1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/iocontext.h> 17 #include <linux/key.h> 18 #include <linux/security.h> 19 #include <linux/cpu.h> 20 #include <linux/acct.h> 21 #include <linux/tsacct_kern.h> 22 #include <linux/file.h> 23 #include <linux/fdtable.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/freezer.h> 36 #include <linux/cgroup.h> 37 #include <linux/syscalls.h> 38 #include <linux/signal.h> 39 #include <linux/posix-timers.h> 40 #include <linux/cn_proc.h> 41 #include <linux/mutex.h> 42 #include <linux/futex.h> 43 #include <linux/pipe_fs_i.h> 44 #include <linux/audit.h> /* for audit_free() */ 45 #include <linux/resource.h> 46 #include <linux/blkdev.h> 47 #include <linux/task_io_accounting_ops.h> 48 #include <linux/tracehook.h> 49 #include <trace/sched.h> 50 51 #include <asm/uaccess.h> 52 #include <asm/unistd.h> 53 #include <asm/pgtable.h> 54 #include <asm/mmu_context.h> 55 56 static void exit_mm(struct task_struct * tsk); 57 58 static inline int task_detached(struct task_struct *p) 59 { 60 return p->exit_signal == -1; 61 } 62 63 static void __unhash_process(struct task_struct *p) 64 { 65 nr_threads--; 66 detach_pid(p, PIDTYPE_PID); 67 if (thread_group_leader(p)) { 68 detach_pid(p, PIDTYPE_PGID); 69 detach_pid(p, PIDTYPE_SID); 70 71 list_del_rcu(&p->tasks); 72 __get_cpu_var(process_counts)--; 73 } 74 list_del_rcu(&p->thread_group); 75 list_del_init(&p->sibling); 76 } 77 78 /* 79 * This function expects the tasklist_lock write-locked. 80 */ 81 static void __exit_signal(struct task_struct *tsk) 82 { 83 struct signal_struct *sig = tsk->signal; 84 struct sighand_struct *sighand; 85 86 BUG_ON(!sig); 87 BUG_ON(!atomic_read(&sig->count)); 88 89 sighand = rcu_dereference(tsk->sighand); 90 spin_lock(&sighand->siglock); 91 92 posix_cpu_timers_exit(tsk); 93 if (atomic_dec_and_test(&sig->count)) 94 posix_cpu_timers_exit_group(tsk); 95 else { 96 /* 97 * If there is any task waiting for the group exit 98 * then notify it: 99 */ 100 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 101 wake_up_process(sig->group_exit_task); 102 103 if (tsk == sig->curr_target) 104 sig->curr_target = next_thread(tsk); 105 /* 106 * Accumulate here the counters for all threads but the 107 * group leader as they die, so they can be added into 108 * the process-wide totals when those are taken. 109 * The group leader stays around as a zombie as long 110 * as there are other threads. When it gets reaped, 111 * the exit.c code will add its counts into these totals. 112 * We won't ever get here for the group leader, since it 113 * will have been the last reference on the signal_struct. 114 */ 115 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); 116 sig->min_flt += tsk->min_flt; 117 sig->maj_flt += tsk->maj_flt; 118 sig->nvcsw += tsk->nvcsw; 119 sig->nivcsw += tsk->nivcsw; 120 sig->inblock += task_io_get_inblock(tsk); 121 sig->oublock += task_io_get_oublock(tsk); 122 task_io_accounting_add(&sig->ioac, &tsk->ioac); 123 sig = NULL; /* Marker for below. */ 124 } 125 126 __unhash_process(tsk); 127 128 /* 129 * Do this under ->siglock, we can race with another thread 130 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 131 */ 132 flush_sigqueue(&tsk->pending); 133 134 tsk->signal = NULL; 135 tsk->sighand = NULL; 136 spin_unlock(&sighand->siglock); 137 138 __cleanup_sighand(sighand); 139 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 140 if (sig) { 141 flush_sigqueue(&sig->shared_pending); 142 taskstats_tgid_free(sig); 143 /* 144 * Make sure ->signal can't go away under rq->lock, 145 * see account_group_exec_runtime(). 146 */ 147 task_rq_unlock_wait(tsk); 148 __cleanup_signal(sig); 149 } 150 } 151 152 static void delayed_put_task_struct(struct rcu_head *rhp) 153 { 154 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 155 156 trace_sched_process_free(tsk); 157 put_task_struct(tsk); 158 } 159 160 161 void release_task(struct task_struct * p) 162 { 163 struct task_struct *leader; 164 int zap_leader; 165 repeat: 166 tracehook_prepare_release_task(p); 167 atomic_dec(&p->user->processes); 168 proc_flush_task(p); 169 write_lock_irq(&tasklist_lock); 170 tracehook_finish_release_task(p); 171 __exit_signal(p); 172 173 /* 174 * If we are the last non-leader member of the thread 175 * group, and the leader is zombie, then notify the 176 * group leader's parent process. (if it wants notification.) 