xref: /linux/kernel/exit.c (revision 979bb59016aed7c7c58baca2307d9d13890cc6ab)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 
71 #include <linux/uaccess.h>
72 #include <asm/unistd.h>
73 #include <asm/mmu_context.h>
74 
75 static void __unhash_process(struct task_struct *p, bool group_dead)
76 {
77 	nr_threads--;
78 	detach_pid(p, PIDTYPE_PID);
79 	if (group_dead) {
80 		detach_pid(p, PIDTYPE_TGID);
81 		detach_pid(p, PIDTYPE_PGID);
82 		detach_pid(p, PIDTYPE_SID);
83 
84 		list_del_rcu(&p->tasks);
85 		list_del_init(&p->sibling);
86 		__this_cpu_dec(process_counts);
87 	}
88 	list_del_rcu(&p->thread_group);
89 	list_del_rcu(&p->thread_node);
90 }
91 
92 /*
93  * This function expects the tasklist_lock write-locked.
94  */
95 static void __exit_signal(struct task_struct *tsk)
96 {
97 	struct signal_struct *sig = tsk->signal;
98 	bool group_dead = thread_group_leader(tsk);
99 	struct sighand_struct *sighand;
100 	struct tty_struct *tty;
101 	u64 utime, stime;
102 
103 	sighand = rcu_dereference_check(tsk->sighand,
104 					lockdep_tasklist_lock_is_held());
105 	spin_lock(&sighand->siglock);
106 
107 #ifdef CONFIG_POSIX_TIMERS
108 	posix_cpu_timers_exit(tsk);
109 	if (group_dead)
110 		posix_cpu_timers_exit_group(tsk);
111 #endif
112 
113 	if (group_dead) {
114 		tty = sig->tty;
115 		sig->tty = NULL;
116 	} else {
117 		/*
118 		 * If there is any task waiting for the group exit
119 		 * then notify it:
120 		 */
121 		if (sig->notify_count > 0 && !--sig->notify_count)
122 			wake_up_process(sig->group_exec_task);
123 
124 		if (tsk == sig->curr_target)
125 			sig->curr_target = next_thread(tsk);
126 	}
127 
128 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
129 			      sizeof(unsigned long long));
130 
131 	/*
132 	 * Accumulate here the counters for all threads as they die. We could
133 	 * skip the group leader because it is the last user of signal_struct,
134 	 * but we want to avoid the race with thread_group_cputime() which can
135 	 * see the empty ->thread_head list.
136 	 */
137 	task_cputime(tsk, &utime, &stime);
138 	write_seqlock(&sig->stats_lock);
139 	sig->utime += utime;
140 	sig->stime += stime;
141 	sig->gtime += task_gtime(tsk);
142 	sig->min_flt += tsk->min_flt;
143 	sig->maj_flt += tsk->maj_flt;
144 	sig->nvcsw += tsk->nvcsw;
145 	sig->nivcsw += tsk->nivcsw;
146 	sig->inblock += task_io_get_inblock(tsk);
147 	sig->oublock += task_io_get_oublock(tsk);
148 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
149 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
150 	sig->nr_threads--;
151 	__unhash_process(tsk, group_dead);
152 	write_sequnlock(&sig->stats_lock);
153 
154 	/*
155 	 * Do this under ->siglock, we can race with another thread
156 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
157 	 */
158 	flush_sigqueue(&tsk->pending);
159 	tsk->sighand = NULL;
160 	spin_unlock(&sighand->siglock);
161 
162 	__cleanup_sighand(sighand);
163 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
164 	if (group_dead) {
165 		flush_sigqueue(&sig->shared_pending);
166 		tty_kref_put(tty);
167 	}
168 }
169 
170 static void delayed_put_task_struct(struct rcu_head *rhp)
171 {
172 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
173 
174 	kprobe_flush_task(tsk);
175 	rethook_flush_task(tsk);
176 	perf_event_delayed_put(tsk);
177 	trace_sched_process_free(tsk);
178 	put_task_struct(tsk);
179 }
180 
181 void put_task_struct_rcu_user(struct task_struct *task)
182 {
183 	if (refcount_dec_and_test(&task->rcu_users))
184 		call_rcu(&task->rcu, delayed_put_task_struct);
185 }
186 
187 void release_task(struct task_struct *p)
188 {
189 	struct task_struct *leader;
190 	struct pid *thread_pid;
191 	int zap_leader;
192 repeat:
193 	/* don't need to get the RCU readlock here - the process is dead and
194 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
195 	rcu_read_lock();
196 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
197 	rcu_read_unlock();
198 
199 	cgroup_release(p);
200 
201 	write_lock_irq(&tasklist_lock);
202 	ptrace_release_task(p);
203 	thread_pid = get_pid(p->thread_pid);
204 	__exit_signal(p);
205 
206 	/*
207 	 * If we are the last non-leader member of the thread
208 	 * group, and the leader is zombie, then notify the
209 	 * group leader's parent process. (if it wants notification.)
210 	 */
211 	zap_leader = 0;
212 	leader = p->group_leader;
213 	if (leader != p && thread_group_empty(leader)
214 			&& leader->exit_state == EXIT_ZOMBIE) {
215 		/*
216 		 * If we were the last child thread and the leader has
217 		 * exited already, and the leader's parent ignores SIGCHLD,
218 		 * then we are the one who should release the leader.
219 		 */
220 		zap_leader = do_notify_parent(leader, leader->exit_signal);
221 		if (zap_leader)
222 			leader->exit_state = EXIT_DEAD;
223 	}
224 
225 	write_unlock_irq(&tasklist_lock);
226 	seccomp_filter_release(p);
227 	proc_flush_pid(thread_pid);
228 	put_pid(thread_pid);
229 	release_thread(p);
230 	put_task_struct_rcu_user(p);
231 
232 	p = leader;
233 	if (unlikely(zap_leader))
234 		goto repeat;
235 }
236 
237 int rcuwait_wake_up(struct rcuwait *w)
238 {
239 	int ret = 0;
240 	struct task_struct *task;
241 
242 	rcu_read_lock();
243 
244 	/*
245 	 * Order condition vs @task, such that everything prior to the load
246 	 * of @task is visible. This is the condition as to why the user called
247 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
248 	 * barrier (A) in rcuwait_wait_event().
249 	 *
250 	 *    WAIT                WAKE
251 	 *    [S] tsk = current	  [S] cond = true
252 	 *        MB (A)	      MB (B)
253 	 *    [L] cond		  [L] tsk
254 	 */
255 	smp_mb(); /* (B) */
256 
257 	task = rcu_dereference(w->task);
258 	if (task)
259 		ret = wake_up_process(task);
260 	rcu_read_unlock();
261 
262 	return ret;
263 }
264 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
265 
266 /*
267  * Determine if a process group is "orphaned", according to the POSIX
268  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
269  * by terminal-generated stop signals.  Newly orphaned process groups are
270  * to receive a SIGHUP and a SIGCONT.
271  *
272  * "I ask you, have you ever known what it is to be an orphan?"
