1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/blkdev.h> 53 #include <linux/task_work.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/kmsan.h> 64 #include <linux/random.h> 65 #include <linux/rcuwait.h> 66 #include <linux/compat.h> 67 #include <linux/io_uring.h> 68 #include <linux/kprobes.h> 69 #include <linux/rethook.h> 70 71 #include <linux/uaccess.h> 72 #include <asm/unistd.h> 73 #include <asm/mmu_context.h> 74 75 static void __unhash_process(struct task_struct *p, bool group_dead) 76 { 77 nr_threads--; 78 detach_pid(p, PIDTYPE_PID); 79 if (group_dead) { 80 detach_pid(p, PIDTYPE_TGID); 81 detach_pid(p, PIDTYPE_PGID); 82 detach_pid(p, PIDTYPE_SID); 83 84 list_del_rcu(&p->tasks); 85 list_del_init(&p->sibling); 86 __this_cpu_dec(process_counts); 87 } 88 list_del_rcu(&p->thread_group); 89 list_del_rcu(&p->thread_node); 90 } 91 92 /* 93 * This function expects the tasklist_lock write-locked. 94 */ 95 static void __exit_signal(struct task_struct *tsk) 96 { 97 struct signal_struct *sig = tsk->signal; 98 bool group_dead = thread_group_leader(tsk); 99 struct sighand_struct *sighand; 100 struct tty_struct *tty; 101 u64 utime, stime; 102 103 sighand = rcu_dereference_check(tsk->sighand, 104 lockdep_tasklist_lock_is_held()); 105 spin_lock(&sighand->siglock); 106 107 #ifdef CONFIG_POSIX_TIMERS 108 posix_cpu_timers_exit(tsk); 109 if (group_dead) 110 posix_cpu_timers_exit_group(tsk); 111 #endif 112 113 if (group_dead) { 114 tty = sig->tty; 115 sig->tty = NULL; 116 } else { 117 /* 118 * If there is any task waiting for the group exit 119 * then notify it: 120 */ 121 if (sig->notify_count > 0 && !--sig->notify_count) 122 wake_up_process(sig->group_exec_task); 123 124 if (tsk == sig->curr_target) 125 sig->curr_target = next_thread(tsk); 126 } 127 128 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 129 sizeof(unsigned long long)); 130 131 /* 132 * Accumulate here the counters for all threads as they die. We could 133 * skip the group leader because it is the last user of signal_struct, 134 * but we want to avoid the race with thread_group_cputime() which can 135 * see the empty ->thread_head list. 136 */ 137 task_cputime(tsk, &utime, &stime); 138 write_seqlock(&sig->stats_lock); 139 sig->utime += utime; 140 sig->stime += stime; 141 sig->gtime += task_gtime(tsk); 142 sig->min_flt += tsk->min_flt; 143 sig->maj_flt += tsk->maj_flt; 144 sig->nvcsw += tsk->nvcsw; 145 sig->nivcsw += tsk->nivcsw; 146 sig->inblock += task_io_get_inblock(tsk); 147 sig->oublock += task_io_get_oublock(tsk); 148 task_io_accounting_add(&sig->ioac, &tsk->ioac); 149 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 150 sig->nr_threads--; 151 __unhash_process(tsk, group_dead); 152 write_sequnlock(&sig->stats_lock); 153 154 /* 155 * Do this under ->siglock, we can race with another thread 156 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 157 */ 158 flush_sigqueue(&tsk->pending); 159 tsk->sighand = NULL; 160 spin_unlock(&sighand->siglock); 161 162 __cleanup_sighand(sighand); 163 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 164 if (group_dead) { 165 flush_sigqueue(&sig->shared_pending); 166 tty_kref_put(tty); 167 } 168 } 169 170 static void delayed_put_task_struct(struct rcu_head *rhp) 171 { 172 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 173 174 kprobe_flush_task(tsk); 175 rethook_flush_task(tsk); 176 perf_event_delayed_put(tsk); 177 trace_sched_process_free(tsk); 178 put_task_struct(tsk); 179 } 180 181 void put_task_struct_rcu_user(struct task_struct *task) 182 { 183 if (refcount_dec_and_test(&task->rcu_users)) 184 call_rcu(&task->rcu, delayed_put_task_struct); 185 } 186 187 void release_task(struct task_struct *p) 188 { 189 struct task_struct *leader; 190 struct pid *thread_pid; 191 int zap_leader; 192 repeat: 193 /* don't need to get the RCU readlock here - the process is dead and 194 * can't be modifying its own credentials. But shut RCU-lockdep up */ 195 rcu_read_lock(); 196 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 197 rcu_read_unlock(); 198 199 cgroup_release(p); 200 201 write_lock_irq(&tasklist_lock); 202 ptrace_release_task(p); 203 thread_pid = get_pid(p->thread_pid); 204 __exit_signal(p); 205 206 /* 207 * If we are the last non-leader member of the thread 208 * group, and the leader is zombie, then notify the 209 * group leader's parent process. (if it wants notification.) 210 */ 211 zap_leader = 0; 212 leader = p->group_leader; 213 if (leader != p && thread_group_empty(leader) 214 && leader->exit_state == EXIT_ZOMBIE) { 215 /* 216 * If we were the last child thread and the leader has 217 * exited already, and the leader's parent ignores SIGCHLD, 218 * then we are the one who should release the leader. 219 */ 220 zap_leader = do_notify_parent(leader, leader->exit_signal); 221 if (zap_leader) 222 leader->exit_state = EXIT_DEAD; 223 } 224 225 write_unlock_irq(&tasklist_lock); 226 seccomp_filter_release(p); 227 proc_flush_pid(thread_pid); 228 put_pid(thread_pid); 229 release_thread(p); 230 put_task_struct_rcu_user(p); 231 232 p = leader; 233 if (unlikely(zap_leader)) 234 goto repeat; 235 } 236 237 int rcuwait_wake_up(struct rcuwait *w) 238 { 239 int ret = 0; 240 struct task_struct *task; 241 242 rcu_read_lock(); 243 244 /* 245 * Order condition vs @task, such that everything prior to the load 246 * of @task is visible. This is the condition as to why the user called 247 * rcuwait_wake() in the first place. Pairs with set_current_state() 248 * barrier (A) in rcuwait_wait_event(). 249 * 250 * WAIT WAKE 251 * [S] tsk = current [S] cond = true 252 * MB (A) MB (B) 253 * [L] cond [L] tsk 254 */ 255 smp_mb(); /* (B) */ 256 257 task = rcu_dereference(w->task); 258 if (task) 259 ret = wake_up_process(task); 260 rcu_read_unlock(); 261 262 return ret; 263 } 264 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 265 266 /* 267 * Determine if a process group is "orphaned", according to the POSIX 268 * definition in 2.2.2.52. Orphaned process groups are not to be affected 269 * by terminal-generated stop signals. Newly orphaned process groups are 270 * to receive a SIGHUP and a SIGCONT. 271 * 272 * "I ask you, have you ever known what it is to be an orphan?" 