177 */ 178 zap_leader = 0; 179 leader = p->group_leader; 180 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 181 BUG_ON(task_detached(leader)); 182 do_notify_parent(leader, leader->exit_signal); 183 /* 184 * If we were the last child thread and the leader has 185 * exited already, and the leader's parent ignores SIGCHLD, 186 * then we are the one who should release the leader. 187 * 188 * do_notify_parent() will have marked it self-reaping in 189 * that case. 190 */ 191 zap_leader = task_detached(leader); 192 193 /* 194 * This maintains the invariant that release_task() 195 * only runs on a task in EXIT_DEAD, just for sanity. 196 */ 197 if (zap_leader) 198 leader->exit_state = EXIT_DEAD; 199 } 200 201 write_unlock_irq(&tasklist_lock); 202 release_thread(p); 203 call_rcu(&p->rcu, delayed_put_task_struct); 204 205 p = leader; 206 if (unlikely(zap_leader)) 207 goto repeat; 208 } 209 210 /* 211 * This checks not only the pgrp, but falls back on the pid if no 212 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 213 * without this... 214 * 215 * The caller must hold rcu lock or the tasklist lock. 216 */ 217 struct pid *session_of_pgrp(struct pid *pgrp) 218 { 219 struct task_struct *p; 220 struct pid *sid = NULL; 221 222 p = pid_task(pgrp, PIDTYPE_PGID); 223 if (p == NULL) 224 p = pid_task(pgrp, PIDTYPE_PID); 225 if (p != NULL) 226 sid = task_session(p); 227 228 return sid; 229 } 230 231 /* 232 * Determine if a process group is "orphaned", according to the POSIX 233 * definition in 2.2.2.52. Orphaned process groups are not to be affected 234 * by terminal-generated stop signals. Newly orphaned process groups are 235 * to receive a SIGHUP and a SIGCONT. 236 * 237 * "I ask you, have you ever known what it is to be an orphan?" 238 */ 239 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 240 { 241 struct task_struct *p; 242 243 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 244 if ((p == ignored_task) || 245 (p->exit_state && thread_group_empty(p)) || 246 is_global_init(p->real_parent)) 247 continue; 248 249 if (task_pgrp(p->real_parent) != pgrp && 250 task_session(p->real_parent) == task_session(p)) 251 return 0; 252 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 253 254 return 1; 255 } 256 257 int is_current_pgrp_orphaned(void) 258 { 259 int retval; 260 261 read_lock(&tasklist_lock); 262 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 263 read_unlock(&tasklist_lock); 264 265 return retval; 266 } 267 268 static int has_stopped_jobs(struct pid *pgrp) 269 { 270 int retval = 0; 271 struct task_struct *p; 272 273 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 274 if (!task_is_stopped(p)) 275 continue; 276 retval = 1; 277 break; 278 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 279 return retval; 280 } 281 282 /* 283 * Check to see if any process groups have become orphaned as 284 * a result of our exiting, and if they have any stopped jobs, 285 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 286 */ 287 static void 288 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 289 { 290 struct pid *pgrp = task_pgrp(tsk); 291 struct task_struct *ignored_task = tsk; 292 293 if (!parent) 294 /* exit: our father is in a different pgrp than 295 * we are and we were the only connection outside. 296 */ 297 parent = tsk->real_parent; 298 else 299 /* reparent: our child is in a different pgrp than 300 * we are, and it was the only connection outside. 