273  */
274 static int will_become_orphaned_pgrp(struct pid *pgrp,
275 					struct task_struct *ignored_task)
276 {
277 	struct task_struct *p;
278 
279 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
280 		if ((p == ignored_task) ||
281 		    (p->exit_state && thread_group_empty(p)) ||
282 		    is_global_init(p->real_parent))
283 			continue;
284 
285 		if (task_pgrp(p->real_parent) != pgrp &&
286 		    task_session(p->real_parent) == task_session(p))
287 			return 0;
288 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
289 
290 	return 1;
291 }
292 
293 int is_current_pgrp_orphaned(void)
294 {
295 	int retval;
296 
297 	read_lock(&tasklist_lock);
298 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
299 	read_unlock(&tasklist_lock);
300 
301 	return retval;
302 }
303 
304 static bool has_stopped_jobs(struct pid *pgrp)
305 {
306 	struct task_struct *p;
307 
308 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
309 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
310 			return true;
311 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
312 
313 	return false;
314 }
315 
316 /*
317  * Check to see if any process groups have become orphaned as
318  * a result of our exiting, and if they have any stopped jobs,
319  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
320  */
321 static void
322 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
323 {
324 	struct pid *pgrp = task_pgrp(tsk);
325 	struct task_struct *ignored_task = tsk;
326 
327 	if (!parent)
328 		/* exit: our father is in a different pgrp than
329 		 * we are and we were the only connection outside.
330 		 */
331 		parent = tsk->real_parent;
332 	else
333 		/* reparent: our child is in a different pgrp than
334 		 * we are, and it was the only connection outside.
335 		 */
336 		ignored_task = NULL;
337 
338 	if (task_pgrp(parent) != pgrp &&
339 	    task_session(parent) == task_session(tsk) &&
340 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
341 	    has_stopped_jobs(pgrp)) {
342 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
343 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
344 	}
345 }
346 
347 static void coredump_task_exit(struct task_struct *tsk)
348 {
349 	struct core_state *core_state;
350 
351 	/*
352 	 * Serialize with any possible pending coredump.
353 	 * We must hold siglock around checking core_state
354 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
355 	 * will increment ->nr_threads for each thread in the
356 	 * group without PF_POSTCOREDUMP set.
357 	 */
358 	spin_lock_irq(&tsk->sighand->siglock);
359 	tsk->flags |= PF_POSTCOREDUMP;
360 	core_state = tsk->signal->core_state;
361 	spin_unlock_irq(&tsk->sighand->siglock);
362 	if (core_state) {
363 		struct core_thread self;
364 
365 		self.task = current;
366 		if (self.task->flags & PF_SIGNALED)
367 			self.next = xchg(&core_state->dumper.next, &self);
368 		else
369 			self.task = NULL;
370 		/*
371 		 * Implies mb(), the result of xchg() must be visible
372 		 * to core_state->dumper.
373 		 */
374 		if (atomic_dec_and_test(&core_state->nr_threads))
375 			complete(&core_state->startup);
376 
377 		for (;;) {
378 			set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
379 			if (!self.task) /* see coredump_finish() */
380 				break;
381 			schedule();
382 		}
383 		__set_current_state(TASK_RUNNING);
384 	}
385 }
386 
387 #ifdef CONFIG_MEMCG
388 /*
389  * A task is exiting.   If it owned this mm, find a new owner for the mm.
390  */
391 void mm_update_next_owner(struct mm_struct *mm)
392 {
393 	struct task_struct *c, *g, *p = current;
394 
395 retry:
396 	/*
397 	 * If the exiting or execing task is not the owner, it's
398 	 * someone else's problem.
399 	 */
400 	if (mm->owner != p)
401 		return;
402 	/*
403 	 * The current owner is exiting/execing and there are no other
404 	 * candidates.  Do not leave the mm pointing to a possibly
405 	 * freed task structure.
406 	 */
407 	if (atomic_read(&mm->mm_users) <= 1) {
408 		WRITE_ONCE(mm->owner, NULL);
409 		return;
410 	}
411 
412 	read_lock(&tasklist_lock);
413 	/*
414 	 * Search in the children
415 	 */
416 	list_for_each_entry(c, &p->children, sibling) {
417 		if (c->mm == mm)
418 			goto assign_new_owner;
419 	}
420 
421 	/*
422 	 * Search in the siblings
423 	 */
424 	list_for_each_entry(c, &p->real_parent->children, sibling) {
425 		if (c->mm == mm)
426 			goto assign_new_owner;
427 	}
428 
429 	/*
430 	 * Search through everything else, we should not get here often.
431 	 */
432 	for_each_process(g) {
433 		if (g->flags & PF_KTHREAD)
434 			continue;
435 		for_each_thread(g, c) {
436 			if (c->mm == mm)
437 				goto assign_new_owner;
438 			if (c->mm)
439 				break;
440 		}
441 	}
442 	read_unlock(&tasklist_lock);
443 	/*
444 	 * We found no owner yet mm_users > 1: this implies that we are
445 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
446 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
447 	 */
448 	WRITE_ONCE(mm->owner, NULL);
449 	return;
450 
451 assign_new_owner:
452 	BUG_ON(c == p);
453 	get_task_struct(c);
454 	/*
455 	 * The task_lock protects c->mm from changing.
456 	 * We always want mm->owner->mm == mm
457 	 */
458 	task_lock(c);
459 	/*
460 	 * Delay read_unlock() till we have the task_lock()
461 	 * to ensure that c does not slip away underneath us
462 	 */
463 	read_unlock(&tasklist_lock);
464 	if (c->mm != mm) {
465 		task_unlock(c);
466 		put_task_struct(c);
467 		goto retry;
468 	}
469 	WRITE_ONCE(mm->owner, c);
470 	lru_gen_migrate_mm(mm);
471 	task_unlock(c);
472 	put_task_struct(c);
473 }
474 #endif /* CONFIG_MEMCG */
475 
476 /*
477  * Turn us into a lazy TLB process if we
478  * aren't already..
479  */
480 static void exit_mm(void)
481 {
482 	struct mm_struct *mm = current->mm;
483 
484 	exit_mm_release(current, mm);
485 	if (!mm)
486 		return;
487 	sync_mm_rss(mm);
488 	mmap_read_lock(mm);
489 	mmgrab(mm);
490 	BUG_ON(mm != current->active_mm);
491 	/* more a memory barrier than a real lock */
492 	task_lock(current);
493 	/*
494 	 * When a thread stops operating on an address space, the loop
495 	 * in membarrier_private_expedited() may not observe that
496 	 * tsk->mm, and the loop in membarrier_global_expedited() may
497 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
498 	 * rq->membarrier_state, so those would not issue an IPI.
499 	 * Membarrier requires a memory barrier after accessing
500 	 * user-space memory, before clearing tsk->mm or the
501 	 * rq->membarrier_state.
