1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/smp_lock.h> 11 #include <linux/module.h> 12 #include <linux/capability.h> 13 #include <linux/completion.h> 14 #include <linux/personality.h> 15 #include <linux/tty.h> 16 #include <linux/mnt_namespace.h> 17 #include <linux/key.h> 18 #include <linux/security.h> 19 #include <linux/cpu.h> 20 #include <linux/acct.h> 21 #include <linux/tsacct_kern.h> 22 #include <linux/file.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/mempolicy.h> 31 #include <linux/taskstats_kern.h> 32 #include <linux/delayacct.h> 33 #include <linux/cpuset.h> 34 #include <linux/syscalls.h> 35 #include <linux/signal.h> 36 #include <linux/posix-timers.h> 37 #include <linux/cn_proc.h> 38 #include <linux/mutex.h> 39 #include <linux/futex.h> 40 #include <linux/compat.h> 41 #include <linux/pipe_fs_i.h> 42 #include <linux/audit.h> /* for audit_free() */ 43 #include <linux/resource.h> 44 #include <linux/blkdev.h> 45 46 #include <asm/uaccess.h> 47 #include <asm/unistd.h> 48 #include <asm/pgtable.h> 49 #include <asm/mmu_context.h> 50 51 extern void sem_exit (void); 52 53 static void exit_mm(struct task_struct * tsk); 54 55 static void __unhash_process(struct task_struct *p) 56 { 57 nr_threads--; 58 detach_pid(p, PIDTYPE_PID); 59 if (thread_group_leader(p)) { 60 detach_pid(p, PIDTYPE_PGID); 61 detach_pid(p, PIDTYPE_SID); 62 63 list_del_rcu(&p->tasks); 64 __get_cpu_var(process_counts)--; 65 } 66 list_del_rcu(&p->thread_group); 67 remove_parent(p); 68 } 69 70 /* 71 * This function expects the tasklist_lock write-locked. 72 */ 73 static void __exit_signal(struct task_struct *tsk) 74 { 75 struct signal_struct *sig = tsk->signal; 76 struct sighand_struct *sighand; 77 78 BUG_ON(!sig); 79 BUG_ON(!atomic_read(&sig->count)); 80 81 rcu_read_lock(); 82 sighand = rcu_dereference(tsk->sighand); 83 spin_lock(&sighand->siglock); 84 85 posix_cpu_timers_exit(tsk); 86 if (atomic_dec_and_test(&sig->count)) 87 posix_cpu_timers_exit_group(tsk); 88 else { 89 /* 90 * If there is any task waiting for the group exit 91 * then notify it: 92 */ 93 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) { 94 wake_up_process(sig->group_exit_task); 95 sig->group_exit_task = NULL; 96 } 97 if (tsk == sig->curr_target) 98 sig->curr_target = next_thread(tsk); 99 /* 100 * Accumulate here the counters for all threads but the 101 * group leader as they die, so they can be added into 102 * the process-wide totals when those are taken. 103 * The group leader stays around as a zombie as long 104 * as there are other threads. When it gets reaped, 105 * the exit.c code will add its counts into these totals. 106 * We won't ever get here for the group leader, since it 107 * will have been the last reference on the signal_struct. 108 */ 109 sig->utime = cputime_add(sig->utime, tsk->utime); 110 sig->stime = cputime_add(sig->stime, tsk->stime); 111 sig->min_flt += tsk->min_flt; 112 sig->maj_flt += tsk->maj_flt; 113 sig->nvcsw += tsk->nvcsw; 114 sig->nivcsw += tsk->nivcsw; 115 sig->sched_time += tsk->sched_time; 116 sig = NULL; /* Marker for below. */ 117 } 118 119 __unhash_process(tsk); 120 121 tsk->signal = NULL; 122 tsk->sighand = NULL; 123 spin_unlock(&sighand->siglock); 124 rcu_read_unlock(); 125 126 __cleanup_sighand(sighand); 127 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 128 flush_sigqueue(&tsk->pending); 129 if (sig) { 130 flush_sigqueue(&sig->shared_pending); 131 taskstats_tgid_free(sig); 132 __cleanup_signal(sig); 133 } 134 } 135 136 static void delayed_put_task_struct(struct rcu_head *rhp) 137 { 138 put_task_struct(container_of(rhp, struct task_struct, rcu)); 139 } 140 141 void release_task(struct task_struct * p) 142 { 143 struct task_struct *leader; 144 int zap_leader; 145 repeat: 146 atomic_dec(&p->user->processes); 147 write_lock_irq(&tasklist_lock); 148 ptrace_unlink(p); 149 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); 150 __exit_signal(p); 151 152 /* 153 * If we are the last non-leader member of the thread 154 * group, and the leader is zombie, then notify the 155 * group leader's parent process. (if it wants notification.) 156 */ 157 zap_leader = 0; 158 leader = p->group_leader; 159 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 160 BUG_ON(leader->exit_signal == -1); 161 do_notify_parent(leader, leader->exit_signal); 162 /* 163 * If we were the last child thread and the leader has 164 * exited already, and the leader's parent ignores SIGCHLD, 165 * then we are the one who should release the leader. 166 * 167 * do_notify_parent() will have marked it self-reaping in 168 * that case. 169 */ 170 zap_leader = (leader->exit_signal == -1); 171 } 172 173 sched_exit(p); 174 write_unlock_irq(&tasklist_lock); 175 proc_flush_task(p); 176 release_thread(p); 177 call_rcu(&p->rcu, delayed_put_task_struct); 178 179 p = leader; 180 if (unlikely(zap_leader)) 181 goto repeat; 182 } 183 184 /* 185 * This checks not only the pgrp, but falls back on the pid if no 186 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 187 * without this... 188 */ 189 int session_of_pgrp(int pgrp) 190 { 191 struct task_struct *p; 192 int sid = 0; 193 194 read_lock(&tasklist_lock); 195 196 p = find_task_by_pid_type(PIDTYPE_PGID, pgrp); 197 if (p == NULL) 198 p = find_task_by_pid(pgrp); 199 if (p != NULL) 200 sid = process_session(p); 201 202 read_unlock(&tasklist_lock); 203 204 return sid; 205 } 206 207 /* 208 * Determine if a process group is "orphaned", according to the POSIX 209 * definition in 2.2.2.52. Orphaned process groups are not to be affected 210 * by terminal-generated stop signals. Newly orphaned process groups are 211 * to receive a SIGHUP and a SIGCONT. 212 * 213 * "I ask you, have you ever known what it is to be an orphan?" 