1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/freezer.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 #include <linux/writeback.h> 55 #include <linux/shm.h> 56 57 #include <asm/uaccess.h> 58 #include <asm/unistd.h> 59 #include <asm/pgtable.h> 60 #include <asm/mmu_context.h> 61 62 static void exit_mm(struct task_struct *tsk); 63 64 static void __unhash_process(struct task_struct *p, bool group_dead) 65 { 66 nr_threads--; 67 detach_pid(p, PIDTYPE_PID); 68 if (group_dead) { 69 detach_pid(p, PIDTYPE_PGID); 70 detach_pid(p, PIDTYPE_SID); 71 72 list_del_rcu(&p->tasks); 73 list_del_init(&p->sibling); 74 __this_cpu_dec(process_counts); 75 } 76 list_del_rcu(&p->thread_group); 77 list_del_rcu(&p->thread_node); 78 } 79 80 /* 81 * This function expects the tasklist_lock write-locked. 82 */ 83 static void __exit_signal(struct task_struct *tsk) 84 { 85 struct signal_struct *sig = tsk->signal; 86 bool group_dead = thread_group_leader(tsk); 87 struct sighand_struct *sighand; 88 struct tty_struct *uninitialized_var(tty); 89 cputime_t utime, stime; 90 91 sighand = rcu_dereference_check(tsk->sighand, 92 lockdep_tasklist_lock_is_held()); 93 spin_lock(&sighand->siglock); 94 95 posix_cpu_timers_exit(tsk); 96 if (group_dead) { 97 posix_cpu_timers_exit_group(tsk); 98 tty = sig->tty; 99 sig->tty = NULL; 100 } else { 101 /* 102 * This can only happen if the caller is de_thread(). 103 * FIXME: this is the temporary hack, we should teach 104 * posix-cpu-timers to handle this case correctly. 105 */ 106 if (unlikely(has_group_leader_pid(tsk))) 107 posix_cpu_timers_exit_group(tsk); 108 109 /* 110 * If there is any task waiting for the group exit 111 * then notify it: 112 */ 113 if (sig->notify_count > 0 && !--sig->notify_count) 114 wake_up_process(sig->group_exit_task); 115 116 if (tsk == sig->curr_target) 117 sig->curr_target = next_thread(tsk); 118 } 119 120 /* 121 * Accumulate here the counters for all threads as they die. We could 122 * skip the group leader because it is the last user of signal_struct, 123 * but we want to avoid the race with thread_group_cputime() which can 124 * see the empty ->thread_head list. 125 */ 126 task_cputime(tsk, &utime, &stime); 127 write_seqlock(&sig->stats_lock); 128 sig->utime += utime; 129 sig->stime += stime; 130 sig->gtime += task_gtime(tsk); 131 sig->min_flt += tsk->min_flt; 132 sig->maj_flt += tsk->maj_flt; 133 sig->nvcsw += tsk->nvcsw; 134 sig->nivcsw += tsk->nivcsw; 135 sig->inblock += task_io_get_inblock(tsk); 136 sig->oublock += task_io_get_oublock(tsk); 137 task_io_accounting_add(&sig->ioac, &tsk->ioac); 138 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 139 sig->nr_threads--; 140 __unhash_process(tsk, group_dead); 141 write_sequnlock(&sig->stats_lock); 142 143 /* 144 * Do this under ->siglock, we can race with another thread 145 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 146 */ 147 flush_sigqueue(&tsk->pending); 148 tsk->sighand = NULL; 149 spin_unlock(&sighand->siglock); 150 151 __cleanup_sighand(sighand); 152 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 153 if (group_dead) { 154 flush_sigqueue(&sig->shared_pending); 155 tty_kref_put(tty); 156 } 157 } 158 159 static void delayed_put_task_struct(struct rcu_head *rhp) 160 { 161 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 162 163 perf_event_delayed_put(tsk); 164 trace_sched_process_free(tsk); 165 put_task_struct(tsk); 166 } 167 168 169 void release_task(struct task_struct *p) 170 { 171 struct task_struct *leader; 172 int zap_leader; 173 repeat: 174 /* don't need to get the RCU readlock here - the process is dead and 175 * can't be modifying its own credentials. But shut RCU-lockdep up */ 176 rcu_read_lock(); 177 atomic_dec(&__task_cred(p)->user->processes); 178 rcu_read_unlock(); 179 180 proc_flush_task(p); 181 182 write_lock_irq(&tasklist_lock); 183 ptrace_release_task(p); 184 __exit_signal(p); 185 186 /* 187 * If we are the last non-leader member of the thread 188 * group, and the leader is zombie, then notify the 189 * group leader's parent process. (if it wants notification.) 190 */ 191 zap_leader = 0; 192 leader = p->group_leader; 193 if (leader != p && thread_group_empty(leader) 194 && leader->exit_state == EXIT_ZOMBIE) { 195 /* 196 * If we were the last child thread and the leader has 197 * exited already, and the leader's parent ignores SIGCHLD, 198 * then we are the one who should release the leader. 199 */ 200 zap_leader = do_notify_parent(leader, leader->exit_signal); 201 if (zap_leader) 202 leader->exit_state = EXIT_DEAD; 203 } 204 205 write_unlock_irq(&tasklist_lock); 206 release_thread(p); 207 call_rcu(&p->rcu, delayed_put_task_struct); 208 209 p = leader; 210 if (unlikely(zap_leader)) 211 goto repeat; 212 } 213 214 /* 215 * Determine if a process group is "orphaned", according to the POSIX 216 * definition in 2.2.2.52. Orphaned process groups are not to be affected 217 * by terminal-generated stop signals. Newly orphaned process groups are 218 * to receive a SIGHUP and a SIGCONT. 219 * 220 * "I ask you, have you ever known what it is to be an orphan?" 