301 */ 302 ignored_task = NULL; 303 304 if (task_pgrp(parent) != pgrp && 305 task_session(parent) == task_session(tsk) && 306 will_become_orphaned_pgrp(pgrp, ignored_task) && 307 has_stopped_jobs(pgrp)) { 308 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 309 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 310 } 311 } 312 313 /** 314 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 315 * 316 * If a kernel thread is launched as a result of a system call, or if 317 * it ever exits, it should generally reparent itself to kthreadd so it 318 * isn't in the way of other processes and is correctly cleaned up on exit. 319 * 320 * The various task state such as scheduling policy and priority may have 321 * been inherited from a user process, so we reset them to sane values here. 322 * 323 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 324 */ 325 static void reparent_to_kthreadd(void) 326 { 327 write_lock_irq(&tasklist_lock); 328 329 ptrace_unlink(current); 330 /* Reparent to init */ 331 current->real_parent = current->parent = kthreadd_task; 332 list_move_tail(¤t->sibling, ¤t->real_parent->children); 333 334 /* Set the exit signal to SIGCHLD so we signal init on exit */ 335 current->exit_signal = SIGCHLD; 336 337 if (task_nice(current) < 0) 338 set_user_nice(current, 0); 339 /* cpus_allowed? */ 340 /* rt_priority? */ 341 /* signals? */ 342 security_task_reparent_to_init(current); 343 memcpy(current->signal->rlim, init_task.signal->rlim, 344 sizeof(current->signal->rlim)); 345 atomic_inc(&(INIT_USER->__count)); 346 write_unlock_irq(&tasklist_lock); 347 switch_uid(INIT_USER); 348 } 349 350 void __set_special_pids(struct pid *pid) 351 { 352 struct task_struct *curr = current->group_leader; 353 pid_t nr = pid_nr(pid); 354 355 if (task_session(curr) != pid) { 356 change_pid(curr, PIDTYPE_SID, pid); 357 set_task_session(curr, nr); 358 } 359 if (task_pgrp(curr) != pid) { 360 change_pid(curr, PIDTYPE_PGID, pid); 361 set_task_pgrp(curr, nr); 362 } 363 } 364 365 static void set_special_pids(struct pid *pid) 366 { 367 write_lock_irq(&tasklist_lock); 368 __set_special_pids(pid); 369 write_unlock_irq(&tasklist_lock); 370 } 371 372 /* 373 * Let kernel threads use this to say that they 374 * allow a certain signal (since daemonize() will 375 * have disabled all of them by default). 376 */ 377 int allow_signal(int sig) 378 { 379 if (!valid_signal(sig) || sig < 1) 380 return -EINVAL; 381 382 spin_lock_irq(¤t->sighand->siglock); 383 sigdelset(¤t->blocked, sig); 384 if (!current->mm) { 385 /* Kernel threads handle their own signals. 386 Let the signal code know it'll be handled, so 387 that they don't get converted to SIGKILL or 388 just silently dropped */ 389 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 390 } 391 recalc_sigpending(); 392 spin_unlock_irq(¤t->sighand->siglock); 393 return 0; 394 } 395 396 EXPORT_SYMBOL(allow_signal); 397 398 int disallow_signal(int sig) 399 { 400 if (!valid_signal(sig) || sig < 1) 401 return -EINVAL; 402 403 spin_lock_irq(¤t->sighand->siglock); 404 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 405 recalc_sigpending(); 406 spin_unlock_irq(¤t->sighand->siglock); 407 return 0; 408 } 409 410 EXPORT_SYMBOL(disallow_signal); 411 412 /* 413 * Put all the gunge required to become a kernel thread without 414 * attached user resources in one place where it belongs. 415 */ 416 417 void daemonize(const char *name, ...) 418 { 419 va_list args; 420 struct fs_struct *fs; 421 sigset_t blocked; 422 423 va_start(args, name); 424 vsnprintf(current->comm, sizeof(current->comm), name, args); 425 va_end(args); 426 427 /* 428 * If we were started as result of loading a module, close all of the 429 * user space pages. We don't need them, and if we didn't close them 430 * they would be locked into memory. 