xref: /linux/kernel/exit.c (revision 9a4e47ef98a3041f6d2869ba2cd3401701776275)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72 #include <linux/uaccess.h>
73 
74 #include <uapi/linux/wait.h>
75 
76 #include <asm/unistd.h>
77 #include <asm/mmu_context.h>
78 
79 #include "exit.h"
80 
81 /*
82  * The default value should be high enough to not crash a system that randomly
83  * crashes its kernel from time to time, but low enough to at least not permit
84  * overflowing 32-bit refcounts or the ldsem writer count.
85  */
86 static unsigned int oops_limit = 10000;
87 
88 #ifdef CONFIG_SYSCTL
89 static struct ctl_table kern_exit_table[] = {
90 	{
91 		.procname       = "oops_limit",
92 		.data           = &oops_limit,
93 		.maxlen         = sizeof(oops_limit),
94 		.mode           = 0644,
95 		.proc_handler   = proc_douintvec,
96 	},
97 	{ }
98 };
99 
100 static __init int kernel_exit_sysctls_init(void)
101 {
102 	register_sysctl_init("kernel", kern_exit_table);
103 	return 0;
104 }
105 late_initcall(kernel_exit_sysctls_init);
106 #endif
107 
108 static atomic_t oops_count = ATOMIC_INIT(0);
109 
110 #ifdef CONFIG_SYSFS
111 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
112 			       char *page)
113 {
114 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
115 }
116 
117 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
118 
119 static __init int kernel_exit_sysfs_init(void)
120 {
121 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
122 	return 0;
123 }
124 late_initcall(kernel_exit_sysfs_init);
125 #endif
126 
127 static void __unhash_process(struct task_struct *p, bool group_dead)
128 {
129 	nr_threads--;
130 	detach_pid(p, PIDTYPE_PID);
131 	if (group_dead) {
132 		detach_pid(p, PIDTYPE_TGID);
133 		detach_pid(p, PIDTYPE_PGID);
134 		detach_pid(p, PIDTYPE_SID);
135 
136 		list_del_rcu(&p->tasks);
137 		list_del_init(&p->sibling);
138 		__this_cpu_dec(process_counts);
139 	}
140 	list_del_rcu(&p->thread_node);
141 }
142 
143 /*
144  * This function expects the tasklist_lock write-locked.
145  */
146 static void __exit_signal(struct task_struct *tsk)
147 {
148 	struct signal_struct *sig = tsk->signal;
149 	bool group_dead = thread_group_leader(tsk);
150 	struct sighand_struct *sighand;
151 	struct tty_struct *tty;
152 	u64 utime, stime;
153 
154 	sighand = rcu_dereference_check(tsk->sighand,
155 					lockdep_tasklist_lock_is_held());
156 	spin_lock(&sighand->siglock);
157 
158 #ifdef CONFIG_POSIX_TIMERS
159 	posix_cpu_timers_exit(tsk);
160 	if (group_dead)
161 		posix_cpu_timers_exit_group(tsk);
162 #endif
163 
164 	if (group_dead) {
165 		tty = sig->tty;
166 		sig->tty = NULL;
167 	} else {
168 		/*
169 		 * If there is any task waiting for the group exit
170 		 * then notify it:
171 		 */
172 		if (sig->notify_count > 0 && !--sig->notify_count)
173 			wake_up_process(sig->group_exec_task);
174 
175 		if (tsk == sig->curr_target)
176 			sig->curr_target = next_thread(tsk);
177 	}
178 
179 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
180 			      sizeof(unsigned long long));
181 
182 	/*
183 	 * Accumulate here the counters for all threads as they die. We could
184 	 * skip the group leader because it is the last user of signal_struct,
185 	 * but we want to avoid the race with thread_group_cputime() which can
186 	 * see the empty ->thread_head list.
187 	 */
188 	task_cputime(tsk, &utime, &stime);
189 	write_seqlock(&sig->stats_lock);
190 	sig->utime += utime;
191 	sig->stime += stime;
192 	sig->gtime += task_gtime(tsk);
193 	sig->min_flt += tsk->min_flt;
194 	sig->maj_flt += tsk->maj_flt;
195 	sig->nvcsw += tsk->nvcsw;
196 	sig->nivcsw += tsk->nivcsw;
197 	sig->inblock += task_io_get_inblock(tsk);
198 	sig->oublock += task_io_get_oublock(tsk);
199 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
200 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
201 	sig->nr_threads--;
202 	__unhash_process(tsk, group_dead);
203 	write_sequnlock(&sig->stats_lock);
204 
205 	/*
206 	 * Do this under ->siglock, we can race with another thread
207 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
208 	 */
209 	flush_sigqueue(&tsk->pending);
210 	tsk->sighand = NULL;
211 	spin_unlock(&sighand->siglock);
212 
213 	__cleanup_sighand(sighand);
214 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
215 	if (group_dead) {
216 		flush_sigqueue(&sig->shared_pending);
217 		tty_kref_put(tty);
218 	}
219 }
220 
221 static void delayed_put_task_struct(struct rcu_head *rhp)
222 {
223 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
224 
225 	kprobe_flush_task(tsk);
226 	rethook_flush_task(tsk);
227 	perf_event_delayed_put(tsk);
228 	trace_sched_process_free(tsk);
229 	put_task_struct(tsk);
230 }
231 
232 void put_task_struct_rcu_user(struct task_struct *task)
233 {
234 	if (refcount_dec_and_test(&task->rcu_users))
235 		call_rcu(&task->rcu, delayed_put_task_struct);
236 }
237 
238 void __weak release_thread(struct task_struct *dead_task)
239 {
240 }
241 
242 void release_task(struct task_struct *p)
243 {
244 	struct task_struct *leader;
245 	struct pid *thread_pid;
246 	int zap_leader;
247 repeat:
248 	/* don't need to get the RCU readlock here - the process is dead and
249 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
250 	rcu_read_lock();
251 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
252 	rcu_read_unlock();
253 
254 	cgroup_release(p);
255 
256 	write_lock_irq(&tasklist_lock);
257 	ptrace_release_task(p);
258 	thread_pid = get_pid(p->thread_pid);
259 	__exit_signal(p);
260 
261 	/*
262 	 * If we are the last non-leader member of the thread
263 	 * group, and the leader is zombie, then notify the
264 	 * group leader's parent process. (if it wants notification.)
265 	 */
266 	zap_leader = 0;
267 	leader = p->group_leader;
268 	if (leader != p && thread_group_empty(leader)
269 			&& leader->exit_state == EXIT_ZOMBIE) {
270 		/*
271 		 * If we were the last child thread and the leader has
272 		 * exited already, and the leader's parent ignores SIGCHLD,
273 		 * then we are the one who should release the leader.
274 		 */
275 		zap_leader = do_notify_parent(leader, leader->exit_signal);
276 		if (zap_leader)
277 			leader->exit_state = EXIT_DEAD;
278 	}
279 
280 	write_unlock_irq(&tasklist_lock);
281 	seccomp_filter_release(p);
282 	proc_flush_pid(thread_pid);
283 	put_pid(thread_pid);
284 	release_thread(p);
285 	put_task_struct_rcu_user(p);
286 
287 	p = leader;
288 	if (unlikely(zap_leader))
289 		goto repeat;
290 }
291 
292 int rcuwait_wake_up(struct rcuwait *w)
293 {
294 	int ret = 0;
295 	struct task_struct *task;
296 
297 	rcu_read_lock();
298 
299 	/*
300 	 * Order condition vs @task, such that everything prior to the load
301 	 * of @task is visible. This is the condition as to why the user called
302 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
303 	 * barrier (A) in rcuwait_wait_event().