221 */ 222 static int will_become_orphaned_pgrp(struct pid *pgrp, 223 struct task_struct *ignored_task) 224 { 225 struct task_struct *p; 226 227 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 228 if ((p == ignored_task) || 229 (p->exit_state && thread_group_empty(p)) || 230 is_global_init(p->real_parent)) 231 continue; 232 233 if (task_pgrp(p->real_parent) != pgrp && 234 task_session(p->real_parent) == task_session(p)) 235 return 0; 236 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 237 238 return 1; 239 } 240 241 int is_current_pgrp_orphaned(void) 242 { 243 int retval; 244 245 read_lock(&tasklist_lock); 246 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 247 read_unlock(&tasklist_lock); 248 249 return retval; 250 } 251 252 static bool has_stopped_jobs(struct pid *pgrp) 253 { 254 struct task_struct *p; 255 256 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 257 if (p->signal->flags & SIGNAL_STOP_STOPPED) 258 return true; 259 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 260 261 return false; 262 } 263 264 /* 265 * Check to see if any process groups have become orphaned as 266 * a result of our exiting, and if they have any stopped jobs, 267 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 268 */ 269 static void 270 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 271 { 272 struct pid *pgrp = task_pgrp(tsk); 273 struct task_struct *ignored_task = tsk; 274 275 if (!parent) 276 /* exit: our father is in a different pgrp than 277 * we are and we were the only connection outside. 278 */ 279 parent = tsk->real_parent; 280 else 281 /* reparent: our child is in a different pgrp than 282 * we are, and it was the only connection outside. 283 */ 284 ignored_task = NULL; 285 286 if (task_pgrp(parent) != pgrp && 287 task_session(parent) == task_session(tsk) && 288 will_become_orphaned_pgrp(pgrp, ignored_task) && 289 has_stopped_jobs(pgrp)) { 290 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 291 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 292 } 293 } 294 295 #ifdef CONFIG_MEMCG 296 /* 297 * A task is exiting. If it owned this mm, find a new owner for the mm. 298 */ 299 void mm_update_next_owner(struct mm_struct *mm) 300 { 301 struct task_struct *c, *g, *p = current; 302 303 retry: 304 /* 305 * If the exiting or execing task is not the owner, it's 306 * someone else's problem. 307 */ 308 if (mm->owner != p) 309 return; 310 /* 311 * The current owner is exiting/execing and there are no other 312 * candidates. Do not leave the mm pointing to a possibly 313 * freed task structure. 314 */ 315 if (atomic_read(&mm->mm_users) <= 1) { 316 mm->owner = NULL; 317 return; 318 } 319 320 read_lock(&tasklist_lock); 321 /* 322 * Search in the children 323 */ 324 list_for_each_entry(c, &p->children, sibling) { 325 if (c->mm == mm) 326 goto assign_new_owner; 327 } 328 329 /* 330 * Search in the siblings 331 */ 332 list_for_each_entry(c, &p->real_parent->children, sibling) { 333 if (c->mm == mm) 334 goto assign_new_owner; 335 } 336 337 /* 338 * Search through everything else, we should not get here often. 339 */ 340 for_each_process(g) { 341 if (g->flags & PF_KTHREAD) 342 continue; 343 for_each_thread(g, c) { 344 if (c->mm == mm) 345 goto assign_new_owner; 346 if (c->mm) 347 break; 348 } 349 } 350 read_unlock(&tasklist_lock); 351 /* 352 * We found no owner yet mm_users > 1: this implies that we are 353 * most likely racing with swapoff (try_to_unuse()) or /proc or 354 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 355 */ 356 mm->owner = NULL; 357 return; 358 359 assign_new_owner: 360 BUG_ON(c == p); 361 get_task_struct(c); 362 /* 363 * The task_lock protects c->mm from changing. 364 * We always want mm->owner->mm == mm 365 */ 366 task_lock(c); 367 /* 368 * Delay read_unlock() till we have the task_lock() 369 * to ensure that c does not slip away underneath us 370 */ 371 read_unlock(&tasklist_lock); 372 if (c->mm != mm) { 373 task_unlock(c); 374 put_task_struct(c); 375 goto retry; 376 } 377 mm->owner = c; 378 task_unlock(c); 379 put_task_struct(c); 380 } 381 #endif /* CONFIG_MEMCG */ 382 383 /* 384 * Turn us into a lazy TLB process if we 385 * aren't already.. 386 */ 387 static void exit_mm(struct task_struct *tsk) 388 { 389 struct mm_struct *mm = tsk->mm; 390 struct core_state *core_state; 391 392 mm_release(tsk, mm); 393 if (!mm) 394 return; 395 sync_mm_rss(mm); 396 /* 397 * Serialize with any possible pending coredump. 398 * We must hold mmap_sem around checking core_state 399 * and clearing tsk->mm. The core-inducing thread 400 * will increment ->nr_threads for each thread in the 401 * group with ->mm != NULL. 402 */ 403 down_read(&mm->mmap_sem); 404 core_state = mm->core_state; 405 if (core_state) { 406 struct core_thread self; 407 408 up_read(&mm->mmap_sem); 409 410 self.task = tsk; 411 self.next = xchg(&core_state->dumper.next, &self); 412 /* 413 * Implies mb(), the result of xchg() must be visible 414 * to core_state->dumper. 415 */ 416 if (atomic_dec_and_test(&core_state->nr_threads)) 417 complete(&core_state->startup); 418 419 for (;;) { 420 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 421 if (!self.task) /* see coredump_finish() */ 422 break; 423 freezable_schedule(); 424 } 425 __set_task_state(tsk, TASK_RUNNING); 426 down_read(&mm->mmap_sem); 427 } 428 atomic_inc(&mm->mm_count); 429 BUG_ON(mm != tsk->active_mm); 430 /* more a memory barrier than a real lock */ 431 task_lock(tsk); 432 tsk->mm = NULL; 433 up_read(&mm->mmap_sem); 434 enter_lazy_tlb(mm, current); 435 task_unlock(tsk); 436 mm_update_next_owner(mm); 437 mmput(mm); 438 clear_thread_flag(TIF_MEMDIE); 439 } 440 441 static struct task_struct *find_alive_thread(struct task_struct *p) 442 { 443 struct task_struct *t; 444 445 for_each_thread(p, t) { 446 if (!