273 */ 274 static int will_become_orphaned_pgrp(struct pid *pgrp, 275 struct task_struct *ignored_task) 276 { 277 struct task_struct *p; 278 279 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 280 if ((p == ignored_task) || 281 (p->exit_state && thread_group_empty(p)) || 282 is_global_init(p->real_parent)) 283 continue; 284 285 if (task_pgrp(p->real_parent) != pgrp && 286 task_session(p->real_parent) == task_session(p)) 287 return 0; 288 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 289 290 return 1; 291 } 292 293 int is_current_pgrp_orphaned(void) 294 { 295 int retval; 296 297 read_lock(&tasklist_lock); 298 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 299 read_unlock(&tasklist_lock); 300 301 return retval; 302 } 303 304 static bool has_stopped_jobs(struct pid *pgrp) 305 { 306 struct task_struct *p; 307 308 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 309 if (p->signal->flags & SIGNAL_STOP_STOPPED) 310 return true; 311 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 312 313 return false; 314 } 315 316 /* 317 * Check to see if any process groups have become orphaned as 318 * a result of our exiting, and if they have any stopped jobs, 319 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 320 */ 321 static void 322 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 323 { 324 struct pid *pgrp = task_pgrp(tsk); 325 struct task_struct *ignored_task = tsk; 326 327 if (!parent) 328 /* exit: our father is in a different pgrp than 329 * we are and we were the only connection outside. 330 */ 331 parent = tsk->real_parent; 332 else 333 /* reparent: our child is in a different pgrp than 334 * we are, and it was the only connection outside. 335 */ 336 ignored_task = NULL; 337 338 if (task_pgrp(parent) != pgrp && 339 task_session(parent) == task_session(tsk) && 340 will_become_orphaned_pgrp(pgrp, ignored_task) && 341 has_stopped_jobs(pgrp)) { 342 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 343 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 344 } 345 } 346 347 static void coredump_task_exit(struct task_struct *tsk) 348 { 349 struct core_state *core_state; 350 351 /* 352 * Serialize with any possible pending coredump. 353 * We must hold siglock around checking core_state 354 * and setting PF_POSTCOREDUMP. The core-inducing thread 355 * will increment ->nr_threads for each thread in the 356 * group without PF_POSTCOREDUMP set. 357 */ 358 spin_lock_irq(&tsk->sighand->siglock); 359 tsk->flags |= PF_POSTCOREDUMP; 360 core_state = tsk->signal->core_state; 361 spin_unlock_irq(&tsk->sighand->siglock); 362 if (core_state) { 363 struct core_thread self; 364 365 self.task = current; 366 if (self.task->flags & PF_SIGNALED) 367 self.next = xchg(&core_state->dumper.next, &self); 368 else 369 self.task = NULL; 370 /* 371 * Implies mb(), the result of xchg() must be visible 372 * to core_state->dumper. 373 */ 374 if (atomic_dec_and_test(&core_state->nr_threads)) 375 complete(&core_state->startup); 376 377 for (;;) { 378 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE); 379 if (!self.task) /* see coredump_finish() */ 380 break; 381 schedule(); 382 } 383 __set_current_state(TASK_RUNNING); 384 } 385 } 386 387 #ifdef CONFIG_MEMCG 388 /* 389 * A task is exiting. If it owned this mm, find a new owner for the mm. 390 */ 391 void mm_update_next_owner(struct mm_struct *mm) 392 { 393 struct task_struct *c, *g, *p = current; 394 395 retry: 396 /* 397 * If the exiting or execing task is not the owner, it's 398 * someone else's problem. 399 */ 400 if (mm->owner != p) 401 return; 402 /* 403 * The current owner is exiting/execing and there are no other 404 * candidates. Do not leave the mm pointing to a possibly 405 * freed task structure. 406 */ 407 if (atomic_read(&mm->mm_users) <= 1) { 408 WRITE_ONCE(mm->owner, NULL); 409 return; 410 } 411 412 read_lock(&tasklist_lock); 413 /* 414 * Search in the children 415 */ 416 list_for_each_entry(c, &p->children, sibling) { 417 if (c->mm == mm) 418 goto assign_new_owner; 419 } 420 421 /* 422 * Search in the siblings 423 */ 424 list_for_each_entry(c, &p->real_parent->children, sibling) { 425 if (c->mm == mm) 426 goto assign_new_owner; 427 } 428 429 /* 430 * Search through everything else, we should not get here often. 431 */ 432 for_each_process(g) { 433 if (g->flags & PF_KTHREAD) 434 continue; 435 for_each_thread(g, c) { 436 if (c->mm == mm) 437 goto assign_new_owner; 438 if (c->mm) 439 break; 440 } 441 } 442 read_unlock(&tasklist_lock); 443 /* 444 * We found no owner yet mm_users > 1: this implies that we are 445 * most likely racing with swapoff (try_to_unuse()) or /proc or 446 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 447 */ 448 WRITE_ONCE(mm->owner, NULL); 449 return; 450 451 assign_new_owner: 452 BUG_ON(c == p); 453 get_task_struct(c); 454 /* 455 * The task_lock protects c->mm from changing. 456 * We always want mm->owner->mm == mm 457 */ 458 task_lock(c); 459 /* 460 * Delay read_unlock() till we have the task_lock() 461 * to ensure that c does not slip away underneath us 462 */ 463 read_unlock(&tasklist_lock); 464 if (c->mm != mm) { 465 task_unlock(c); 466 put_task_struct(c); 467 goto retry; 468 } 469 WRITE_ONCE(mm->owner, c); 470 lru_gen_migrate_mm(mm); 471 task_unlock(c); 472 put_task_struct(c); 473 } 474 #endif /* CONFIG_MEMCG */ 475 476 /* 477 * Turn us into a lazy TLB process if we 478 * aren't already.. 479 */ 480 static void exit_mm(void) 481 { 482 struct mm_struct *mm = current->mm; 483 484 exit_mm_release(current, mm); 485 if (!mm) 486 return; 487 sync_mm_rss(mm); 488 mmap_read_lock(mm); 489 mmgrab(mm); 490 BUG_ON(mm != current->active_mm); 491 /* more a memory barrier than a real lock */ 492 task_lock(current); 493 /* 494 * When a thread stops operating on an address space, the loop 495 * in membarrier_private_expedited() may not observe that 496 * tsk->mm, and the loop in membarrier_global_expedited() may 497 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 498 * rq->membarrier_state, so those would not issue an IPI. 499 * Membarrier requires a memory barrier after accessing 500 * user-space memory, before clearing tsk->mm or the 501 * rq->membarrier_state. 