304 	 *
305 	 *    WAIT                WAKE
306 	 *    [S] tsk = current	  [S] cond = true
307 	 *        MB (A)	      MB (B)
308 	 *    [L] cond		  [L] tsk
309 	 */
310 	smp_mb(); /* (B) */
311 
312 	task = rcu_dereference(w->task);
313 	if (task)
314 		ret = wake_up_process(task);
315 	rcu_read_unlock();
316 
317 	return ret;
318 }
319 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
320 
321 /*
322  * Determine if a process group is "orphaned", according to the POSIX
323  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
324  * by terminal-generated stop signals.  Newly orphaned process groups are
325  * to receive a SIGHUP and a SIGCONT.
326  *
327  * "I ask you, have you ever known what it is to be an orphan?"
328  */
329 static int will_become_orphaned_pgrp(struct pid *pgrp,
330 					struct task_struct *ignored_task)
331 {
332 	struct task_struct *p;
333 
334 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
335 		if ((p == ignored_task) ||
336 		    (p->exit_state && thread_group_empty(p)) ||
337 		    is_global_init(p->real_parent))
338 			continue;
339 
340 		if (task_pgrp(p->real_parent) != pgrp &&
341 		    task_session(p->real_parent) == task_session(p))
342 			return 0;
343 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
344 
345 	return 1;
346 }
347 
348 int is_current_pgrp_orphaned(void)
349 {
350 	int retval;
351 
352 	read_lock(&tasklist_lock);
353 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
354 	read_unlock(&tasklist_lock);
355 
356 	return retval;
357 }
358 
359 static bool has_stopped_jobs(struct pid *pgrp)
360 {
361 	struct task_struct *p;
362 
363 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
364 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
365 			return true;
366 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
367 
368 	return false;
369 }
370 
371 /*
372  * Check to see if any process groups have become orphaned as
373  * a result of our exiting, and if they have any stopped jobs,
374  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
375  */
376 static void
377 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
378 {
379 	struct pid *pgrp = task_pgrp(tsk);
380 	struct task_struct *ignored_task = tsk;
381 
382 	if (!parent)
383 		/* exit: our father is in a different pgrp than
384 		 * we are and we were the only connection outside.
385 		 */
386 		parent = tsk->real_parent;
387 	else
388 		/* reparent: our child is in a different pgrp than
389 		 * we are, and it was the only connection outside.
390 		 */
391 		ignored_task = NULL;
392 
393 	if (task_pgrp(parent) != pgrp &&
394 	    task_session(parent) == task_session(tsk) &&
395 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
396 	    has_stopped_jobs(pgrp)) {
397 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
398 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
399 	}
400 }
401 
402 static void coredump_task_exit(struct task_struct *tsk)
403 {
404 	struct core_state *core_state;
405 
406 	/*
407 	 * Serialize with any possible pending coredump.
408 	 * We must hold siglock around checking core_state
409 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
410 	 * will increment ->nr_threads for each thread in the
411 	 * group without PF_POSTCOREDUMP set.
412 	 */
413 	spin_lock_irq(&tsk->sighand->siglock);
414 	tsk->flags |= PF_POSTCOREDUMP;
415 	core_state = tsk->signal->core_state;
416 	spin_unlock_irq(&tsk->sighand->siglock);
417 
418 	/* The vhost_worker does not particpate in coredumps */
419 	if (core_state &&
420 	    ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
421 		struct core_thread self;
422 
423 		self.task = current;
424 		if (self.task->flags & PF_SIGNALED)
425 			self.next = xchg(&core_state->dumper.next, &self);
426 		else
427 			self.task = NULL;
428 		/*
429 		 * Implies mb(), the result of xchg() must be visible
430 		 * to core_state->dumper.
431 		 */
432 		if (atomic_dec_and_test(&core_state->nr_threads))
433 			complete(&core_state->startup);
434 
435 		for (;;) {
436 			set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
437 			if (!self.task) /* see coredump_finish() */
438 				break;
439 			schedule();
440 		}
441 		__set_current_state(TASK_RUNNING);
442 	}
443 }
444 
445 #ifdef CONFIG_MEMCG
446 /*
447  * A task is exiting.   If it owned this mm, find a new owner for the mm.
448  */
449 void mm_update_next_owner(struct mm_struct *mm)
450 {
451 	struct task_struct *c, *g, *p = current;
452 
453 retry:
454 	/*
455 	 * If the exiting or execing task is not the owner, it's
456 	 * someone else's problem.
457 	 */
458 	if (mm->owner != p)
459 		return;
460 	/*
461 	 * The current owner is exiting/execing and there are no other
462 	 * candidates.  Do not leave the mm pointing to a possibly
463 	 * freed task structure.
464 	 */
465 	if (atomic_read(&mm->mm_users) <= 1) {
466 		WRITE_ONCE(mm->owner, NULL);
467 		return;
468 	}
469 
470 	read_lock(&tasklist_lock);
471 	/*
472 	 * Search in the children
473 	 */
474 	list_for_each_entry(c, &p->children, sibling) {
475 		if (c->mm == mm)
476 			goto assign_new_owner;
477 	}
478 
479 	/*
480 	 * Search in the siblings
481 	 */
482 	list_for_each_entry(c, &p->real_parent->children, sibling) {
483 		if (c->mm == mm)
484 			goto assign_new_owner;
485 	}
486 
487 	/*
488 	 * Search through everything else, we should not get here often.
489 	 */
490 	for_each_process(g) {
491 		if (g->flags & PF_KTHREAD)
492 			continue;
493 		for_each_thread(g, c) {
494 			if (c->mm == mm)
495 				goto assign_new_owner;
496 			if (c->mm)
497 				break;
498 		}
499 	}
500 	read_unlock(&tasklist_lock);
501 	/*
502 	 * We found no owner yet mm_users > 1: this implies that we are
503 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
504 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
505 	 */
506 	WRITE_ONCE(mm->owner, NULL);
507 	return;
508 
509 assign_new_owner:
510 	BUG_ON(c == p);
511 	get_task_struct(c);
512 	/*
513 	 * The task_lock protects c->mm from changing.
514 	 * We always want mm->owner->mm == mm
515 	 */
516 	task_lock(c);
517 	/*
518 	 * Delay read_unlock() till we have the task_lock()
519 	 * to ensure that c does not slip away underneath us
520 	 */
521 	read_unlock(&tasklist_lock);
522 	if (c->mm != mm) {
523 		task_unlock(c);
524 		put_task_struct(c);
525 		goto retry;
526 	}
527 	WRITE_ONCE(mm->owner, c);
528 	lru_gen_migrate_mm(mm);
529 	task_unlock(c);
530 	put_task_struct(c);
531 }
532 #endif /* CONFIG_MEMCG */
533 
534 /*
535  * Turn us into a lazy TLB process if we
536  * aren't already..
537  */
538 static void exit_mm(void)
539 {
540 	struct mm_struct *mm = current->mm;
541 
542 	exit_mm_release(current, mm);
543 	if (!mm)
544 		return;
545 	mmap_read_lock(mm);
546 	mmgrab_lazy_tlb(mm);
547 	BUG_ON(mm != current->active_mm);
548 	/* more a memory barrier than a real lock */
549 	task_lock(current);
550 	/*
551 	 * When a thread stops operating on an address space, the loop
552 	 * in membarrier_private_expedited() may not observe that
553 	 * tsk->mm, and the loop in membarrier_global_expedited() may
554 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
555 	 * rq->membarrier_state, so those would not issue an IPI.