(t->flags & PF_EXITING)) 447 return t; 448 } 449 return NULL; 450 } 451 452 static struct task_struct *find_child_reaper(struct task_struct *father) 453 __releases(&tasklist_lock) 454 __acquires(&tasklist_lock) 455 { 456 struct pid_namespace *pid_ns = task_active_pid_ns(father); 457 struct task_struct *reaper = pid_ns->child_reaper; 458 459 if (likely(reaper != father)) 460 return reaper; 461 462 reaper = find_alive_thread(father); 463 if (reaper) { 464 pid_ns->child_reaper = reaper; 465 return reaper; 466 } 467 468 write_unlock_irq(&tasklist_lock); 469 if (unlikely(pid_ns == &init_pid_ns)) { 470 panic("Attempted to kill init! exitcode=0x%08x\n", 471 father->signal->group_exit_code ?: father->exit_code); 472 } 473 zap_pid_ns_processes(pid_ns); 474 write_lock_irq(&tasklist_lock); 475 476 return father; 477 } 478 479 /* 480 * When we die, we re-parent all our children, and try to: 481 * 1. give them to another thread in our thread group, if such a member exists 482 * 2. give it to the first ancestor process which prctl'd itself as a 483 * child_subreaper for its children (like a service manager) 484 * 3. give it to the init process (PID 1) in our pid namespace 485 */ 486 static struct task_struct *find_new_reaper(struct task_struct *father, 487 struct task_struct *child_reaper) 488 { 489 struct task_struct *thread, *reaper; 490 491 thread = find_alive_thread(father); 492 if (thread) 493 return thread; 494 495 if (father->signal->has_child_subreaper) { 496 /* 497 * Find the first ->is_child_subreaper ancestor in our pid_ns. 498 * We start from father to ensure we can not look into another 499 * namespace, this is safe because all its threads are dead. 500 */ 501 for (reaper = father; 502 !same_thread_group(reaper, child_reaper); 503 reaper = reaper->real_parent) { 504 /* call_usermodehelper() descendants need this check */ 505 if (reaper == &init_task) 506 break; 507 if (!reaper->signal->is_child_subreaper) 508 continue; 509 thread = find_alive_thread(reaper); 510 if (thread) 511 return thread; 512 } 513 } 514 515 return child_reaper; 516 } 517 518 /* 519 * Any that need to be release_task'd are put on the @dead list. 520 */ 521 static void reparent_leader(struct task_struct *father, struct task_struct *p, 522 struct list_head *dead) 523 { 524 if (unlikely(p->exit_state == EXIT_DEAD)) 525 return; 526 527 /* We don't want people slaying init. */ 528 p->exit_signal = SIGCHLD; 529 530 /* If it has exited notify the new parent about this child's death. */ 531 if (!p->ptrace && 532 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 533 if (do_notify_parent(p, p->exit_signal)) { 534 p->exit_state = EXIT_DEAD; 535 list_add(&p->ptrace_entry, dead); 536 } 537 } 538 539 kill_orphaned_pgrp(p, father); 540 } 541 542 /* 543 * This does two things: 544 * 545 * A. Make init inherit all the child processes 546 * B. Check to see if any process groups have become orphaned 547 * as a result of our exiting, and if they have any stopped 548 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 549 */ 550 static void forget_original_parent(struct task_struct *father, 551 struct list_head *dead) 552 { 553 struct task_struct *p, *t, *reaper; 554 555 if (unlikely(!list_empty(&father->ptraced))) 556 exit_ptrace(father, dead); 557 558 /* Can drop and reacquire tasklist_lock */ 559 reaper = find_child_reaper(father); 560 if (list_empty(&father->children)) 561 return; 562 563 reaper = find_new_reaper(father, reaper); 564 list_for_each_entry(p, &father->children, sibling) { 565 for_each_thread(p, t) { 566 t->real_parent = reaper; 567 BUG_ON((!t->ptrace) != (t->parent == father)); 568 if (likely(!t->ptrace)) 569 t->parent = t->real_parent; 570 if (t->pdeath_signal) 571 group_send_sig_info(t->pdeath_signal, 572 SEND_SIG_NOINFO, t); 573 } 574 /* 575 * If this is a threaded reparent there is no need to 576 * notify anyone anything has happened. 577 */ 578 if (!same_thread_group(reaper, father)) 579 reparent_leader(father, p, dead); 580 } 581 list_splice_tail_init(&father->children, &reaper->children); 582 } 583 584 /* 585 * Send signals to all our closest relatives so that they know 586 * to properly mourn us.. 587 */ 588 static void exit_notify(struct task_struct *tsk, int group_dead) 589 { 590 bool autoreap; 591 struct task_struct *p, *n; 592 LIST_HEAD(dead); 593 594 write_lock_irq(&tasklist_lock); 595 forget_original_parent(tsk, &dead); 596 597 if (group_dead) 598 kill_orphaned_pgrp(tsk->group_leader, NULL); 599 600 if (unlikely(tsk->ptrace)) { 601 int sig = thread_group_leader(tsk) && 602 thread_group_empty(tsk) && 603 !ptrace_reparented(tsk) ? 604 tsk->exit_signal : SIGCHLD; 605 autoreap = do_notify_parent(tsk, sig); 606 } else if (thread_group_leader(tsk)) { 607 autoreap = thread_group_empty(tsk) && 608 do_notify_parent(tsk, tsk->exit_signal); 609 } else { 610 autoreap = true; 611 } 612 613 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 614 if (tsk->exit_state == EXIT_DEAD) 615 list_add(&tsk->ptrace_entry, &dead); 616 617 /* mt-exec, de_thread() is waiting for group leader */ 618 if (unlikely(tsk->signal->notify_count < 0)) 619 wake_up_process(tsk->signal->group_exit_task); 620 write_unlock_irq(&tasklist_lock); 621 622 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 623 list_del_init(&p->ptrace_entry); 624 release_task(p); 625 } 626 } 627 628 #ifdef CONFIG_DEBUG_STACK_USAGE 629 static void check_stack_usage(void) 630 { 631 static DEFINE_SPINLOCK(low_water_lock); 632 static int lowest_to_date = THREAD_SIZE; 633 unsigned long free; 634 635 free = stack_not_used(current); 636 637 if (free >= lowest_to_date) 638 return; 639 640 spin_lock(&low_water_lock); 641 if (free < lowest_to_date) { 642 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n", 643 current->comm, task_pid_nr(current), free); 644 lowest_to_date = free; 645 } 646 spin_unlock(&low_water_lock); 647 } 648 #else 649 static inline void check_stack_usage(void) {} 650 #endif 651 652 void do_exit(long code) 653 { 654 struct task_struct *tsk = current; 655 int group_dead; 656 TASKS_RCU(int tasks_rcu_i); 657 658 profile_task_exit(tsk); 659 660 WARN_ON(blk_needs_flush_plug(tsk)); 661 662 if (unlikely(in_interrupt())) 663 panic("Aiee, killing interrupt handler!"); 664 if (unlikely(!tsk->pid)) 665 panic("Attempted to kill the idle task!"); 666 667 /* 668 * If do_exit is called because this processes oopsed, it's possible 669 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 670 * continuing. Amongst other possible reasons, this is to prevent 671 * mm_release()->clear_child_tid() from writing to a user-controlled 672 * kernel address. 