214 */ 215 static int will_become_orphaned_pgrp(int pgrp, struct task_struct *ignored_task) 216 { 217 struct task_struct *p; 218 int ret = 1; 219 220 do_each_task_pid(pgrp, PIDTYPE_PGID, p) { 221 if (p == ignored_task 222 || p->exit_state 223 || is_init(p->real_parent)) 224 continue; 225 if (process_group(p->real_parent) != pgrp && 226 process_session(p->real_parent) == process_session(p)) { 227 ret = 0; 228 break; 229 } 230 } while_each_task_pid(pgrp, PIDTYPE_PGID, p); 231 return ret; /* (sighing) "Often!" */ 232 } 233 234 int is_orphaned_pgrp(int pgrp) 235 { 236 int retval; 237 238 read_lock(&tasklist_lock); 239 retval = will_become_orphaned_pgrp(pgrp, NULL); 240 read_unlock(&tasklist_lock); 241 242 return retval; 243 } 244 245 static int has_stopped_jobs(int pgrp) 246 { 247 int retval = 0; 248 struct task_struct *p; 249 250 do_each_task_pid(pgrp, PIDTYPE_PGID, p) { 251 if (p->state != TASK_STOPPED) 252 continue; 253 retval = 1; 254 break; 255 } while_each_task_pid(pgrp, PIDTYPE_PGID, p); 256 return retval; 257 } 258 259 /** 260 * reparent_to_init - Reparent the calling kernel thread to the init task 261 * of the pid space that the thread belongs to. 262 * 263 * If a kernel thread is launched as a result of a system call, or if 264 * it ever exits, it should generally reparent itself to init so that 265 * it is correctly cleaned up on exit. 266 * 267 * The various task state such as scheduling policy and priority may have 268 * been inherited from a user process, so we reset them to sane values here. 269 * 270 * NOTE that reparent_to_init() gives the caller full capabilities. 271 */ 272 static void reparent_to_init(void) 273 { 274 write_lock_irq(&tasklist_lock); 275 276 ptrace_unlink(current); 277 /* Reparent to init */ 278 remove_parent(current); 279 current->parent = child_reaper(current); 280 current->real_parent = child_reaper(current); 281 add_parent(current); 282 283 /* Set the exit signal to SIGCHLD so we signal init on exit */ 284 current->exit_signal = SIGCHLD; 285 286 if (!has_rt_policy(current) && (task_nice(current) < 0)) 287 set_user_nice(current, 0); 288 /* cpus_allowed? */ 289 /* rt_priority? */ 290 /* signals? */ 291 security_task_reparent_to_init(current); 292 memcpy(current->signal->rlim, init_task.signal->rlim, 293 sizeof(current->signal->rlim)); 294 atomic_inc(&(INIT_USER->__count)); 295 write_unlock_irq(&tasklist_lock); 296 switch_uid(INIT_USER); 297 } 298 299 void __set_special_pids(pid_t session, pid_t pgrp) 300 { 301 struct task_struct *curr = current->group_leader; 302 303 if (process_session(curr) != session) { 304 detach_pid(curr, PIDTYPE_SID); 305 set_signal_session(curr->signal, session); 306 attach_pid(curr, PIDTYPE_SID, session); 307 } 308 if (process_group(curr) != pgrp) { 309 detach_pid(curr, PIDTYPE_PGID); 310 curr->signal->pgrp = pgrp; 311 attach_pid(curr, PIDTYPE_PGID, pgrp); 312 } 313 } 314 315 static void set_special_pids(pid_t session, pid_t pgrp) 316 { 317 write_lock_irq(&tasklist_lock); 318 __set_special_pids(session, pgrp); 319 write_unlock_irq(&tasklist_lock); 320 } 321 322 /* 323 * Let kernel threads use this to say that they 324 * allow a certain signal (since daemonize() will 325 * have disabled all of them by default). 326 */ 327 int allow_signal(int sig) 328 { 329 if (!valid_signal(sig) || sig < 1) 330 return -EINVAL; 331 332 spin_lock_irq(¤t->sighand->siglock); 333 sigdelset(¤t->blocked, sig); 334 if (!current->mm) { 335 /* Kernel threads handle their own signals. 336 Let the signal code know it'll be handled, so 337 that they don't get converted to SIGKILL or 338 just silently dropped */ 339 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 340 } 341 recalc_sigpending(); 342 spin_unlock_irq(¤t->sighand->siglock); 343 return 0; 344 } 345 346 EXPORT_SYMBOL(allow_signal); 347 348 int disallow_signal(int sig) 349 { 350 if (!valid_signal(sig) || sig < 1) 351 return -EINVAL; 352 353 spin_lock_irq(¤t->sighand->siglock); 354 sigaddset(¤t->blocked, sig); 355 recalc_sigpending(); 356 spin_unlock_irq(¤t->sighand->siglock); 357 return 0; 358 } 359 360 EXPORT_SYMBOL(disallow_signal); 361 362 /* 363 * Put all the gunge required to become a kernel thread without 364 * attached user resources in one place where it belongs. 365 */ 366 367 void daemonize(const char *name, ...) 368 { 369 va_list args; 370 struct fs_struct *fs; 371 sigset_t blocked; 372 373 va_start(args, name); 374 vsnprintf(current->comm, sizeof(current->comm), name, args); 375 va_end(args); 376 377 /* 378 * If we were started as result of loading a module, close all of the 379 * user space pages. We don't need them, and if we didn't close them 380 * they would be locked into memory. 381 */ 382 exit_mm(current); 383 384 set_special_pids(1, 1); 385 proc_clear_tty(current); 386 387 /* Block and flush all signals */ 388 sigfillset(&blocked); 389 sigprocmask(SIG_BLOCK, &blocked, NULL); 390 flush_signals(current); 391 392 /* Become as one with the init task */ 393 394 exit_fs(current); /* current->fs->count--; */ 395 fs = init_task.fs; 396 current->fs = fs; 397 atomic_inc(&fs->count); 398 399 exit_task_namespaces(current); 400 current->nsproxy = init_task.nsproxy; 401 get_task_namespaces(current); 402 403 exit_files(current); 404 current->files = init_task.files; 405 atomic_inc(¤t->files->count); 406 407 reparent_to_init(); 408 } 409 410 EXPORT_SYMBOL(daemonize); 411 412 static void close_files(struct files_struct * files) 413 { 414 int i, j; 415 struct fdtable *fdt; 416 417 j = 0; 418 419 /* 420 * It is safe to dereference the fd table without RCU or 421 * ->file_lock because this is the last reference to the 422 * files structure. 