xref: /linux/kernel/exit.c (revision 9d14070f656addddce3d63fd483de46930b51850)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 
55 #include <asm/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/pgtable.h>
58 #include <asm/mmu_context.h>
59 
60 static void exit_mm(struct task_struct * tsk);
61 
62 static void __unhash_process(struct task_struct *p, bool group_dead)
63 {
64 	nr_threads--;
65 	detach_pid(p, PIDTYPE_PID);
66 	if (group_dead) {
67 		detach_pid(p, PIDTYPE_PGID);
68 		detach_pid(p, PIDTYPE_SID);
69 
70 		list_del_rcu(&p->tasks);
71 		list_del_init(&p->sibling);
72 		__this_cpu_dec(process_counts);
73 	}
74 	list_del_rcu(&p->thread_group);
75 }
76 
77 /*
78  * This function expects the tasklist_lock write-locked.
79  */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82 	struct signal_struct *sig = tsk->signal;
83 	bool group_dead = thread_group_leader(tsk);
84 	struct sighand_struct *sighand;
85 	struct tty_struct *uninitialized_var(tty);
86 
87 	sighand = rcu_dereference_check(tsk->sighand,
88 					lockdep_tasklist_lock_is_held());
89 	spin_lock(&sighand->siglock);
90 
91 	posix_cpu_timers_exit(tsk);
92 	if (group_dead) {
93 		posix_cpu_timers_exit_group(tsk);
94 		tty = sig->tty;
95 		sig->tty = NULL;
96 	} else {
97 		/*
98 		 * This can only happen if the caller is de_thread().
99 		 * FIXME: this is the temporary hack, we should teach
100 		 * posix-cpu-timers to handle this case correctly.
101 		 */
102 		if (unlikely(has_group_leader_pid(tsk)))
103 			posix_cpu_timers_exit_group(tsk);
104 
105 		/*
106 		 * If there is any task waiting for the group exit
107 		 * then notify it:
108 		 */
109 		if (sig->notify_count > 0 && !--sig->notify_count)
110 			wake_up_process(sig->group_exit_task);
111 
112 		if (tsk == sig->curr_target)
113 			sig->curr_target = next_thread(tsk);
114 		/*
115 		 * Accumulate here the counters for all threads but the
116 		 * group leader as they die, so they can be added into
117 		 * the process-wide totals when those are taken.
118 		 * The group leader stays around as a zombie as long
119 		 * as there are other threads.  When it gets reaped,
120 		 * the exit.c code will add its counts into these totals.
121 		 * We won't ever get here for the group leader, since it
122 		 * will have been the last reference on the signal_struct.
123 		 */
124 		sig->utime += tsk->utime;
125 		sig->stime += tsk->stime;
126 		sig->gtime += tsk->gtime;
127 		sig->min_flt += tsk->min_flt;
128 		sig->maj_flt += tsk->maj_flt;
129 		sig->nvcsw += tsk->nvcsw;
130 		sig->nivcsw += tsk->nivcsw;
131 		sig->inblock += task_io_get_inblock(tsk);
132 		sig->oublock += task_io_get_oublock(tsk);
133 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
134 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
135 	}
136 
137 	sig->nr_threads--;
138 	__unhash_process(tsk, group_dead);
139 
140 	/*
141 	 * Do this under ->siglock, we can race with another thread
142 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
143 	 */
144 	flush_sigqueue(&tsk->pending);
145 	tsk->sighand = NULL;
146 	spin_unlock(&sighand->siglock);
147 
148 	__cleanup_sighand(sighand);
149 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
150 	if (group_dead) {
151 		flush_sigqueue(&sig->shared_pending);
152 		tty_kref_put(tty);
153 	}
154 }
155 
156 static void delayed_put_task_struct(struct rcu_head *rhp)
157 {
158 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
159 
160 	perf_event_delayed_put(tsk);
161 	trace_sched_process_free(tsk);
162 	put_task_struct(tsk);
163 }
164 
165 
166 void release_task(struct task_struct * p)
167 {
168 	struct task_struct *leader;
169 	int zap_leader;
170 repeat:
171 	/* don't need to get the RCU readlock here - the process is dead and
172 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
173 	rcu_read_lock();
174 	atomic_dec(&__task_cred(p)->user->processes);
175 	rcu_read_unlock();
176 
177 	proc_flush_task(p);
178 
179 	write_lock_irq(&tasklist_lock);
180 	ptrace_release_task(p);
181 	__exit_signal(p);
182 
183 	/*
184 	 * If we are the last non-leader member of the thread
185 	 * group, and the leader is zombie, then notify the
186 	 * group leader's parent process. (if it wants notification.)
187 	 */
188 	zap_leader = 0;
189 	leader = p->group_leader;
190 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
191 		/*
192 		 * If we were the last child thread and the leader has
193 		 * exited already, and the leader's parent ignores SIGCHLD,
194 		 * then we are the one who should release the leader.
195 		 */
196 		zap_leader = do_notify_parent(leader, leader->exit_signal);
197 		if (zap_leader)
198 			leader->exit_state = EXIT_DEAD;
199 	}
200 
201 	write_unlock_irq(&tasklist_lock);
202 	release_thread(p);
203 	call_rcu(&p->rcu, delayed_put_task_struct);
204 
205 	p = leader;
206 	if (unlikely(zap_leader))
207 		goto repeat;
208 }
209 
210 /*
211  * This checks not only the pgrp, but falls back on the pid if no
212  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
213  * without this...
214  *
215  * The caller must hold rcu lock or the tasklist lock.
216  */
217 struct pid *session_of_pgrp(struct pid *pgrp)
218 {
219 	struct task_struct *p;
220 	struct pid *sid = NULL;
221 
222 	p = pid_task(pgrp, PIDTYPE_PGID);
223 	if (p == NULL)
224 		p = pid_task(pgrp, PIDTYPE_PID);
225 	if (p != NULL)
226 		sid = task_session(p);
227 
228 	return sid;
229 }
230 
231 /*
232  * Determine if a process group is "orphaned", according to the POSIX
233  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
234  * by terminal-generated stop signals.  Newly orphaned process groups are
235  * to receive a SIGHUP and a SIGCONT.
236  *
237  * "I ask you, have you ever known what it is to be an orphan?"
238  */
239 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
240 {
241 	struct task_struct *p;
242 
243 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
244 		if ((p == ignored_task) ||
245 		    (p->exit_state && thread_group_empty(p)) ||
246 		    is_global_init(p->real_parent))
247 			continue;
248 
249 		if (task_pgrp(p->real_parent) != pgrp &&
250 		    task_session(p->real_parent) == task_session(p))
251 			return 0;
252 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
253 
254 	return 1;
255 }
256 
257 int is_current_pgrp_orphaned(void)
258 {
259 	int retval;
260 
261 	read_lock(&tasklist_lock);
262 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
263 	read_unlock(&tasklist_lock);
264 
265 	return retval;
266 }
267 
268 static bool has_stopped_jobs(struct pid *pgrp)
269 {
270 	struct task_struct *p;
271 
272 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
273 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
274 			return true;
275 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
276 
277 	return false;
278 }
279 
280 /*
281  * Check to see if any process groups have become orphaned as
282  * a result of our exiting, and if they have any stopped jobs,
283  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
284  */
285 static void
286 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
287 {
288 	struct pid *pgrp = task_pgrp(tsk);
289 	struct task_struct *ignored_task = tsk;
290 
291 	if (!parent)
292 		 /* exit: our father is in a different pgrp than
293 		  * we are and we were the only connection outside.