673 */ 674 set_fs(USER_DS); 675 676 ptrace_event(PTRACE_EVENT_EXIT, code); 677 678 validate_creds_for_do_exit(tsk); 679 680 /* 681 * We're taking recursive faults here in do_exit. Safest is to just 682 * leave this task alone and wait for reboot. 683 */ 684 if (unlikely(tsk->flags & PF_EXITING)) { 685 pr_alert("Fixing recursive fault but reboot is needed!\n"); 686 /* 687 * We can do this unlocked here. The futex code uses 688 * this flag just to verify whether the pi state 689 * cleanup has been done or not. In the worst case it 690 * loops once more. We pretend that the cleanup was 691 * done as there is no way to return. Either the 692 * OWNER_DIED bit is set by now or we push the blocked 693 * task into the wait for ever nirwana as well. 694 */ 695 tsk->flags |= PF_EXITPIDONE; 696 set_current_state(TASK_UNINTERRUPTIBLE); 697 schedule(); 698 } 699 700 exit_signals(tsk); /* sets PF_EXITING */ 701 /* 702 * tsk->flags are checked in the futex code to protect against 703 * an exiting task cleaning up the robust pi futexes. 704 */ 705 smp_mb(); 706 raw_spin_unlock_wait(&tsk->pi_lock); 707 708 if (unlikely(in_atomic())) 709 pr_info("note: %s[%d] exited with preempt_count %d\n", 710 current->comm, task_pid_nr(current), 711 preempt_count()); 712 713 acct_update_integrals(tsk); 714 /* sync mm's RSS info before statistics gathering */ 715 if (tsk->mm) 716 sync_mm_rss(tsk->mm); 717 group_dead = atomic_dec_and_test(&tsk->signal->live); 718 if (group_dead) { 719 hrtimer_cancel(&tsk->signal->real_timer); 720 exit_itimers(tsk->signal); 721 if (tsk->mm) 722 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 723 } 724 acct_collect(code, group_dead); 725 if (group_dead) 726 tty_audit_exit(); 727 audit_free(tsk); 728 729 tsk->exit_code = code; 730 taskstats_exit(tsk, group_dead); 731 732 exit_mm(tsk); 733 734 if (group_dead) 735 acct_process(); 736 trace_sched_process_exit(tsk); 737 738 exit_sem(tsk); 739 exit_shm(tsk); 740 exit_files(tsk); 741 exit_fs(tsk); 742 if (group_dead) 743 disassociate_ctty(1); 744 exit_task_namespaces(tsk); 745 exit_task_work(tsk); 746 exit_thread(); 747 748 /* 749 * Flush inherited counters to the parent - before the parent 750 * gets woken up by child-exit notifications. 751 * 752 * because of cgroup mode, must be called before cgroup_exit() 753 */ 754 perf_event_exit_task(tsk); 755 756 cgroup_exit(tsk); 757 758 module_put(task_thread_info(tsk)->exec_domain->module); 759 760 /* 761 * FIXME: do that only when needed, using sched_exit tracepoint 762 */ 763 flush_ptrace_hw_breakpoint(tsk); 764 765 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu)); 766 exit_notify(tsk, group_dead); 767 proc_exit_connector(tsk); 768 #ifdef CONFIG_NUMA 769 task_lock(tsk); 770 mpol_put(tsk->mempolicy); 771 tsk->mempolicy = NULL; 772 task_unlock(tsk); 773 #endif 774 #ifdef CONFIG_FUTEX 775 if (unlikely(current->pi_state_cache)) 776 kfree(current->pi_state_cache); 777 #endif 778 /* 779 * Make sure we are holding no locks: 780 */ 781 debug_check_no_locks_held(); 782 /* 783 * We can do this unlocked here. The futex code uses this flag 784 * just to verify whether the pi state cleanup has been done 785 * or not. In the worst case it loops once more. 786 */ 787 tsk->flags |= PF_EXITPIDONE; 788 789 if (tsk->io_context) 790 exit_io_context(tsk); 791 792 if (tsk->splice_pipe) 793 free_pipe_info(tsk->splice_pipe); 794 795 if (tsk->task_frag.page) 796 put_page(tsk->task_frag.page); 797 798 validate_creds_for_do_exit(tsk); 799 800 check_stack_usage(); 801 preempt_disable(); 802 if (tsk->nr_dirtied) 803 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 804 exit_rcu(); 805 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i)); 806 807 /* 808 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 809 * when the following two conditions become true. 810 * - There is race condition of mmap_sem (It is acquired by 811 * exit_mm()), and 812 * - SMI occurs before setting TASK_RUNINNG. 813 * (or hypervisor of virtual machine switches to other guest) 814 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 815 * 816 * To avoid it, we have to wait for releasing tsk->pi_lock which 817 * is held by try_to_wake_up() 818 */ 819 smp_mb(); 820 raw_spin_unlock_wait(&tsk->pi_lock); 821 822 /* causes final put_task_struct in finish_task_switch(). */ 823 tsk->state = TASK_DEAD; 824 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 825 schedule(); 826 BUG(); 827 /* Avoid "noreturn function does return". */ 828 for (;;) 829 cpu_relax(); /* For when BUG is null */ 830 } 831 EXPORT_SYMBOL_GPL(do_exit); 832 833 void complete_and_exit(struct completion *comp, long code) 834 { 835 if (comp) 836 complete(comp); 837 838 do_exit(code); 839 } 840 EXPORT_SYMBOL(complete_and_exit); 841 842 SYSCALL_DEFINE1(exit, int, error_code) 843 { 844 do_exit((error_code&0xff)<<8); 845 } 846 847 /* 848 * Take down every thread in the group. This is called by fatal signals 849 * as well as by sys_exit_group (below). 