431 */ 432 exit_mm(current); 433 /* 434 * We don't want to have TIF_FREEZE set if the system-wide hibernation 435 * or suspend transition begins right now. 436 */ 437 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 438 439 if (current->nsproxy != &init_nsproxy) { 440 get_nsproxy(&init_nsproxy); 441 switch_task_namespaces(current, &init_nsproxy); 442 } 443 set_special_pids(&init_struct_pid); 444 proc_clear_tty(current); 445 446 /* Block and flush all signals */ 447 sigfillset(&blocked); 448 sigprocmask(SIG_BLOCK, &blocked, NULL); 449 flush_signals(current); 450 451 /* Become as one with the init task */ 452 453 exit_fs(current); /* current->fs->count--; */ 454 fs = init_task.fs; 455 current->fs = fs; 456 atomic_inc(&fs->count); 457 458 exit_files(current); 459 current->files = init_task.files; 460 atomic_inc(¤t->files->count); 461 462 reparent_to_kthreadd(); 463 } 464 465 EXPORT_SYMBOL(daemonize); 466 467 static void close_files(struct files_struct * files) 468 { 469 int i, j; 470 struct fdtable *fdt; 471 472 j = 0; 473 474 /* 475 * It is safe to dereference the fd table without RCU or 476 * ->file_lock because this is the last reference to the 477 * files structure. 478 */ 479 fdt = files_fdtable(files); 480 for (;;) { 481 unsigned long set; 482 i = j * __NFDBITS; 483 if (i >= fdt->max_fds) 484 break; 485 set = fdt->open_fds->fds_bits[j++]; 486 while (set) { 487 if (set & 1) { 488 struct file * file = xchg(&fdt->fd[i], NULL); 489 if (file) { 490 filp_close(file, files); 491 cond_resched(); 492 } 493 } 494 i++; 495 set >>= 1; 496 } 497 } 498 } 499 500 struct files_struct *get_files_struct(struct task_struct *task) 501 { 502 struct files_struct *files; 503 504 task_lock(task); 505 files = task->files; 506 if (files) 507 atomic_inc(&files->count); 508 task_unlock(task); 509 510 return files; 511 } 512 513 void put_files_struct(struct files_struct *files) 514 { 515 struct fdtable *fdt; 516 517 if (atomic_dec_and_test(&files->count)) { 518 close_files(files); 519 /* 520 * Free the fd and fdset arrays if we expanded them. 521 * If the fdtable was embedded, pass files for freeing 522 * at the end of the RCU grace period. Otherwise, 523 * you can free files immediately. 524 */ 525 fdt = files_fdtable(files); 526 if (fdt != &files->fdtab) 527 kmem_cache_free(files_cachep, files); 528 free_fdtable(fdt); 529 } 530 } 531 532 void reset_files_struct(struct files_struct *files) 533 { 534 struct task_struct *tsk = current; 535 struct files_struct *old; 536 537 old = tsk->files; 538 task_lock(tsk); 539 tsk->files = files; 540 task_unlock(tsk); 541 put_files_struct(old); 542 } 543 544 void exit_files(struct task_struct *tsk) 545 { 546 struct files_struct * files = tsk->files; 547 548 if (files) { 549 task_lock(tsk); 550 tsk->files = NULL; 551 task_unlock(tsk); 552 put_files_struct(files); 553 } 554 } 555 556 void put_fs_struct(struct fs_struct *fs) 557 { 558 /* No need to hold fs->lock if we are killing it */ 559 if (atomic_dec_and_test(&fs->count)) { 560 path_put(&fs->root); 561 path_put(&fs->pwd); 562 kmem_cache_free(fs_cachep, fs); 563 } 564 } 565 566 void exit_fs(struct task_struct *tsk) 567 { 568 struct fs_struct * fs = tsk->fs; 569 570 if (fs) { 571 task_lock(tsk); 572 tsk->fs = NULL; 573 task_unlock(tsk); 574 put_fs_struct(fs); 575 } 576 } 577 578 EXPORT_SYMBOL_GPL(exit_fs); 579 580 #ifdef CONFIG_MM_OWNER 581 /* 582 * Task p is exiting and it owned mm, lets find a new owner for it 583 */ 584 static inline int 585 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 586 { 587 /* 588 * If there are other users of the mm and the owner (us) is exiting 589 * we need to find a new owner to take on the responsibility. 590 */ 591 if (atomic_read(&mm->mm_users) <= 1) 592 return 0; 593 if (mm->owner != p) 594 return 0; 595 return 1; 596 } 597 598 void mm_update_next_owner(struct mm_struct *mm) 599 { 600 struct task_struct *c, *g, *p = current; 601 602 retry: 603 if (!mm_need_new_owner(mm, p)) 604 return; 605 606 read_lock(&tasklist_lock); 607 /* 608 * Search in the children 609 */ 610 list_for_each_entry(c, &p->children, sibling) { 611 if (c->mm == mm) 612 goto assign_new_owner; 613 } 614 615 /* 616 * Search in the siblings 617 */ 618 list_for_each_entry(c, &p->parent->children, sibling) { 619 if (c->mm == mm) 620 goto assign_new_owner; 621 } 622 623 /* 624 * Search through everything else. We should not get 625 * here often 626 */ 627 do_each_thread(g, c) { 628 if (c->mm == mm) 629 goto assign_new_owner; 630 } while_each_thread(g, c); 631 632 read_unlock(&tasklist_lock); 633 /* 634 * We found no owner yet mm_users > 1: this implies that we are 635 * most likely racing with swapoff (try_to_unuse()) or /proc or 636 * ptrace or page migration (get_task_mm()). Mark owner as NULL, 637 * so that subsystems can understand the callback and take action. 