294 		  */
295 		parent = tsk->real_parent;
296 	else
297 		/* reparent: our child is in a different pgrp than
298 		 * we are, and it was the only connection outside.
299 		 */
300 		ignored_task = NULL;
301 
302 	if (task_pgrp(parent) != pgrp &&
303 	    task_session(parent) == task_session(tsk) &&
304 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
305 	    has_stopped_jobs(pgrp)) {
306 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
307 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
308 	}
309 }
310 
311 /**
312  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
313  *
314  * If a kernel thread is launched as a result of a system call, or if
315  * it ever exits, it should generally reparent itself to kthreadd so it
316  * isn't in the way of other processes and is correctly cleaned up on exit.
317  *
318  * The various task state such as scheduling policy and priority may have
319  * been inherited from a user process, so we reset them to sane values here.
320  *
321  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
322  */
323 static void reparent_to_kthreadd(void)
324 {
325 	write_lock_irq(&tasklist_lock);
326 
327 	ptrace_unlink(current);
328 	/* Reparent to init */
329 	current->real_parent = current->parent = kthreadd_task;
330 	list_move_tail(&current->sibling, &current->real_parent->children);
331 
332 	/* Set the exit signal to SIGCHLD so we signal init on exit */
333 	current->exit_signal = SIGCHLD;
334 
335 	if (task_nice(current) < 0)
336 		set_user_nice(current, 0);
337 	/* cpus_allowed? */
338 	/* rt_priority? */
339 	/* signals? */
340 	memcpy(current->signal->rlim, init_task.signal->rlim,
341 	       sizeof(current->signal->rlim));
342 
343 	atomic_inc(&init_cred.usage);
344 	commit_creds(&init_cred);
345 	write_unlock_irq(&tasklist_lock);
346 }
347 
348 void __set_special_pids(struct pid *pid)
349 {
350 	struct task_struct *curr = current->group_leader;
351 
352 	if (task_session(curr) != pid)
353 		change_pid(curr, PIDTYPE_SID, pid);
354 
355 	if (task_pgrp(curr) != pid)
356 		change_pid(curr, PIDTYPE_PGID, pid);
357 }
358 
359 static void set_special_pids(struct pid *pid)
360 {
361 	write_lock_irq(&tasklist_lock);
362 	__set_special_pids(pid);
363 	write_unlock_irq(&tasklist_lock);
364 }
365 
366 /*
367  * Let kernel threads use this to say that they allow a certain signal.
368  * Must not be used if kthread was cloned with CLONE_SIGHAND.
369  */
370 int allow_signal(int sig)
371 {
372 	if (!valid_signal(sig) || sig < 1)
373 		return -EINVAL;
374 
375 	spin_lock_irq(&current->sighand->siglock);
376 	/* This is only needed for daemonize()'ed kthreads */
377 	sigdelset(&current->blocked, sig);
378 	/*
379 	 * Kernel threads handle their own signals. Let the signal code
380 	 * know it'll be handled, so that they don't get converted to
381 	 * SIGKILL or just silently dropped.
382 	 */
383 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
384 	recalc_sigpending();
385 	spin_unlock_irq(&current->sighand->siglock);
386 	return 0;
387 }
388 
389 EXPORT_SYMBOL(allow_signal);
390 
391 int disallow_signal(int sig)
392 {
393 	if (!valid_signal(sig) || sig < 1)
394 		return -EINVAL;
395 
396 	spin_lock_irq(&current->sighand->siglock);
397 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
398 	recalc_sigpending();
399 	spin_unlock_irq(&current->sighand->siglock);
400 	return 0;
401 }
402 
403 EXPORT_SYMBOL(disallow_signal);
404 
405 /*
406  *	Put all the gunge required to become a kernel thread without
407  *	attached user resources in one place where it belongs.
408  */
409 
410 void daemonize(const char *name, ...)
411 {
412 	va_list args;
413 	sigset_t blocked;
414 
415 	va_start(args, name);
416 	vsnprintf(current->comm, sizeof(current->comm), name, args);
417 	va_end(args);
418 
419 	/*
420 	 * If we were started as result of loading a module, close all of the
421 	 * user space pages.  We don't need them, and if we didn't close them
422 	 * they would be locked into memory.
423 	 */
424 	exit_mm(current);
425 	/*
426 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
427 	 * or suspend transition begins right now.
428 	 */
429 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
430 
431 	if (current->nsproxy != &init_nsproxy) {
432 		get_nsproxy(&init_nsproxy);
433 		switch_task_namespaces(current, &init_nsproxy);
434 	}
435 	set_special_pids(&init_struct_pid);
436 	proc_clear_tty(current);
437 
438 	/* Block and flush all signals */
439 	sigfillset(&blocked);
440 	sigprocmask(SIG_BLOCK, &blocked, NULL);
441 	flush_signals(current);
442 
443 	/* Become as one with the init task */
444 
445 	daemonize_fs_struct();
446 	exit_files(current);
447 	current->files = init_task.files;
448 	atomic_inc(&current->files->count);
449 
450 	reparent_to_kthreadd();
451 }
452 
453 EXPORT_SYMBOL(daemonize);
454 
455 static void close_files(struct files_struct * files)
456 {
457 	int i, j;
458 	struct fdtable *fdt;
459 
460 	j = 0;
461 
462 	/*
463 	 * It is safe to dereference the fd table without RCU or
464 	 * ->file_lock because this is the last reference to the
465 	 * files structure.  But use RCU to shut RCU-lockdep up.
466 	 */
467 	rcu_read_lock();
468 	fdt = files_fdtable(files);
469 	rcu_read_unlock();
470 	for (;;) {
471 		unsigned long set;
472 		i = j * __NFDBITS;
473 		if (i >= fdt->max_fds)
474 			break;
475 		set = fdt->open_fds->fds_bits[j++];
476 		while (set) {
477 			if (set & 1) {
478 				struct file * file = xchg(&fdt->fd[i], NULL);
479 				if (file) {
480 					filp_close(file, files);
481 					cond_resched();
482 				}
483 			}
484 			i++;
485 			set >>= 1;
486 		}
487 	}
488 }
489 
490 struct files_struct *get_files_struct(struct task_struct *task)
491 {
492 	struct files_struct *files;
493 
494 	task_lock(task);
495 	files = task->files;
496 	if (files)
497 		atomic_inc(&files->count);
498 	task_unlock(task);
499 
500 	return files;
501 }
502 
503 void put_files_struct(struct files_struct *files)
504 {
505 	struct fdtable *fdt;
506 
507 	if (atomic_dec_and_test(&files->count)) {
508 		close_files(files);
509 		/*
510 		 * Free the fd and fdset arrays if we expanded them.
511 		 * If the fdtable was embedded, pass files for freeing
512 		 * at the end of the RCU grace period. Otherwise,
513 		 * you can free files immediately.