850 */ 851 void 852 do_group_exit(int exit_code) 853 { 854 struct signal_struct *sig = current->signal; 855 856 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 857 858 if (signal_group_exit(sig)) 859 exit_code = sig->group_exit_code; 860 else if (!thread_group_empty(current)) { 861 struct sighand_struct *const sighand = current->sighand; 862 863 spin_lock_irq(&sighand->siglock); 864 if (signal_group_exit(sig)) 865 /* Another thread got here before we took the lock. */ 866 exit_code = sig->group_exit_code; 867 else { 868 sig->group_exit_code = exit_code; 869 sig->flags = SIGNAL_GROUP_EXIT; 870 zap_other_threads(current); 871 } 872 spin_unlock_irq(&sighand->siglock); 873 } 874 875 do_exit(exit_code); 876 /* NOTREACHED */ 877 } 878 879 /* 880 * this kills every thread in the thread group. Note that any externally 881 * wait4()-ing process will get the correct exit code - even if this 882 * thread is not the thread group leader. 883 */ 884 SYSCALL_DEFINE1(exit_group, int, error_code) 885 { 886 do_group_exit((error_code & 0xff) << 8); 887 /* NOTREACHED */ 888 return 0; 889 } 890 891 struct wait_opts { 892 enum pid_type wo_type; 893 int wo_flags; 894 struct pid *wo_pid; 895 896 struct siginfo __user *wo_info; 897 int __user *wo_stat; 898 struct rusage __user *wo_rusage; 899 900 wait_queue_t child_wait; 901 int notask_error; 902 }; 903 904 static inline 905 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 906 { 907 if (type != PIDTYPE_PID) 908 task = task->group_leader; 909 return task->pids[type].pid; 910 } 911 912 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 913 { 914 return wo->wo_type == PIDTYPE_MAX || 915 task_pid_type(p, wo->wo_type) == wo->wo_pid; 916 } 917 918 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 919 { 920 if (!eligible_pid(wo, p)) 921 return 0; 922 /* Wait for all children (clone and not) if __WALL is set; 923 * otherwise, wait for clone children *only* if __WCLONE is 924 * set; otherwise, wait for non-clone children *only*. (Note: 925 * A "clone" child here is one that reports to its parent 926 * using a signal other than SIGCHLD.) */ 927 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 928 && !(wo->wo_flags & __WALL)) 929 return 0; 930 931 return 1; 932 } 933 934 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 935 pid_t pid, uid_t uid, int why, int status) 936 { 937 struct siginfo __user *infop; 938 int retval = wo->wo_rusage 939 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 940 941 put_task_struct(p); 942 infop = wo->wo_info; 943 if (infop) { 944 if (!retval) 945 retval = put_user(SIGCHLD, &infop->si_signo); 946 if (!retval) 947 retval = put_user(0, &infop->si_errno); 948 if (!retval) 949 retval = put_user((short)why, &infop->si_code); 950 if (!retval) 951 retval = put_user(pid, &infop->si_pid); 952 if (!retval) 953 retval = put_user(uid, &infop->si_uid); 954 if (!retval) 955 retval = put_user(status, &infop->si_status); 956 } 957 if (!retval) 958 retval = pid; 959 return retval; 960 } 961 962 /* 963 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 964 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 965 * the lock and this task is uninteresting. If we return nonzero, we have 966 * released the lock and the system call should return. 967 */ 968 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 969 { 970 int state, retval, status; 971 pid_t pid = task_pid_vnr(p); 972 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 973 struct siginfo __user *infop; 974 975 if (!likely(wo->wo_flags & WEXITED)) 976 return 0; 977 978 if (unlikely(wo->wo_flags & WNOWAIT)) { 979 int exit_code = p->exit_code; 980 int why; 981 982 get_task_struct(p); 983 read_unlock(&tasklist_lock); 984 sched_annotate_sleep(); 985 986 if ((exit_code & 0x7f) == 0) { 987 why = CLD_EXITED; 988 status = exit_code >> 8; 989 } else { 990 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 991 status = exit_code & 0x7f; 992 } 993 return wait_noreap_copyout(wo, p, pid, uid, why, status); 994 } 995 /* 996 * Move the task's state to DEAD/TRACE, only one thread can do this. 997 */ 998 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 999 EXIT_TRACE : EXIT_DEAD; 1000 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1001 return 0; 1002 /* 1003 * We own this thread, nobody else can reap it. 1004 */ 1005 read_unlock(&tasklist_lock); 1006 sched_annotate_sleep(); 1007 1008 /* 1009 * Check thread_group_leader() to exclude the traced sub-threads. 1010 */ 1011 if (state == EXIT_DEAD && thread_group_leader(p)) { 1012 struct signal_struct *sig = p->signal; 1013 struct signal_struct *psig = current->signal; 1014 unsigned long maxrss; 1015 cputime_t tgutime, tgstime; 1016 1017 /* 1018 * The resource counters for the group leader are in its 1019 * own task_struct. Those for dead threads in the group 1020 * are in its signal_struct, as are those for the child 1021 * processes it has previously reaped. All these 1022 * accumulate in the parent's signal_struct c* fields. 1023 * 1024 * We don't bother to take a lock here to protect these 1025 * p->signal fields because the whole thread group is dead 1026 * and nobody can change them. 1027 * 1028 * psig->stats_lock also protects us from our sub-theads 1029 * which can reap other children at the same time. Until 1030 * we change k_getrusage()-like users to rely on this lock 1031 * we have to take ->siglock as well. 1032 * 1033 * We use thread_group_cputime_adjusted() to get times for 1034 * the thread group, which consolidates times for all threads 1035 * in the group including the group leader. 