638 */ 639 down_write(&mm->mmap_sem); 640 cgroup_mm_owner_callbacks(mm->owner, NULL); 641 mm->owner = NULL; 642 up_write(&mm->mmap_sem); 643 return; 644 645 assign_new_owner: 646 BUG_ON(c == p); 647 get_task_struct(c); 648 read_unlock(&tasklist_lock); 649 down_write(&mm->mmap_sem); 650 /* 651 * The task_lock protects c->mm from changing. 652 * We always want mm->owner->mm == mm 653 */ 654 task_lock(c); 655 if (c->mm != mm) { 656 task_unlock(c); 657 up_write(&mm->mmap_sem); 658 put_task_struct(c); 659 goto retry; 660 } 661 cgroup_mm_owner_callbacks(mm->owner, c); 662 mm->owner = c; 663 task_unlock(c); 664 up_write(&mm->mmap_sem); 665 put_task_struct(c); 666 } 667 #endif /* CONFIG_MM_OWNER */ 668 669 /* 670 * Turn us into a lazy TLB process if we 671 * aren't already.. 672 */ 673 static void exit_mm(struct task_struct * tsk) 674 { 675 struct mm_struct *mm = tsk->mm; 676 struct core_state *core_state; 677 678 mm_release(tsk, mm); 679 if (!mm) 680 return; 681 /* 682 * Serialize with any possible pending coredump. 683 * We must hold mmap_sem around checking core_state 684 * and clearing tsk->mm. The core-inducing thread 685 * will increment ->nr_threads for each thread in the 686 * group with ->mm != NULL. 687 */ 688 down_read(&mm->mmap_sem); 689 core_state = mm->core_state; 690 if (core_state) { 691 struct core_thread self; 692 up_read(&mm->mmap_sem); 693 694 self.task = tsk; 695 self.next = xchg(&core_state->dumper.next, &self); 696 /* 697 * Implies mb(), the result of xchg() must be visible 698 * to core_state->dumper. 699 */ 700 if (atomic_dec_and_test(&core_state->nr_threads)) 701 complete(&core_state->startup); 702 703 for (;;) { 704 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 705 if (!self.task) /* see coredump_finish() */ 706 break; 707 schedule(); 708 } 709 __set_task_state(tsk, TASK_RUNNING); 710 down_read(&mm->mmap_sem); 711 } 712 atomic_inc(&mm->mm_count); 713 BUG_ON(mm != tsk->active_mm); 714 /* more a memory barrier than a real lock */ 715 task_lock(tsk); 716 tsk->mm = NULL; 717 up_read(&mm->mmap_sem); 718 enter_lazy_tlb(mm, current); 719 /* We don't want this task to be frozen prematurely */ 720 clear_freeze_flag(tsk); 721 task_unlock(tsk); 722 mm_update_next_owner(mm); 723 mmput(mm); 724 } 725 726 /* 727 * Return nonzero if @parent's children should reap themselves. 728 * 729 * Called with write_lock_irq(&tasklist_lock) held. 730 */ 731 static int ignoring_children(struct task_struct *parent) 732 { 733 int ret; 734 struct sighand_struct *psig = parent->sighand; 735 unsigned long flags; 736 spin_lock_irqsave(&psig->siglock, flags); 737 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 738 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT)); 739 spin_unlock_irqrestore(&psig->siglock, flags); 740 return ret; 741 } 742 743 /* 744 * Detach all tasks we were using ptrace on. 745 * Any that need to be release_task'd are put on the @dead list. 746 * 747 * Called with write_lock(&tasklist_lock) held. 748 */ 749 static void ptrace_exit(struct task_struct *parent, struct list_head *dead) 750 { 751 struct task_struct *p, *n; 752 int ign = -1; 753 754 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) { 755 __ptrace_unlink(p); 756 757 if (p->exit_state != EXIT_ZOMBIE) 758 continue; 759 760 /* 761 * If it's a zombie, our attachedness prevented normal 762 * parent notification or self-reaping. Do notification 763 * now if it would have happened earlier. If it should 764 * reap itself, add it to the @dead list. We can't call 765 * release_task() here because we already hold tasklist_lock. 766 * 767 * If it's our own child, there is no notification to do. 768 * But if our normal children self-reap, then this child 769 * was prevented by ptrace and we must reap it now. 770 */ 771 if (!task_detached(p) && thread_group_empty(p)) { 772 if (!same_thread_group(p->real_parent, parent)) 773 do_notify_parent(p, p->exit_signal); 774 else { 775 if (ign < 0) 776 ign = ignoring_children(parent); 777 if (ign) 778 p->exit_signal = -1; 779 } 780 } 781 782 if (task_detached(p)) { 783 /* 784 * Mark it as in the process of being reaped. 