514 		 */
515 		rcu_read_lock();
516 		fdt = files_fdtable(files);
517 		if (fdt != &files->fdtab)
518 			kmem_cache_free(files_cachep, files);
519 		free_fdtable(fdt);
520 		rcu_read_unlock();
521 	}
522 }
523 
524 void reset_files_struct(struct files_struct *files)
525 {
526 	struct task_struct *tsk = current;
527 	struct files_struct *old;
528 
529 	old = tsk->files;
530 	task_lock(tsk);
531 	tsk->files = files;
532 	task_unlock(tsk);
533 	put_files_struct(old);
534 }
535 
536 void exit_files(struct task_struct *tsk)
537 {
538 	struct files_struct * files = tsk->files;
539 
540 	if (files) {
541 		task_lock(tsk);
542 		tsk->files = NULL;
543 		task_unlock(tsk);
544 		put_files_struct(files);
545 	}
546 }
547 
548 #ifdef CONFIG_MM_OWNER
549 /*
550  * A task is exiting.   If it owned this mm, find a new owner for the mm.
551  */
552 void mm_update_next_owner(struct mm_struct *mm)
553 {
554 	struct task_struct *c, *g, *p = current;
555 
556 retry:
557 	/*
558 	 * If the exiting or execing task is not the owner, it's
559 	 * someone else's problem.
560 	 */
561 	if (mm->owner != p)
562 		return;
563 	/*
564 	 * The current owner is exiting/execing and there are no other
565 	 * candidates.  Do not leave the mm pointing to a possibly
566 	 * freed task structure.
567 	 */
568 	if (atomic_read(&mm->mm_users) <= 1) {
569 		mm->owner = NULL;
570 		return;
571 	}
572 
573 	read_lock(&tasklist_lock);
574 	/*
575 	 * Search in the children
576 	 */
577 	list_for_each_entry(c, &p->children, sibling) {
578 		if (c->mm == mm)
579 			goto assign_new_owner;
580 	}
581 
582 	/*
583 	 * Search in the siblings
584 	 */
585 	list_for_each_entry(c, &p->real_parent->children, sibling) {
586 		if (c->mm == mm)
587 			goto assign_new_owner;
588 	}
589 
590 	/*
591 	 * Search through everything else. We should not get
592 	 * here often
593 	 */
594 	do_each_thread(g, c) {
595 		if (c->mm == mm)
596 			goto assign_new_owner;
597 	} while_each_thread(g, c);
598 
599 	read_unlock(&tasklist_lock);
600 	/*
601 	 * We found no owner yet mm_users > 1: this implies that we are
602 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
603 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
604 	 */
605 	mm->owner = NULL;
606 	return;
607 
608 assign_new_owner:
609 	BUG_ON(c == p);
610 	get_task_struct(c);
611 	/*
612 	 * The task_lock protects c->mm from changing.
613 	 * We always want mm->owner->mm == mm
614 	 */
615 	task_lock(c);
616 	/*
617 	 * Delay read_unlock() till we have the task_lock()
618 	 * to ensure that c does not slip away underneath us
619 	 */
620 	read_unlock(&tasklist_lock);
621 	if (c->mm != mm) {
622 		task_unlock(c);
623 		put_task_struct(c);
624 		goto retry;
625 	}
626 	mm->owner = c;
627 	task_unlock(c);
628 	put_task_struct(c);
629 }
630 #endif /* CONFIG_MM_OWNER */
631 
632 /*
633  * Turn us into a lazy TLB process if we
634  * aren't already..
635  */
636 static void exit_mm(struct task_struct * tsk)
637 {
638 	struct mm_struct *mm = tsk->mm;
639 	struct core_state *core_state;
640 
641 	mm_release(tsk, mm);
642 	if (!mm)
643 		return;
644 	/*
645 	 * Serialize with any possible pending coredump.
646 	 * We must hold mmap_sem around checking core_state
647 	 * and clearing tsk->mm.  The core-inducing thread
648 	 * will increment ->nr_threads for each thread in the
649 	 * group with ->mm != NULL.
650 	 */
651 	down_read(&mm->mmap_sem);
652 	core_state = mm->core_state;
653 	if (core_state) {
654 		struct core_thread self;
655 		up_read(&mm->mmap_sem);
656 
657 		self.task = tsk;
658 		self.next = xchg(&core_state->dumper.next, &self);
659 		/*
660 		 * Implies mb(), the result of xchg() must be visible
661 		 * to core_state->dumper.
662 		 */
663 		if (atomic_dec_and_test(&core_state->nr_threads))
664 			complete(&core_state->startup);
665 
666 		for (;;) {
667 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
668 			if (!self.task) /* see coredump_finish() */
669 				break;
670 			schedule();
671 		}
672 		__set_task_state(tsk, TASK_RUNNING);
673 		down_read(&mm->mmap_sem);
674 	}
675 	atomic_inc(&mm->mm_count);
676 	BUG_ON(mm != tsk->active_mm);
677 	/* more a memory barrier than a real lock */
678 	task_lock(tsk);
679 	tsk->mm = NULL;
680 	up_read(&mm->mmap_sem);
681 	enter_lazy_tlb(mm, current);
682 	task_unlock(tsk);
683 	mm_update_next_owner(mm);
684 	mmput(mm);
685 }
686 
687 /*
688  * When we die, we re-parent all our children.
689  * Try to give them to another thread in our thread
690  * group, and if no such member exists, give it to
691  * the child reaper process (ie "init") in our pid
692  * space.
693  */
694 static struct task_struct *find_new_reaper(struct task_struct *father)
695 	__releases(&tasklist_lock)
696 	__acquires(&tasklist_lock)
697 {
698 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
699 	struct task_struct *thread;
700 
701 	thread = father;
702 	while_each_thread(father, thread) {
703 		if (thread->flags & PF_EXITING)
704 			continue;
705 		if (unlikely(pid_ns->child_reaper == father))
706 			pid_ns->child_reaper = thread;
707 		return thread;
708 	}
709 
710 	if (unlikely(pid_ns->child_reaper == father)) {
711 		write_unlock_irq(&tasklist_lock);
712 		if (unlikely(pid_ns == &init_pid_ns))
713 			panic("Attempted to kill init!");
714 
715 		zap_pid_ns_processes(pid_ns);
716 		write_lock_irq(&tasklist_lock);
717 		/*
718 		 * We can not clear ->child_reaper or leave it alone.
719 		 * There may by stealth EXIT_DEAD tasks on ->children,
720 		 * forget_original_parent() must move them somewhere.
721 		 */
722 		pid_ns->child_reaper = init_pid_ns.child_reaper;
723 	}
724 
725 	return pid_ns->child_reaper;
726 }
727 
728 /*
729 * Any that need to be release_task'd are put on the @dead list.
730  */
731 static void reparent_leader(struct task_struct *father, struct task_struct *p,
732 				struct list_head *dead)
733 {
734 	list_move_tail(&p->sibling, &p->real_parent->children);
735 
736 	if (p->exit_state == EXIT_DEAD)
737 		return;
738 	/*
739 	 * If this is a threaded reparent there is no need to
740 	 * notify anyone anything has happened.