423 */ 424 fdt = files_fdtable(files); 425 for (;;) { 426 unsigned long set; 427 i = j * __NFDBITS; 428 if (i >= fdt->max_fds) 429 break; 430 set = fdt->open_fds->fds_bits[j++]; 431 while (set) { 432 if (set & 1) { 433 struct file * file = xchg(&fdt->fd[i], NULL); 434 if (file) 435 filp_close(file, files); 436 } 437 i++; 438 set >>= 1; 439 } 440 } 441 } 442 443 struct files_struct *get_files_struct(struct task_struct *task) 444 { 445 struct files_struct *files; 446 447 task_lock(task); 448 files = task->files; 449 if (files) 450 atomic_inc(&files->count); 451 task_unlock(task); 452 453 return files; 454 } 455 456 void fastcall put_files_struct(struct files_struct *files) 457 { 458 struct fdtable *fdt; 459 460 if (atomic_dec_and_test(&files->count)) { 461 close_files(files); 462 /* 463 * Free the fd and fdset arrays if we expanded them. 464 * If the fdtable was embedded, pass files for freeing 465 * at the end of the RCU grace period. Otherwise, 466 * you can free files immediately. 467 */ 468 fdt = files_fdtable(files); 469 if (fdt != &files->fdtab) 470 kmem_cache_free(files_cachep, files); 471 call_rcu(&fdt->rcu, free_fdtable_rcu); 472 } 473 } 474 475 EXPORT_SYMBOL(put_files_struct); 476 477 void reset_files_struct(struct task_struct *tsk, struct files_struct *files) 478 { 479 struct files_struct *old; 480 481 old = tsk->files; 482 task_lock(tsk); 483 tsk->files = files; 484 task_unlock(tsk); 485 put_files_struct(old); 486 } 487 EXPORT_SYMBOL(reset_files_struct); 488 489 static inline void __exit_files(struct task_struct *tsk) 490 { 491 struct files_struct * files = tsk->files; 492 493 if (files) { 494 task_lock(tsk); 495 tsk->files = NULL; 496 task_unlock(tsk); 497 put_files_struct(files); 498 } 499 } 500 501 void exit_files(struct task_struct *tsk) 502 { 503 __exit_files(tsk); 504 } 505 506 static inline void __put_fs_struct(struct fs_struct *fs) 507 { 508 /* No need to hold fs->lock if we are killing it */ 509 if (atomic_dec_and_test(&fs->count)) { 510 dput(fs->root); 511 mntput(fs->rootmnt); 512 dput(fs->pwd); 513 mntput(fs->pwdmnt); 514 if (fs->altroot) { 515 dput(fs->altroot); 516 mntput(fs->altrootmnt); 517 } 518 kmem_cache_free(fs_cachep, fs); 519 } 520 } 521 522 void put_fs_struct(struct fs_struct *fs) 523 { 524 __put_fs_struct(fs); 525 } 526 527 static inline void __exit_fs(struct task_struct *tsk) 528 { 529 struct fs_struct * fs = tsk->fs; 530 531 if (fs) { 532 task_lock(tsk); 533 tsk->fs = NULL; 534 task_unlock(tsk); 535 __put_fs_struct(fs); 536 } 537 } 538 539 void exit_fs(struct task_struct *tsk) 540 { 541 __exit_fs(tsk); 542 } 543 544 EXPORT_SYMBOL_GPL(exit_fs); 545 546 /* 547 * Turn us into a lazy TLB process if we 548 * aren't already.. 549 */ 550 static void exit_mm(struct task_struct * tsk) 551 { 552 struct mm_struct *mm = tsk->mm; 553 554 mm_release(tsk, mm); 555 if (!mm) 556 return; 557 /* 558 * Serialize with any possible pending coredump. 559 * We must hold mmap_sem around checking core_waiters 560 * and clearing tsk->mm. The core-inducing thread 561 * will increment core_waiters for each thread in the 562 * group with ->mm != NULL. 563 */ 564 down_read(&mm->mmap_sem); 565 if (mm->core_waiters) { 566 up_read(&mm->mmap_sem); 567 down_write(&mm->mmap_sem); 568 if (!--mm->core_waiters) 569 complete(mm->core_startup_done); 570 up_write(&mm->mmap_sem); 571 572 wait_for_completion(&mm->core_done); 573 down_read(&mm->mmap_sem); 574 } 575 atomic_inc(&mm->mm_count); 576 BUG_ON(mm != tsk->active_mm); 577 /* more a memory barrier than a real lock */ 578 task_lock(tsk); 579 tsk->mm = NULL; 580 up_read(&mm->mmap_sem); 581 enter_lazy_tlb(mm, current); 582 task_unlock(tsk); 583 mmput(mm); 584 } 585 586 static inline void 587 choose_new_parent(struct task_struct *p, struct task_struct *reaper) 588 { 589 /* 590 * Make sure we're not reparenting to ourselves and that 591 * the parent is not a zombie. 592 */ 593 BUG_ON(p == reaper || reaper->exit_state); 594 p->real_parent = reaper; 595 } 596 597 static void 598 reparent_thread(struct task_struct *p, struct task_struct *father, int traced) 599 { 600 /* We don't want people slaying init. */ 601 if (p->exit_signal != -1) 602 p->exit_signal = SIGCHLD; 603 604 if (p->pdeath_signal) 605 /* We already hold the tasklist_lock here. */ 606 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 607 608 /* Move the child from its dying parent to the new one. */ 609 if (unlikely(traced)) { 610 /* Preserve ptrace links if someone else is tracing this child. */ 611 list_del_init(&p->ptrace_list); 612 if (p->parent != p->real_parent) 613 list_add(&p->ptrace_list, &p->real_parent->ptrace_children); 614 } else { 615 /* If this child is being traced, then we're the one tracing it 616 * anyway, so let go of it. 617 */ 618 p->ptrace = 0; 619 remove_parent(p); 620 p->parent = p->real_parent; 621 add_parent(p); 622 623 /* If we'd notified the old parent about this child's death, 624 * also notify the new parent. 625 */ 626 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && 627 thread_group_empty(p)) 628 do_notify_parent(p, p->exit_signal); 629 else if (p->state == TASK_TRACED) { 630 /* 631 * If it was at a trace stop, turn it into 632 * a normal stop since it's no longer being 633 * traced. 634 */ 635 ptrace_untrace(p); 636 } 637 } 638 639 /* 640 * process group orphan check 641 * Case ii: Our child is in a different pgrp 642 * than we are, and it was the only connection 643 * outside, so the child pgrp is now orphaned. 644 */ 645 if ((process_group(p) != process_group(father)) && 646 (process_session(p) == process_session(father))) { 647 int pgrp = process_group(p); 648 649 if (will_become_orphaned_pgrp(pgrp, NULL) && 650 has_stopped_jobs(pgrp)) { 651 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp); 652 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp); 653 } 654 } 655 } 656 657 /* 658 * When we die, we re-parent all our children. 