785 */ 786 p->exit_state = EXIT_DEAD; 787 list_add(&p->ptrace_entry, dead); 788 } 789 } 790 } 791 792 /* 793 * Finish up exit-time ptrace cleanup. 794 * 795 * Called without locks. 796 */ 797 static void ptrace_exit_finish(struct task_struct *parent, 798 struct list_head *dead) 799 { 800 struct task_struct *p, *n; 801 802 BUG_ON(!list_empty(&parent->ptraced)); 803 804 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 805 list_del_init(&p->ptrace_entry); 806 release_task(p); 807 } 808 } 809 810 static void reparent_thread(struct task_struct *p, struct task_struct *father) 811 { 812 if (p->pdeath_signal) 813 /* We already hold the tasklist_lock here. */ 814 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 815 816 list_move_tail(&p->sibling, &p->real_parent->children); 817 818 /* If this is a threaded reparent there is no need to 819 * notify anyone anything has happened. 820 */ 821 if (same_thread_group(p->real_parent, father)) 822 return; 823 824 /* We don't want people slaying init. */ 825 if (!task_detached(p)) 826 p->exit_signal = SIGCHLD; 827 828 /* If we'd notified the old parent about this child's death, 829 * also notify the new parent. 830 */ 831 if (!ptrace_reparented(p) && 832 p->exit_state == EXIT_ZOMBIE && 833 !task_detached(p) && thread_group_empty(p)) 834 do_notify_parent(p, p->exit_signal); 835 836 kill_orphaned_pgrp(p, father); 837 } 838 839 /* 840 * When we die, we re-parent all our children. 841 * Try to give them to another thread in our thread 842 * group, and if no such member exists, give it to 843 * the child reaper process (ie "init") in our pid 844 * space. 845 */ 846 static struct task_struct *find_new_reaper(struct task_struct *father) 847 { 848 struct pid_namespace *pid_ns = task_active_pid_ns(father); 849 struct task_struct *thread; 850 851 thread = father; 852 while_each_thread(father, thread) { 853 if (thread->flags & PF_EXITING) 854 continue; 855 if (unlikely(pid_ns->child_reaper == father)) 856 pid_ns->child_reaper = thread; 857 return thread; 858 } 859 860 if (unlikely(pid_ns->child_reaper == father)) { 861 write_unlock_irq(&tasklist_lock); 862 if (unlikely(pid_ns == &init_pid_ns)) 863 panic("Attempted to kill init!"); 864 865 zap_pid_ns_processes(pid_ns); 866 write_lock_irq(&tasklist_lock); 867 /* 868 * We can not clear ->child_reaper or leave it alone. 869 * There may by stealth EXIT_DEAD tasks on ->children, 870 * forget_original_parent() must move them somewhere. 871 */ 872 pid_ns->child_reaper = init_pid_ns.child_reaper; 873 } 874 875 return pid_ns->child_reaper; 876 } 877 878 static void forget_original_parent(struct task_struct *father) 879 { 880 struct task_struct *p, *n, *reaper; 881 LIST_HEAD(ptrace_dead); 882 883 write_lock_irq(&tasklist_lock); 884 reaper = find_new_reaper(father); 885 /* 886 * First clean up ptrace if we were using it. 887 */ 888 ptrace_exit(father, &ptrace_dead); 889 890 list_for_each_entry_safe(p, n, &father->children, sibling) { 891 p->real_parent = reaper; 892 if (p->parent == father) { 893 BUG_ON(p->ptrace); 894 p->parent = p->real_parent; 895 } 896 reparent_thread(p, father); 897 } 898 899 write_unlock_irq(&tasklist_lock); 900 BUG_ON(!list_empty(&father->children)); 901 902 ptrace_exit_finish(father, &ptrace_dead); 903 } 904 905 /* 906 * Send signals to all our closest relatives so that they know 907 * to properly mourn us.. 908 */ 909 static void exit_notify(struct task_struct *tsk, int group_dead) 910 { 911 int signal; 912 void *cookie; 913 914 /* 915 * This does two things: 916 * 917 * A. Make init inherit all the child processes 918 * B. Check to see if any process groups have become orphaned 919 * as a result of our exiting, and if they have any stopped 920 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 921 */ 922 forget_original_parent(tsk); 923 exit_task_namespaces(tsk); 924 925 write_lock_irq(&tasklist_lock); 926 if (group_dead) 927 kill_orphaned_pgrp(tsk->group_leader, NULL); 928 929 /* Let father know we died 930 * 931 * Thread signals are configurable, but you aren't going to use 932 * that to send signals to arbitary processes. 