556 	 * Membarrier requires a memory barrier after accessing
557 	 * user-space memory, before clearing tsk->mm or the
558 	 * rq->membarrier_state.
559 	 */
560 	smp_mb__after_spinlock();
561 	local_irq_disable();
562 	current->mm = NULL;
563 	membarrier_update_current_mm(NULL);
564 	enter_lazy_tlb(mm, current);
565 	local_irq_enable();
566 	task_unlock(current);
567 	mmap_read_unlock(mm);
568 	mm_update_next_owner(mm);
569 	mmput(mm);
570 	if (test_thread_flag(TIF_MEMDIE))
571 		exit_oom_victim();
572 }
573 
574 static struct task_struct *find_alive_thread(struct task_struct *p)
575 {
576 	struct task_struct *t;
577 
578 	for_each_thread(p, t) {
579 		if (!(t->flags & PF_EXITING))
580 			return t;
581 	}
582 	return NULL;
583 }
584 
585 static struct task_struct *find_child_reaper(struct task_struct *father,
586 						struct list_head *dead)
587 	__releases(&tasklist_lock)
588 	__acquires(&tasklist_lock)
589 {
590 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
591 	struct task_struct *reaper = pid_ns->child_reaper;
592 	struct task_struct *p, *n;
593 
594 	if (likely(reaper != father))
595 		return reaper;
596 
597 	reaper = find_alive_thread(father);
598 	if (reaper) {
599 		pid_ns->child_reaper = reaper;
600 		return reaper;
601 	}
602 
603 	write_unlock_irq(&tasklist_lock);
604 
605 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
606 		list_del_init(&p->ptrace_entry);
607 		release_task(p);
608 	}
609 
610 	zap_pid_ns_processes(pid_ns);
611 	write_lock_irq(&tasklist_lock);
612 
613 	return father;
614 }
615 
616 /*
617  * When we die, we re-parent all our children, and try to:
618  * 1. give them to another thread in our thread group, if such a member exists
619  * 2. give it to the first ancestor process which prctl'd itself as a
620  *    child_subreaper for its children (like a service manager)
621  * 3. give it to the init process (PID 1) in our pid namespace
622  */
623 static struct task_struct *find_new_reaper(struct task_struct *father,
624 					   struct task_struct *child_reaper)
625 {
626 	struct task_struct *thread, *reaper;
627 
628 	thread = find_alive_thread(father);
629 	if (thread)
630 		return thread;
631 
632 	if (father->signal->has_child_subreaper) {
633 		unsigned int ns_level = task_pid(father)->level;
634 		/*
635 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
636 		 * We can't check reaper != child_reaper to ensure we do not
637 		 * cross the namespaces, the exiting parent could be injected
638 		 * by setns() + fork().
639 		 * We check pid->level, this is slightly more efficient than
640 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
641 		 */
642 		for (reaper = father->real_parent;
643 		     task_pid(reaper)->level == ns_level;
644 		     reaper = reaper->real_parent) {
645 			if (reaper == &init_task)
646 				break;
647 			if (!reaper->signal->is_child_subreaper)
648 				continue;
649 			thread = find_alive_thread(reaper);
650 			if (thread)
651 				return thread;
652 		}
653 	}
654 
655 	return child_reaper;
656 }
657 
658 /*
659 * Any that need to be release_task'd are put on the @dead list.
660  */
661 static void reparent_leader(struct task_struct *father, struct task_struct *p,
662 				struct list_head *dead)
663 {
664 	if (unlikely(p->exit_state == EXIT_DEAD))
665 		return;
666 
667 	/* We don't want people slaying init. */
668 	p->exit_signal = SIGCHLD;
669 
670 	/* If it has exited notify the new parent about this child's death. */
671 	if (!p->ptrace &&
672 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
673 		if (do_notify_parent(p, p->exit_signal)) {
674 			p->exit_state = EXIT_DEAD;
675 			list_add(&p->ptrace_entry, dead);
676 		}
677 	}
678 
679 	kill_orphaned_pgrp(p, father);
680 }
681 
682 /*
683  * This does two things:
684  *
685  * A.  Make init inherit all the child processes
686  * B.  Check to see if any process groups have become orphaned
687  *	as a result of our exiting, and if they have any stopped
688  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
689  */
690 static void forget_original_parent(struct task_struct *father,
691 					struct list_head *dead)
692 {
693 	struct task_struct *p, *t, *reaper;
694 
695 	if (unlikely(!list_empty(&father->ptraced)))
696 		exit_ptrace(father, dead);
697 
698 	/* Can drop and reacquire tasklist_lock */
699 	reaper = find_child_reaper(father, dead);
700 	if (list_empty(&father->children))
701 		return;
702 
703 	reaper = find_new_reaper(father, reaper);
704 	list_for_each_entry(p, &father->children, sibling) {
705 		for_each_thread(p, t) {
706 			RCU_INIT_POINTER(t->real_parent, reaper);
707 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
708 			if (likely(!t->ptrace))
709 				t->parent = t->real_parent;
710 			if (t->pdeath_signal)
711 				group_send_sig_info(t->pdeath_signal,
712 						    SEND_SIG_NOINFO, t,
713 						    PIDTYPE_TGID);
714 		}
715 		/*
716 		 * If this is a threaded reparent there is no need to
717 		 * notify anyone anything has happened.
718 		 */
719 		if (!same_thread_group(reaper, father))
720 			reparent_leader(father, p, dead);
721 	}
722 	list_splice_tail_init(&father->children, &reaper->children);
723 }
724 
725 /*
726  * Send signals to all our closest relatives so that they know
727  * to properly mourn us..
728  */
729 static void exit_notify(struct task_struct *tsk, int group_dead)
730 {
731 	bool autoreap;
732 	struct task_struct *p, *n;
733 	LIST_HEAD(dead);
734 
735 	write_lock_irq(&tasklist_lock);
736 	forget_original_parent(tsk, &dead);
737 
738 	if (group_dead)
739 		kill_orphaned_pgrp(tsk->group_leader, NULL);
740 
741 	tsk->exit_state = EXIT_ZOMBIE;
742 	if (unlikely(tsk->ptrace)) {
743 		int sig = thread_group_leader(tsk) &&
744 				thread_group_empty(tsk) &&
745 				!ptrace_reparented(tsk) ?
