put_user(0, &infop->si_pid);
1715 		if (!ret)
1716 			ret = put_user(0, &infop->si_uid);
1717 		if (!ret)
1718 			ret = put_user(0, &infop->si_status);
1719 	}
1720 
1721 	put_pid(pid);
1722 
1723 	/* avoid REGPARM breakage on x86: */
1724 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1725 	return ret;
1726 }
1727 
1728 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1729 		int, options, struct rusage __user *, ru)
1730 {
1731 	struct wait_opts wo;
1732 	struct pid *pid = NULL;
1733 	enum pid_type type;
1734 	long ret;
1735 
1736 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1737 			__WNOTHREAD|__WCLONE|__WALL))
1738 		return -EINVAL;
1739 
1740 	if (upid == -1)
1741 		type = PIDTYPE_MAX;
1742 	else if (upid < 0) {
1743 		type = PIDTYPE_PGID;
1744 		pid = find_get_pid(-upid);
1745 	} else if (upid == 0) {
1746 		type = PIDTYPE_PGID;
1747 		pid = get_task_pid(current, PIDTYPE_PGID);
1748 	} else /* upid > 0 */ {
1749 		type = PIDTYPE_PID;
1750 		pid = find_get_pid(upid);
1751 	}
1752 
1753 	wo.wo_type	= type;
1754 	wo.wo_pid	= pid;
1755 	wo.wo_flags	= options | WEXITED;
1756 	wo.wo_info	= NULL;
1757 	wo.wo_stat	= stat_addr;
1758 	wo.wo_rusage	= ru;
1759 	ret = do_wait(&wo);
1760 	put_pid(pid);
1761 
1762 	/* avoid REGPARM breakage on x86: */
1763 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1764 	return ret;
1765 }
1766 
1767 #ifdef __ARCH_WANT_SYS_WAITPID
1768 
1769 /*
1770  * sys_waitpid() remains for compatibility. waitpid() should be
1771  * implemented by calling sys_wait4() from libc.a.
1772  */
1773 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1774 {
1775 	return sys_wait4(pid, stat_addr, options, NULL);
1776 }
1777 
1778 #endif
1779