933 * That stops right now. 934 * 935 * If the parent exec id doesn't match the exec id we saved 936 * when we started then we know the parent has changed security 937 * domain. 938 * 939 * If our self_exec id doesn't match our parent_exec_id then 940 * we have changed execution domain as these two values started 941 * the same after a fork. 942 */ 943 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 944 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 945 tsk->self_exec_id != tsk->parent_exec_id) && 946 !capable(CAP_KILL)) 947 tsk->exit_signal = SIGCHLD; 948 949 signal = tracehook_notify_death(tsk, &cookie, group_dead); 950 if (signal >= 0) 951 signal = do_notify_parent(tsk, signal); 952 953 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 954 955 /* mt-exec, de_thread() is waiting for us */ 956 if (thread_group_leader(tsk) && 957 tsk->signal->group_exit_task && 958 tsk->signal->notify_count < 0) 959 wake_up_process(tsk->signal->group_exit_task); 960 961 write_unlock_irq(&tasklist_lock); 962 963 tracehook_report_death(tsk, signal, cookie, group_dead); 964 965 /* If the process is dead, release it - nobody will wait for it */ 966 if (signal == DEATH_REAP) 967 release_task(tsk); 968 } 969 970 #ifdef CONFIG_DEBUG_STACK_USAGE 971 static void check_stack_usage(void) 972 { 973 static DEFINE_SPINLOCK(low_water_lock); 974 static int lowest_to_date = THREAD_SIZE; 975 unsigned long *n = end_of_stack(current); 976 unsigned long free; 977 978 while (*n == 0) 979 n++; 980 free = (unsigned long)n - (unsigned long)end_of_stack(current); 981 982 if (free >= lowest_to_date) 983 return; 984 985 spin_lock(&low_water_lock); 986 if (free < lowest_to_date) { 987 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 988 "left\n", 989 current->comm, free); 990 lowest_to_date = free; 991 } 992 spin_unlock(&low_water_lock); 993 } 994 #else 995 static inline void check_stack_usage(void) {} 996 #endif 997 998 NORET_TYPE void do_exit(long code) 999 { 1000 struct task_struct *tsk = current; 1001 int group_dead; 1002 1003 profile_task_exit(tsk); 1004 1005 WARN_ON(atomic_read(&tsk->fs_excl)); 1006 1007 if (unlikely(in_interrupt())) 1008 panic("Aiee, killing interrupt handler!"); 1009 if (unlikely(!tsk->pid)) 1010 panic("Attempted to kill the idle task!"); 1011 1012 tracehook_report_exit(&code); 1013 1014 /* 1015 * We're taking recursive faults here in do_exit. Safest is to just 1016 * leave this task alone and wait for reboot. 1017 */ 1018 if (unlikely(tsk->flags & PF_EXITING)) { 1019 printk(KERN_ALERT 1020 "Fixing recursive fault but reboot is needed!\n"); 1021 /* 1022 * We can do this unlocked here. The futex code uses 1023 * this flag just to verify whether the pi state 1024 * cleanup has been done or not. In the worst case it 1025 * loops once more. We pretend that the cleanup was 1026 * done as there is no way to return. Either the 1027 * OWNER_DIED bit is set by now or we push the blocked 1028 * task into the wait for ever nirwana as well. 1029 */ 1030 tsk->flags |= PF_EXITPIDONE; 1031 if (tsk->io_context) 1032 exit_io_context(); 1033 set_current_state(TASK_UNINTERRUPTIBLE); 1034 schedule(); 1035 } 1036 1037 exit_signals(tsk); /* sets PF_EXITING */ 1038 /* 1039 * tsk->flags are checked in the futex code to protect against 1040 * an exiting task cleaning up the robust pi futexes. 