746 			tsk->exit_signal : SIGCHLD;
747 		autoreap = do_notify_parent(tsk, sig);
748 	} else if (thread_group_leader(tsk)) {
749 		autoreap = thread_group_empty(tsk) &&
750 			do_notify_parent(tsk, tsk->exit_signal);
751 	} else {
752 		autoreap = true;
753 	}
754 
755 	if (autoreap) {
756 		tsk->exit_state = EXIT_DEAD;
757 		list_add(&tsk->ptrace_entry, &dead);
758 	}
759 
760 	/* mt-exec, de_thread() is waiting for group leader */
761 	if (unlikely(tsk->signal->notify_count < 0))
762 		wake_up_process(tsk->signal->group_exec_task);
763 	write_unlock_irq(&tasklist_lock);
764 
765 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
766 		list_del_init(&p->ptrace_entry);
767 		release_task(p);
768 	}
769 }
770 
771 #ifdef CONFIG_DEBUG_STACK_USAGE
772 static void check_stack_usage(void)
773 {
774 	static DEFINE_SPINLOCK(low_water_lock);
775 	static int lowest_to_date = THREAD_SIZE;
776 	unsigned long free;
777 
778 	free = stack_not_used(current);
779 
780 	if (free >= lowest_to_date)
781 		return;
782 
783 	spin_lock(&low_water_lock);
784 	if (free < lowest_to_date) {
785 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
786 			current->comm, task_pid_nr(current), free);
787 		lowest_to_date = free;
788 	}
789 	spin_unlock(&low_water_lock);
790 }
791 #else
792 static inline void check_stack_usage(void) {}
793 #endif
794 
795 static void synchronize_group_exit(struct task_struct *tsk, long code)
796 {
797 	struct sighand_struct *sighand = tsk->sighand;
798 	struct signal_struct *signal = tsk->signal;
799 
800 	spin_lock_irq(&sighand->siglock);
801 	signal->quick_threads--;
802 	if ((signal->quick_threads == 0) &&
803 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
804 		signal->flags = SIGNAL_GROUP_EXIT;
805 		signal->group_exit_code = code;
806 		signal->group_stop_count = 0;
807 	}
808 	spin_unlock_irq(&sighand->siglock);
809 }
810 
811 void __noreturn do_exit(long code)
812 {
813 	struct task_struct *tsk = current;
814 	int group_dead;
815 
816 	WARN_ON(irqs_disabled());
817 
818 	synchronize_group_exit(tsk, code);
819 
820 	WARN_ON(tsk->plug);
821 
822 	kcov_task_exit(tsk);
823 	kmsan_task_exit(tsk);
824 
825 	coredump_task_exit(tsk);
826 	ptrace_event(PTRACE_EVENT_EXIT, code);
827 	user_events_exit(tsk);
828 
829 	io_uring_files_cancel();
830 	exit_signals(tsk);  /* sets PF_EXITING */
831 
832 	acct_update_integrals(tsk);
833 	group_dead = atomic_dec_and_test(&tsk->signal->live);
834 	if (group_dead) {
835 		/*
836 		 * If the last thread of global init has exited, panic
837 		 * immediately to get a useable coredump.
838 		 */
839 		if (unlikely(is_global_init(tsk)))
840 			panic("Attempted to kill init! exitcode=0x%08x\n",
841 				tsk->signal->group_exit_code ?: (int)code);
842 
843 #ifdef CONFIG_POSIX_TIMERS
844 		hrtimer_cancel(&tsk->signal->real_timer);
845 		exit_itimers(tsk);
846 #endif
847 		if (tsk->mm)
848 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
849 	}
850 	acct_collect(code, group_dead);
851 	if (group_dead)
852 		tty_audit_exit();
853 	audit_free(tsk);
854 
855 	tsk->exit_code = code;
856 	taskstats_exit(tsk, group_dead);
857 
858 	exit_mm();
859 
860 	if (group_dead)
861 		acct_process();
862 	trace_sched_process_exit(tsk);
863 
864 	exit_sem(tsk);
865 	exit_shm(tsk);
866 	exit_files(tsk);
867 	exit_fs(tsk);
868 	if (group_dead)
869 		disassociate_ctty(1);
870 	exit_task_namespaces(tsk);
871 	exit_task_work(tsk);
872 	exit_thread(tsk);
873 
874 	/*
875 	 * Flush inherited counters to the parent - before the parent
876 	 * gets woken up by child-exit notifications.
877 	 *
878 	 * because of cgroup mode, must be called before cgroup_exit()
879 	 */
880 	perf_event_exit_task(tsk);
881 
882 	sched_autogroup_exit_task(tsk);
883 	cgroup_exit(tsk);
884 
885 	/*
886 	 * FIXME: do that only when needed, using sched_exit tracepoint
887 	 */
888 	flush_ptrace_hw_breakpoint(tsk);
889 
890 	exit_tasks_rcu_start();
891 	exit_notify(tsk, group_dead);
892 	proc_exit_connector(tsk);
893 	mpol_put_task_policy(tsk);
894 #ifdef CONFIG_FUTEX
895 	if (unlikely(current->pi_state_cache))
896 		kfree(current->pi_state_cache);
897 #endif
898 	/*
899 	 * Make sure we are holding no locks:
900 	 */
901 	debug_check_no_locks_held();
902 
903 	if (tsk->io_context)
904 		exit_io_context(tsk);
905 
906 	if (tsk->splice_pipe)
907 		free_pipe_info(tsk->splice_pipe);
908 
909 	if (tsk->task_frag.page)
910 		put_page(tsk->task_frag.page);
911 
912 	exit_task_stack_account(tsk);
913 
914 	check_stack_usage();
915 	preempt_disable();
916 	if (tsk->nr_dirtied)
917 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
918 	exit_rcu();
919 	exit_tasks_rcu_finish();
920 
921 	lockdep_free_task(tsk);
922 	do_task_dead();
923 }
924 
925 void __noreturn make_task_dead(int signr)
926 {
927 	/*
928 	 * Take the task off the cpu after something catastrophic has
929 	 * happened.
930 	 *
931 	 * We can get here from a kernel oops, sometimes with preemption off.
932 	 * Start by checking for critical errors.
933 	 * Then fix up important state like USER_DS and preemption.
934 	 * Then do everything else.
935 	 */
936 	struct task_struct *tsk = current;
937 	unsigned int limit;
938 
939 	if (unlikely(in_interrupt()))
940 		panic("Aiee, killing interrupt handler!");
941 	if (unlikely(!tsk->pid))
942 		panic("Attempted to kill the idle task!");
943 
944 	if (unlikely(irqs_disabled())) {
945 		pr_info("note: %s[%d] exited with irqs disabled\n",
946 			current->comm, task_pid_nr(current));
947 		local_irq_enable();
948 	}
949 	if (unlikely(in_atomic())) {
950 		pr_info("note: %s[%d] exited with preempt_count %d\n",
951 			current->comm, task_pid_nr(current),
952 			preempt_count());
953 		preempt_count_set(PREEMPT_ENABLED);
954 	}
955 
956 	/*
957 	 * Every time the system oopses, if the oops happens while a reference
958 	 * to an object was held, the reference leaks.
959 	 * If the oops doesn't also leak memory, repeated oopsing can cause
960 	 * reference counters to wrap around (if they're not using refcount_t).
961 	 * This means that repeated oopsing can make unexploitable-looking bugs
962 	 * exploitable through repeated oopsing.
963 	 * To make sure this can't happen, place an upper bound on how often the
964 	 * kernel may oops without panic().
965 	 */
966 	limit = READ_ONCE(oops_limit);
967 	if (atomic_inc_return(&oops_count) >= limit && limit)
968 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
969 
970 	/*
971 	 * We're taking recursive faults here in make_task_dead. Safest is to just
972 	 * leave this task alone and wait for reboot.
973 	 */
974 	if (unlikely(tsk->flags & PF_EXITING)) {
975 		pr_alert("Fixing recursive fault but reboot is needed!\n");
976 		futex_exit_recursive(tsk);
977 		tsk->exit_state = EXIT_DEAD;
978 		refcount_inc(&tsk->rcu_users);
979 		do_task_dead();
980 	}
981 
982 	do_exit(signr);
983 }
984 
985 SYSCALL_DEFINE1(exit, int, error_code)
986 {
987 	do_exit((error_code&0xff)<<8);
988 }
989 
990 /*
991  * Take down every thread in the group.  This is called by fatal signals
992  * as well as by sys_exit_group (below).