502 */ 503 smp_mb__after_spinlock(); 504 local_irq_disable(); 505 current->mm = NULL; 506 membarrier_update_current_mm(NULL); 507 enter_lazy_tlb(mm, current); 508 local_irq_enable(); 509 task_unlock(current); 510 mmap_read_unlock(mm); 511 mm_update_next_owner(mm); 512 mmput(mm); 513 if (test_thread_flag(TIF_MEMDIE)) 514 exit_oom_victim(); 515 } 516 517 static struct task_struct *find_alive_thread(struct task_struct *p) 518 { 519 struct task_struct *t; 520 521 for_each_thread(p, t) { 522 if (!(t->flags & PF_EXITING)) 523 return t; 524 } 525 return NULL; 526 } 527 528 static struct task_struct *find_child_reaper(struct task_struct *father, 529 struct list_head *dead) 530 __releases(&tasklist_lock) 531 __acquires(&tasklist_lock) 532 { 533 struct pid_namespace *pid_ns = task_active_pid_ns(father); 534 struct task_struct *reaper = pid_ns->child_reaper; 535 struct task_struct *p, *n; 536 537 if (likely(reaper != father)) 538 return reaper; 539 540 reaper = find_alive_thread(father); 541 if (reaper) { 542 pid_ns->child_reaper = reaper; 543 return reaper; 544 } 545 546 write_unlock_irq(&tasklist_lock); 547 548 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 549 list_del_init(&p->ptrace_entry); 550 release_task(p); 551 } 552 553 zap_pid_ns_processes(pid_ns); 554 write_lock_irq(&tasklist_lock); 555 556 return father; 557 } 558 559 /* 560 * When we die, we re-parent all our children, and try to: 561 * 1. give them to another thread in our thread group, if such a member exists 562 * 2. give it to the first ancestor process which prctl'd itself as a 563 * child_subreaper for its children (like a service manager) 564 * 3. give it to the init process (PID 1) in our pid namespace 565 */ 566 static struct task_struct *find_new_reaper(struct task_struct *father, 567 struct task_struct *child_reaper) 568 { 569 struct task_struct *thread, *reaper; 570 571 thread = find_alive_thread(father); 572 if (thread) 573 return thread; 574 575 if (father->signal->has_child_subreaper) { 576 unsigned int ns_level = task_pid(father)->level; 577 /* 578 * Find the first ->is_child_subreaper ancestor in our pid_ns. 579 * We can't check reaper != child_reaper to ensure we do not 580 * cross the namespaces, the exiting parent could be injected 581 * by setns() + fork(). 582 * We check pid->level, this is slightly more efficient than 583 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 584 */ 585 for (reaper = father->real_parent; 586 task_pid(reaper)->level == ns_level; 587 reaper = reaper->real_parent) { 588 if (reaper == &init_task) 589 break; 590 if (!reaper->signal->is_child_subreaper) 591 continue; 592 thread = find_alive_thread(reaper); 593 if (thread) 594 return thread; 595 } 596 } 597 598 return child_reaper; 599 } 600 601 /* 602 * Any that need to be release_task'd are put on the @dead list. 603 */ 604 static void reparent_leader(struct task_struct *father, struct task_struct *p, 605 struct list_head *dead) 606 { 607 if (unlikely(p->exit_state == EXIT_DEAD)) 608 return; 609 610 /* We don't want people slaying init. */ 611 p->exit_signal = SIGCHLD; 612 613 /* If it has exited notify the new parent about this child's death. */ 614 if (!p->ptrace && 615 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 616 if (do_notify_parent(p, p->exit_signal)) { 617 p->exit_state = EXIT_DEAD; 618 list_add(&p->ptrace_entry, dead); 619 } 620 } 621 622 kill_orphaned_pgrp(p, father); 623 } 624 625 /* 626 * This does two things: 627 * 628 * A. Make init inherit all the child processes 629 * B. Check to see if any process groups have become orphaned 630 * as a result of our exiting, and if they have any stopped 631 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 632 */ 633 static void forget_original_parent(struct task_struct *father, 634 struct list_head *dead) 635 { 636 struct task_struct *p, *t, *reaper; 637 638 if (unlikely(!list_empty(&father->ptraced))) 639 exit_ptrace(father, dead); 640 641 /* Can drop and reacquire tasklist_lock */ 642 reaper = find_child_reaper(father, dead); 643 if (list_empty(&father->children)) 644 return; 645 646 reaper = find_new_reaper(father, reaper); 647 list_for_each_entry(p, &father->children, sibling) { 648 for_each_thread(p, t) { 649 RCU_INIT_POINTER(t->real_parent, reaper); 650 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 651 if (likely(!t->ptrace)) 652 t->parent = t->real_parent; 653 if (t->pdeath_signal) 654 group_send_sig_info(t->pdeath_signal, 655 SEND_SIG_NOINFO, t, 656 PIDTYPE_TGID); 657 } 658 /* 659 * If this is a threaded reparent there is no need to 660 * notify anyone anything has happened. 661 */ 662 if (!same_thread_group(reaper, father)) 663 reparent_leader(father, p, dead); 664 } 665 list_splice_tail_init(&father->children, &reaper->children); 666 } 667 668 /* 669 * Send signals to all our closest relatives so that they know 670 * to properly mourn us.. 671 */ 672 static void exit_notify(struct task_struct *tsk, int group_dead) 673 { 674 bool autoreap; 675 struct task_struct *p, *n; 676 LIST_HEAD(dead); 677 678 write_lock_irq(&tasklist_lock); 679 forget_original_parent(tsk, &dead); 680 681 if (group_dead) 682 kill_orphaned_pgrp(tsk->group_leader, NULL); 683 684 tsk->exit_state = EXIT_ZOMBIE; 685 if (unlikely(tsk->ptrace)) { 686 int sig = thread_group_leader(tsk) && 687 thread_group_empty(tsk) && 688 !ptrace_reparented(tsk) ? 689 tsk->exit_signal : SIGCHLD; 690 autoreap = do_notify_parent(tsk, sig); 691 } else if (thread_group_leader(tsk)) { 692 autoreap = thread_group_empty(tsk) && 693 do_notify_parent(tsk, tsk->exit_signal); 694 } else { 695 autoreap = true; 696 } 697 698 if (autoreap) { 699 tsk->exit_state = EXIT_DEAD; 700 list_add(&tsk->ptrace_entry, &dead); 701 } 702 703 /* mt-exec, de_thread() is waiting for group leader */ 704 if (unlikely(tsk->signal->notify_count < 0)) 705 wake_up_process(tsk->signal->group_exec_task); 706 write_unlock_irq(&tasklist_lock); 707 708 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 709 list_del_init(&p->ptrace_entry); 710 release_task(p); 711 } 712 } 713 714 #ifdef CONFIG_DEBUG_STACK_USAGE 715 static void check_stack_usage(void) 716 { 717 static DEFINE_SPINLOCK(low_water_lock); 718 static int lowest_to_date = THREAD_SIZE; 719 unsigned long free; 720 721 free = stack_not_used(current); 722 723 if (free >= lowest_to_date) 724 return; 725 726 spin_lock(&low_water_lock); 727 if (free < lowest_to_date) { 728 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 729 current->comm, task_pid_nr(current), free); 730 lowest_to_date = free; 731 } 732 spin_unlock(&low_water_lock); 733 } 734 #else 735 static inline void check_stack_usage(void) {} 736 #endif 737 738 static void synchronize_group_exit(struct task_struct *tsk, long code) 739 { 740 struct sighand_struct *sighand = tsk->sighand; 741 struct signal_struct *signal = tsk->signal; 742 743 spin_lock_irq(&sighand->siglock); 744 signal->quick_threads--; 745 if ((signal->quick_threads == 0) && 746 !