502 	 */
503 	smp_mb__after_spinlock();
504 	local_irq_disable();
505 	current->mm = NULL;
506 	membarrier_update_current_mm(NULL);
507 	enter_lazy_tlb(mm, current);
508 	local_irq_enable();
509 	task_unlock(current);
510 	mmap_read_unlock(mm);
511 	mm_update_next_owner(mm);
512 	mmput(mm);
513 	if (test_thread_flag(TIF_MEMDIE))
514 		exit_oom_victim();
515 }
516 
517 static struct task_struct *find_alive_thread(struct task_struct *p)
518 {
519 	struct task_struct *t;
520 
521 	for_each_thread(p, t) {
522 		if (!(t->flags & PF_EXITING))
523 			return t;
524 	}
525 	return NULL;
526 }
527 
528 static struct task_struct *find_child_reaper(struct task_struct *father,
529 						struct list_head *dead)
530 	__releases(&tasklist_lock)
531 	__acquires(&tasklist_lock)
532 {
533 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
534 	struct task_struct *reaper = pid_ns->child_reaper;
535 	struct task_struct *p, *n;
536 
537 	if (likely(reaper != father))
538 		return reaper;
539 
540 	reaper = find_alive_thread(father);
541 	if (reaper) {
542 		pid_ns->child_reaper = reaper;
543 		return reaper;
544 	}
545 
546 	write_unlock_irq(&tasklist_lock);
547 
548 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
549 		list_del_init(&p->ptrace_entry);
550 		release_task(p);
551 	}
552 
553 	zap_pid_ns_processes(pid_ns);
554 	write_lock_irq(&tasklist_lock);
555 
556 	return father;
557 }
558 
559 /*
560  * When we die, we re-parent all our children, and try to:
561  * 1. give them to another thread in our thread group, if such a member exists
562  * 2. give it to the first ancestor process which prctl'd itself as a
563  *    child_subreaper for its children (like a service manager)
564  * 3. give it to the init process (PID 1) in our pid namespace
565  */
566 static struct task_struct *find_new_reaper(struct task_struct *father,
567 					   struct task_struct *child_reaper)
568 {
569 	struct task_struct *thread, *reaper;
570 
571 	thread = find_alive_thread(father);
572 	if (thread)
573 		return thread;
574 
575 	if (father->signal->has_child_subreaper) {
576 		unsigned int ns_level = task_pid(father)->level;
577 		/*
578 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
579 		 * We can't check reaper != child_reaper to ensure we do not
580 		 * cross the namespaces, the exiting parent could be injected
581 		 * by setns() + fork().
582 		 * We check pid->level, this is slightly more efficient than
583 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
584 		 */
585 		for (reaper = father->real_parent;
586 		     task_pid(reaper)->level == ns_level;
587 		     reaper = reaper->real_parent) {
588 			if (reaper == &init_task)
589 				break;
590 			if (!reaper->signal->is_child_subreaper)
591 				continue;
592 			thread = find_alive_thread(reaper);
593 			if (thread)
594 				return thread;
595 		}
596 	}
597 
598 	return child_reaper;
599 }
600 
601 /*
602 * Any that need to be release_task'd are put on the @dead list.
603  */
604 static void reparent_leader(struct task_struct *father, struct task_struct *p,
605 				struct list_head *dead)
606 {
607 	if (unlikely(p->exit_state == EXIT_DEAD))
608 		return;
609 
610 	/* We don't want people slaying init. */
611 	p->exit_signal = SIGCHLD;
612 
613 	/* If it has exited notify the new parent about this child's death. */
614 	if (!p->ptrace &&
615 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
616 		if (do_notify_parent(p, p->exit_signal)) {
617 			p->exit_state = EXIT_DEAD;
618 			list_add(&p->ptrace_entry, dead);
619 		}
620 	}
621 
622 	kill_orphaned_pgrp(p, father);
623 }
624 
625 /*
626  * This does two things:
627  *
628  * A.  Make init inherit all the child processes
629  * B.  Check to see if any process groups have become orphaned
630  *	as a result of our exiting, and if they have any stopped
631  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
632  */
633 static void forget_original_parent(struct task_struct *father,
634 					struct list_head *dead)
635 {
636 	struct task_struct *p, *t, *reaper;
637 
638 	if (unlikely(!list_empty(&father->ptraced)))
639 		exit_ptrace(father, dead);
640 
641 	/* Can drop and reacquire tasklist_lock */
642 	reaper = find_child_reaper(father, dead);
643 	if (list_empty(&father->children))
644 		return;
645 
646 	reaper = find_new_reaper(father, reaper);
647 	list_for_each_entry(p, &father->children, sibling) {
648 		for_each_thread(p, t) {
649 			RCU_INIT_POINTER(t->real_parent, reaper);
650 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
651 			if (likely(!t->ptrace))
652 				t->parent = t->real_parent;
653 			if (t->pdeath_signal)
654 				group_send_sig_info(t->pdeath_signal,
655 						    SEND_SIG_NOINFO, t,
656 						    PIDTYPE_TGID);
657 		}
658 		/*
659 		 * If this is a threaded reparent there is no need to
660 		 * notify anyone anything has happened.
661 		 */
662 		if (!same_thread_group(reaper, father))
663 			reparent_leader(father, p, dead);
664 	}
665 	list_splice_tail_init(&father->children, &reaper->children);
666 }
667 
668 /*
669  * Send signals to all our closest relatives so that they know
670  * to properly mourn us..
671  */
672 static void exit_notify(struct task_struct *tsk, int group_dead)
673 {
674 	bool autoreap;
675 	struct task_struct *p, *n;
676 	LIST_HEAD(dead);
677 
678 	write_lock_irq(&tasklist_lock);
679 	forget_original_parent(tsk, &dead);
680 
681 	if (group_dead)
682 		kill_orphaned_pgrp(tsk->group_leader, NULL);
683 
684 	tsk->exit_state = EXIT_ZOMBIE;
685 	if (unlikely(tsk->ptrace)) {
686 		int sig = thread_group_leader(tsk) &&
687 				thread_group_empty(tsk) &&
688 				!ptrace_reparented(tsk) ?