659 * Try to give them to another thread in our thread 660 * group, and if no such member exists, give it to 661 * the child reaper process (ie "init") in our pid 662 * space. 663 */ 664 static void 665 forget_original_parent(struct task_struct *father, struct list_head *to_release) 666 { 667 struct task_struct *p, *reaper = father; 668 struct list_head *_p, *_n; 669 670 do { 671 reaper = next_thread(reaper); 672 if (reaper == father) { 673 reaper = child_reaper(father); 674 break; 675 } 676 } while (reaper->exit_state); 677 678 /* 679 * There are only two places where our children can be: 680 * 681 * - in our child list 682 * - in our ptraced child list 683 * 684 * Search them and reparent children. 685 */ 686 list_for_each_safe(_p, _n, &father->children) { 687 int ptrace; 688 p = list_entry(_p, struct task_struct, sibling); 689 690 ptrace = p->ptrace; 691 692 /* if father isn't the real parent, then ptrace must be enabled */ 693 BUG_ON(father != p->real_parent && !ptrace); 694 695 if (father == p->real_parent) { 696 /* reparent with a reaper, real father it's us */ 697 choose_new_parent(p, reaper); 698 reparent_thread(p, father, 0); 699 } else { 700 /* reparent ptraced task to its real parent */ 701 __ptrace_unlink (p); 702 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && 703 thread_group_empty(p)) 704 do_notify_parent(p, p->exit_signal); 705 } 706 707 /* 708 * if the ptraced child is a zombie with exit_signal == -1 709 * we must collect it before we exit, or it will remain 710 * zombie forever since we prevented it from self-reap itself 711 * while it was being traced by us, to be able to see it in wait4. 712 */ 713 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) 714 list_add(&p->ptrace_list, to_release); 715 } 716 list_for_each_safe(_p, _n, &father->ptrace_children) { 717 p = list_entry(_p, struct task_struct, ptrace_list); 718 choose_new_parent(p, reaper); 719 reparent_thread(p, father, 1); 720 } 721 } 722 723 /* 724 * Send signals to all our closest relatives so that they know 725 * to properly mourn us.. 726 */ 727 static void exit_notify(struct task_struct *tsk) 728 { 729 int state; 730 struct task_struct *t; 731 struct list_head ptrace_dead, *_p, *_n; 732 733 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT) 734 && !thread_group_empty(tsk)) { 735 /* 736 * This occurs when there was a race between our exit 737 * syscall and a group signal choosing us as the one to 738 * wake up. It could be that we are the only thread 739 * alerted to check for pending signals, but another thread 740 * should be woken now to take the signal since we will not. 741 * Now we'll wake all the threads in the group just to make 742 * sure someone gets all the pending signals. 743 */ 744 read_lock(&tasklist_lock); 745 spin_lock_irq(&tsk->sighand->siglock); 746 for (t = next_thread(tsk); t != tsk; t = next_thread(t)) 747 if (!signal_pending(t) && !(t->flags & PF_EXITING)) { 748 recalc_sigpending_tsk(t); 749 if (signal_pending(t)) 750 signal_wake_up(t, 0); 751 } 752 spin_unlock_irq(&tsk->sighand->siglock); 753 read_unlock(&tasklist_lock); 754 } 755 756 write_lock_irq(&tasklist_lock); 757 758 /* 759 * This does two things: 760 * 761 * A. Make init inherit all the child processes 762 * B. Check to see if any process groups have become orphaned 763 * as a result of our exiting, and if they have any stopped 764 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 765 */ 766 767 INIT_LIST_HEAD(&ptrace_dead); 768 forget_original_parent(tsk, &ptrace_dead); 769 BUG_ON(!list_empty(&tsk->children)); 770 BUG_ON(!list_empty(&tsk->ptrace_children)); 771 772 /* 773 * Check to see if any process groups have become orphaned 774 * as a result of our exiting, and if they have any stopped 775 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 776 * 777 * Case i: Our father is in a different pgrp than we are 778 * and we were the only connection outside, so our pgrp 779 * is about to become orphaned. 780 */ 781 782 t = tsk->real_parent; 783 784 if ((process_group(t) != process_group(tsk)) && 785 (process_session(t) == process_session(tsk)) && 786 will_become_orphaned_pgrp(process_group(tsk), tsk) && 787 has_stopped_jobs(process_group(tsk))) { 788 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk)); 789 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk)); 790 } 791 792 /* Let father know we died 793 * 794 * Thread signals are configurable, but you aren't going to use 795 * that to send signals to arbitary processes. 796 * That stops right now. 797 * 798 * If the parent exec id doesn't match the exec id we saved 799 * when we started then we know the parent has changed security 800 * domain. 801 * 802 * If our self_exec id doesn't match our parent_exec_id then 803 * we have changed execution domain as these two values started 804 * the same after a fork. 805 * 806 */ 807 808 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && 809 ( tsk->parent_exec_id != t->self_exec_id || 810 tsk->self_exec_id != tsk->parent_exec_id) 811 && !capable(CAP_KILL)) 812 tsk->exit_signal = SIGCHLD; 813 814 815 /* If something other than our normal parent is ptracing us, then 816 * send it a SIGCHLD instead of honoring exit_signal. exit_signal 817 * only has special meaning to our real parent. 