(signal->flags & SIGNAL_GROUP_EXIT)) { 747 signal->flags = SIGNAL_GROUP_EXIT; 748 signal->group_exit_code = code; 749 signal->group_stop_count = 0; 750 } 751 spin_unlock_irq(&sighand->siglock); 752 } 753 754 void __noreturn do_exit(long code) 755 { 756 struct task_struct *tsk = current; 757 int group_dead; 758 759 synchronize_group_exit(tsk, code); 760 761 WARN_ON(tsk->plug); 762 763 kcov_task_exit(tsk); 764 kmsan_task_exit(tsk); 765 766 coredump_task_exit(tsk); 767 ptrace_event(PTRACE_EVENT_EXIT, code); 768 769 validate_creds_for_do_exit(tsk); 770 771 io_uring_files_cancel(); 772 exit_signals(tsk); /* sets PF_EXITING */ 773 774 /* sync mm's RSS info before statistics gathering */ 775 if (tsk->mm) 776 sync_mm_rss(tsk->mm); 777 acct_update_integrals(tsk); 778 group_dead = atomic_dec_and_test(&tsk->signal->live); 779 if (group_dead) { 780 /* 781 * If the last thread of global init has exited, panic 782 * immediately to get a useable coredump. 783 */ 784 if (unlikely(is_global_init(tsk))) 785 panic("Attempted to kill init! exitcode=0x%08x\n", 786 tsk->signal->group_exit_code ?: (int)code); 787 788 #ifdef CONFIG_POSIX_TIMERS 789 hrtimer_cancel(&tsk->signal->real_timer); 790 exit_itimers(tsk); 791 #endif 792 if (tsk->mm) 793 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 794 } 795 acct_collect(code, group_dead); 796 if (group_dead) 797 tty_audit_exit(); 798 audit_free(tsk); 799 800 tsk->exit_code = code; 801 taskstats_exit(tsk, group_dead); 802 803 exit_mm(); 804 805 if (group_dead) 806 acct_process(); 807 trace_sched_process_exit(tsk); 808 809 exit_sem(tsk); 810 exit_shm(tsk); 811 exit_files(tsk); 812 exit_fs(tsk); 813 if (group_dead) 814 disassociate_ctty(1); 815 exit_task_namespaces(tsk); 816 exit_task_work(tsk); 817 exit_thread(tsk); 818 819 /* 820 * Flush inherited counters to the parent - before the parent 821 * gets woken up by child-exit notifications. 822 * 823 * because of cgroup mode, must be called before cgroup_exit() 824 */ 825 perf_event_exit_task(tsk); 826 827 sched_autogroup_exit_task(tsk); 828 cgroup_exit(tsk); 829 830 /* 831 * FIXME: do that only when needed, using sched_exit tracepoint 832 */ 833 flush_ptrace_hw_breakpoint(tsk); 834 835 exit_tasks_rcu_start(); 836 exit_notify(tsk, group_dead); 837 proc_exit_connector(tsk); 838 mpol_put_task_policy(tsk); 839 #ifdef CONFIG_FUTEX 840 if (unlikely(current->pi_state_cache)) 841 kfree(current->pi_state_cache); 842 #endif 843 /* 844 * Make sure we are holding no locks: 845 */ 846 debug_check_no_locks_held(); 847 848 if (tsk->io_context) 849 exit_io_context(tsk); 850 851 if (tsk->splice_pipe) 852 free_pipe_info(tsk->splice_pipe); 853 854 if (tsk->task_frag.page) 855 put_page(tsk->task_frag.page); 856 857 validate_creds_for_do_exit(tsk); 858 exit_task_stack_account(tsk); 859 860 check_stack_usage(); 861 preempt_disable(); 862 if (tsk->nr_dirtied) 863 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 864 exit_rcu(); 865 exit_tasks_rcu_finish(); 866 867 lockdep_free_task(tsk); 868 do_task_dead(); 869 } 870 871 void __noreturn make_task_dead(int signr) 872 { 873 /* 874 * Take the task off the cpu after something catastrophic has 875 * happened. 876 * 877 * We can get here from a kernel oops, sometimes with preemption off. 878 * Start by checking for critical errors. 879 * Then fix up important state like USER_DS and preemption. 880 * Then do everything else. 881 */ 882 struct task_struct *tsk = current; 883 884 if (unlikely(in_interrupt())) 885 panic("Aiee, killing interrupt handler!"); 886 if (unlikely(!tsk->pid)) 887 panic("Attempted to kill the idle task!"); 888 889 if (unlikely(in_atomic())) { 890 pr_info("note: %s[%d] exited with preempt_count %d\n", 891 current->comm, task_pid_nr(current), 892 preempt_count()); 893 preempt_count_set(PREEMPT_ENABLED); 894 } 895 896 /* 897 * We're taking recursive faults here in make_task_dead. Safest is to just 898 * leave this task alone and wait for reboot. 899 */ 900 if (unlikely(tsk->flags & PF_EXITING)) { 901 pr_alert("Fixing recursive fault but reboot is needed!\n"); 902 futex_exit_recursive(tsk); 903 tsk->exit_state = EXIT_DEAD; 904 refcount_inc(&tsk->rcu_users); 905 do_task_dead(); 906 } 907 908 do_exit(signr); 909 } 910 911 SYSCALL_DEFINE1(exit, int, error_code) 912 { 913 do_exit((error_code&0xff)<<8); 914 } 915 916 /* 917 * Take down every thread in the group. This is called by fatal signals 918 * as well as by sys_exit_group (below). 919 */ 920 void __noreturn 921 do_group_exit(int exit_code) 922 { 923 struct signal_struct *sig = current->signal; 924 925 if (sig->flags & SIGNAL_GROUP_EXIT) 926 exit_code = sig->group_exit_code; 927 else if (sig->group_exec_task) 928 exit_code = 0; 929 else { 930 struct sighand_struct *const sighand = current->sighand; 931 932 spin_lock_irq(&sighand->siglock); 933 if (sig->flags & SIGNAL_GROUP_EXIT) 934 /* Another thread got here before we took the lock. */ 935 exit_code = sig->group_exit_code; 936 else if (sig->group_exec_task) 937 exit_code = 0; 938 else { 939 sig->group_exit_code = exit_code; 940 sig->flags = SIGNAL_GROUP_EXIT; 941 zap_other_threads(current); 942 } 943 spin_unlock_irq(&sighand->siglock); 944 } 945 946 do_exit(exit_code); 947 /* NOTREACHED */ 948 } 949 950 /* 951 * this kills every thread in the thread group. Note that any externally 952 * wait4()-ing process will get the correct exit code - even if this 953 * thread is not the thread group leader. 