689 			tsk->exit_signal : SIGCHLD;
690 		autoreap = do_notify_parent(tsk, sig);
691 	} else if (thread_group_leader(tsk)) {
692 		autoreap = thread_group_empty(tsk) &&
693 			do_notify_parent(tsk, tsk->exit_signal);
694 	} else {
695 		autoreap = true;
696 	}
697 
698 	if (autoreap) {
699 		tsk->exit_state = EXIT_DEAD;
700 		list_add(&tsk->ptrace_entry, &dead);
701 	}
702 
703 	/* mt-exec, de_thread() is waiting for group leader */
704 	if (unlikely(tsk->signal->notify_count < 0))
705 		wake_up_process(tsk->signal->group_exec_task);
706 	write_unlock_irq(&tasklist_lock);
707 
708 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
709 		list_del_init(&p->ptrace_entry);
710 		release_task(p);
711 	}
712 }
713 
714 #ifdef CONFIG_DEBUG_STACK_USAGE
715 static void check_stack_usage(void)
716 {
717 	static DEFINE_SPINLOCK(low_water_lock);
718 	static int lowest_to_date = THREAD_SIZE;
719 	unsigned long free;
720 
721 	free = stack_not_used(current);
722 
723 	if (free >= lowest_to_date)
724 		return;
725 
726 	spin_lock(&low_water_lock);
727 	if (free < lowest_to_date) {
728 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
729 			current->comm, task_pid_nr(current), free);
730 		lowest_to_date = free;
731 	}
732 	spin_unlock(&low_water_lock);
733 }
734 #else
735 static inline void check_stack_usage(void) {}
736 #endif
737 
738 static void synchronize_group_exit(struct task_struct *tsk, long code)
739 {
740 	struct sighand_struct *sighand = tsk->sighand;
741 	struct signal_struct *signal = tsk->signal;
742 
743 	spin_lock_irq(&sighand->siglock);
744 	signal->quick_threads--;
745 	if ((signal->quick_threads == 0) &&
746 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
747 		signal->flags = SIGNAL_GROUP_EXIT;
748 		signal->group_exit_code = code;
749 		signal->group_stop_count = 0;
750 	}
751 	spin_unlock_irq(&sighand->siglock);
752 }
753 
754 void __noreturn do_exit(long code)
755 {
756 	struct task_struct *tsk = current;
757 	int group_dead;
758 
759 	synchronize_group_exit(tsk, code);
760 
761 	WARN_ON(tsk->plug);
762 
763 	kcov_task_exit(tsk);
764 	kmsan_task_exit(tsk);
765 
766 	coredump_task_exit(tsk);
767 	ptrace_event(PTRACE_EVENT_EXIT, code);
768 
769 	validate_creds_for_do_exit(tsk);
770 
771 	io_uring_files_cancel();
772 	exit_signals(tsk);  /* sets PF_EXITING */
773 
774 	/* sync mm's RSS info before statistics gathering */
775 	if (tsk->mm)
776 		sync_mm_rss(tsk->mm);
777 	acct_update_integrals(tsk);
778 	group_dead = atomic_dec_and_test(&tsk->signal->live);
779 	if (group_dead) {
780 		/*
781 		 * If the last thread of global init has exited, panic
782 		 * immediately to get a useable coredump.
783 		 */
784 		if (unlikely(is_global_init(tsk)))
785 			panic("Attempted to kill init! exitcode=0x%08x\n",
786 				tsk->signal->group_exit_code ?: (int)code);
787 
788 #ifdef CONFIG_POSIX_TIMERS
789 		hrtimer_cancel(&tsk->signal->real_timer);
790 		exit_itimers(tsk);
791 #endif
792 		if (tsk->mm)
793 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
794 	}
795 	acct_collect(code, group_dead);
796 	if (group_dead)
797 		tty_audit_exit();
798 	audit_free(tsk);
799 
800 	tsk->exit_code = code;
801 	taskstats_exit(tsk, group_dead);
802 
803 	exit_mm();
804 
805 	if (group_dead)
806 		acct_process();
807 	trace_sched_process_exit(tsk);
808 
809 	exit_sem(tsk);
810 	exit_shm(tsk);
811 	exit_files(tsk);
812 	exit_fs(tsk);
813 	if (group_dead)
814 		disassociate_ctty(1);
815 	exit_task_namespaces(tsk);
816 	exit_task_work(tsk);
817 	exit_thread(tsk);
818 
819 	/*
820 	 * Flush inherited counters to the parent - before the parent
821 	 * gets woken up by child-exit notifications.
822 	 *
823 	 * because of cgroup mode, must be called before cgroup_exit()
824 	 */
825 	perf_event_exit_task(tsk);
826 
827 	sched_autogroup_exit_task(tsk);
828 	cgroup_exit(tsk);
829 
830 	/*
831 	 * FIXME: do that only when needed, using sched_exit tracepoint
832 	 */
833 	flush_ptrace_hw_breakpoint(tsk);
834 
835 	exit_tasks_rcu_start();
836 	exit_notify(tsk, group_dead);
837 	proc_exit_connector(tsk);
838 	mpol_put_task_policy(tsk);
839 #ifdef CONFIG_FUTEX
840 	if (unlikely(current->pi_state_cache))
841 		kfree(current->pi_state_cache);
842 #endif
843 	/*
844 	 * Make sure we are holding no locks:
845 	 */
846 	debug_check_no_locks_held();
847 
848 	if (tsk->io_context)
849 		exit_io_context(tsk);
850 
851 	if (tsk->splice_pipe)
852 		free_pipe_info(tsk->splice_pipe);
853 
854 	if (tsk->task_frag.page)
855 		put_page(tsk->task_frag.page);
856 
857 	validate_creds_for_do_exit(tsk);
858 	exit_task_stack_account(tsk);
859 
860 	check_stack_usage();
861 	preempt_disable();
862 	if (tsk->nr_dirtied)
863 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
864 	exit_rcu();
865 	exit_tasks_rcu_finish();
866 
867 	lockdep_free_task(tsk);
868 	do_task_dead();
869 }
870 
871 void __noreturn make_task_dead(int signr)
872 {
873 	/*
874 	 * Take the task off the cpu after something catastrophic has
875 	 * happened.
876 	 *
877 	 * We can get here from a kernel oops, sometimes with preemption off.
878 	 * Start by checking for critical errors.
879 	 * Then fix up important state like USER_DS and preemption.
880 	 * Then do everything else.
881 	 */
882 	struct task_struct *tsk = current;
883 
884 	if (unlikely(in_interrupt()))
885 		panic("Aiee, killing interrupt handler!");
886 	if (unlikely(!tsk->pid))
887 		panic("Attempted to kill the idle task!");
888 
889 	if (unlikely(in_atomic())) {
890 		pr_info("note: %s[%d] exited with preempt_count %d\n",
891 			current->comm, task_pid_nr(current),
892 			preempt_count());
893 		preempt_count_set(PREEMPT_ENABLED);
894 	}
895 
896 	/*
897 	 * We're taking recursive faults here in make_task_dead. Safest is to just
898 	 * leave this task alone and wait for reboot.
899 	 */
900 	if (unlikely(tsk->flags & PF_EXITING)) {
901 		pr_alert("Fixing recursive fault but reboot is needed!\n");
902 		futex_exit_recursive(tsk);
903 		tsk->exit_state = EXIT_DEAD;
904 		refcount_inc(&tsk->rcu_users);
905 		do_task_dead();
906 	}
907 
908 	do_exit(signr);
909 }
910 
911 SYSCALL_DEFINE1(exit, int, error_code)
912 {
913 	do_exit((error_code&0xff)<<8);
914 }
915 
916 /*
917  * Take down every thread in the group.  This is called by fatal signals
918  * as well as by sys_exit_group (below).