993  */
994 void __noreturn
995 do_group_exit(int exit_code)
996 {
997 	struct signal_struct *sig = current->signal;
998 
999 	if (sig->flags & SIGNAL_GROUP_EXIT)
1000 		exit_code = sig->group_exit_code;
1001 	else if (sig->group_exec_task)
1002 		exit_code = 0;
1003 	else {
1004 		struct sighand_struct *const sighand = current->sighand;
1005 
1006 		spin_lock_irq(&sighand->siglock);
1007 		if (sig->flags & SIGNAL_GROUP_EXIT)
1008 			/* Another thread got here before we took the lock.  */
1009 			exit_code = sig->group_exit_code;
1010 		else if (sig->group_exec_task)
1011 			exit_code = 0;
1012 		else {
1013 			sig->group_exit_code = exit_code;
1014 			sig->flags = SIGNAL_GROUP_EXIT;
1015 			zap_other_threads(current);
1016 		}
1017 		spin_unlock_irq(&sighand->siglock);
1018 	}
1019 
1020 	do_exit(exit_code);
1021 	/* NOTREACHED */
1022 }
1023 
1024 /*
1025  * this kills every thread in the thread group. Note that any externally
1026  * wait4()-ing process will get the correct exit code - even if this
1027  * thread is not the thread group leader.
1028  */
1029 SYSCALL_DEFINE1(exit_group, int, error_code)
1030 {
1031 	do_group_exit((error_code & 0xff) << 8);
1032 	/* NOTREACHED */
1033 	return 0;
1034 }
1035 
1036 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1037 {
1038 	return	wo->wo_type == PIDTYPE_MAX ||
1039 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1040 }
1041 
1042 static int
1043 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1044 {
1045 	if (!eligible_pid(wo, p))
1046 		return 0;
1047 
1048 	/*
1049 	 * Wait for all children (clone and not) if __WALL is set or
1050 	 * if it is traced by us.
1051 	 */
1052 	if (ptrace || (wo->wo_flags & __WALL))
1053 		return 1;
1054 
1055 	/*
1056 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1057 	 * otherwise, wait for non-clone children *only*.
1058 	 *
1059 	 * Note: a "clone" child here is one that reports to its parent
1060 	 * using a signal other than SIGCHLD, or a non-leader thread which
1061 	 * we can only see if it is traced by us.
1062 	 */
1063 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1064 		return 0;
1065 
1066 	return 1;
1067 }
1068 
1069 /*
1070  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1071  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1072  * the lock and this task is uninteresting.  If we return nonzero, we have
1073  * released the lock and the system call should return.
1074  */
1075 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1076 {
1077 	int state, status;
1078 	pid_t pid = task_pid_vnr(p);
1079 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1080 	struct waitid_info *infop;
1081 
1082 	if (!likely(wo->wo_flags & WEXITED))
1083 		return 0;
1084 
1085 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1086 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1087 			? p->signal->group_exit_code : p->exit_code;
1088 		get_task_struct(p);
1089 		read_unlock(&tasklist_lock);
1090 		sched_annotate_sleep();
1091 		if (wo->wo_rusage)
1092 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1093 		put_task_struct(p);
1094 		goto out_info;
1095 	}
1096 	/*
1097 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1098 	 */
1099 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1100 		EXIT_TRACE : EXIT_DEAD;
1101 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1102 		return 0;
1103 	/*
1104 	 * We own this thread, nobody else can reap it.
1105 	 */
1106 	read_unlock(&tasklist_lock);
1107 	sched_annotate_sleep();
1108 
1109 	/*
1110 	 * Check thread_group_leader() to exclude the traced sub-threads.
1111 	 */
1112 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1113 		struct signal_struct *sig = p->signal;
1114 		struct signal_struct *psig = current->signal;
1115 		unsigned long maxrss;
1116 		u64 tgutime, tgstime;
1117 
1118 		/*
1119 		 * The resource counters for the group leader are in its
1120 		 * own task_struct.  Those for dead threads in the group
1121 		 * are in its signal_struct, as are those for the child
1122 		 * processes it has previously reaped.  All these
1123 		 * accumulate in the parent's signal_struct c* fields.
1124 		 *
1125 		 * We don't bother to take a lock here to protect these
1126 		 * p->signal fields because the whole thread group is dead
1127 		 * and nobody can change them.
1128 		 *
1129 		 * psig->stats_lock also protects us from our sub-threads
1130 		 * which can reap other children at the same time. Until
1131 		 * we change k_getrusage()-like users to rely on this lock
1132 		 * we have to take ->siglock as well.
1133 		 *
1134 		 * We use thread_group_cputime_adjusted() to get times for
1135 		 * the thread group, which consolidates times for all threads
1136 		 * in the group including the group leader.
1137 		 */
1138 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1139 		spin_lock_irq(&current->sighand->siglock);
1140 		write_seqlock(&psig->stats_lock);
1141 		psig->cutime += tgutime + sig->cutime;
1142 		psig->cstime += tgstime + sig->cstime;
1143 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1144 		psig->cmin_flt +=
1145 			p->min_flt + sig->min_flt + sig->cmin_flt;
1146 		psig->cmaj_flt +=
1147 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1148 		psig->cnvcsw +=
1149 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1150 		psig->cnivcsw +=
1151 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1152 		psig->cinblock +=
1153 			task_io_get_inblock(p) +
1154 			sig->inblock + sig->cinblock;
1155 		psig->coublock +=
1156 			task_io_get_oublock(p) +
1157 			sig->oublock + sig->coublock;
1158 		maxrss = max(sig->maxrss, sig->cmaxrss);
1159 		if (psig->cmaxrss < maxrss)
1160 			psig->cmaxrss = maxrss;
1161 		task_io_accounting_add(&psig->ioac, &p->ioac);
1162 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1163 		write_sequnlock(&psig->stats_lock);
1164 		spin_unlock_irq(&current->sighand->siglock);
1165 	}
1166 
1167 	if (wo->wo_rusage)
1168 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1169 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1170 		? p->signal->group_exit_code : p->exit_code;
1171 	wo->wo_stat = status;
1172 
1173 	if (state == EXIT_TRACE) {
1174 		write_lock_irq(&tasklist_lock);
1175 		/* We dropped tasklist, ptracer could die and untrace */
1176 		ptrace_unlink(p);
1177 
1178 		/* If parent wants a zombie, don't release it now */
1179 		state = EXIT_ZOMBIE;
1180 		if (do_notify_parent(p, p->exit_signal))
1181 			state = EXIT_DEAD;
1182 		p->exit_state = state;
1183 		write_unlock_irq(&tasklist_lock);
1184 	}
1185 	if (state == EXIT_DEAD)
1186 		release_task(p);
1187 
1188 out_info:
1189 	infop = wo->wo_info;
1190 	if (infop) {
1191 		if ((status & 0x7f) == 0) {
1192 			infop->cause = CLD_EXITED;
1193 			infop->status = status >> 8;
1194 		} else {
1195 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1196 			infop->status = status & 0x7f;
1197 		}
1198 		infop->pid = pid;
1199 		infop->uid = uid;
1200 	}
1201 
1202 	return pid;
1203 }
1204 
1205 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1206 {
1207 	if (ptrace) {
1208 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1209 			return &p->exit_code;
1210 	} else {
1211 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1212 			return &p->signal->group_exit_code;
1213 	}
1214 	return NULL;
1215 }
1216 
1217 /**
1218  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1219  * @wo: wait options
1220  * @ptrace: is the wait for ptrace
1221  * @p: task to wait for
1222  *
1223  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1224  *
1225  * CONTEXT:
1226  * read_lock(&tasklist_lock), which is released if return value is
1227  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1228  *
1229  * RETURNS:
1230  * 0 if wait condition didn't exist and search for other wait conditions
1231  * should continue.  Non-zero return, -errno on failure and @p's pid on
1232  * success, implies that tasklist_lock is released and wait condition
1233  * search should terminate.