954 */ 955 SYSCALL_DEFINE1(exit_group, int, error_code) 956 { 957 do_group_exit((error_code & 0xff) << 8); 958 /* NOTREACHED */ 959 return 0; 960 } 961 962 struct waitid_info { 963 pid_t pid; 964 uid_t uid; 965 int status; 966 int cause; 967 }; 968 969 struct wait_opts { 970 enum pid_type wo_type; 971 int wo_flags; 972 struct pid *wo_pid; 973 974 struct waitid_info *wo_info; 975 int wo_stat; 976 struct rusage *wo_rusage; 977 978 wait_queue_entry_t child_wait; 979 int notask_error; 980 }; 981 982 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 983 { 984 return wo->wo_type == PIDTYPE_MAX || 985 task_pid_type(p, wo->wo_type) == wo->wo_pid; 986 } 987 988 static int 989 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 990 { 991 if (!eligible_pid(wo, p)) 992 return 0; 993 994 /* 995 * Wait for all children (clone and not) if __WALL is set or 996 * if it is traced by us. 997 */ 998 if (ptrace || (wo->wo_flags & __WALL)) 999 return 1; 1000 1001 /* 1002 * Otherwise, wait for clone children *only* if __WCLONE is set; 1003 * otherwise, wait for non-clone children *only*. 1004 * 1005 * Note: a "clone" child here is one that reports to its parent 1006 * using a signal other than SIGCHLD, or a non-leader thread which 1007 * we can only see if it is traced by us. 1008 */ 1009 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1010 return 0; 1011 1012 return 1; 1013 } 1014 1015 /* 1016 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1017 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1018 * the lock and this task is uninteresting. If we return nonzero, we have 1019 * released the lock and the system call should return. 1020 */ 1021 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1022 { 1023 int state, status; 1024 pid_t pid = task_pid_vnr(p); 1025 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1026 struct waitid_info *infop; 1027 1028 if (!likely(wo->wo_flags & WEXITED)) 1029 return 0; 1030 1031 if (unlikely(wo->wo_flags & WNOWAIT)) { 1032 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1033 ? p->signal->group_exit_code : p->exit_code; 1034 get_task_struct(p); 1035 read_unlock(&tasklist_lock); 1036 sched_annotate_sleep(); 1037 if (wo->wo_rusage) 1038 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1039 put_task_struct(p); 1040 goto out_info; 1041 } 1042 /* 1043 * Move the task's state to DEAD/TRACE, only one thread can do this. 1044 */ 1045 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1046 EXIT_TRACE : EXIT_DEAD; 1047 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1048 return 0; 1049 /* 1050 * We own this thread, nobody else can reap it. 1051 */ 1052 read_unlock(&tasklist_lock); 1053 sched_annotate_sleep(); 1054 1055 /* 1056 * Check thread_group_leader() to exclude the traced sub-threads. 1057 */ 1058 if (state == EXIT_DEAD && thread_group_leader(p)) { 1059 struct signal_struct *sig = p->signal; 1060 struct signal_struct *psig = current->signal; 1061 unsigned long maxrss; 1062 u64 tgutime, tgstime; 1063 1064 /* 1065 * The resource counters for the group leader are in its 1066 * own task_struct. Those for dead threads in the group 1067 * are in its signal_struct, as are those for the child 1068 * processes it has previously reaped. All these 1069 * accumulate in the parent's signal_struct c* fields. 1070 * 1071 * We don't bother to take a lock here to protect these 1072 * p->signal fields because the whole thread group is dead 1073 * and nobody can change them. 1074 * 1075 * psig->stats_lock also protects us from our sub-threads 1076 * which can reap other children at the same time. Until 1077 * we change k_getrusage()-like users to rely on this lock 1078 * we have to take ->siglock as well. 1079 * 1080 * We use thread_group_cputime_adjusted() to get times for 1081 * the thread group, which consolidates times for all threads 1082 * in the group including the group leader. 1083 */ 1084 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1085 spin_lock_irq(¤t->sighand->siglock); 1086 write_seqlock(&psig->stats_lock); 1087 psig->cutime += tgutime + sig->cutime; 1088 psig->cstime += tgstime + sig->cstime; 1089 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1090 psig->cmin_flt += 1091 p->min_flt + sig->min_flt + sig->cmin_flt; 1092 psig->cmaj_flt += 1093 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1094 psig->cnvcsw += 1095 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1096 psig->cnivcsw += 1097 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1098 psig->cinblock += 1099 task_io_get_inblock(p) + 1100 sig->inblock + sig->cinblock; 1101 psig->coublock += 1102 task_io_get_oublock(p) + 1103 sig->oublock + sig->coublock; 1104 maxrss = max(sig->maxrss, sig->cmaxrss); 1105 if (psig->cmaxrss < maxrss) 1106 psig->cmaxrss = maxrss; 1107 task_io_accounting_add(&psig->ioac, &p->ioac); 1108 task_io_accounting_add(&psig->ioac, &sig->ioac); 1109 write_sequnlock(&psig->stats_lock); 1110 spin_unlock_irq(¤t->sighand->siglock); 1111 } 1112 1113 if (wo->wo_rusage) 1114 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1115 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1116 ? p->signal->group_exit_code : p->exit_code; 1117 wo->wo_stat = status; 1118 1119 if (state == EXIT_TRACE) { 1120 write_lock_irq(&tasklist_lock); 1121 /* We dropped tasklist, ptracer could die and untrace */ 1122 ptrace_unlink(p); 1123 1124 /* If parent wants a zombie, don't release it now */ 1125 state = EXIT_ZOMBIE; 1126 if (do_notify_parent(p, p->exit_signal)) 1127 state = EXIT_DEAD; 1128 p->exit_state = state; 1129 write_unlock_irq(&tasklist_lock); 1130 } 1131 if (state == EXIT_DEAD) 1132 release_task(p); 1133 1134 out_info: 1135 infop = wo->wo_info; 1136 if (infop) { 1137 if ((status & 0x7f) == 0) { 1138 infop->cause = CLD_EXITED; 1139 infop->status = status >> 8; 1140 } else { 1141 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1142 infop->status = status & 0x7f; 1143 } 1144 infop->pid = pid; 1145 infop->uid = uid; 1146 } 1147 1148 return pid; 1149 } 1150 1151 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1152 { 1153 if (ptrace) { 1154 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1155 return &p->exit_code; 1156 } else { 1157 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1158 return &p->signal->group_exit_code; 1159 } 1160 return NULL; 1161 } 1162 1163 /** 1164 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1165 * @wo: wait options 1166 * @ptrace: is the wait for ptrace 1167 * @p: task to wait for 1168 * 1169 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1170 * 1171 * CONTEXT: 1172 * read_lock(&tasklist_lock), which is released if return value is 1173 * non-zero. Also, grabs and releases @p->sighand->siglock. 