919  */
920 void __noreturn
921 do_group_exit(int exit_code)
922 {
923 	struct signal_struct *sig = current->signal;
924 
925 	if (sig->flags & SIGNAL_GROUP_EXIT)
926 		exit_code = sig->group_exit_code;
927 	else if (sig->group_exec_task)
928 		exit_code = 0;
929 	else {
930 		struct sighand_struct *const sighand = current->sighand;
931 
932 		spin_lock_irq(&sighand->siglock);
933 		if (sig->flags & SIGNAL_GROUP_EXIT)
934 			/* Another thread got here before we took the lock.  */
935 			exit_code = sig->group_exit_code;
936 		else if (sig->group_exec_task)
937 			exit_code = 0;
938 		else {
939 			sig->group_exit_code = exit_code;
940 			sig->flags = SIGNAL_GROUP_EXIT;
941 			zap_other_threads(current);
942 		}
943 		spin_unlock_irq(&sighand->siglock);
944 	}
945 
946 	do_exit(exit_code);
947 	/* NOTREACHED */
948 }
949 
950 /*
951  * this kills every thread in the thread group. Note that any externally
952  * wait4()-ing process will get the correct exit code - even if this
953  * thread is not the thread group leader.
954  */
955 SYSCALL_DEFINE1(exit_group, int, error_code)
956 {
957 	do_group_exit((error_code & 0xff) << 8);
958 	/* NOTREACHED */
959 	return 0;
960 }
961 
962 struct waitid_info {
963 	pid_t pid;
964 	uid_t uid;
965 	int status;
966 	int cause;
967 };
968 
969 struct wait_opts {
970 	enum pid_type		wo_type;
971 	int			wo_flags;
972 	struct pid		*wo_pid;
973 
974 	struct waitid_info	*wo_info;
975 	int			wo_stat;
976 	struct rusage		*wo_rusage;
977 
978 	wait_queue_entry_t		child_wait;
979 	int			notask_error;
980 };
981 
982 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
983 {
984 	return	wo->wo_type == PIDTYPE_MAX ||
985 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
986 }
987 
988 static int
989 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
990 {
991 	if (!eligible_pid(wo, p))
992 		return 0;
993 
994 	/*
995 	 * Wait for all children (clone and not) if __WALL is set or
996 	 * if it is traced by us.
997 	 */
998 	if (ptrace || (wo->wo_flags & __WALL))
999 		return 1;
1000 
1001 	/*
1002 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1003 	 * otherwise, wait for non-clone children *only*.
1004 	 *
1005 	 * Note: a "clone" child here is one that reports to its parent
1006 	 * using a signal other than SIGCHLD, or a non-leader thread which
1007 	 * we can only see if it is traced by us.
1008 	 */
1009 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1010 		return 0;
1011 
1012 	return 1;
1013 }
1014 
1015 /*
1016  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1017  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1018  * the lock and this task is uninteresting.  If we return nonzero, we have
1019  * released the lock and the system call should return.
1020  */
1021 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1022 {
1023 	int state, status;
1024 	pid_t pid = task_pid_vnr(p);
1025 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1026 	struct waitid_info *infop;
1027 
1028 	if (!likely(wo->wo_flags & WEXITED))
1029 		return 0;
1030 
1031 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1032 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1033 			? p->signal->group_exit_code : p->exit_code;
1034 		get_task_struct(p);
1035 		read_unlock(&tasklist_lock);
1036 		sched_annotate_sleep();
1037 		if (wo->wo_rusage)
1038 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1039 		put_task_struct(p);
1040 		goto out_info;
1041 	}
1042 	/*
1043 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1044 	 */
1045 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1046 		EXIT_TRACE : EXIT_DEAD;
1047 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1048 		return 0;
1049 	/*
1050 	 * We own this thread, nobody else can reap it.
1051 	 */
1052 	read_unlock(&tasklist_lock);
1053 	sched_annotate_sleep();
1054 
1055 	/*
1056 	 * Check thread_group_leader() to exclude the traced sub-threads.
1057 	 */
1058 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1059 		struct signal_struct *sig = p->signal;
1060 		struct signal_struct *psig = current->signal;
1061 		unsigned long maxrss;
1062 		u64 tgutime, tgstime;
1063 
1064 		/*
1065 		 * The resource counters for the group leader are in its
1066 		 * own task_struct.  Those for dead threads in the group
1067 		 * are in its signal_struct, as are those for the child
1068 		 * processes it has previously reaped.  All these
1069 		 * accumulate in the parent's signal_struct c* fields.
1070 		 *
1071 		 * We don't bother to take a lock here to protect these
1072 		 * p->signal fields because the whole thread group is dead
1073 		 * and nobody can change them.
1074 		 *
1075 		 * psig->stats_lock also protects us from our sub-threads
1076 		 * which can reap other children at the same time. Until
1077 		 * we change k_getrusage()-like users to rely on this lock
1078 		 * we have to take ->siglock as well.
1079 		 *
1080 		 * We use thread_group_cputime_adjusted() to get times for
1081 		 * the thread group, which consolidates times for all threads
1082 		 * in the group including the group leader.
1083 		 */
1084 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1085 		spin_lock_irq(&current->sighand->siglock);
1086 		write_seqlock(&psig->stats_lock);
1087 		psig->cutime += tgutime + sig->cutime;
1088 		psig->cstime += tgstime + sig->cstime;
1089 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1090 		psig->cmin_flt +=
1091 			p->min_flt + sig->min_flt + sig->cmin_flt;
1092 		psig->cmaj_flt +=
1093 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1094 		psig->cnvcsw +=
1095 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1096 		psig->cnivcsw +=
1097 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1098 		psig->cinblock +=
1099 			task_io_get_inblock(p) +
1100 			sig->inblock + sig->cinblock;
1101 		psig->coublock +=
1102 			task_io_get_oublock(p) +
1103 			sig->oublock + sig->coublock;
1104 		maxrss = max(sig->maxrss, sig->cmaxrss);
1105 		if (psig->cmaxrss < maxrss)
1106 			psig->cmaxrss = maxrss;
1107 		task_io_accounting_add(&psig->ioac, &p->ioac);
1108 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1109 		write_sequnlock(&psig->stats_lock);
1110 		spin_unlock_irq(&current->sighand->siglock);
1111 	}
1112 
1113 	if (wo->wo_rusage)
1114 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1115 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1116 		? p->signal->group_exit_code : p->exit_code;
1117 	wo->wo_stat = status;
1118 
1119 	if (state == EXIT_TRACE) {
1120 		write_lock_irq(&tasklist_lock);
1121 		/* We dropped tasklist, ptracer could die and untrace */
1122 		ptrace_unlink(p);
1123 
1124 		/* If parent wants a zombie, don't release it now */
1125 		state = EXIT_ZOMBIE;
1126 		if (do_notify_parent(p, p->exit_signal))
1127 			state = EXIT_DEAD;
1128 		p->exit_state = state;
1129 		write_unlock_irq(&tasklist_lock);
1130 	}
1131 	if (state == EXIT_DEAD)
1132 		release_task(p);
1133 
1134 out_info:
1135 	infop = wo->wo_info;
1136 	if (infop) {
1137 		if ((status & 0x7f) == 0) {
1138 			infop->cause = CLD_EXITED;
1139 			infop->status = status >> 8;
1140 		} else {
1141 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1142 			infop->status = status & 0x7f;
1143 		}
1144 		infop->pid = pid;
1145 		infop->uid = uid;
1146 	}
1147 
1148 	return pid;
1149 }
1150 
1151 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1152 {
1153 	if (ptrace) {
1154 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1155 			return &p->exit_code;
1156 	} else {
1157 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1158 			return &p->signal->group_exit_code;
1159 	}
1160 	return NULL;
1161 }
1162 
1163 /**
1164  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1165  * @wo: wait options
1166  * @ptrace: is the wait for ptrace
1167  * @p: task to wait for
1168  *
1169  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1170  *
1171  * CONTEXT:
1172  * read_lock(&tasklist_lock), which is released if return value is
1173  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1174  *
1175  * RETURNS:
1176  * 0 if wait condition didn't exist and search for other wait conditions
1177  * should continue.  Non-zero return, -errno on failure and @p's pid on
1178  * success, implies that tasklist_lock is released and wait condition
1179  * search should terminate.