741 	 */
742 	if (same_thread_group(p->real_parent, father))
743 		return;
744 
745 	/* We don't want people slaying init.  */
746 	p->exit_signal = SIGCHLD;
747 
748 	/* If it has exited notify the new parent about this child's death. */
749 	if (!p->ptrace &&
750 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
751 		if (do_notify_parent(p, p->exit_signal)) {
752 			p->exit_state = EXIT_DEAD;
753 			list_move_tail(&p->sibling, dead);
754 		}
755 	}
756 
757 	kill_orphaned_pgrp(p, father);
758 }
759 
760 static void forget_original_parent(struct task_struct *father)
761 {
762 	struct task_struct *p, *n, *reaper;
763 	LIST_HEAD(dead_children);
764 
765 	write_lock_irq(&tasklist_lock);
766 	/*
767 	 * Note that exit_ptrace() and find_new_reaper() might
768 	 * drop tasklist_lock and reacquire it.
769 	 */
770 	exit_ptrace(father);
771 	reaper = find_new_reaper(father);
772 
773 	list_for_each_entry_safe(p, n, &father->children, sibling) {
774 		struct task_struct *t = p;
775 		do {
776 			t->real_parent = reaper;
777 			if (t->parent == father) {
778 				BUG_ON(t->ptrace);
779 				t->parent = t->real_parent;
780 			}
781 			if (t->pdeath_signal)
782 				group_send_sig_info(t->pdeath_signal,
783 						    SEND_SIG_NOINFO, t);
784 		} while_each_thread(p, t);
785 		reparent_leader(father, p, &dead_children);
786 	}
787 	write_unlock_irq(&tasklist_lock);
788 
789 	BUG_ON(!list_empty(&father->children));
790 
791 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
792 		list_del_init(&p->sibling);
793 		release_task(p);
794 	}
795 }
796 
797 /*
798  * Send signals to all our closest relatives so that they know
799  * to properly mourn us..
800  */
801 static void exit_notify(struct task_struct *tsk, int group_dead)
802 {
803 	bool autoreap;
804 
805 	/*
806 	 * This does two things:
807 	 *
808   	 * A.  Make init inherit all the child processes
809 	 * B.  Check to see if any process groups have become orphaned
810 	 *	as a result of our exiting, and if they have any stopped
811 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
812 	 */
813 	forget_original_parent(tsk);
814 	exit_task_namespaces(tsk);
815 
816 	write_lock_irq(&tasklist_lock);
817 	if (group_dead)
818 		kill_orphaned_pgrp(tsk->group_leader, NULL);
819 
820 	/* Let father know we died
821 	 *
822 	 * Thread signals are configurable, but you aren't going to use
823 	 * that to send signals to arbitrary processes.
824 	 * That stops right now.
825 	 *
826 	 * If the parent exec id doesn't match the exec id we saved
827 	 * when we started then we know the parent has changed security
828 	 * domain.
829 	 *
830 	 * If our self_exec id doesn't match our parent_exec_id then
831 	 * we have changed execution domain as these two values started
832 	 * the same after a fork.
833 	 */
834 	if (thread_group_leader(tsk) && tsk->exit_signal != SIGCHLD &&
835 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
836 	     tsk->self_exec_id != tsk->parent_exec_id))
837 		tsk->exit_signal = SIGCHLD;
838 
839 	if (unlikely(tsk->ptrace)) {
840 		int sig = thread_group_leader(tsk) &&
841 				thread_group_empty(tsk) &&
842 				!ptrace_reparented(tsk) ?
843 			tsk->exit_signal : SIGCHLD;
844 		autoreap = do_notify_parent(tsk, sig);
845 	} else if (thread_group_leader(tsk)) {
846 		autoreap = thread_group_empty(tsk) &&
847 			do_notify_parent(tsk, tsk->exit_signal);
848 	} else {
849 		autoreap = true;
850 	}
851 
852 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
853 
854 	/* mt-exec, de_thread() is waiting for group leader */
855 	if (unlikely(tsk->signal->notify_count < 0))
856 		wake_up_process(tsk->signal->group_exit_task);
857 	write_unlock_irq(&tasklist_lock);
858 
859 	/* If the process is dead, release it - nobody will wait for it */
860 	if (autoreap)
861 		release_task(tsk);
862 }
863 
864 #ifdef CONFIG_DEBUG_STACK_USAGE
865 static void check_stack_usage(void)
866 {
867 	static DEFINE_SPINLOCK(low_water_lock);
868 	static int lowest_to_date = THREAD_SIZE;
869 	unsigned long free;
870 
871 	free = stack_not_used(current);
872 
873 	if (free >= lowest_to_date)
874 		return;
875 
876 	spin_lock(&low_water_lock);
877 	if (free < lowest_to_date) {
878 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
879 				"left\n",
880 				current->comm, free);
881 		lowest_to_date = free;
882 	}
883 	spin_unlock(&low_water_lock);
884 }
885 #else
886 static inline void check_stack_usage(void) {}
887 #endif
888 
889 NORET_TYPE void do_exit(long code)
890 {
891 	struct task_struct *tsk = current;
892 	int group_dead;
893 
894 	profile_task_exit(tsk);
895 
896 	WARN_ON(blk_needs_flush_plug(tsk));
897 
898 	if (unlikely(in_interrupt()))
899 		panic("Aiee, killing interrupt handler!");
900 	if (unlikely(!tsk->pid))
901 		panic("Attempted to kill the idle task!");
902 
903 	/*
904 	 * If do_exit is called because this processes oopsed, it's possible
905 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
906 	 * continuing. Amongst other possible reasons, this is to prevent
907 	 * mm_release()->clear_child_tid() from writing to a user-controlled
908 	 * kernel address.
909 	 */
910 	set_fs(USER_DS);
911 
912 	ptrace_event(PTRACE_EVENT_EXIT, code);
913 
914 	validate_creds_for_do_exit(tsk);
915 
916 	/*
917 	 * We're taking recursive faults here in do_exit. Safest is to just
918 	 * leave this task alone and wait for reboot.
919 	 */
920 	if (unlikely(tsk->flags & PF_EXITING)) {
921 		printk(KERN_ALERT
922 			"Fixing recursive fault but reboot is needed!\n");
923 		/*
924 		 * We can do this unlocked here. The futex code uses
925 		 * this flag just to verify whether the pi state
926 		 * cleanup has been done or not. In the worst case it
927 		 * loops once more. We pretend that the cleanup was
928 		 * done as there is no way to return. Either the
929 		 * OWNER_DIED bit is set by now or we push the blocked
930 		 * task into the wait for ever nirwana as well.
931 		 */
932 		tsk->flags |= PF_EXITPIDONE;
933 		set_current_state(TASK_UNINTERRUPTIBLE);
934 		schedule();
935 	}
936 
937 	exit_irq_thread();
938 
939 	exit_signals(tsk);  /* sets PF_EXITING */
940 	/*
941 	 * tsk->flags are checked in the futex code to protect against
942 	 * an exiting task cleaning up the robust pi futexes.