1234  */
1235 static int wait_task_stopped(struct wait_opts *wo,
1236 				int ptrace, struct task_struct *p)
1237 {
1238 	struct waitid_info *infop;
1239 	int exit_code, *p_code, why;
1240 	uid_t uid = 0; /* unneeded, required by compiler */
1241 	pid_t pid;
1242 
1243 	/*
1244 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1245 	 */
1246 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1247 		return 0;
1248 
1249 	if (!task_stopped_code(p, ptrace))
1250 		return 0;
1251 
1252 	exit_code = 0;
1253 	spin_lock_irq(&p->sighand->siglock);
1254 
1255 	p_code = task_stopped_code(p, ptrace);
1256 	if (unlikely(!p_code))
1257 		goto unlock_sig;
1258 
1259 	exit_code = *p_code;
1260 	if (!exit_code)
1261 		goto unlock_sig;
1262 
1263 	if (!unlikely(wo->wo_flags & WNOWAIT))
1264 		*p_code = 0;
1265 
1266 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1267 unlock_sig:
1268 	spin_unlock_irq(&p->sighand->siglock);
1269 	if (!exit_code)
1270 		return 0;
1271 
1272 	/*
1273 	 * Now we are pretty sure this task is interesting.
1274 	 * Make sure it doesn't get reaped out from under us while we
1275 	 * give up the lock and then examine it below.  We don't want to
1276 	 * keep holding onto the tasklist_lock while we call getrusage and
1277 	 * possibly take page faults for user memory.
1278 	 */
1279 	get_task_struct(p);
1280 	pid = task_pid_vnr(p);
1281 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1282 	read_unlock(&tasklist_lock);
1283 	sched_annotate_sleep();
1284 	if (wo->wo_rusage)
1285 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1286 	put_task_struct(p);
1287 
1288 	if (likely(!(wo->wo_flags & WNOWAIT)))
1289 		wo->wo_stat = (exit_code << 8) | 0x7f;
1290 
1291 	infop = wo->wo_info;
1292 	if (infop) {
1293 		infop->cause = why;
1294 		infop->status = exit_code;
1295 		infop->pid = pid;
1296 		infop->uid = uid;
1297 	}
1298 	return pid;
1299 }
1300 
1301 /*
1302  * Handle do_wait work for one task in a live, non-stopped state.
1303  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1304  * the lock and this task is uninteresting.  If we return nonzero, we have
1305  * released the lock and the system call should return.
1306  */
1307 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1308 {
1309 	struct waitid_info *infop;
1310 	pid_t pid;
1311 	uid_t uid;
1312 
1313 	if (!unlikely(wo->wo_flags & WCONTINUED))
1314 		return 0;
1315 
1316 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1317 		return 0;
1318 
1319 	spin_lock_irq(&p->sighand->siglock);
1320 	/* Re-check with the lock held.  */
1321 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1322 		spin_unlock_irq(&p->sighand->siglock);
1323 		return 0;
1324 	}
1325 	if (!unlikely(wo->wo_flags & WNOWAIT))
1326 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1327 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1328 	spin_unlock_irq(&p->sighand->siglock);
1329 
1330 	pid = task_pid_vnr(p);
1331 	get_task_struct(p);
1332 	read_unlock(&tasklist_lock);
1333 	sched_annotate_sleep();
1334 	if (wo->wo_rusage)
1335 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1336 	put_task_struct(p);
1337 
1338 	infop = wo->wo_info;
1339 	if (!infop) {
1340 		wo->wo_stat = 0xffff;
1341 	} else {
1342 		infop->cause = CLD_CONTINUED;
1343 		infop->pid = pid;
1344 		infop->uid = uid;
1345 		infop->status = SIGCONT;
1346 	}
1347 	return pid;
1348 }
1349 
1350 /*
1351  * Consider @p for a wait by @parent.
1352  *
1353  * -ECHILD should be in ->notask_error before the first call.
1354  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1355  * Returns zero if the search for a child should continue;
1356  * then ->notask_error is 0 if @p is an eligible child,
1357  * or still -ECHILD.
1358  */
1359 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1360 				struct task_struct *p)
1361 {
1362 	/*
1363 	 * We can race with wait_task_zombie() from another thread.
1364 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1365 	 * can't confuse the checks below.
1366 	 */
1367 	int exit_state = READ_ONCE(p->exit_state);
1368 	int ret;
1369 
1370 	if (unlikely(exit_state == EXIT_DEAD))
1371 		return 0;
1372 
1373 	ret = eligible_child(wo, ptrace, p);
1374 	if (!ret)
1375 		return ret;
1376 
1377 	if (unlikely(exit_state == EXIT_TRACE)) {
1378 		/*
1379 		 * ptrace == 0 means we are the natural parent. In this case
1380 		 * we should clear notask_error, debugger will notify us.
1381 		 */
1382 		if (likely(!ptrace))
1383 			wo->notask_error = 0;
1384 		return 0;
1385 	}
1386 
1387 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1388 		/*
1389 		 * If it is traced by its real parent's group, just pretend
1390 		 * the caller is ptrace_do_wait() and reap this child if it
1391 		 * is zombie.
1392 		 *
1393 		 * This also hides group stop state from real parent; otherwise
1394 		 * a single stop can be reported twice as group and ptrace stop.
1395 		 * If a ptracer wants to distinguish these two events for its
1396 		 * own children it should create a separate process which takes
1397 		 * the role of real parent.
1398 		 */
1399 		if (!ptrace_reparented(p))
1400 			ptrace = 1;
1401 	}
1402 
1403 	/* slay zombie? */
1404 	if (exit_state == EXIT_ZOMBIE) {
1405 		/* we don't reap group leaders with subthreads */
1406 		if (!delay_group_leader(p)) {
1407 			/*
1408 			 * A zombie ptracee is only visible to its ptracer.
1409 			 * Notification and reaping will be cascaded to the
1410 			 * real parent when the ptracer detaches.
1411 			 */
1412 			if (unlikely(ptrace) || likely(!p->ptrace))
1413 				return wait_task_zombie(wo, p);
1414 		}
1415 
1416 		/*
1417 		 * Allow access to stopped/continued state via zombie by
1418 		 * falling through.  Clearing of notask_error is complex.
1419 		 *
1420 		 * When !@ptrace:
1421 		 *
1422 		 * If WEXITED is set, notask_error should naturally be
1423 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1424 		 * so, if there are live subthreads, there are events to
1425 		 * wait for.  If all subthreads are dead, it's still safe
1426 		 * to clear - this function will be called again in finite
1427 		 * amount time once all the subthreads are released and
1428 		 * will then return without clearing.