1174 * 1175 * RETURNS: 1176 * 0 if wait condition didn't exist and search for other wait conditions 1177 * should continue. Non-zero return, -errno on failure and @p's pid on 1178 * success, implies that tasklist_lock is released and wait condition 1179 * search should terminate. 1180 */ 1181 static int wait_task_stopped(struct wait_opts *wo, 1182 int ptrace, struct task_struct *p) 1183 { 1184 struct waitid_info *infop; 1185 int exit_code, *p_code, why; 1186 uid_t uid = 0; /* unneeded, required by compiler */ 1187 pid_t pid; 1188 1189 /* 1190 * Traditionally we see ptrace'd stopped tasks regardless of options. 1191 */ 1192 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1193 return 0; 1194 1195 if (!task_stopped_code(p, ptrace)) 1196 return 0; 1197 1198 exit_code = 0; 1199 spin_lock_irq(&p->sighand->siglock); 1200 1201 p_code = task_stopped_code(p, ptrace); 1202 if (unlikely(!p_code)) 1203 goto unlock_sig; 1204 1205 exit_code = *p_code; 1206 if (!exit_code) 1207 goto unlock_sig; 1208 1209 if (!unlikely(wo->wo_flags & WNOWAIT)) 1210 *p_code = 0; 1211 1212 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1213 unlock_sig: 1214 spin_unlock_irq(&p->sighand->siglock); 1215 if (!exit_code) 1216 return 0; 1217 1218 /* 1219 * Now we are pretty sure this task is interesting. 1220 * Make sure it doesn't get reaped out from under us while we 1221 * give up the lock and then examine it below. We don't want to 1222 * keep holding onto the tasklist_lock while we call getrusage and 1223 * possibly take page faults for user memory. 1224 */ 1225 get_task_struct(p); 1226 pid = task_pid_vnr(p); 1227 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1228 read_unlock(&tasklist_lock); 1229 sched_annotate_sleep(); 1230 if (wo->wo_rusage) 1231 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1232 put_task_struct(p); 1233 1234 if (likely(!(wo->wo_flags & WNOWAIT))) 1235 wo->wo_stat = (exit_code << 8) | 0x7f; 1236 1237 infop = wo->wo_info; 1238 if (infop) { 1239 infop->cause = why; 1240 infop->status = exit_code; 1241 infop->pid = pid; 1242 infop->uid = uid; 1243 } 1244 return pid; 1245 } 1246 1247 /* 1248 * Handle do_wait work for one task in a live, non-stopped state. 1249 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1250 * the lock and this task is uninteresting. If we return nonzero, we have 1251 * released the lock and the system call should return. 1252 */ 1253 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1254 { 1255 struct waitid_info *infop; 1256 pid_t pid; 1257 uid_t uid; 1258 1259 if (!unlikely(wo->wo_flags & WCONTINUED)) 1260 return 0; 1261 1262 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1263 return 0; 1264 1265 spin_lock_irq(&p->sighand->siglock); 1266 /* Re-check with the lock held. */ 1267 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1268 spin_unlock_irq(&p->sighand->siglock); 1269 return 0; 1270 } 1271 if (!unlikely(wo->wo_flags & WNOWAIT)) 1272 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1273 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1274 spin_unlock_irq(&p->sighand->siglock); 1275 1276 pid = task_pid_vnr(p); 1277 get_task_struct(p); 1278 read_unlock(&tasklist_lock); 1279 sched_annotate_sleep(); 1280 if (wo->wo_rusage) 1281 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1282 put_task_struct(p); 1283 1284 infop = wo->wo_info; 1285 if (!infop) { 1286 wo->wo_stat = 0xffff; 1287 } else { 1288 infop->cause = CLD_CONTINUED; 1289 infop->pid = pid; 1290 infop->uid = uid; 1291 infop->status = SIGCONT; 1292 } 1293 return pid; 1294 } 1295 1296 /* 1297 * Consider @p for a wait by @parent. 1298 * 1299 * -ECHILD should be in ->notask_error before the first call. 1300 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1301 * Returns zero if the search for a child should continue; 1302 * then ->notask_error is 0 if @p is an eligible child, 1303 * or still -ECHILD. 1304 */ 1305 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1306 struct task_struct *p) 1307 { 1308 /* 1309 * We can race with wait_task_zombie() from another thread. 1310 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1311 * can't confuse the checks below. 1312 */ 1313 int exit_state = READ_ONCE(p->exit_state); 1314 int ret; 1315 1316 if (unlikely(exit_state == EXIT_DEAD)) 1317 return 0; 1318 1319 ret = eligible_child(wo, ptrace, p); 1320 if (!ret) 1321 return ret; 1322 1323 if (unlikely(exit_state == EXIT_TRACE)) { 1324 /* 1325 * ptrace == 0 means we are the natural parent. In this case 1326 * we should clear notask_error, debugger will notify us. 1327 */ 1328 if (likely(!ptrace)) 1329 wo->notask_error = 0; 1330 return 0; 1331 } 1332 1333 if (likely(!ptrace) && unlikely(p->ptrace)) { 1334 /* 1335 * If it is traced by its real parent's group, just pretend 1336 * the caller is ptrace_do_wait() and reap this child if it 1337 * is zombie. 1338 * 1339 * This also hides group stop state from real parent; otherwise 1340 * a single stop can be reported twice as group and ptrace stop. 1341 * If a ptracer wants to distinguish these two events for its 1342 * own children it should create a separate process which takes 1343 * the role of real parent. 1344 */ 1345 if (!ptrace_reparented(p)) 1346 ptrace = 1; 1347 } 1348 1349 /* slay zombie? */ 1350 if (exit_state == EXIT_ZOMBIE) { 1351 /* we don't reap group leaders with subthreads */ 1352 if (!delay_group_leader(p)) { 1353 /* 1354 * A zombie ptracee is only visible to its ptracer. 1355 * Notification and reaping will be cascaded to the 1356 * real parent when the ptracer detaches. 1357 */ 1358 if (unlikely(ptrace) || likely(!p->ptrace)) 1359 return wait_task_zombie(wo, p); 1360 } 1361 1362 /* 1363 * Allow access to stopped/continued state via zombie by 1364 * falling through. Clearing of notask_error is complex. 1365 * 1366 * When !