818 */ 819 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { 820 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; 821 do_notify_parent(tsk, signal); 822 } else if (tsk->ptrace) { 823 do_notify_parent(tsk, SIGCHLD); 824 } 825 826 state = EXIT_ZOMBIE; 827 if (tsk->exit_signal == -1 && 828 (likely(tsk->ptrace == 0) || 829 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT))) 830 state = EXIT_DEAD; 831 tsk->exit_state = state; 832 833 write_unlock_irq(&tasklist_lock); 834 835 list_for_each_safe(_p, _n, &ptrace_dead) { 836 list_del_init(_p); 837 t = list_entry(_p, struct task_struct, ptrace_list); 838 release_task(t); 839 } 840 841 /* If the process is dead, release it - nobody will wait for it */ 842 if (state == EXIT_DEAD) 843 release_task(tsk); 844 } 845 846 fastcall NORET_TYPE void do_exit(long code) 847 { 848 struct task_struct *tsk = current; 849 int group_dead; 850 851 profile_task_exit(tsk); 852 853 WARN_ON(atomic_read(&tsk->fs_excl)); 854 855 if (unlikely(in_interrupt())) 856 panic("Aiee, killing interrupt handler!"); 857 if (unlikely(!tsk->pid)) 858 panic("Attempted to kill the idle task!"); 859 if (unlikely(tsk == child_reaper(tsk))) { 860 if (tsk->nsproxy->pid_ns != &init_pid_ns) 861 tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper; 862 else 863 panic("Attempted to kill init!"); 864 } 865 866 867 if (unlikely(current->ptrace & PT_TRACE_EXIT)) { 868 current->ptrace_message = code; 869 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); 870 } 871 872 /* 873 * We're taking recursive faults here in do_exit. Safest is to just 874 * leave this task alone and wait for reboot. 875 */ 876 if (unlikely(tsk->flags & PF_EXITING)) { 877 printk(KERN_ALERT 878 "Fixing recursive fault but reboot is needed!\n"); 879 if (tsk->io_context) 880 exit_io_context(); 881 set_current_state(TASK_UNINTERRUPTIBLE); 882 schedule(); 883 } 884 885 tsk->flags |= PF_EXITING; 886 887 if (unlikely(in_atomic())) 888 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 889 current->comm, current->pid, 890 preempt_count()); 891 892 acct_update_integrals(tsk); 893 if (tsk->mm) { 894 update_hiwater_rss(tsk->mm); 895 update_hiwater_vm(tsk->mm); 896 } 897 group_dead = atomic_dec_and_test(&tsk->signal->live); 898 if (group_dead) { 899 hrtimer_cancel(&tsk->signal->real_timer); 900 exit_itimers(tsk->signal); 901 } 902 acct_collect(code, group_dead); 903 if (unlikely(tsk->robust_list)) 904 exit_robust_list(tsk); 905 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT) 906 if (unlikely(tsk->compat_robust_list)) 907 compat_exit_robust_list(tsk); 908 #endif 909 if (unlikely(tsk->audit_context)) 910 audit_free(tsk); 911 912 taskstats_exit(tsk, group_dead); 913 914 exit_mm(tsk); 915 916 if (group_dead) 917 acct_process(); 918 exit_sem(tsk); 919 __exit_files(tsk); 920 __exit_fs(tsk); 921 exit_thread(); 922 cpuset_exit(tsk); 923 exit_keys(tsk); 924 925 if (group_dead && tsk->signal->leader) 926 disassociate_ctty(1); 927 928 module_put(task_thread_info(tsk)->exec_domain->module); 929 if (tsk->binfmt) 930 module_put(tsk->binfmt->module); 931 932 tsk->exit_code = code; 933 proc_exit_connector(tsk); 934 exit_notify(tsk); 935 exit_task_namespaces(tsk); 936 #ifdef CONFIG_NUMA 937 mpol_free(tsk->mempolicy); 938 tsk->mempolicy = NULL; 939 #endif 940 /* 941 * This must happen late, after the PID is not 942 * hashed anymore: 943 */ 944 if (unlikely(!list_empty(&tsk->pi_state_list))) 945 exit_pi_state_list(tsk); 946 if (unlikely(current->pi_state_cache)) 947 kfree(current->pi_state_cache); 948 /* 949 * Make sure we are holding no locks: 950 */ 951 debug_check_no_locks_held(tsk); 952 953 if (tsk->io_context) 954 exit_io_context(); 955 956 if (tsk->splice_pipe) 957 __free_pipe_info(tsk->splice_pipe); 958 959 preempt_disable(); 960 /* causes final put_task_struct in finish_task_switch(). */ 961 tsk->state = TASK_DEAD; 962 963 schedule(); 964 BUG(); 965 /* Avoid "noreturn function does return". */ 966 for (;;) 967 cpu_relax(); /* For when BUG is null */ 968 } 969 970 EXPORT_SYMBOL_GPL(do_exit); 971 972 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 973 { 974 if (comp) 975 complete(comp); 976 977 do_exit(code); 978 } 979 980 EXPORT_SYMBOL(complete_and_exit); 981 982 asmlinkage long sys_exit(int error_code) 983 { 984 do_exit((error_code&0xff)<<8); 985 } 986 987 /* 988 * Take down every thread in the group. This is called by fatal signals 989 * as well as by sys_exit_group (below). 990 */ 991 NORET_TYPE void 992 do_group_exit(int exit_code) 993 { 994 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 995 996 if (current->signal->flags & SIGNAL_GROUP_EXIT) 997 exit_code = current->signal->group_exit_code; 998 else if (!thread_group_empty(current)) { 999 struct signal_struct *const sig = current->signal; 1000 struct sighand_struct *const sighand = current->sighand; 1001 spin_lock_irq(&sighand->siglock); 1002 if (sig->flags & SIGNAL_GROUP_EXIT) 1003 /* Another thread got here before we took the lock. */ 1004 exit_code = sig->group_exit_code; 1005 else { 1006 sig->group_exit_code = exit_code; 1007 zap_other_threads(current); 1008 } 1009 spin_unlock_irq(&sighand->siglock); 1010 } 1011 1012 do_exit(exit_code); 1013 /* NOTREACHED */ 1014 } 1015 1016 /* 1017 * this kills every thread in the thread group. Note that any externally 1018 * wait4()-ing process will get the correct exit code - even if this 1019 * thread is not the thread group leader. 1020 */ 1021 asmlinkage void sys_exit_group(int error_code) 1022 { 1023 do_group_exit((error_code & 0xff) << 8); 1024 } 1025 1026 static int eligible_child(pid_t pid, int options, struct task_struct *p) 1027 { 1028 if (pid > 0) { 1029 if (p->pid != pid) 1030 return 0; 1031 } else if (!pid) { 1032 if (process_group(p) != process_group(current)) 1033 return 0; 1034 } else if (pid != -1) { 1035 if (process_group(p) != -pid) 1036 return 0; 1037 } 1038 1039 /* 1040 * Do not consider detached threads that are 1041 * not ptraced: 1042 */ 1043 if (p->exit_signal == -1 && !p->ptrace) 1044 return 0; 1045 1046 /* Wait for all children (clone and not) if __WALL is set; 1047 * otherwise, wait for clone children *only* if __WCLONE is 1048 * set; otherwise, wait for non-clone children *only*. (Note: 1049 * A "clone" child here is one that reports to its parent 1050 * using a signal other than SIGCHLD.) */ 1051 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1052 && !