1036 */ 1037 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1038 spin_lock_irq(¤t->sighand->siglock); 1039 write_seqlock(&psig->stats_lock); 1040 psig->cutime += tgutime + sig->cutime; 1041 psig->cstime += tgstime + sig->cstime; 1042 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1043 psig->cmin_flt += 1044 p->min_flt + sig->min_flt + sig->cmin_flt; 1045 psig->cmaj_flt += 1046 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1047 psig->cnvcsw += 1048 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1049 psig->cnivcsw += 1050 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1051 psig->cinblock += 1052 task_io_get_inblock(p) + 1053 sig->inblock + sig->cinblock; 1054 psig->coublock += 1055 task_io_get_oublock(p) + 1056 sig->oublock + sig->coublock; 1057 maxrss = max(sig->maxrss, sig->cmaxrss); 1058 if (psig->cmaxrss < maxrss) 1059 psig->cmaxrss = maxrss; 1060 task_io_accounting_add(&psig->ioac, &p->ioac); 1061 task_io_accounting_add(&psig->ioac, &sig->ioac); 1062 write_sequnlock(&psig->stats_lock); 1063 spin_unlock_irq(¤t->sighand->siglock); 1064 } 1065 1066 retval = wo->wo_rusage 1067 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1068 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1069 ? p->signal->group_exit_code : p->exit_code; 1070 if (!retval && wo->wo_stat) 1071 retval = put_user(status, wo->wo_stat); 1072 1073 infop = wo->wo_info; 1074 if (!retval && infop) 1075 retval = put_user(SIGCHLD, &infop->si_signo); 1076 if (!retval && infop) 1077 retval = put_user(0, &infop->si_errno); 1078 if (!retval && infop) { 1079 int why; 1080 1081 if ((status & 0x7f) == 0) { 1082 why = CLD_EXITED; 1083 status >>= 8; 1084 } else { 1085 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1086 status &= 0x7f; 1087 } 1088 retval = put_user((short)why, &infop->si_code); 1089 if (!retval) 1090 retval = put_user(status, &infop->si_status); 1091 } 1092 if (!retval && infop) 1093 retval = put_user(pid, &infop->si_pid); 1094 if (!retval && infop) 1095 retval = put_user(uid, &infop->si_uid); 1096 if (!retval) 1097 retval = pid; 1098 1099 if (state == EXIT_TRACE) { 1100 write_lock_irq(&tasklist_lock); 1101 /* We dropped tasklist, ptracer could die and untrace */ 1102 ptrace_unlink(p); 1103 1104 /* If parent wants a zombie, don't release it now */ 1105 state = EXIT_ZOMBIE; 1106 if (do_notify_parent(p, p->exit_signal)) 1107 state = EXIT_DEAD; 1108 p->exit_state = state; 1109 write_unlock_irq(&tasklist_lock); 1110 } 1111 if (state == EXIT_DEAD) 1112 release_task(p); 1113 1114 return retval; 1115 } 1116 1117 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1118 { 1119 if (ptrace) { 1120 if (task_is_stopped_or_traced(p) && 1121 !(p->jobctl & JOBCTL_LISTENING)) 1122 return &p->exit_code; 1123 } else { 1124 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1125 return &p->signal->group_exit_code; 1126 } 1127 return NULL; 1128 } 1129 1130 /** 1131 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1132 * @wo: wait options 1133 * @ptrace: is the wait for ptrace 1134 * @p: task to wait for 1135 * 1136 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1137 * 1138 * CONTEXT: 1139 * read_lock(&tasklist_lock), which is released if return value is 1140 * non-zero. Also, grabs and releases @p->sighand->siglock. 1141 * 1142 * RETURNS: 1143 * 0 if wait condition didn't exist and search for other wait conditions 1144 * should continue. Non-zero return, -errno on failure and @p's pid on 1145 * success, implies that tasklist_lock is released and wait condition 1146 * search should terminate. 1147 */ 1148 static int wait_task_stopped(struct wait_opts *wo, 1149 int ptrace, struct task_struct *p) 1150 { 1151 struct siginfo __user *infop; 1152 int retval, exit_code, *p_code, why; 1153 uid_t uid = 0; /* unneeded, required by compiler */ 1154 pid_t pid; 1155 1156 /* 1157 * Traditionally we see ptrace'd stopped tasks regardless of options. 1158 */ 1159 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1160 return 0; 1161 1162 if (!task_stopped_code(p, ptrace)) 1163 return 0; 1164 1165 exit_code = 0; 1166 spin_lock_irq(&p->sighand->siglock); 1167 1168 p_code = task_stopped_code(p, ptrace); 1169 if (unlikely(!p_code)) 1170 goto unlock_sig; 1171 1172 exit_code = *p_code; 1173 if (!exit_code) 1174 goto unlock_sig; 1175 1176 if (!unlikely(wo->wo_flags & WNOWAIT)) 1177 *p_code = 0; 1178 1179 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1180 unlock_sig: 1181 spin_unlock_irq(&p->sighand->siglock); 1182 if (!exit_code) 1183 return 0; 1184 1185 /* 1186 * Now we are pretty sure this task is interesting. 1187 * Make sure it doesn't get reaped out from under us while we 1188 * give up the lock and then examine it below. We don't want to 1189 * keep holding onto the tasklist_lock while we call getrusage and 1190 * possibly take page faults for user memory. 1191 */ 1192 get_task_struct(p); 1193 pid = task_pid_vnr(p); 1194 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1195 read_unlock(&tasklist_lock); 1196 sched_annotate_sleep(); 1197 1198 if (unlikely(wo->wo_flags & WNOWAIT)) 1199 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1200 1201 retval = wo->wo_rusage 1202 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1203 if (!retval && wo->wo_stat) 1204 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1205 1206 infop = wo->wo_info; 1207 if (!retval && infop) 1208 retval = put_user(SIGCHLD, &infop->si_signo); 1209 if (!retval && infop) 1210 retval = put_user(0, &infop->si_errno); 1211 if (!retval && infop) 1212 retval = put_user((short)why, &infop->si_code); 1213 if (!retval && infop) 1214 retval = put_user(exit_code, &infop->si_status); 1215 if (!retval && infop) 1216 retval = put_user(pid, &infop->si_pid); 1217 if (!retval && infop) 1218 retval = put_user(uid, &infop->si_uid); 1219 if (!retval) 1220 retval = pid; 1221 put_task_struct(p); 1222 1223 BUG_ON(!retval); 1224 return retval; 1225 } 1226 1227 /* 1228 * Handle do_wait work for one task in a live, non-stopped state. 