@ptrace: 1367 * 1368 * If WEXITED is set, notask_error should naturally be 1369 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1370 * so, if there are live subthreads, there are events to 1371 * wait for. If all subthreads are dead, it's still safe 1372 * to clear - this function will be called again in finite 1373 * amount time once all the subthreads are released and 1374 * will then return without clearing. 1375 * 1376 * When @ptrace: 1377 * 1378 * Stopped state is per-task and thus can't change once the 1379 * target task dies. Only continued and exited can happen. 1380 * Clear notask_error if WCONTINUED | WEXITED. 1381 */ 1382 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1383 wo->notask_error = 0; 1384 } else { 1385 /* 1386 * @p is alive and it's gonna stop, continue or exit, so 1387 * there always is something to wait for. 1388 */ 1389 wo->notask_error = 0; 1390 } 1391 1392 /* 1393 * Wait for stopped. Depending on @ptrace, different stopped state 1394 * is used and the two don't interact with each other. 1395 */ 1396 ret = wait_task_stopped(wo, ptrace, p); 1397 if (ret) 1398 return ret; 1399 1400 /* 1401 * Wait for continued. There's only one continued state and the 1402 * ptracer can consume it which can confuse the real parent. Don't 1403 * use WCONTINUED from ptracer. You don't need or want it. 1404 */ 1405 return wait_task_continued(wo, p); 1406 } 1407 1408 /* 1409 * Do the work of do_wait() for one thread in the group, @tsk. 1410 * 1411 * -ECHILD should be in ->notask_error before the first call. 1412 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1413 * Returns zero if the search for a child should continue; then 1414 * ->notask_error is 0 if there were any eligible children, 1415 * or still -ECHILD. 1416 */ 1417 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1418 { 1419 struct task_struct *p; 1420 1421 list_for_each_entry(p, &tsk->children, sibling) { 1422 int ret = wait_consider_task(wo, 0, p); 1423 1424 if (ret) 1425 return ret; 1426 } 1427 1428 return 0; 1429 } 1430 1431 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1432 { 1433 struct task_struct *p; 1434 1435 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1436 int ret = wait_consider_task(wo, 1, p); 1437 1438 if (ret) 1439 return ret; 1440 } 1441 1442 return 0; 1443 } 1444 1445 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1446 int sync, void *key) 1447 { 1448 struct wait_opts *wo = container_of(wait, struct wait_opts, 1449 child_wait); 1450 struct task_struct *p = key; 1451 1452 if (!eligible_pid(wo, p)) 1453 return 0; 1454 1455 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1456 return 0; 1457 1458 return default_wake_function(wait, mode, sync, key); 1459 } 1460 1461 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1462 { 1463 __wake_up_sync_key(&parent->signal->wait_chldexit, 1464 TASK_INTERRUPTIBLE, p); 1465 } 1466 1467 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1468 struct task_struct *target) 1469 { 1470 struct task_struct *parent = 1471 !ptrace ? target->real_parent : target->parent; 1472 1473 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1474 same_thread_group(current, parent)); 1475 } 1476 1477 /* 1478 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1479 * and tracee lists to find the target task. 1480 */ 1481 static int do_wait_pid(struct wait_opts *wo) 1482 { 1483 bool ptrace; 1484 struct task_struct *target; 1485 int retval; 1486 1487 ptrace = false; 1488 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1489 if (target && is_effectively_child(wo, ptrace, target)) { 1490 retval = wait_consider_task(wo, ptrace, target); 1491 if (retval) 1492 return retval; 1493 } 1494 1495 ptrace = true; 1496 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1497 if (target && target->ptrace && 1498 is_effectively_child(wo, ptrace, target)) { 1499 retval = wait_consider_task(wo, ptrace, target); 1500 if (retval) 1501 return retval; 1502 } 1503 1504 return 0; 1505 } 1506 1507 static long do_wait(struct wait_opts *wo) 1508 { 1509 int retval; 1510 1511 trace_sched_process_wait(wo->wo_pid); 1512 1513 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1514 wo->child_wait.private = current; 1515 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1516 repeat: 1517 /* 1518 * If there is nothing that can match our criteria, just get out. 1519 * We will clear ->notask_error to zero if we see any child that 1520 * might later match our criteria, even if we are not able to reap 1521 * it yet. 1522 */ 1523 wo->notask_error = -ECHILD; 1524 if ((wo->wo_type < PIDTYPE_MAX) && 1525 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1526 goto notask; 1527 1528 set_current_state(TASK_INTERRUPTIBLE); 1529 read_lock(&tasklist_lock); 1530 1531 if (wo->wo_type == PIDTYPE_PID) { 1532 retval = do_wait_pid(wo); 1533 if (retval) 1534 goto end; 1535 } else { 1536 struct task_struct *tsk = current; 1537 1538 do { 1539 retval = do_wait_thread(wo, tsk); 1540 if (retval) 1541 goto end; 1542 1543 retval = ptrace_do_wait(wo, tsk); 1544 if (retval) 1545 goto end; 1546 1547 if (wo->wo_flags & __WNOTHREAD) 1548 break; 1549 } while_each_thread(current, tsk); 1550 } 1551 read_unlock(&tasklist_lock); 1552 1553 notask: 1554 retval = wo->notask_error; 1555 if (!retval && !(wo->wo_flags & WNOHANG)) { 1556 retval = -ERESTARTSYS; 1557 if (!signal_pending(current)) { 1558 schedule(); 1559 goto repeat; 1560 } 1561 } 1562 end: 1563 __set_current_state(TASK_RUNNING); 1564 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1565 return retval; 1566 } 1567 1568 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1569 int options, struct rusage *ru) 1570 { 1571 struct wait_opts wo; 1572 struct pid *pid = NULL; 1573 enum pid_type type; 1574 long ret; 1575 unsigned int f_flags = 0; 1576 1577 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1578 __WNOTHREAD|__WCLONE|__WALL)) 1579 return -EINVAL; 1580 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1581 return -EINVAL; 1582 1583 switch (which) { 1584 case P_ALL: 1585 type = PIDTYPE_MAX; 1586 break; 1587 case P_PID: 1588 type = PIDTYPE_PID; 1589 if (upid <= 0) 1590 return -EINVAL; 1591 1592 pid = find_get_pid(upid); 1593 break; 1594 case P_PGID: 1595 type = PIDTYPE_PGID; 1596 if (upid < 0) 1597 return -EINVAL; 1598 1599 if (upid) 