943 	 */
944 	smp_mb();
945 	raw_spin_unlock_wait(&tsk->pi_lock);
946 
947 	if (unlikely(in_atomic()))
948 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
949 				current->comm, task_pid_nr(current),
950 				preempt_count());
951 
952 	acct_update_integrals(tsk);
953 	/* sync mm's RSS info before statistics gathering */
954 	if (tsk->mm)
955 		sync_mm_rss(tsk, tsk->mm);
956 	group_dead = atomic_dec_and_test(&tsk->signal->live);
957 	if (group_dead) {
958 		hrtimer_cancel(&tsk->signal->real_timer);
959 		exit_itimers(tsk->signal);
960 		if (tsk->mm)
961 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
962 	}
963 	acct_collect(code, group_dead);
964 	if (group_dead)
965 		tty_audit_exit();
966 	if (unlikely(tsk->audit_context))
967 		audit_free(tsk);
968 
969 	tsk->exit_code = code;
970 	taskstats_exit(tsk, group_dead);
971 
972 	exit_mm(tsk);
973 
974 	if (group_dead)
975 		acct_process();
976 	trace_sched_process_exit(tsk);
977 
978 	exit_sem(tsk);
979 	exit_shm(tsk);
980 	exit_files(tsk);
981 	exit_fs(tsk);
982 	check_stack_usage();
983 	exit_thread();
984 
985 	/*
986 	 * Flush inherited counters to the parent - before the parent
987 	 * gets woken up by child-exit notifications.
988 	 *
989 	 * because of cgroup mode, must be called before cgroup_exit()
990 	 */
991 	perf_event_exit_task(tsk);
992 
993 	cgroup_exit(tsk, 1);
994 
995 	if (group_dead)
996 		disassociate_ctty(1);
997 
998 	module_put(task_thread_info(tsk)->exec_domain->module);
999 
1000 	proc_exit_connector(tsk);
1001 
1002 	/*
1003 	 * FIXME: do that only when needed, using sched_exit tracepoint
1004 	 */
1005 	ptrace_put_breakpoints(tsk);
1006 
1007 	exit_notify(tsk, group_dead);
1008 #ifdef CONFIG_NUMA
1009 	task_lock(tsk);
1010 	mpol_put(tsk->mempolicy);
1011 	tsk->mempolicy = NULL;
1012 	task_unlock(tsk);
1013 #endif
1014 #ifdef CONFIG_FUTEX
1015 	if (unlikely(current->pi_state_cache))
1016 		kfree(current->pi_state_cache);
1017 #endif
1018 	/*
1019 	 * Make sure we are holding no locks:
1020 	 */
1021 	debug_check_no_locks_held(tsk);
1022 	/*
1023 	 * We can do this unlocked here. The futex code uses this flag
1024 	 * just to verify whether the pi state cleanup has been done
1025 	 * or not. In the worst case it loops once more.
1026 	 */
1027 	tsk->flags |= PF_EXITPIDONE;
1028 
1029 	if (tsk->io_context)
1030 		exit_io_context(tsk);
1031 
1032 	if (tsk->splice_pipe)
1033 		__free_pipe_info(tsk->splice_pipe);
1034 
1035 	validate_creds_for_do_exit(tsk);
1036 
1037 	preempt_disable();
1038 	exit_rcu();
1039 	/* causes final put_task_struct in finish_task_switch(). */
1040 	tsk->state = TASK_DEAD;
1041 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
1042 	schedule();
1043 	BUG();
1044 	/* Avoid "noreturn function does return".  */
1045 	for (;;)
1046 		cpu_relax();	/* For when BUG is null */
1047 }
1048 
1049 EXPORT_SYMBOL_GPL(do_exit);
1050 
1051 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1052 {
1053 	if (comp)
1054 		complete(comp);
1055 
1056 	do_exit(code);
1057 }
1058 
1059 EXPORT_SYMBOL(complete_and_exit);
1060 
1061 SYSCALL_DEFINE1(exit, int, error_code)
1062 {
1063 	do_exit((error_code&0xff)<<8);
1064 }
1065 
1066 /*
1067  * Take down every thread in the group.  This is called by fatal signals
1068  * as well as by sys_exit_group (below).
1069  */
1070 NORET_TYPE void
1071 do_group_exit(int exit_code)
1072 {
1073 	struct signal_struct *sig = current->signal;
1074 
1075 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1076 
1077 	if (signal_group_exit(sig))
1078 		exit_code = sig->group_exit_code;
1079 	else if (!thread_group_empty(current)) {
1080 		struct sighand_struct *const sighand = current->sighand;
1081 		spin_lock_irq(&sighand->siglock);
1082 		if (signal_group_exit(sig))
1083 			/* Another thread got here before we took the lock.  */
1084 			exit_code = sig->group_exit_code;
1085 		else {
1086 			sig->group_exit_code = exit_code;
1087 			sig->flags = SIGNAL_GROUP_EXIT;
1088 			zap_other_threads(current);
1089 		}
1090 		spin_unlock_irq(&sighand->siglock);
1091 	}
1092 
1093 	do_exit(exit_code);
1094 	/* NOTREACHED */
1095 }
1096 
1097 /*
1098  * this kills every thread in the thread group. Note that any externally
1099  * wait4()-ing process will get the correct exit code - even if this
1100  * thread is not the thread group leader.
1101  */
1102 SYSCALL_DEFINE1(exit_group, int, error_code)
1103 {
1104 	do_group_exit((error_code & 0xff) << 8);
1105 	/* NOTREACHED */
1106 	return 0;
1107 }
1108 
1109 struct wait_opts {
1110 	enum pid_type		wo_type;
1111 	int			wo_flags;
1112 	struct pid		*wo_pid;
1113 
1114 	struct siginfo __user	*wo_info;
1115 	int __user		*wo_stat;
1116 	struct rusage __user	*wo_rusage;
1117 
1118 	wait_queue_t		child_wait;
1119 	int			notask_error;
1120 };
1121 
1122 static inline
1123 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1124 {
1125 	if (type != PIDTYPE_PID)
1126 		task = task->group_leader;
1127 	return task->pids[type].pid;
1128 }
1129 
1130 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1131 {
1132 	return	wo->wo_type == PIDTYPE_MAX ||
1133 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1134 }
1135 
1136 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1137 {
1138 	if (!eligible_pid(wo, p))
1139 		return 0;
1140 	/* Wait for all children (clone and not) if __WALL is set;
1141 	 * otherwise, wait for clone children *only* if __WCLONE is
1142 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1143 	 * A "clone" child here is one that reports to its parent
1144 	 * using a signal other than SIGCHLD.) */
1145 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1146 	    && !(wo->wo_flags & __WALL))
1147 		return 0;
1148 
1149 	return 1;
1150 }
1151 
1152 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1153 				pid_t pid, uid_t uid, int why, int status)
1154 {
1155 	struct siginfo __user *infop;
1156 	int retval = wo->wo_rusage
1157 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1158 
1159 	put_task_struct(p);
1160 	infop = wo->wo_info;
1161 	if (infop) {
1162 		if (!retval)
1163 			retval = put_user(SIGCHLD, &infop->si_signo);
1164 		if (!retval)
1165 			retval = put_user(0, &infop->si_errno);
1166 		if (!retval)
1167 			retval = put_user((short)why, &infop->si_code);
1168 		if (!retval)
1169 			retval = put_user(pid, &infop->si_pid);
1170 		if (!retval)
1171 			retval = put_user(uid, &infop->si_uid);
1172 		if (!retval)
1173 			retval = put_user(status, &infop->si_status);
1174 	}
1175 	if (!retval)
1176 		retval = pid;
1177 	return retval;
1178 }
1179 
1180 /*
1181  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1182  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1183  * the lock and this task is uninteresting.  If we return nonzero, we have
1184  * released the lock and the system call should return.