1229 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1230 * the lock and this task is uninteresting. If we return nonzero, we have 1231 * released the lock and the system call should return. 1232 */ 1233 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1234 { 1235 int retval; 1236 pid_t pid; 1237 uid_t uid; 1238 1239 if (!unlikely(wo->wo_flags & WCONTINUED)) 1240 return 0; 1241 1242 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1243 return 0; 1244 1245 spin_lock_irq(&p->sighand->siglock); 1246 /* Re-check with the lock held. */ 1247 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1248 spin_unlock_irq(&p->sighand->siglock); 1249 return 0; 1250 } 1251 if (!unlikely(wo->wo_flags & WNOWAIT)) 1252 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1253 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1254 spin_unlock_irq(&p->sighand->siglock); 1255 1256 pid = task_pid_vnr(p); 1257 get_task_struct(p); 1258 read_unlock(&tasklist_lock); 1259 sched_annotate_sleep(); 1260 1261 if (!wo->wo_info) { 1262 retval = wo->wo_rusage 1263 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1264 put_task_struct(p); 1265 if (!retval && wo->wo_stat) 1266 retval = put_user(0xffff, wo->wo_stat); 1267 if (!retval) 1268 retval = pid; 1269 } else { 1270 retval = wait_noreap_copyout(wo, p, pid, uid, 1271 CLD_CONTINUED, SIGCONT); 1272 BUG_ON(retval == 0); 1273 } 1274 1275 return retval; 1276 } 1277 1278 /* 1279 * Consider @p for a wait by @parent. 1280 * 1281 * -ECHILD should be in ->notask_error before the first call. 1282 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1283 * Returns zero if the search for a child should continue; 1284 * then ->notask_error is 0 if @p is an eligible child, 1285 * or another error from security_task_wait(), or still -ECHILD. 1286 */ 1287 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1288 struct task_struct *p) 1289 { 1290 /* 1291 * We can race with wait_task_zombie() from another thread. 1292 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1293 * can't confuse the checks below. 1294 */ 1295 int exit_state = ACCESS_ONCE(p->exit_state); 1296 int ret; 1297 1298 if (unlikely(exit_state == EXIT_DEAD)) 1299 return 0; 1300 1301 ret = eligible_child(wo, p); 1302 if (!ret) 1303 return ret; 1304 1305 ret = security_task_wait(p); 1306 if (unlikely(ret < 0)) { 1307 /* 1308 * If we have not yet seen any eligible child, 1309 * then let this error code replace -ECHILD. 1310 * A permission error will give the user a clue 1311 * to look for security policy problems, rather 1312 * than for mysterious wait bugs. 1313 */ 1314 if (wo->notask_error) 1315 wo->notask_error = ret; 1316 return 0; 1317 } 1318 1319 if (unlikely(exit_state == EXIT_TRACE)) { 1320 /* 1321 * ptrace == 0 means we are the natural parent. In this case 1322 * we should clear notask_error, debugger will notify us. 1323 */ 1324 if (likely(!ptrace)) 1325 wo->notask_error = 0; 1326 return 0; 1327 } 1328 1329 if (likely(!ptrace) && unlikely(p->ptrace)) { 1330 /* 1331 * If it is traced by its real parent's group, just pretend 1332 * the caller is ptrace_do_wait() and reap this child if it 1333 * is zombie. 1334 * 1335 * This also hides group stop state from real parent; otherwise 1336 * a single stop can be reported twice as group and ptrace stop. 1337 * If a ptracer wants to distinguish these two events for its 1338 * own children it should create a separate process which takes 1339 * the role of real parent. 1340 */ 1341 if (!ptrace_reparented(p)) 1342 ptrace = 1; 1343 } 1344 1345 /* slay zombie? */ 1346 if (exit_state == EXIT_ZOMBIE) { 1347 /* we don't reap group leaders with subthreads */ 1348 if (!delay_group_leader(p)) { 1349 /* 1350 * A zombie ptracee is only visible to its ptracer. 1351 * Notification and reaping will be cascaded to the 1352 * real parent when the ptracer detaches. 1353 */ 1354 if (unlikely(ptrace) || likely(!p->ptrace)) 1355 return wait_task_zombie(wo, p); 1356 } 1357 1358 /* 1359 * Allow access to stopped/continued state via zombie by 1360 * falling through. Clearing of notask_error is complex. 1361 * 1362 * When !@ptrace: 1363 * 1364 * If WEXITED is set, notask_error should naturally be 1365 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1366 * so, if there are live subthreads, there are events to 1367 * wait for. If all subthreads are dead, it's still safe 1368 * to clear - this function will be called again in finite 1369 * amount time once all the subthreads are released and 1370 * will then return without clearing. 1371 * 1372 * When @ptrace: 1373 * 1374 * Stopped state is per-task and thus can't change once the 1375 * target task dies. Only continued and exited can happen. 1376 * Clear notask_error if WCONTINUED | WEXITED. 1377 */ 1378 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1379 wo->notask_error = 0; 1380 } else { 1381 /* 1382 * @p is alive and it's gonna stop, continue or exit, so 1383 * there always is something to wait for. 1384 */ 1385 wo->notask_error = 0; 1386 } 1387 1388 /* 1389 * Wait for stopped. Depending on @ptrace, different stopped state 1390 * is used and the two don't interact with each other. 1391 */ 1392 ret = wait_task_stopped(wo, ptrace, p); 1393 if (ret) 1394 return ret; 1395 1396 /* 1397 * Wait for continued. There's only one continued state and the 1398 * ptracer can consume it which can confuse the real parent. Don't 1399 * use WCONTINUED from ptracer. You don't need or want it. 1400 */ 1401 return wait_task_continued(wo, p); 1402 } 1403 1404 /* 1405 * Do the work of do_wait() for one thread in the group, @tsk. 1406 * 1407 * -ECHILD should be in ->notask_error before the first call. 1408 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1409 * Returns zero if the search for a child should continue; then 1410 * ->notask_error is 0 if there were any eligible children, 1411 * or another error from security_task_wait(), or still -ECHILD. 