1180  */
1181 static int wait_task_stopped(struct wait_opts *wo,
1182 				int ptrace, struct task_struct *p)
1183 {
1184 	struct waitid_info *infop;
1185 	int exit_code, *p_code, why;
1186 	uid_t uid = 0; /* unneeded, required by compiler */
1187 	pid_t pid;
1188 
1189 	/*
1190 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1191 	 */
1192 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1193 		return 0;
1194 
1195 	if (!task_stopped_code(p, ptrace))
1196 		return 0;
1197 
1198 	exit_code = 0;
1199 	spin_lock_irq(&p->sighand->siglock);
1200 
1201 	p_code = task_stopped_code(p, ptrace);
1202 	if (unlikely(!p_code))
1203 		goto unlock_sig;
1204 
1205 	exit_code = *p_code;
1206 	if (!exit_code)
1207 		goto unlock_sig;
1208 
1209 	if (!unlikely(wo->wo_flags & WNOWAIT))
1210 		*p_code = 0;
1211 
1212 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1213 unlock_sig:
1214 	spin_unlock_irq(&p->sighand->siglock);
1215 	if (!exit_code)
1216 		return 0;
1217 
1218 	/*
1219 	 * Now we are pretty sure this task is interesting.
1220 	 * Make sure it doesn't get reaped out from under us while we
1221 	 * give up the lock and then examine it below.  We don't want to
1222 	 * keep holding onto the tasklist_lock while we call getrusage and
1223 	 * possibly take page faults for user memory.
1224 	 */
1225 	get_task_struct(p);
1226 	pid = task_pid_vnr(p);
1227 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1228 	read_unlock(&tasklist_lock);
1229 	sched_annotate_sleep();
1230 	if (wo->wo_rusage)
1231 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1232 	put_task_struct(p);
1233 
1234 	if (likely(!(wo->wo_flags & WNOWAIT)))
1235 		wo->wo_stat = (exit_code << 8) | 0x7f;
1236 
1237 	infop = wo->wo_info;
1238 	if (infop) {
1239 		infop->cause = why;
1240 		infop->status = exit_code;
1241 		infop->pid = pid;
1242 		infop->uid = uid;
1243 	}
1244 	return pid;
1245 }
1246 
1247 /*
1248  * Handle do_wait work for one task in a live, non-stopped state.
1249  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1250  * the lock and this task is uninteresting.  If we return nonzero, we have
1251  * released the lock and the system call should return.
1252  */
1253 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1254 {
1255 	struct waitid_info *infop;
1256 	pid_t pid;
1257 	uid_t uid;
1258 
1259 	if (!unlikely(wo->wo_flags & WCONTINUED))
1260 		return 0;
1261 
1262 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1263 		return 0;
1264 
1265 	spin_lock_irq(&p->sighand->siglock);
1266 	/* Re-check with the lock held.  */
1267 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1268 		spin_unlock_irq(&p->sighand->siglock);
1269 		return 0;
1270 	}
1271 	if (!unlikely(wo->wo_flags & WNOWAIT))
1272 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1273 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1274 	spin_unlock_irq(&p->sighand->siglock);
1275 
1276 	pid = task_pid_vnr(p);
1277 	get_task_struct(p);
1278 	read_unlock(&tasklist_lock);
1279 	sched_annotate_sleep();
1280 	if (wo->wo_rusage)
1281 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1282 	put_task_struct(p);
1283 
1284 	infop = wo->wo_info;
1285 	if (!infop) {
1286 		wo->wo_stat = 0xffff;
1287 	} else {
1288 		infop->cause = CLD_CONTINUED;
1289 		infop->pid = pid;
1290 		infop->uid = uid;
1291 		infop->status = SIGCONT;
1292 	}
1293 	return pid;
1294 }
1295 
1296 /*
1297  * Consider @p for a wait by @parent.
1298  *
1299  * -ECHILD should be in ->notask_error before the first call.
1300  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1301  * Returns zero if the search for a child should continue;
1302  * then ->notask_error is 0 if @p is an eligible child,
1303  * or still -ECHILD.
1304  */
1305 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1306 				struct task_struct *p)
1307 {
1308 	/*
1309 	 * We can race with wait_task_zombie() from another thread.
1310 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1311 	 * can't confuse the checks below.
1312 	 */
1313 	int exit_state = READ_ONCE(p->exit_state);
1314 	int ret;
1315 
1316 	if (unlikely(exit_state == EXIT_DEAD))
1317 		return 0;
1318 
1319 	ret = eligible_child(wo, ptrace, p);
1320 	if (!ret)
1321 		return ret;
1322 
1323 	if (unlikely(exit_state == EXIT_TRACE)) {
1324 		/*
1325 		 * ptrace == 0 means we are the natural parent. In this case
1326 		 * we should clear notask_error, debugger will notify us.
1327 		 */
1328 		if (likely(!ptrace))
1329 			wo->notask_error = 0;
1330 		return 0;
1331 	}
1332 
1333 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1334 		/*
1335 		 * If it is traced by its real parent's group, just pretend
1336 		 * the caller is ptrace_do_wait() and reap this child if it
1337 		 * is zombie.
1338 		 *
1339 		 * This also hides group stop state from real parent; otherwise
1340 		 * a single stop can be reported twice as group and ptrace stop.
1341 		 * If a ptracer wants to distinguish these two events for its
1342 		 * own children it should create a separate process which takes
1343 		 * the role of real parent.
1344 		 */
1345 		if (!ptrace_reparented(p))
1346 			ptrace = 1;
1347 	}
1348 
1349 	/* slay zombie? */
1350 	if (exit_state == EXIT_ZOMBIE) {
1351 		/* we don't reap group leaders with subthreads */
1352 		if (!delay_group_leader(p)) {
1353 			/*
1354 			 * A zombie ptracee is only visible to its ptracer.
1355 			 * Notification and reaping will be cascaded to the
1356 			 * real parent when the ptracer detaches.
1357 			 */
1358 			if (unlikely(ptrace) || likely(!p->ptrace))
1359 				return wait_task_zombie(wo, p);
1360 		}
1361 
1362 		/*
1363 		 * Allow access to stopped/continued state via zombie by
1364 		 * falling through.  Clearing of notask_error is complex.