1600 pid = find_get_pid(upid); 1601 else 1602 pid = get_task_pid(current, PIDTYPE_PGID); 1603 break; 1604 case P_PIDFD: 1605 type = PIDTYPE_PID; 1606 if (upid < 0) 1607 return -EINVAL; 1608 1609 pid = pidfd_get_pid(upid, &f_flags); 1610 if (IS_ERR(pid)) 1611 return PTR_ERR(pid); 1612 1613 break; 1614 default: 1615 return -EINVAL; 1616 } 1617 1618 wo.wo_type = type; 1619 wo.wo_pid = pid; 1620 wo.wo_flags = options; 1621 wo.wo_info = infop; 1622 wo.wo_rusage = ru; 1623 if (f_flags & O_NONBLOCK) 1624 wo.wo_flags |= WNOHANG; 1625 1626 ret = do_wait(&wo); 1627 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK)) 1628 ret = -EAGAIN; 1629 1630 put_pid(pid); 1631 return ret; 1632 } 1633 1634 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1635 infop, int, options, struct rusage __user *, ru) 1636 { 1637 struct rusage r; 1638 struct waitid_info info = {.status = 0}; 1639 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1640 int signo = 0; 1641 1642 if (err > 0) { 1643 signo = SIGCHLD; 1644 err = 0; 1645 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1646 return -EFAULT; 1647 } 1648 if (!infop) 1649 return err; 1650 1651 if (!user_write_access_begin(infop, sizeof(*infop))) 1652 return -EFAULT; 1653 1654 unsafe_put_user(signo, &infop->si_signo, Efault); 1655 unsafe_put_user(0, &infop->si_errno, Efault); 1656 unsafe_put_user(info.cause, &infop->si_code, Efault); 1657 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1658 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1659 unsafe_put_user(info.status, &infop->si_status, Efault); 1660 user_write_access_end(); 1661 return err; 1662 Efault: 1663 user_write_access_end(); 1664 return -EFAULT; 1665 } 1666 1667 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1668 struct rusage *ru) 1669 { 1670 struct wait_opts wo; 1671 struct pid *pid = NULL; 1672 enum pid_type type; 1673 long ret; 1674 1675 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1676 __WNOTHREAD|__WCLONE|__WALL)) 1677 return -EINVAL; 1678 1679 /* -INT_MIN is not defined */ 1680 if (upid == INT_MIN) 1681 return -ESRCH; 1682 1683 if (upid == -1) 1684 type = PIDTYPE_MAX; 1685 else if (upid < 0) { 1686 type = PIDTYPE_PGID; 1687 pid = find_get_pid(-upid); 1688 } else if (upid == 0) { 1689 type = PIDTYPE_PGID; 1690 pid = get_task_pid(current, PIDTYPE_PGID); 1691 } else /* upid > 0 */ { 1692 type = PIDTYPE_PID; 1693 pid = find_get_pid(upid); 1694 } 1695 1696 wo.wo_type = type; 1697 wo.wo_pid = pid; 1698 wo.wo_flags = options | WEXITED; 1699 wo.wo_info = NULL; 1700 wo.wo_stat = 0; 1701 wo.wo_rusage = ru; 1702 ret = do_wait(&wo); 1703 put_pid(pid); 1704 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1705 ret = -EFAULT; 1706 1707 return ret; 1708 } 1709 1710 int kernel_wait(pid_t pid, int *stat) 1711 { 1712 struct wait_opts wo = { 1713 .wo_type = PIDTYPE_PID, 1714 .wo_pid = find_get_pid(pid), 1715 .wo_flags = WEXITED, 1716 }; 1717 int ret; 1718 1719 ret = do_wait(&wo); 1720 if (ret > 0 && wo.wo_stat) 1721 *stat = wo.wo_stat; 1722 put_pid(wo.wo_pid); 1723 return ret; 1724 } 1725 1726 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1727 int, options, struct rusage __user *, ru) 1728 { 1729 struct rusage r; 1730 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1731 1732 if (err > 0) { 1733 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1734 return -EFAULT; 1735 } 1736 return err; 1737 } 1738 1739 #ifdef __ARCH_WANT_SYS_WAITPID 1740 1741 /* 1742 * sys_waitpid() remains for compatibility. waitpid() should be 1743 * implemented by calling sys_wait4() from libc.a. 1744 */ 1745 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1746 { 1747 return kernel_wait4(pid, stat_addr, options, NULL); 1748 } 1749 1750 #endif 1751 1752 #ifdef CONFIG_COMPAT 1753 COMPAT_SYSCALL_DEFINE4(wait4, 1754 compat_pid_t, pid, 1755 compat_uint_t __user *, stat_addr, 1756 int, options, 1757 struct compat_rusage __user *, ru) 1758 { 1759 struct rusage r; 1760 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1761 if (err > 0) { 1762 if (ru && put_compat_rusage(&r, ru)) 1763 return -EFAULT; 1764 } 1765 return err; 1766 } 1767 1768 COMPAT_SYSCALL_DEFINE5(waitid, 1769 int, which, compat_pid_t, pid, 1770 struct compat_siginfo __user *, infop, int, options, 1771 struct compat_rusage __user *, uru) 1772 { 1773 struct rusage ru; 1774 struct waitid_info info = {.status = 0}; 1775 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1776 int signo = 0; 1777 if (err > 0) { 1778 signo = SIGCHLD; 1779 err = 0; 1780 if (uru) { 1781 /* kernel_waitid() overwrites everything in ru */ 1782 if (COMPAT_USE_64BIT_TIME) 1783 err = copy_to_user(uru, &ru, sizeof(ru)); 1784 else 1785 err = put_compat_rusage(&ru, uru); 1786 if (err) 1787 return -EFAULT; 1788 } 1789 } 1790 1791 if (!infop) 1792 return err; 1793 1794 if (!user_write_access_begin(infop, sizeof(*infop))) 1795 return -EFAULT; 1796 1797 unsafe_put_user(signo, &infop->si_signo, Efault); 1798 unsafe_put_user(0, &infop->si_errno, Efault); 1799 unsafe_put_user(info.cause, &infop->si_code, Efault); 1800 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1801 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1802 unsafe_put_user(info.status, &infop->si_status, Efault); 1803 user_write_access_end(); 1804 return err; 1805 Efault: 1806 user_write_access_end(); 1807 return -EFAULT; 1808 } 1809 #endif 1810 1811 /** 1812 * thread_group_exited - check that a thread group has exited 1813 * @pid: tgid of thread group to be checked. 1814 * 1815 * Test if the thread group represented by tgid has exited (all 1816 * threads are zombies, dead or completely gone). 1817 * 1818 * Return: true if the thread group has exited. false otherwise. 1819 */ 1820 bool thread_group_exited(struct pid *pid) 1821 { 1822 struct task_struct *task; 1823 bool exited; 1824 1825 rcu_read_lock(); 1826 task = pid_task(pid, PIDTYPE_PID); 1827 exited = !task || 1828 (READ_ONCE(task->exit_state) && thread_group_empty(task)); 1829 rcu_read_unlock(); 1830 1831 return exited; 1832 } 1833 EXPORT_SYMBOL(thread_group_exited); 1834 1835 __weak void abort(void) 1836 { 1837 BUG(); 1838 1839 /* if that doesn't kill us, halt */ 1840 panic("Oops failed to kill thread"); 1841 } 1842 EXPORT_SYMBOL(abort); 1843