1185  */
1186 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1187 {
1188 	unsigned long state;
1189 	int retval, status, traced;
1190 	pid_t pid = task_pid_vnr(p);
1191 	uid_t uid = __task_cred(p)->uid;
1192 	struct siginfo __user *infop;
1193 
1194 	if (!likely(wo->wo_flags & WEXITED))
1195 		return 0;
1196 
1197 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1198 		int exit_code = p->exit_code;
1199 		int why;
1200 
1201 		get_task_struct(p);
1202 		read_unlock(&tasklist_lock);
1203 		if ((exit_code & 0x7f) == 0) {
1204 			why = CLD_EXITED;
1205 			status = exit_code >> 8;
1206 		} else {
1207 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1208 			status = exit_code & 0x7f;
1209 		}
1210 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1211 	}
1212 
1213 	/*
1214 	 * Try to move the task's state to DEAD
1215 	 * only one thread is allowed to do this:
1216 	 */
1217 	state = xchg(&p->exit_state, EXIT_DEAD);
1218 	if (state != EXIT_ZOMBIE) {
1219 		BUG_ON(state != EXIT_DEAD);
1220 		return 0;
1221 	}
1222 
1223 	traced = ptrace_reparented(p);
1224 	/*
1225 	 * It can be ptraced but not reparented, check
1226 	 * thread_group_leader() to filter out sub-threads.
1227 	 */
1228 	if (likely(!traced) && thread_group_leader(p)) {
1229 		struct signal_struct *psig;
1230 		struct signal_struct *sig;
1231 		unsigned long maxrss;
1232 		cputime_t tgutime, tgstime;
1233 
1234 		/*
1235 		 * The resource counters for the group leader are in its
1236 		 * own task_struct.  Those for dead threads in the group
1237 		 * are in its signal_struct, as are those for the child
1238 		 * processes it has previously reaped.  All these
1239 		 * accumulate in the parent's signal_struct c* fields.
1240 		 *
1241 		 * We don't bother to take a lock here to protect these
1242 		 * p->signal fields, because they are only touched by
1243 		 * __exit_signal, which runs with tasklist_lock
1244 		 * write-locked anyway, and so is excluded here.  We do
1245 		 * need to protect the access to parent->signal fields,
1246 		 * as other threads in the parent group can be right
1247 		 * here reaping other children at the same time.
1248 		 *
1249 		 * We use thread_group_times() to get times for the thread
1250 		 * group, which consolidates times for all threads in the
1251 		 * group including the group leader.
1252 		 */
1253 		thread_group_times(p, &tgutime, &tgstime);
1254 		spin_lock_irq(&p->real_parent->sighand->siglock);
1255 		psig = p->real_parent->signal;
1256 		sig = p->signal;
1257 		psig->cutime += tgutime + sig->cutime;
1258 		psig->cstime += tgstime + sig->cstime;
1259 		psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1260 		psig->cmin_flt +=
1261 			p->min_flt + sig->min_flt + sig->cmin_flt;
1262 		psig->cmaj_flt +=
1263 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1264 		psig->cnvcsw +=
1265 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1266 		psig->cnivcsw +=
1267 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1268 		psig->cinblock +=
1269 			task_io_get_inblock(p) +
1270 			sig->inblock + sig->cinblock;
1271 		psig->coublock +=
1272 			task_io_get_oublock(p) +
1273 			sig->oublock + sig->coublock;
1274 		maxrss = max(sig->maxrss, sig->cmaxrss);
1275 		if (psig->cmaxrss < maxrss)
1276 			psig->cmaxrss = maxrss;
1277 		task_io_accounting_add(&psig->ioac, &p->ioac);
1278 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1279 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1280 	}
1281 
1282 	/*
1283 	 * Now we are sure this task is interesting, and no other
1284 	 * thread can reap it because we set its state to EXIT_DEAD.
1285 	 */
1286 	read_unlock(&tasklist_lock);
1287 
1288 	retval = wo->wo_rusage
1289 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1290 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1291 		? p->signal->group_exit_code : p->exit_code;
1292 	if (!retval && wo->wo_stat)
1293 		retval = put_user(status, wo->wo_stat);
1294 
1295 	infop = wo->wo_info;
1296 	if (!retval && infop)
1297 		retval = put_user(SIGCHLD, &infop->si_signo);
1298 	if (!retval && infop)
1299 		retval = put_user(0, &infop->si_errno);
1300 	if (!retval && infop) {
1301 		int why;
1302 
1303 		if ((status & 0x7f) == 0) {
1304 			why = CLD_EXITED;
1305 			status >>= 8;
1306 		} else {
1307 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1308 			status &= 0x7f;
1309 		}
1310 		retval = put_user((short)why, &infop->si_code);
1311 		if (!retval)
1312 			retval = put_user(status, &infop->si_status);
1313 	}
1314 	if (!retval && infop)
1315 		retval = put_user(pid, &infop->si_pid);
1316 	if (!retval && infop)
1317 		retval = put_user(uid, &infop->si_uid);
1318 	if (!retval)
1319 		retval = pid;
1320 
1321 	if (traced) {
1322 		write_lock_irq(&tasklist_lock);
1323 		/* We dropped tasklist, ptracer could die and untrace */
1324 		ptrace_unlink(p);
1325 		/*
1326 		 * If this is not a sub-thread, notify the parent.
1327 		 * If parent wants a zombie, don't release it now.
1328 		 */
1329 		if (thread_group_leader(p) &&
1330 		    !do_notify_parent(p, p->exit_signal)) {
1331 			p->exit_state = EXIT_ZOMBIE;
1332 			p = NULL;
1333 		}
1334 		write_unlock_irq(&tasklist_lock);
1335 	}
1336 	if (p != NULL)
1337 		release_task(p);
1338 
1339 	return retval;
1340 }
1341 
1342 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1343 {
1344 	if (ptrace) {
1345 		if (task_is_stopped_or_traced(p) &&
1346 		    !(p->jobctl & JOBCTL_LISTENING))
1347 			return &p->exit_code;
1348 	} else {
1349 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1350 			return &p->signal->group_exit_code;
1351 	}
1352 	return NULL;
1353 }
1354 
1355 /**
1356  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1357  * @wo: wait options
1358  * @ptrace: is the wait for ptrace
1359  * @p: task to wait for
1360  *
1361  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1362  *
1363  * CONTEXT:
1364  * read_lock(&tasklist_lock), which is released if return value is
1365  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1366  *
1367  * RETURNS:
1368  * 0 if wait condition didn't exist and search for other wait conditions
1369  * should continue.  Non-zero return, -errno on failure and @p's pid on
1370  * success, implies that tasklist_lock is released and wait condition
1371  * search should terminate.
1372  */
1373 static int wait_task_stopped(struct wait_opts *wo,
1374 				int ptrace, struct task_struct *p)
1375 {
1376 	struct siginfo __user *infop;
1377 	int retval, exit_code, *p_code, why;
1378 	uid_t uid = 0; /* unneeded, required by compiler */
1379 	pid_t pid;
1380 
1381 	/*
1382 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1383 	 */
1384 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1385 		return 0;
1386 
1387 	if (!task_stopped_code(p, ptrace))
1388 		return 0;
1389 
1390 	exit_code = 0;
1391 	spin_lock_irq(&p->sighand->siglock);
1392 
1393 	p_code = task_stopped_code(p, ptrace);
1394 	if (unlikely(!p_code))
1395 		goto unlock_sig;
1396 
1397 	exit_code = *p_code;
1398 	if (!exit_code)
1399 		goto unlock_sig;
1400 
1401 	if (!unlikely(wo->wo_flags & WNOWAIT))
1402 		*p_code = 0;
1403 
1404 	uid = task_uid(p);
1405 unlock_sig:
1406 	spin_unlock_irq(&p->sighand->siglock);
1407 	if (!exit_code)
1408 		return 0;
1409 
1410 	/*
1411 	 * Now we are pretty sure this task is interesting.