1429 		 *
1430 		 * When @ptrace:
1431 		 *
1432 		 * Stopped state is per-task and thus can't change once the
1433 		 * target task dies.  Only continued and exited can happen.
1434 		 * Clear notask_error if WCONTINUED | WEXITED.
1435 		 */
1436 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1437 			wo->notask_error = 0;
1438 	} else {
1439 		/*
1440 		 * @p is alive and it's gonna stop, continue or exit, so
1441 		 * there always is something to wait for.
1442 		 */
1443 		wo->notask_error = 0;
1444 	}
1445 
1446 	/*
1447 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1448 	 * is used and the two don't interact with each other.
1449 	 */
1450 	ret = wait_task_stopped(wo, ptrace, p);
1451 	if (ret)
1452 		return ret;
1453 
1454 	/*
1455 	 * Wait for continued.  There's only one continued state and the
1456 	 * ptracer can consume it which can confuse the real parent.  Don't
1457 	 * use WCONTINUED from ptracer.  You don't need or want it.
1458 	 */
1459 	return wait_task_continued(wo, p);
1460 }
1461 
1462 /*
1463  * Do the work of do_wait() for one thread in the group, @tsk.
1464  *
1465  * -ECHILD should be in ->notask_error before the first call.
1466  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1467  * Returns zero if the search for a child should continue; then
1468  * ->notask_error is 0 if there were any eligible children,
1469  * or still -ECHILD.
1470  */
1471 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1472 {
1473 	struct task_struct *p;
1474 
1475 	list_for_each_entry(p, &tsk->children, sibling) {
1476 		int ret = wait_consider_task(wo, 0, p);
1477 
1478 		if (ret)
1479 			return ret;
1480 	}
1481 
1482 	return 0;
1483 }
1484 
1485 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1486 {
1487 	struct task_struct *p;
1488 
1489 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1490 		int ret = wait_consider_task(wo, 1, p);
1491 
1492 		if (ret)
1493 			return ret;
1494 	}
1495 
1496 	return 0;
1497 }
1498 
1499 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1500 {
1501 	if (!eligible_pid(wo, p))
1502 		return false;
1503 
1504 	if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1505 		return false;
1506 
1507 	return true;
1508 }
1509 
1510 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1511 				int sync, void *key)
1512 {
1513 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1514 						child_wait);
1515 	struct task_struct *p = key;
1516 
1517 	if (pid_child_should_wake(wo, p))
1518 		return default_wake_function(wait, mode, sync, key);
1519 
1520 	return 0;
1521 }
1522 
1523 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1524 {
1525 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1526 			   TASK_INTERRUPTIBLE, p);
1527 }
1528 
1529 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1530 				 struct task_struct *target)
1531 {
1532 	struct task_struct *parent =
1533 		!ptrace ? target->real_parent : target->parent;
1534 
1535 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1536 				     same_thread_group(current, parent));
1537 }
1538 
1539 /*
1540  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1541  * and tracee lists to find the target task.
1542  */
1543 static int do_wait_pid(struct wait_opts *wo)
1544 {
1545 	bool ptrace;
1546 	struct task_struct *target;
1547 	int retval;
1548 
1549 	ptrace = false;
1550 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1551 	if (target && is_effectively_child(wo, ptrace, target)) {
1552 		retval = wait_consider_task(wo, ptrace, target);
1553 		if (retval)
1554 			return retval;
1555 	}
1556 
1557 	ptrace = true;
1558 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1559 	if (target && target->ptrace &&
1560 	    is_effectively_child(wo, ptrace, target)) {
1561 		retval = wait_consider_task(wo, ptrace, target);
1562 		if (retval)
1563 			return retval;
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 long __do_wait(struct wait_opts *wo)
1570 {
1571 	long retval;
1572 
1573 	/*
1574 	 * If there is nothing that can match our criteria, just get out.
1575 	 * We will clear ->notask_error to zero if we see any child that
1576 	 * might later match our criteria, even if we are not able to reap
1577 	 * it yet.
1578 	 */
1579 	wo->notask_error = -ECHILD;
1580 	if ((wo->wo_type < PIDTYPE_MAX) &&
1581 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1582 		goto notask;
1583 
1584 	read_lock(&tasklist_lock);
1585 
1586 	if (wo->wo_type == PIDTYPE_PID) {
1587 		retval = do_wait_pid(wo);
1588 		if (retval)
1589 			return retval;
1590 	} else {
1591 		struct task_struct *tsk = current;
1592 
1593 		do {
1594 			retval = do_wait_thread(wo, tsk);
1595 			if (retval)
1596 				return retval;
1597 
1598 			retval = ptrace_do_wait(wo, tsk);
1599 			if (retval)
1600 				return retval;
1601 
1602 			if (wo->wo_flags & __WNOTHREAD)
1603 				break;
1604 		} while_each_thread(current, tsk);
1605 	}
1606 	read_unlock(&tasklist_lock);
1607 
1608 notask:
1609 	retval = wo->notask_error;
1610 	if (!retval && !(wo->wo_flags & WNOHANG))
1611 		return -ERESTARTSYS;
1612 
1613 	return retval;
1614 }
1615 
1616 static long do_wait(struct wait_opts *wo)
1617 {
1618 	int retval;
1619 
1620 	trace_sched_process_wait(wo->wo_pid);
1621 
1622 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1623 	wo->child_wait.private = current;
1624 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1625 
1626 	do {
1627 		set_current_state(TASK_INTERRUPTIBLE);
1628 		retval = __do_wait(wo);
1629 		if (retval != -ERESTARTSYS)
1630 			break;
1631 		if (signal_pending(current))
1632 			break;
1633 		schedule();
1634 	} while (1);
1635 
1636 	__set_current_state(TASK_RUNNING);
1637 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1638 	return retval;
1639 }
1640 
1641 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1642 			  struct waitid_info *infop, int options,
1643 			  struct rusage *ru)
1644 {
1645 	unsigned int f_flags = 0;
1646 	struct pid *pid = NULL;
1647 	enum pid_type type;
1648 
1649 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1650 			__WNOTHREAD|__WCLONE|__WALL))
1651 		return -EINVAL;
1652 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1653 		return -EINVAL;
1654 
1655 	switch (which) {
1656 	case P_ALL:
1657 		type = PIDTYPE_MAX;
1658 		break;
1659 	case P_PID:
1660 		type = PIDTYPE_PID;
1661 		if (upid <= 0)
1662 			return -EINVAL;
1663 
1664 		pid = find_get_pid(upid);
1665 		break;
1666 	case P_PGID:
1667 		type = PIDTYPE_PGID;
1668 		if (upid < 0)
1669 			return -EINVAL;
1670 
1671 		if (upid)
1672 			pid = find_get_pid(upid);
1673 		else
1674 			pid = get_task_pid(current, PIDTYPE_PGID);
1675 		break;
1676 	case P_PIDFD:
1677 		type = PIDTYPE_PID;
1678 		if (upid < 0)
1679 			return -EINVAL;
1680 
1681 		pid = pidfd_get_pid(upid, &f_flags);