(options & __WALL)) 1053 return 0; 1054 /* 1055 * Do not consider thread group leaders that are 1056 * in a non-empty thread group: 1057 */ 1058 if (delay_group_leader(p)) 1059 return 2; 1060 1061 if (security_task_wait(p)) 1062 return 0; 1063 1064 return 1; 1065 } 1066 1067 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1068 int why, int status, 1069 struct siginfo __user *infop, 1070 struct rusage __user *rusagep) 1071 { 1072 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1073 1074 put_task_struct(p); 1075 if (!retval) 1076 retval = put_user(SIGCHLD, &infop->si_signo); 1077 if (!retval) 1078 retval = put_user(0, &infop->si_errno); 1079 if (!retval) 1080 retval = put_user((short)why, &infop->si_code); 1081 if (!retval) 1082 retval = put_user(pid, &infop->si_pid); 1083 if (!retval) 1084 retval = put_user(uid, &infop->si_uid); 1085 if (!retval) 1086 retval = put_user(status, &infop->si_status); 1087 if (!retval) 1088 retval = pid; 1089 return retval; 1090 } 1091 1092 /* 1093 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1094 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1095 * the lock and this task is uninteresting. If we return nonzero, we have 1096 * released the lock and the system call should return. 1097 */ 1098 static int wait_task_zombie(struct task_struct *p, int noreap, 1099 struct siginfo __user *infop, 1100 int __user *stat_addr, struct rusage __user *ru) 1101 { 1102 unsigned long state; 1103 int retval; 1104 int status; 1105 1106 if (unlikely(noreap)) { 1107 pid_t pid = p->pid; 1108 uid_t uid = p->uid; 1109 int exit_code = p->exit_code; 1110 int why, status; 1111 1112 if (unlikely(p->exit_state != EXIT_ZOMBIE)) 1113 return 0; 1114 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) 1115 return 0; 1116 get_task_struct(p); 1117 read_unlock(&tasklist_lock); 1118 if ((exit_code & 0x7f) == 0) { 1119 why = CLD_EXITED; 1120 status = exit_code >> 8; 1121 } else { 1122 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1123 status = exit_code & 0x7f; 1124 } 1125 return wait_noreap_copyout(p, pid, uid, why, 1126 status, infop, ru); 1127 } 1128 1129 /* 1130 * Try to move the task's state to DEAD 1131 * only one thread is allowed to do this: 1132 */ 1133 state = xchg(&p->exit_state, EXIT_DEAD); 1134 if (state != EXIT_ZOMBIE) { 1135 BUG_ON(state != EXIT_DEAD); 1136 return 0; 1137 } 1138 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) { 1139 /* 1140 * This can only happen in a race with a ptraced thread 1141 * dying on another processor. 1142 */ 1143 return 0; 1144 } 1145 1146 if (likely(p->real_parent == p->parent) && likely(p->signal)) { 1147 struct signal_struct *psig; 1148 struct signal_struct *sig; 1149 1150 /* 1151 * The resource counters for the group leader are in its 1152 * own task_struct. Those for dead threads in the group 1153 * are in its signal_struct, as are those for the child 1154 * processes it has previously reaped. All these 1155 * accumulate in the parent's signal_struct c* fields. 1156 * 1157 * We don't bother to take a lock here to protect these 1158 * p->signal fields, because they are only touched by 1159 * __exit_signal, which runs with tasklist_lock 1160 * write-locked anyway, and so is excluded here. We do 1161 * need to protect the access to p->parent->signal fields, 1162 * as other threads in the parent group can be right 1163 * here reaping other children at the same time. 1164 */ 1165 spin_lock_irq(&p->parent->sighand->siglock); 1166 psig = p->parent->signal; 1167 sig = p->signal; 1168 psig->cutime = 1169 cputime_add(psig->cutime, 1170 cputime_add(p->utime, 1171 cputime_add(sig->utime, 1172 sig->cutime))); 1173 psig->cstime = 1174 cputime_add(psig->cstime, 1175 cputime_add(p->stime, 1176 cputime_add(sig->stime, 1177 sig->cstime))); 1178 psig->cmin_flt += 1179 p->min_flt + sig->min_flt + sig->cmin_flt; 1180 psig->cmaj_flt += 1181 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1182 psig->cnvcsw += 1183 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1184 psig->cnivcsw += 1185 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1186 spin_unlock_irq(&p->parent->sighand->siglock); 1187 } 1188 1189 /* 1190 * Now we are sure this task is interesting, and no other 1191 * thread can reap it because we set its state to EXIT_DEAD. 1192 */ 1193 read_unlock(&tasklist_lock); 1194 1195 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1196 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1197 ? p->signal->group_exit_code : p->exit_code; 1198 if (!retval && stat_addr) 1199 retval = put_user(status, stat_addr); 1200 if (!retval && infop) 1201 retval = put_user(SIGCHLD, &infop->si_signo); 1202 if (!retval && infop) 1203 retval = put_user(0, &infop->si_errno); 1204 if (!retval && infop) { 1205 int why; 1206 1207 if ((status & 0x7f) == 0) { 1208 why = CLD_EXITED; 1209 status >>= 8; 1210 } else { 1211 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1212 status &= 0x7f; 1213 } 1214 retval = put_user((short)why, &infop->si_code); 1215 if (!retval) 1216 retval = put_user(status, &infop->si_status); 1217 } 1218 if (!retval && infop) 1219 retval = put_user(p->pid, &infop->si_pid); 1220 if (!retval && infop) 1221 retval = put_user(p->uid, &infop->si_uid); 1222 if (retval) { 1223 // TODO: is this safe? 1224 p->exit_state = EXIT_ZOMBIE; 1225 return retval; 1226 } 1227 retval = p->pid; 1228 if (p->real_parent != p->parent) { 1229 write_lock_irq(&tasklist_lock); 1230 /* Double-check with lock held. */ 1231 if (p->real_parent != p->parent) { 1232 __ptrace_unlink(p); 1233 // TODO: is this safe? 1234 p->exit_state = EXIT_ZOMBIE; 1235 /* 1236 * If this is not a detached task, notify the parent. 