1412 */ 1413 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1414 { 1415 struct task_struct *p; 1416 1417 list_for_each_entry(p, &tsk->children, sibling) { 1418 int ret = wait_consider_task(wo, 0, p); 1419 1420 if (ret) 1421 return ret; 1422 } 1423 1424 return 0; 1425 } 1426 1427 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1428 { 1429 struct task_struct *p; 1430 1431 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1432 int ret = wait_consider_task(wo, 1, p); 1433 1434 if (ret) 1435 return ret; 1436 } 1437 1438 return 0; 1439 } 1440 1441 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1442 int sync, void *key) 1443 { 1444 struct wait_opts *wo = container_of(wait, struct wait_opts, 1445 child_wait); 1446 struct task_struct *p = key; 1447 1448 if (!eligible_pid(wo, p)) 1449 return 0; 1450 1451 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1452 return 0; 1453 1454 return default_wake_function(wait, mode, sync, key); 1455 } 1456 1457 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1458 { 1459 __wake_up_sync_key(&parent->signal->wait_chldexit, 1460 TASK_INTERRUPTIBLE, 1, p); 1461 } 1462 1463 static long do_wait(struct wait_opts *wo) 1464 { 1465 struct task_struct *tsk; 1466 int retval; 1467 1468 trace_sched_process_wait(wo->wo_pid); 1469 1470 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1471 wo->child_wait.private = current; 1472 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1473 repeat: 1474 /* 1475 * If there is nothing that can match our critiera just get out. 1476 * We will clear ->notask_error to zero if we see any child that 1477 * might later match our criteria, even if we are not able to reap 1478 * it yet. 1479 */ 1480 wo->notask_error = -ECHILD; 1481 if ((wo->wo_type < PIDTYPE_MAX) && 1482 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1483 goto notask; 1484 1485 set_current_state(TASK_INTERRUPTIBLE); 1486 read_lock(&tasklist_lock); 1487 tsk = current; 1488 do { 1489 retval = do_wait_thread(wo, tsk); 1490 if (retval) 1491 goto end; 1492 1493 retval = ptrace_do_wait(wo, tsk); 1494 if (retval) 1495 goto end; 1496 1497 if (wo->wo_flags & __WNOTHREAD) 1498 break; 1499 } while_each_thread(current, tsk); 1500 read_unlock(&tasklist_lock); 1501 1502 notask: 1503 retval = wo->notask_error; 1504 if (!retval && !(wo->wo_flags & WNOHANG)) { 1505 retval = -ERESTARTSYS; 1506 if (!signal_pending(current)) { 1507 schedule(); 1508 goto repeat; 1509 } 1510 } 1511 end: 1512 __set_current_state(TASK_RUNNING); 1513 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1514 return retval; 1515 } 1516 1517 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1518 infop, int, options, struct rusage __user *, ru) 1519 { 1520 struct wait_opts wo; 1521 struct pid *pid = NULL; 1522 enum pid_type type; 1523 long ret; 1524 1525 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1526 return -EINVAL; 1527 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1528 return -EINVAL; 1529 1530 switch (which) { 1531 case P_ALL: 1532 type = PIDTYPE_MAX; 1533 break; 1534 case P_PID: 1535 type = PIDTYPE_PID; 1536 if (upid <= 0) 1537 return -EINVAL; 1538 break; 1539 case P_PGID: 1540 type = PIDTYPE_PGID; 1541 if (upid <= 0) 1542 return -EINVAL; 1543 break; 1544 default: 1545 return -EINVAL; 1546 } 1547 1548 if (type < PIDTYPE_MAX) 1549 pid = find_get_pid(upid); 1550 1551 wo.wo_type = type; 1552 wo.wo_pid = pid; 1553 wo.wo_flags = options; 1554 wo.wo_info = infop; 1555 wo.wo_stat = NULL; 1556 wo.wo_rusage = ru; 1557 ret = do_wait(&wo); 1558 1559 if (ret > 0) { 1560 ret = 0; 1561 } else if (infop) { 1562 /* 1563 * For a WNOHANG return, clear out all the fields 1564 * we would set so the user can easily tell the 1565 * difference. 1566 */ 1567 if (!ret) 1568 ret = put_user(0, &infop->si_signo); 1569 if (!ret) 1570 ret = put_user(0, &infop->si_errno); 1571 if (!ret) 1572 ret = put_user(0, &infop->si_code); 1573 if (!ret) 1574 ret = put_user(0, &infop->si_pid); 1575 if (!ret) 1576 ret = put_user(0, &infop->si_uid); 1577 if (!ret) 1578 ret = put_user(0, &infop->si_status); 1579 } 1580 1581 put_pid(pid); 1582 return ret; 1583 } 1584 1585 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1586 int, options, struct rusage __user *, ru) 1587 { 1588 struct wait_opts wo; 1589 struct pid *pid = NULL; 1590 enum pid_type type; 1591 long ret; 1592 1593 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1594 __WNOTHREAD|__WCLONE|__WALL)) 1595 return -EINVAL; 1596 1597 if (upid == -1) 1598 type = PIDTYPE_MAX; 1599 else if (upid < 0) { 1600 type = PIDTYPE_PGID; 1601 pid = find_get_pid(-upid); 1602 } else if (upid == 0) { 1603 type = PIDTYPE_PGID; 1604 pid = get_task_pid(current, PIDTYPE_PGID); 1605 } else /* upid > 0 */ { 1606 type = PIDTYPE_PID; 1607 pid = find_get_pid(upid); 1608 } 1609 1610 wo.wo_type = type; 1611 wo.wo_pid = pid; 1612 wo.wo_flags = options | WEXITED; 1613 wo.wo_info = NULL; 1614 wo.wo_stat = stat_addr; 1615 wo.wo_rusage = ru; 1616 ret = do_wait(&wo); 1617 put_pid(pid); 1618 1619 return ret; 1620 } 1621 1622 #ifdef __ARCH_WANT_SYS_WAITPID 1623 1624 /* 1625 * sys_waitpid() remains for compatibility. waitpid() should be 1626 * implemented by calling sys_wait4() from libc.a. 1627 */ 1628 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1629 { 1630 return sys_wait4(pid, stat_addr, options, NULL); 1631 } 1632 1633 #endif 1634