1682 		if (IS_ERR(pid))
1683 			return PTR_ERR(pid);
1684 
1685 		break;
1686 	default:
1687 		return -EINVAL;
1688 	}
1689 
1690 	wo->wo_type	= type;
1691 	wo->wo_pid	= pid;
1692 	wo->wo_flags	= options;
1693 	wo->wo_info	= infop;
1694 	wo->wo_rusage	= ru;
1695 	if (f_flags & O_NONBLOCK)
1696 		wo->wo_flags |= WNOHANG;
1697 
1698 	return 0;
1699 }
1700 
1701 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1702 			  int options, struct rusage *ru)
1703 {
1704 	struct wait_opts wo;
1705 	long ret;
1706 
1707 	ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1708 	if (ret)
1709 		return ret;
1710 
1711 	ret = do_wait(&wo);
1712 	if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1713 		ret = -EAGAIN;
1714 
1715 	put_pid(wo.wo_pid);
1716 	return ret;
1717 }
1718 
1719 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1720 		infop, int, options, struct rusage __user *, ru)
1721 {
1722 	struct rusage r;
1723 	struct waitid_info info = {.status = 0};
1724 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1725 	int signo = 0;
1726 
1727 	if (err > 0) {
1728 		signo = SIGCHLD;
1729 		err = 0;
1730 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1731 			return -EFAULT;
1732 	}
1733 	if (!infop)
1734 		return err;
1735 
1736 	if (!user_write_access_begin(infop, sizeof(*infop)))
1737 		return -EFAULT;
1738 
1739 	unsafe_put_user(signo, &infop->si_signo, Efault);
1740 	unsafe_put_user(0, &infop->si_errno, Efault);
1741 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1742 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1743 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1744 	unsafe_put_user(info.status, &infop->si_status, Efault);
1745 	user_write_access_end();
1746 	return err;
1747 Efault:
1748 	user_write_access_end();
1749 	return -EFAULT;
1750 }
1751 
1752 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1753 		  struct rusage *ru)
1754 {
1755 	struct wait_opts wo;
1756 	struct pid *pid = NULL;
1757 	enum pid_type type;
1758 	long ret;
1759 
1760 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1761 			__WNOTHREAD|__WCLONE|__WALL))
1762 		return -EINVAL;
1763 
1764 	/* -INT_MIN is not defined */
1765 	if (upid == INT_MIN)
1766 		return -ESRCH;
1767 
1768 	if (upid == -1)
1769 		type = PIDTYPE_MAX;
1770 	else if (upid < 0) {
1771 		type = PIDTYPE_PGID;
1772 		pid = find_get_pid(-upid);
1773 	} else if (upid == 0) {
1774 		type = PIDTYPE_PGID;
1775 		pid = get_task_pid(current, PIDTYPE_PGID);
1776 	} else /* upid > 0 */ {
1777 		type = PIDTYPE_PID;
1778 		pid = find_get_pid(upid);
1779 	}
1780 
1781 	wo.wo_type	= type;
1782 	wo.wo_pid	= pid;
1783 	wo.wo_flags	= options | WEXITED;
1784 	wo.wo_info	= NULL;
1785 	wo.wo_stat	= 0;
1786 	wo.wo_rusage	= ru;
1787 	ret = do_wait(&wo);
1788 	put_pid(pid);
1789 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1790 		ret = -EFAULT;
1791 
1792 	return ret;
1793 }
1794 
1795 int kernel_wait(pid_t pid, int *stat)
1796 {
1797 	struct wait_opts wo = {
1798 		.wo_type	= PIDTYPE_PID,
1799 		.wo_pid		= find_get_pid(pid),
1800 		.wo_flags	= WEXITED,
1801 	};
1802 	int ret;
1803 
1804 	ret = do_wait(&wo);
1805 	if (ret > 0 && wo.wo_stat)
1806 		*stat = wo.wo_stat;
1807 	put_pid(wo.wo_pid);
1808 	return ret;
1809 }
1810 
1811 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1812 		int, options, struct rusage __user *, ru)
1813 {
1814 	struct rusage r;
1815 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1816 
1817 	if (err > 0) {
1818 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1819 			return -EFAULT;
1820 	}
1821 	return err;
1822 }
1823 
1824 #ifdef __ARCH_WANT_SYS_WAITPID
1825 
1826 /*
1827  * sys_waitpid() remains for compatibility. waitpid() should be
1828  * implemented by calling sys_wait4() from libc.a.
1829  */
1830 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1831 {
1832 	return kernel_wait4(pid, stat_addr, options, NULL);
1833 }
1834 
1835 #endif
1836 
1837 #ifdef CONFIG_COMPAT
1838 COMPAT_SYSCALL_DEFINE4(wait4,
1839 	compat_pid_t, pid,
1840 	compat_uint_t __user *, stat_addr,
1841 	int, options,
1842 	struct compat_rusage __user *, ru)
1843 {
1844 	struct rusage r;
1845 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1846 	if (err > 0) {
1847 		if (ru && put_compat_rusage(&r, ru))
1848 			return -EFAULT;
1849 	}
1850 	return err;
1851 }
1852 
1853 COMPAT_SYSCALL_DEFINE5(waitid,
1854 		int, which, compat_pid_t, pid,
1855 		struct compat_siginfo __user *, infop, int, options,
1856 		struct compat_rusage __user *, uru)
1857 {
1858 	struct rusage ru;
1859 	struct waitid_info info = {.status = 0};
1860 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1861 	int signo = 0;
1862 	if (err > 0) {
1863 		signo = SIGCHLD;
1864 		err = 0;
1865 		if (uru) {
1866 			/* kernel_waitid() overwrites everything in ru */
1867 			if (COMPAT_USE_64BIT_TIME)
1868 				err = copy_to_user(uru, &ru, sizeof(ru));
1869 			else
1870 				err = put_compat_rusage(&ru, uru);
1871 			if (err)
1872 				return -EFAULT;
1873 		}
1874 	}
1875 
1876 	if (!infop)
1877 		return err;
1878 
1879 	if (!user_write_access_begin(infop, sizeof(*infop)))
1880 		return -EFAULT;
1881 
1882 	unsafe_put_user(signo, &infop->si_signo, Efault);
1883 	unsafe_put_user(0, &infop->si_errno, Efault);
1884 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1885 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1886 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1887 	unsafe_put_user(info.status, &infop->si_status, Efault);
1888 	user_write_access_end();
1889 	return err;
1890 Efault:
1891 	user_write_access_end();
1892 	return -EFAULT;
1893 }
1894 #endif
1895 
1896 /**
1897  * thread_group_exited - check that a thread group has exited
1898  * @pid: tgid of thread group to be checked.
1899  *
1900  * Test if the thread group represented by tgid has exited (all
1901  * threads are zombies, dead or completely gone).
1902  *
1903  * Return: true if the thread group has exited. false otherwise.
1904  */
1905 bool thread_group_exited(struct pid *pid)
1906 {
1907 	struct task_struct *task;
1908 	bool exited;
1909 
1910 	rcu_read_lock();
1911 	task = pid_task(pid, PIDTYPE_PID);
1912 	exited = !task ||
1913 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1914 	rcu_read_unlock();
1915 
1916 	return exited;
1917 }
1918 EXPORT_SYMBOL(thread_group_exited);
1919 
1920 /*
1921  * This needs to be __function_aligned as GCC implicitly makes any
1922  * implementation of abort() cold and drops alignment specified by
1923  * -falign-functions=N.
1924  *
1925  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1926  */
1927 __weak __function_aligned void abort(void)
1928 {
1929 	BUG();
1930 
1931 	/* if that doesn't kill us, halt */
1932 	panic("Oops failed to kill thread");
1933 }
1934 EXPORT_SYMBOL(abort);
1935