1237 * If it's still not detached after that, don't release 1238 * it now. 1239 */ 1240 if (p->exit_signal != -1) { 1241 do_notify_parent(p, p->exit_signal); 1242 if (p->exit_signal != -1) 1243 p = NULL; 1244 } 1245 } 1246 write_unlock_irq(&tasklist_lock); 1247 } 1248 if (p != NULL) 1249 release_task(p); 1250 BUG_ON(!retval); 1251 return retval; 1252 } 1253 1254 /* 1255 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1256 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1257 * the lock and this task is uninteresting. If we return nonzero, we have 1258 * released the lock and the system call should return. 1259 */ 1260 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader, 1261 int noreap, struct siginfo __user *infop, 1262 int __user *stat_addr, struct rusage __user *ru) 1263 { 1264 int retval, exit_code; 1265 1266 if (!p->exit_code) 1267 return 0; 1268 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) && 1269 p->signal && p->signal->group_stop_count > 0) 1270 /* 1271 * A group stop is in progress and this is the group leader. 1272 * We won't report until all threads have stopped. 1273 */ 1274 return 0; 1275 1276 /* 1277 * Now we are pretty sure this task is interesting. 1278 * Make sure it doesn't get reaped out from under us while we 1279 * give up the lock and then examine it below. We don't want to 1280 * keep holding onto the tasklist_lock while we call getrusage and 1281 * possibly take page faults for user memory. 1282 */ 1283 get_task_struct(p); 1284 read_unlock(&tasklist_lock); 1285 1286 if (unlikely(noreap)) { 1287 pid_t pid = p->pid; 1288 uid_t uid = p->uid; 1289 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; 1290 1291 exit_code = p->exit_code; 1292 if (unlikely(!exit_code) || 1293 unlikely(p->state & TASK_TRACED)) 1294 goto bail_ref; 1295 return wait_noreap_copyout(p, pid, uid, 1296 why, (exit_code << 8) | 0x7f, 1297 infop, ru); 1298 } 1299 1300 write_lock_irq(&tasklist_lock); 1301 1302 /* 1303 * This uses xchg to be atomic with the thread resuming and setting 1304 * it. It must also be done with the write lock held to prevent a 1305 * race with the EXIT_ZOMBIE case. 1306 */ 1307 exit_code = xchg(&p->exit_code, 0); 1308 if (unlikely(p->exit_state)) { 1309 /* 1310 * The task resumed and then died. Let the next iteration 1311 * catch it in EXIT_ZOMBIE. Note that exit_code might 1312 * already be zero here if it resumed and did _exit(0). 1313 * The task itself is dead and won't touch exit_code again; 1314 * other processors in this function are locked out. 1315 */ 1316 p->exit_code = exit_code; 1317 exit_code = 0; 1318 } 1319 if (unlikely(exit_code == 0)) { 1320 /* 1321 * Another thread in this function got to it first, or it 1322 * resumed, or it resumed and then died. 1323 */ 1324 write_unlock_irq(&tasklist_lock); 1325 bail_ref: 1326 put_task_struct(p); 1327 /* 1328 * We are returning to the wait loop without having successfully 1329 * removed the process and having released the lock. We cannot 1330 * continue, since the "p" task pointer is potentially stale. 1331 * 1332 * Return -EAGAIN, and do_wait() will restart the loop from the 1333 * beginning. Do _not_ re-acquire the lock. 1334 */ 1335 return -EAGAIN; 1336 } 1337 1338 /* move to end of parent's list to avoid starvation */ 1339 remove_parent(p); 1340 add_parent(p); 1341 1342 write_unlock_irq(&tasklist_lock); 1343 1344 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1345 if (!retval && stat_addr) 1346 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1347 if (!retval && infop) 1348 retval = put_user(SIGCHLD, &infop->si_signo); 1349 if (!retval && infop) 1350 retval = put_user(0, &infop->si_errno); 1351 if (!retval && infop) 1352 retval = put_user((short)((p->ptrace & PT_PTRACED) 1353 ? CLD_TRAPPED : CLD_STOPPED), 1354 &infop->si_code); 1355 if (!retval && infop) 1356 retval = put_user(exit_code, &infop->si_status); 1357 if (!retval && infop) 1358 retval = put_user(p->pid, &infop->si_pid); 1359 if (!retval && infop) 1360 retval = put_user(p->uid, &infop->si_uid); 1361 if (!retval) 1362 retval = p->pid; 1363 put_task_struct(p); 1364 1365 BUG_ON(!retval); 1366 return retval; 1367 } 1368 1369 /* 1370 * Handle do_wait work for one task in a live, non-stopped state. 1371 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1372 * the lock and this task is uninteresting. If we return nonzero, we have 1373 * released the lock and the system call should return. 1374 */ 1375 static int wait_task_continued(struct task_struct *p, int noreap, 1376 struct siginfo __user *infop, 1377 int __user *stat_addr, struct rusage __user *ru) 1378 { 1379 int retval; 1380 pid_t pid; 1381 uid_t uid; 1382 1383 if (unlikely(!p->signal)) 1384 return 0; 1385 1386 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1387 return 0; 1388 1389 spin_lock_irq(&p->sighand->siglock); 1390 /* Re-check with the lock held. */ 1391 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1392 spin_unlock_irq(&p->sighand->siglock); 1393 return 0; 1394 } 1395 if (!noreap) 1396 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1397 spin_unlock_irq(&p->sighand->siglock); 1398 1399 pid = p->pid; 1400 uid = p->uid; 1401 get_task_struct(p); 1402 read_unlock(&tasklist_lock); 1403 1404 if (!infop) { 1405 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1406 put_task_struct(p); 1407 if (!retval && stat_addr) 1408 retval = put_user(0xffff, stat_addr); 1409 if (!retval) 1410 retval = p->pid; 1411 } else { 1412 retval = wait_noreap_copyout(p, pid, uid, 1413 CLD_CONTINUED, SIGCONT, 1414 infop, ru); 1415 BUG_ON(retval == 0); 1416 } 1417 1418 return retval; 1419 } 1420 1421 1422 static inline int my_ptrace_child(struct task_struct *p) 1423 { 1424 if (!(p->ptrace & PT_PTRACED)) 1425 return 0; 1426 if (!