1412 	 * Make sure it doesn't get reaped out from under us while we
1413 	 * give up the lock and then examine it below.  We don't want to
1414 	 * keep holding onto the tasklist_lock while we call getrusage and
1415 	 * possibly take page faults for user memory.
1416 	 */
1417 	get_task_struct(p);
1418 	pid = task_pid_vnr(p);
1419 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1420 	read_unlock(&tasklist_lock);
1421 
1422 	if (unlikely(wo->wo_flags & WNOWAIT))
1423 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1424 
1425 	retval = wo->wo_rusage
1426 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1427 	if (!retval && wo->wo_stat)
1428 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1429 
1430 	infop = wo->wo_info;
1431 	if (!retval && infop)
1432 		retval = put_user(SIGCHLD, &infop->si_signo);
1433 	if (!retval && infop)
1434 		retval = put_user(0, &infop->si_errno);
1435 	if (!retval && infop)
1436 		retval = put_user((short)why, &infop->si_code);
1437 	if (!retval && infop)
1438 		retval = put_user(exit_code, &infop->si_status);
1439 	if (!retval && infop)
1440 		retval = put_user(pid, &infop->si_pid);
1441 	if (!retval && infop)
1442 		retval = put_user(uid, &infop->si_uid);
1443 	if (!retval)
1444 		retval = pid;
1445 	put_task_struct(p);
1446 
1447 	BUG_ON(!retval);
1448 	return retval;
1449 }
1450 
1451 /*
1452  * Handle do_wait work for one task in a live, non-stopped state.
1453  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1454  * the lock and this task is uninteresting.  If we return nonzero, we have
1455  * released the lock and the system call should return.
1456  */
1457 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1458 {
1459 	int retval;
1460 	pid_t pid;
1461 	uid_t uid;
1462 
1463 	if (!unlikely(wo->wo_flags & WCONTINUED))
1464 		return 0;
1465 
1466 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1467 		return 0;
1468 
1469 	spin_lock_irq(&p->sighand->siglock);
1470 	/* Re-check with the lock held.  */
1471 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1472 		spin_unlock_irq(&p->sighand->siglock);
1473 		return 0;
1474 	}
1475 	if (!unlikely(wo->wo_flags & WNOWAIT))
1476 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1477 	uid = task_uid(p);
1478 	spin_unlock_irq(&p->sighand->siglock);
1479 
1480 	pid = task_pid_vnr(p);
1481 	get_task_struct(p);
1482 	read_unlock(&tasklist_lock);
1483 
1484 	if (!wo->wo_info) {
1485 		retval = wo->wo_rusage
1486 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1487 		put_task_struct(p);
1488 		if (!retval && wo->wo_stat)
1489 			retval = put_user(0xffff, wo->wo_stat);
1490 		if (!retval)
1491 			retval = pid;
1492 	} else {
1493 		retval = wait_noreap_copyout(wo, p, pid, uid,
1494 					     CLD_CONTINUED, SIGCONT);
1495 		BUG_ON(retval == 0);
1496 	}
1497 
1498 	return retval;
1499 }
1500 
1501 /*
1502  * Consider @p for a wait by @parent.
1503  *
1504  * -ECHILD should be in ->notask_error before the first call.
1505  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1506  * Returns zero if the search for a child should continue;
1507  * then ->notask_error is 0 if @p is an eligible child,
1508  * or another error from security_task_wait(), or still -ECHILD.
1509  */
1510 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1511 				struct task_struct *p)
1512 {
1513 	int ret = eligible_child(wo, p);
1514 	if (!ret)
1515 		return ret;
1516 
1517 	ret = security_task_wait(p);
1518 	if (unlikely(ret < 0)) {
1519 		/*
1520 		 * If we have not yet seen any eligible child,
1521 		 * then let this error code replace -ECHILD.
1522 		 * A permission error will give the user a clue
1523 		 * to look for security policy problems, rather
1524 		 * than for mysterious wait bugs.
1525 		 */
1526 		if (wo->notask_error)
1527 			wo->notask_error = ret;
1528 		return 0;
1529 	}
1530 
1531 	/* dead body doesn't have much to contribute */
1532 	if (unlikely(p->exit_state == EXIT_DEAD)) {
1533 		/*
1534 		 * But do not ignore this task until the tracer does
1535 		 * wait_task_zombie()->do_notify_parent().
1536 		 */
1537 		if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1538 			wo->notask_error = 0;
1539 		return 0;
1540 	}
1541 
1542 	/* slay zombie? */
1543 	if (p->exit_state == EXIT_ZOMBIE) {
1544 		/*
1545 		 * A zombie ptracee is only visible to its ptracer.
1546 		 * Notification and reaping will be cascaded to the real
1547 		 * parent when the ptracer detaches.
1548 		 */
1549 		if (likely(!ptrace) && unlikely(p->ptrace)) {
1550 			/* it will become visible, clear notask_error */
1551 			wo->notask_error = 0;
1552 			return 0;
1553 		}
1554 
1555 		/* we don't reap group leaders with subthreads */
1556 		if (!delay_group_leader(p))
1557 			return wait_task_zombie(wo, p);
1558 
1559 		/*
1560 		 * Allow access to stopped/continued state via zombie by
1561 		 * falling through.  Clearing of notask_error is complex.
1562 		 *
1563 		 * When !@ptrace:
1564 		 *
1565 		 * If WEXITED is set, notask_error should naturally be
1566 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1567 		 * so, if there are live subthreads, there are events to
1568 		 * wait for.  If all subthreads are dead, it's still safe
1569 		 * to clear - this function will be called again in finite
1570 		 * amount time once all the subthreads are released and
1571 		 * will then return without clearing.
1572 		 *
1573 		 * When @ptrace:
1574 		 *
1575 		 * Stopped state is per-task and thus can't change once the
1576 		 * target task dies.  Only continued and exited can happen.
1577 		 * Clear notask_error if WCONTINUED | WEXITED.
1578 		 */
1579 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1580 			wo->notask_error = 0;
1581 	} else {
1582 		/*
1583 		 * If @p is ptraced by a task in its real parent's group,
1584 		 * hide group stop/continued state when looking at @p as
1585 		 * the real parent; otherwise, a single stop can be
1586 		 * reported twice as group and ptrace stops.
1587 		 *
1588 		 * If a ptracer wants to distinguish the two events for its
1589 		 * own children, it should create a separate process which
1590 		 * takes the role of real parent.
1591 		 */
1592 		if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1593 			return 0;
1594 
1595 		/*
1596 		 * @p is alive and it's gonna stop, continue or exit, so
1597 		 * there always is something to wait for.
1598 		 */
1599 		wo->notask_error = 0;
1600 	}
1601 
1602 	/*
1603 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1604 	 * is used and the two don't interact with each other.