1365 		 *
1366 		 * When !@ptrace:
1367 		 *
1368 		 * If WEXITED is set, notask_error should naturally be
1369 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1370 		 * so, if there are live subthreads, there are events to
1371 		 * wait for.  If all subthreads are dead, it's still safe
1372 		 * to clear - this function will be called again in finite
1373 		 * amount time once all the subthreads are released and
1374 		 * will then return without clearing.
1375 		 *
1376 		 * When @ptrace:
1377 		 *
1378 		 * Stopped state is per-task and thus can't change once the
1379 		 * target task dies.  Only continued and exited can happen.
1380 		 * Clear notask_error if WCONTINUED | WEXITED.
1381 		 */
1382 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1383 			wo->notask_error = 0;
1384 	} else {
1385 		/*
1386 		 * @p is alive and it's gonna stop, continue or exit, so
1387 		 * there always is something to wait for.
1388 		 */
1389 		wo->notask_error = 0;
1390 	}
1391 
1392 	/*
1393 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1394 	 * is used and the two don't interact with each other.
1395 	 */
1396 	ret = wait_task_stopped(wo, ptrace, p);
1397 	if (ret)
1398 		return ret;
1399 
1400 	/*
1401 	 * Wait for continued.  There's only one continued state and the
1402 	 * ptracer can consume it which can confuse the real parent.  Don't
1403 	 * use WCONTINUED from ptracer.  You don't need or want it.
1404 	 */
1405 	return wait_task_continued(wo, p);
1406 }
1407 
1408 /*
1409  * Do the work of do_wait() for one thread in the group, @tsk.
1410  *
1411  * -ECHILD should be in ->notask_error before the first call.
1412  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1413  * Returns zero if the search for a child should continue; then
1414  * ->notask_error is 0 if there were any eligible children,
1415  * or still -ECHILD.
1416  */
1417 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1418 {
1419 	struct task_struct *p;
1420 
1421 	list_for_each_entry(p, &tsk->children, sibling) {
1422 		int ret = wait_consider_task(wo, 0, p);
1423 
1424 		if (ret)
1425 			return ret;
1426 	}
1427 
1428 	return 0;
1429 }
1430 
1431 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1432 {
1433 	struct task_struct *p;
1434 
1435 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1436 		int ret = wait_consider_task(wo, 1, p);
1437 
1438 		if (ret)
1439 			return ret;
1440 	}
1441 
1442 	return 0;
1443 }
1444 
1445 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1446 				int sync, void *key)
1447 {
1448 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1449 						child_wait);
1450 	struct task_struct *p = key;
1451 
1452 	if (!eligible_pid(wo, p))
1453 		return 0;
1454 
1455 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1456 		return 0;
1457 
1458 	return default_wake_function(wait, mode, sync, key);
1459 }
1460 
1461 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1462 {
1463 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1464 			   TASK_INTERRUPTIBLE, p);
1465 }
1466 
1467 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1468 				 struct task_struct *target)
1469 {
1470 	struct task_struct *parent =
1471 		!ptrace ? target->real_parent : target->parent;
1472 
1473 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1474 				     same_thread_group(current, parent));
1475 }
1476 
1477 /*
1478  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1479  * and tracee lists to find the target task.
1480  */
1481 static int do_wait_pid(struct wait_opts *wo)
1482 {
1483 	bool ptrace;
1484 	struct task_struct *target;
1485 	int retval;
1486 
1487 	ptrace = false;
1488 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1489 	if (target && is_effectively_child(wo, ptrace, target)) {
1490 		retval = wait_consider_task(wo, ptrace, target);
1491 		if (retval)
1492 			return retval;
1493 	}
1494 
1495 	ptrace = true;
1496 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1497 	if (target && target->ptrace &&
1498 	    is_effectively_child(wo, ptrace, target)) {
1499 		retval = wait_consider_task(wo, ptrace, target);
1500 		if (retval)
1501 			return retval;
1502 	}
1503 
1504 	return 0;
1505 }
1506 
1507 static long do_wait(struct wait_opts *wo)
1508 {
1509 	int retval;
1510 
1511 	trace_sched_process_wait(wo->wo_pid);
1512 
1513 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1514 	wo->child_wait.private = current;
1515 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1516 repeat:
1517 	/*
1518 	 * If there is nothing that can match our criteria, just get out.
1519 	 * We will clear ->notask_error to zero if we see any child that
1520 	 * might later match our criteria, even if we are not able to reap
1521 	 * it yet.
1522 	 */
1523 	wo->notask_error = -ECHILD;
1524 	if ((wo->wo_type < PIDTYPE_MAX) &&
1525 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1526 		goto notask;
1527 
1528 	set_current_state(TASK_INTERRUPTIBLE);
1529 	read_lock(&tasklist_lock);
1530 
1531 	if (wo->wo_type == PIDTYPE_PID) {
1532 		retval = do_wait_pid(wo);
1533 		if (retval)
1534 			goto end;
1535 	} else {
1536 		struct task_struct *tsk = current;
1537 
1538 		do {
1539 			retval = do_wait_thread(wo, tsk);
1540 			if (retval)
1541 				goto end;
1542 
1543 			retval = ptrace_do_wait(wo, tsk);
1544 			if (retval)
1545 				goto end;
1546 
1547 			if (wo->wo_flags & __WNOTHREAD)
1548 				break;
1549 		} while_each_thread(current, tsk);
1550 	}
1551 	read_unlock(&tasklist_lock);
1552 
1553 notask:
1554 	retval = wo->notask_error;
1555 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1556 		retval = -ERESTARTSYS;
1557 		if (!signal_pending(current)) {
1558 			schedule();
1559 			goto repeat;
1560 		}
1561 	}
1562 end:
1563 	__set_current_state(TASK_RUNNING);
1564 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1565 	return retval;
1566 }
1567 
1568 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1569 			  int options, struct rusage *ru)
1570 {
1571 	struct wait_opts wo;
1572 	struct pid *pid = NULL;
1573 	enum pid_type type;
1574 	long ret;
1575 	unsigned int f_flags = 0;
1576 
1577 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1578 			__WNOTHREAD|__WCLONE|__WALL))
1579 		return -EINVAL;
1580 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1581 		return -EINVAL;
1582 
1583 	switch (which) {
1584 	case P_ALL:
1585 		type = PIDTYPE_MAX;
1586 		break;
1587 	case P_PID:
1588 		type = PIDTYPE_PID;
1589 		if (upid <= 0)
1590 			return -EINVAL;
1591 
1592 		pid = find_get_pid(upid);
1593 		break;
1594 	case P_PGID:
1595 		type = PIDTYPE_PGID;
1596 		if (upid < 0)
1597 			return -EINVAL;
1598 
1599 		if (upid)
1600 			pid = find_get_pid(upid);
1601 		else
1602 			pid = get_task_pid(current, PIDTYPE_PGID);
1603 		break;
1604 	case P_PIDFD:
1605 		type = PIDTYPE_PID;
1606 		if (upid < 0)
1607 			return -EINVAL;
1608 
1609 		pid = pidfd_get_pid(upid, &f_flags);
1610 		if (IS_ERR(pid))
1611 			return PTR_ERR(pid);
1612 
1613 		break;
1614 	default:
1615 		return -EINVAL;
1616 	}
1617 
1618 	wo.wo_type	= type;
1619 	wo.wo_pid	= pid;
1620 	wo.wo_flags	= options;
1621 	wo.wo_info	= infop;
1622 	wo.wo_rusage	= ru;
1623 	if (f_flags & O_NONBLOCK)
1624 		wo.wo_flags |= WNOHANG;
1625 
1626 	ret = do_wait(&wo);
1627 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1628 		ret = -EAGAIN;
1629 
1630 	put_pid(pid);
1631 	return ret;
1632 }
1633 
1634 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1635 		infop, int, options, struct rusage __user *, ru)
1636 {
1637 	struct rusage r;
1638 	struct waitid_info info = {.status = 0};
1639 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1640 	int signo = 0;
1641 
1642 	if (err > 0) {
1643 		signo = SIGCHLD;
1644 		err = 0;
1645 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1646 			return -EFAULT;
1647 	}
1648 	if (!infop)
1649 		return err;
1650 
1651 	if (!user_write_access_begin(infop, sizeof(*infop)))
1652 		return -EFAULT;
1653 
1654 	unsafe_put_user(signo, &infop->si_signo, Efault);
1655 	unsafe_put_user(0, &infop->si_errno, Efault);
1656 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1657 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1658 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1659 	unsafe_put_user(info.status, &infop->si_status, Efault);
1660 	user_write_access_end();
1661 	return err;
1662 Efault:
1663 	user_write_access_end();
1664 	return -EFAULT;
1665 }
1666 
1667 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1668 		  struct rusage *ru)
1669 {
1670 	struct wait_opts wo;
1671 	struct pid *pid = NULL;
1672 	enum pid_type type;
1673 	long ret;
1674 
1675 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1676 			__WNOTHREAD|__WCLONE|__WALL))
1677 		return -EINVAL;
1678 
1679 	/* -INT_MIN is not defined */
1680 	if (upid == INT_MIN)
1681 		return -ESRCH;
1682 
1683 	if (upid == -1)
1684 		type = PIDTYPE_MAX;
1685 	else if (upid < 0) {
1686 		type = PIDTYPE_PGID;
1687 		pid = find_get_pid(-upid);
1688 	} else if (upid == 0) {
1689 		type = PIDTYPE_PGID;
1690 		pid = get_task_pid(current, PIDTYPE_PGID);
1691 	} else /* upid > 0 */ {
1692 		type = PIDTYPE_PID;
1693 		pid = find_get_pid(upid);
1694 	}
1695 
1696 	wo.wo_type	= type;
1697 	wo.wo_pid	= pid;
1698 	wo.wo_flags	= options | WEXITED;
1699 	wo.wo_info	= NULL;
1700 	wo.wo_stat	= 0;
1701 	wo.wo_rusage	= ru;
1702 	ret = do_wait(&wo);
1703 	put_pid(pid);
1704 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1705 		ret = -EFAULT;
1706 
1707 	return ret;
1708 }
1709 
1710 int kernel_wait(pid_t pid, int *stat)
1711 {
1712 	struct wait_opts wo = {
1713 		.wo_type	= PIDTYPE_PID,
1714 		.wo_pid		= find_get_pid(pid),
1715 		.wo_flags	= WEXITED,
1716 	};
1717 	int ret;
1718 
1719 	ret = do_wait(&wo);
1720 	if (ret > 0 && wo.wo_stat)
1721 		*stat = wo.wo_stat;
1722 	put_pid(wo.wo_pid);
1723 	return ret;
1724 }
1725 
1726 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1727 		int, options, struct rusage __user *, ru)
1728 {
1729 	struct rusage r;
1730 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1731 
1732 	if (err > 0) {
1733 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1734 			return -EFAULT;
1735 	}
1736 	return err;
1737 }
1738 
1739 #ifdef __ARCH_WANT_SYS_WAITPID
1740 
1741 /*
1742  * sys_waitpid() remains for compatibility. waitpid() should be
1743  * implemented by calling sys_wait4() from libc.a.
1744  */
1745 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1746 {
1747 	return kernel_wait4(pid, stat_addr, options, NULL);
1748 }
1749 
1750 #endif
1751 
1752 #ifdef CONFIG_COMPAT
1753 COMPAT_SYSCALL_DEFINE4(wait4,
1754 	compat_pid_t, pid,
1755 	compat_uint_t __user *, stat_addr,
1756 	int, options,
1757 	struct compat_rusage __user *, ru)
1758 {
1759 	struct rusage r;
1760 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1761 	if (err > 0) {
1762 		if (ru && put_compat_rusage(&r, ru))
1763 			return -EFAULT;
1764 	}
1765 	return err;
1766 }
1767 
1768 COMPAT_SYSCALL_DEFINE5(waitid,
1769 		int, which, compat_pid_t, pid,
1770 		struct compat_siginfo __user *, infop, int, options,
1771 		struct compat_rusage __user *, uru)
1772 {
1773 	struct rusage ru;
1774 	struct waitid_info info = {.status = 0};
1775 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1776 	int signo = 0;
1777 	if (err > 0) {
1778 		signo = SIGCHLD;
1779 		err = 0;
1780 		if (uru) {
1781 			/* kernel_waitid() overwrites everything in ru */
1782 			if (COMPAT_USE_64BIT_TIME)
1783 				err = copy_to_user(uru, &ru, sizeof(ru));
1784 			else
1785 				err = put_compat_rusage(&ru, uru);
1786 			if (err)
1787 				return -EFAULT;
1788 		}
1789 	}
1790 
1791 	if (!infop)
1792 		return err;
1793 
1794 	if (!user_write_access_begin(infop, sizeof(*infop)))
1795 		return -EFAULT;
1796 
1797 	unsafe_put_user(signo, &infop->si_signo, Efault);
1798 	unsafe_put_user(0, &infop->si_errno, Efault);
1799 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1800 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1801 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1802 	unsafe_put_user(info.status, &infop->si_status, Efault);
1803 	user_write_access_end();
1804 	return err;
1805 Efault:
1806 	user_write_access_end();
1807 	return -EFAULT;
1808 }
1809 #endif
1810 
1811 /**
1812  * thread_group_exited - check that a thread group has exited
1813  * @pid: tgid of thread group to be checked.
1814  *
1815  * Test if the thread group represented by tgid has exited (all
1816  * threads are zombies, dead or completely gone).
1817  *
1818  * Return: true if the thread group has exited. false otherwise.
1819  */
1820 bool thread_group_exited(struct pid *pid)
1821 {
1822 	struct task_struct *task;
1823 	bool exited;
1824 
1825 	rcu_read_lock();
1826 	task = pid_task(pid, PIDTYPE_PID);
1827 	exited = !task ||
1828 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1829 	rcu_read_unlock();
1830 
1831 	return exited;
1832 }
1833 EXPORT_SYMBOL(thread_group_exited);
1834 
1835 __weak void abort(void)
1836 {
1837 	BUG();
1838 
1839 	/* if that doesn't kill us, halt */
1840 	panic("Oops failed to kill thread");
1841 }
1842 EXPORT_SYMBOL(abort);
1843