(p->ptrace & PT_ATTACHED)) 1427 return 1; 1428 /* 1429 * This child was PTRACE_ATTACH'd. We should be seeing it only if 1430 * we are the attacher. If we are the real parent, this is a race 1431 * inside ptrace_attach. It is waiting for the tasklist_lock, 1432 * which we have to switch the parent links, but has already set 1433 * the flags in p->ptrace. 1434 */ 1435 return (p->parent != p->real_parent); 1436 } 1437 1438 static long do_wait(pid_t pid, int options, struct siginfo __user *infop, 1439 int __user *stat_addr, struct rusage __user *ru) 1440 { 1441 DECLARE_WAITQUEUE(wait, current); 1442 struct task_struct *tsk; 1443 int flag, retval; 1444 1445 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1446 repeat: 1447 /* 1448 * We will set this flag if we see any child that might later 1449 * match our criteria, even if we are not able to reap it yet. 1450 */ 1451 flag = 0; 1452 current->state = TASK_INTERRUPTIBLE; 1453 read_lock(&tasklist_lock); 1454 tsk = current; 1455 do { 1456 struct task_struct *p; 1457 struct list_head *_p; 1458 int ret; 1459 1460 list_for_each(_p,&tsk->children) { 1461 p = list_entry(_p, struct task_struct, sibling); 1462 1463 ret = eligible_child(pid, options, p); 1464 if (!ret) 1465 continue; 1466 1467 switch (p->state) { 1468 case TASK_TRACED: 1469 /* 1470 * When we hit the race with PTRACE_ATTACH, 1471 * we will not report this child. But the 1472 * race means it has not yet been moved to 1473 * our ptrace_children list, so we need to 1474 * set the flag here to avoid a spurious ECHILD 1475 * when the race happens with the only child. 1476 */ 1477 flag = 1; 1478 if (!my_ptrace_child(p)) 1479 continue; 1480 /*FALLTHROUGH*/ 1481 case TASK_STOPPED: 1482 /* 1483 * It's stopped now, so it might later 1484 * continue, exit, or stop again. 1485 */ 1486 flag = 1; 1487 if (!(options & WUNTRACED) && 1488 !my_ptrace_child(p)) 1489 continue; 1490 retval = wait_task_stopped(p, ret == 2, 1491 (options & WNOWAIT), 1492 infop, 1493 stat_addr, ru); 1494 if (retval == -EAGAIN) 1495 goto repeat; 1496 if (retval != 0) /* He released the lock. */ 1497 goto end; 1498 break; 1499 default: 1500 // case EXIT_DEAD: 1501 if (p->exit_state == EXIT_DEAD) 1502 continue; 1503 // case EXIT_ZOMBIE: 1504 if (p->exit_state == EXIT_ZOMBIE) { 1505 /* 1506 * Eligible but we cannot release 1507 * it yet: 1508 */ 1509 if (ret == 2) 1510 goto check_continued; 1511 if (!likely(options & WEXITED)) 1512 continue; 1513 retval = wait_task_zombie( 1514 p, (options & WNOWAIT), 1515 infop, stat_addr, ru); 1516 /* He released the lock. */ 1517 if (retval != 0) 1518 goto end; 1519 break; 1520 } 1521 check_continued: 1522 /* 1523 * It's running now, so it might later 1524 * exit, stop, or stop and then continue. 1525 */ 1526 flag = 1; 1527 if (!unlikely(options & WCONTINUED)) 1528 continue; 1529 retval = wait_task_continued( 1530 p, (options & WNOWAIT), 1531 infop, stat_addr, ru); 1532 if (retval != 0) /* He released the lock. */ 1533 goto end; 1534 break; 1535 } 1536 } 1537 if (!flag) { 1538 list_for_each(_p, &tsk->ptrace_children) { 1539 p = list_entry(_p, struct task_struct, 1540 ptrace_list); 1541 if (!eligible_child(pid, options, p)) 1542 continue; 1543 flag = 1; 1544 break; 1545 } 1546 } 1547 if (options & __WNOTHREAD) 1548 break; 1549 tsk = next_thread(tsk); 1550 BUG_ON(tsk->signal != current->signal); 1551 } while (tsk != current); 1552 1553 read_unlock(&tasklist_lock); 1554 if (flag) { 1555 retval = 0; 1556 if (options & WNOHANG) 1557 goto end; 1558 retval = -ERESTARTSYS; 1559 if (signal_pending(current)) 1560 goto end; 1561 schedule(); 1562 goto repeat; 1563 } 1564 retval = -ECHILD; 1565 end: 1566 current->state = TASK_RUNNING; 1567 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1568 if (infop) { 1569 if (retval > 0) 1570 retval = 0; 1571 else { 1572 /* 1573 * For a WNOHANG return, clear out all the fields 1574 * we would set so the user can easily tell the 1575 * difference. 1576 */ 1577 if (!retval) 1578 retval = put_user(0, &infop->si_signo); 1579 if (!retval) 1580 retval = put_user(0, &infop->si_errno); 1581 if (!retval) 1582 retval = put_user(0, &infop->si_code); 1583 if (!retval) 1584 retval = put_user(0, &infop->si_pid); 1585 if (!retval) 1586 retval = put_user(0, &infop->si_uid); 1587 if (!retval) 1588 retval = put_user(0, &infop->si_status); 1589 } 1590 } 1591 return retval; 1592 } 1593 1594 asmlinkage long sys_waitid(int which, pid_t pid, 1595 struct siginfo __user *infop, int options, 1596 struct rusage __user *ru) 1597 { 1598 long ret; 1599 1600 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1601 return -EINVAL; 1602 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1603 return -EINVAL; 1604 1605 switch (which) { 1606 case P_ALL: 1607 pid = -1; 1608 break; 1609 case P_PID: 1610 if (pid <= 0) 1611 return -EINVAL; 1612 break; 1613 case P_PGID: 1614 if (pid <= 0) 1615 return -EINVAL; 1616 pid = -pid; 1617 break; 1618 default: 1619 return -EINVAL; 1620 } 1621 1622 ret = do_wait(pid, options, infop, NULL, ru); 1623 1624 /* avoid REGPARM breakage on x86: */ 1625 prevent_tail_call(ret); 1626 return ret; 1627 } 1628 1629 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr, 1630 int options, struct rusage __user *ru) 1631 { 1632 long ret; 1633 1634 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1635 __WNOTHREAD|__WCLONE|__WALL)) 1636 return -EINVAL; 1637 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru); 1638 1639 /* avoid REGPARM breakage on x86: */ 1640 prevent_tail_call(ret); 1641 return ret; 1642 } 1643 1644 #ifdef __ARCH_WANT_SYS_WAITPID 1645 1646 /* 1647 * sys_waitpid() remains for compatibility. waitpid() should be 1648 * implemented by calling sys_wait4() from libc.a. 1649 */ 1650 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1651 { 1652 return sys_wait4(pid, stat_addr, options, NULL); 1653 } 1654 1655 #endif 1656