1605 	 */
1606 	ret = wait_task_stopped(wo, ptrace, p);
1607 	if (ret)
1608 		return ret;
1609 
1610 	/*
1611 	 * Wait for continued.  There's only one continued state and the
1612 	 * ptracer can consume it which can confuse the real parent.  Don't
1613 	 * use WCONTINUED from ptracer.  You don't need or want it.
1614 	 */
1615 	return wait_task_continued(wo, p);
1616 }
1617 
1618 /*
1619  * Do the work of do_wait() for one thread in the group, @tsk.
1620  *
1621  * -ECHILD should be in ->notask_error before the first call.
1622  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1623  * Returns zero if the search for a child should continue; then
1624  * ->notask_error is 0 if there were any eligible children,
1625  * or another error from security_task_wait(), or still -ECHILD.
1626  */
1627 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1628 {
1629 	struct task_struct *p;
1630 
1631 	list_for_each_entry(p, &tsk->children, sibling) {
1632 		int ret = wait_consider_task(wo, 0, p);
1633 		if (ret)
1634 			return ret;
1635 	}
1636 
1637 	return 0;
1638 }
1639 
1640 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1641 {
1642 	struct task_struct *p;
1643 
1644 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1645 		int ret = wait_consider_task(wo, 1, p);
1646 		if (ret)
1647 			return ret;
1648 	}
1649 
1650 	return 0;
1651 }
1652 
1653 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1654 				int sync, void *key)
1655 {
1656 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1657 						child_wait);
1658 	struct task_struct *p = key;
1659 
1660 	if (!eligible_pid(wo, p))
1661 		return 0;
1662 
1663 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1664 		return 0;
1665 
1666 	return default_wake_function(wait, mode, sync, key);
1667 }
1668 
1669 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1670 {
1671 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1672 				TASK_INTERRUPTIBLE, 1, p);
1673 }
1674 
1675 static long do_wait(struct wait_opts *wo)
1676 {
1677 	struct task_struct *tsk;
1678 	int retval;
1679 
1680 	trace_sched_process_wait(wo->wo_pid);
1681 
1682 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1683 	wo->child_wait.private = current;
1684 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1685 repeat:
1686 	/*
1687 	 * If there is nothing that can match our critiera just get out.
1688 	 * We will clear ->notask_error to zero if we see any child that
1689 	 * might later match our criteria, even if we are not able to reap
1690 	 * it yet.
1691 	 */
1692 	wo->notask_error = -ECHILD;
1693 	if ((wo->wo_type < PIDTYPE_MAX) &&
1694 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1695 		goto notask;
1696 
1697 	set_current_state(TASK_INTERRUPTIBLE);
1698 	read_lock(&tasklist_lock);
1699 	tsk = current;
1700 	do {
1701 		retval = do_wait_thread(wo, tsk);
1702 		if (retval)
1703 			goto end;
1704 
1705 		retval = ptrace_do_wait(wo, tsk);
1706 		if (retval)
1707 			goto end;
1708 
1709 		if (wo->wo_flags & __WNOTHREAD)
1710 			break;
1711 	} while_each_thread(current, tsk);
1712 	read_unlock(&tasklist_lock);
1713 
1714 notask:
1715 	retval = wo->notask_error;
1716 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1717 		retval = -ERESTARTSYS;
1718 		if (!signal_pending(current)) {
1719 			schedule();
1720 			goto repeat;
1721 		}
1722 	}
1723 end:
1724 	__set_current_state(TASK_RUNNING);
1725 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1726 	return retval;
1727 }
1728 
1729 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1730 		infop, int, options, struct rusage __user *, ru)
1731 {
1732 	struct wait_opts wo;
1733 	struct pid *pid = NULL;
1734 	enum pid_type type;
1735 	long ret;
1736 
1737 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1738 		return -EINVAL;
1739 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1740 		return -EINVAL;
1741 
1742 	switch (which) {
1743 	case P_ALL:
1744 		type = PIDTYPE_MAX;
1745 		break;
1746 	case P_PID:
1747 		type = PIDTYPE_PID;
1748 		if (upid <= 0)
1749 			return -EINVAL;
1750 		break;
1751 	case P_PGID:
1752 		type = PIDTYPE_PGID;
1753 		if (upid <= 0)
1754 			return -EINVAL;
1755 		break;
1756 	default:
1757 		return -EINVAL;
1758 	}
1759 
1760 	if (type < PIDTYPE_MAX)
1761 		pid = find_get_pid(upid);
1762 
1763 	wo.wo_type	= type;
1764 	wo.wo_pid	= pid;
1765 	wo.wo_flags	= options;
1766 	wo.wo_info	= infop;
1767 	wo.wo_stat	= NULL;
1768 	wo.wo_rusage	= ru;
1769 	ret = do_wait(&wo);
1770 
1771 	if (ret > 0) {
1772 		ret = 0;
1773 	} else if (infop) {
1774 		/*
1775 		 * For a WNOHANG return, clear out all the fields
1776 		 * we would set so the user can easily tell the
1777 		 * difference.
1778 		 */
1779 		if (!ret)
1780 			ret = put_user(0, &infop->si_signo);
1781 		if (!ret)
1782 			ret = put_user(0, &infop->si_errno);
1783 		if (!ret)
1784 			ret = put_user(0, &infop->si_code);
1785 		if (!ret)
1786 			ret = put_user(0, &infop->si_pid);
1787 		if (!ret)
1788 			ret = put_user(0, &infop->si_uid);
1789 		if (!ret)
1790 			ret = put_user(0, &infop->si_status);
1791 	}
1792 
1793 	put_pid(pid);
1794 
1795 	/* avoid REGPARM breakage on x86: */
1796 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1797 	return ret;
1798 }
1799 
1800 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1801 		int, options, struct rusage __user *, ru)
1802 {
1803 	struct wait_opts wo;
1804 	struct pid *pid = NULL;
1805 	enum pid_type type;
1806 	long ret;
1807 
1808 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1809 			__WNOTHREAD|__WCLONE|__WALL))
1810 		return -EINVAL;
1811 
1812 	if (upid == -1)
1813 		type = PIDTYPE_MAX;
1814 	else if (upid < 0) {
1815 		type = PIDTYPE_PGID;
1816 		pid = find_get_pid(-upid);
1817 	} else if (upid == 0) {
1818 		type = PIDTYPE_PGID;
1819 		pid = get_task_pid(current, PIDTYPE_PGID);
1820 	} else /* upid > 0 */ {
1821 		type = PIDTYPE_PID;
1822 		pid = find_get_pid(upid);
1823 	}
1824 
1825 	wo.wo_type	= type;
1826 	wo.wo_pid	= pid;
1827 	wo.wo_flags	= options | WEXITED;
1828 	wo.wo_info	= NULL;
1829 	wo.wo_stat	= stat_addr;
1830 	wo.wo_rusage	= ru;
1831 	ret = do_wait(&wo);
1832 	put_pid(pid);
1833 
1834 	/* avoid REGPARM breakage on x86: */
1835 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1836 	return ret;
1837 }
1838 
1839 #ifdef __ARCH_WANT_SYS_WAITPID
1840 
1841 /*
1842  * sys_waitpid() remains for compatibility. waitpid() should be
1843  * implemented by calling sys_wait4() from libc.a.
1844  */
1845 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1846 {
1847 	return sys_wait4(pid, stat_addr, options, NULL);
1848 }
1849 
1850 #endif
1851