1041 */ 1042 smp_mb(); 1043 spin_unlock_wait(&tsk->pi_lock); 1044 1045 if (unlikely(in_atomic())) 1046 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 1047 current->comm, task_pid_nr(current), 1048 preempt_count()); 1049 1050 acct_update_integrals(tsk); 1051 if (tsk->mm) { 1052 update_hiwater_rss(tsk->mm); 1053 update_hiwater_vm(tsk->mm); 1054 } 1055 group_dead = atomic_dec_and_test(&tsk->signal->live); 1056 if (group_dead) { 1057 hrtimer_cancel(&tsk->signal->real_timer); 1058 exit_itimers(tsk->signal); 1059 } 1060 acct_collect(code, group_dead); 1061 if (group_dead) 1062 tty_audit_exit(); 1063 if (unlikely(tsk->audit_context)) 1064 audit_free(tsk); 1065 1066 tsk->exit_code = code; 1067 taskstats_exit(tsk, group_dead); 1068 1069 exit_mm(tsk); 1070 1071 if (group_dead) 1072 acct_process(); 1073 trace_sched_process_exit(tsk); 1074 1075 exit_sem(tsk); 1076 exit_files(tsk); 1077 exit_fs(tsk); 1078 check_stack_usage(); 1079 exit_thread(); 1080 cgroup_exit(tsk, 1); 1081 exit_keys(tsk); 1082 1083 if (group_dead && tsk->signal->leader) 1084 disassociate_ctty(1); 1085 1086 module_put(task_thread_info(tsk)->exec_domain->module); 1087 if (tsk->binfmt) 1088 module_put(tsk->binfmt->module); 1089 1090 proc_exit_connector(tsk); 1091 exit_notify(tsk, group_dead); 1092 #ifdef CONFIG_NUMA 1093 mpol_put(tsk->mempolicy); 1094 tsk->mempolicy = NULL; 1095 #endif 1096 #ifdef CONFIG_FUTEX 1097 /* 1098 * This must happen late, after the PID is not 1099 * hashed anymore: 1100 */ 1101 if (unlikely(!list_empty(&tsk->pi_state_list))) 1102 exit_pi_state_list(tsk); 1103 if (unlikely(current->pi_state_cache)) 1104 kfree(current->pi_state_cache); 1105 #endif 1106 /* 1107 * Make sure we are holding no locks: 1108 */ 1109 debug_check_no_locks_held(tsk); 1110 /* 1111 * We can do this unlocked here. The futex code uses this flag 1112 * just to verify whether the pi state cleanup has been done 1113 * or not. In the worst case it loops once more. 1114 */ 1115 tsk->flags |= PF_EXITPIDONE; 1116 1117 if (tsk->io_context) 1118 exit_io_context(); 1119 1120 if (tsk->splice_pipe) 1121 __free_pipe_info(tsk->splice_pipe); 1122 1123 preempt_disable(); 1124 /* causes final put_task_struct in finish_task_switch(). */ 1125 tsk->state = TASK_DEAD; 1126 1127 schedule(); 1128 BUG(); 1129 /* Avoid "noreturn function does return". */ 1130 for (;;) 1131 cpu_relax(); /* For when BUG is null */ 1132 } 1133 1134 EXPORT_SYMBOL_GPL(do_exit); 1135 1136 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1137 { 1138 if (comp) 1139 complete(comp); 1140 1141 do_exit(code); 1142 } 1143 1144 EXPORT_SYMBOL(complete_and_exit); 1145 1146 asmlinkage long sys_exit(int error_code) 1147 { 1148 do_exit((error_code&0xff)<<8); 1149 } 1150 1151 /* 1152 * Take down every thread in the group. This is called by fatal signals 1153 * as well as by sys_exit_group (below). 1154 */ 1155 NORET_TYPE void 1156 do_group_exit(int exit_code) 1157 { 1158 struct signal_struct *sig = current->signal; 1159 1160 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1161 1162 if (signal_group_exit(sig)) 1163 exit_code = sig->group_exit_code; 1164 else if (!thread_group_empty(current)) { 1165 struct sighand_struct *const sighand = current->sighand; 1166 spin_lock_irq(&sighand->siglock); 1167 if (signal_group_exit(sig)) 1168 /* Another thread got here before we took the lock. */ 1169 exit_code = sig->group_exit_code; 1170 else { 1171 sig->group_exit_code = exit_code; 1172 sig->flags = SIGNAL_GROUP_EXIT; 1173 zap_other_threads(current); 1174 } 1175 spin_unlock_irq(&sighand->siglock); 1176 } 1177 1178 do_exit(exit_code); 1179 /* NOTREACHED */ 1180 } 1181 1182 /* 1183 * this kills every thread in the thread group. Note that any externally 1184 * wait4()-ing process will get the correct exit code - even if this 1185 * thread is not the thread group leader. 1186 */ 1187 asmlinkage void sys_exit_group(int error_code) 1188 { 1189 do_group_exit((error_code & 0xff) << 8); 1190 } 1191 1192 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1193 { 1194 struct pid *pid = NULL; 1195 if (type == PIDTYPE_PID) 1196 pid = task->pids[type].pid; 1197 else if (type < PIDTYPE_MAX) 1198 pid = task->group_leader->pids[type].pid; 1199 return pid; 1200 } 1201 1202 static int eligible_child(enum pid_type type, struct pid *pid, int options, 1203 struct task_struct *p) 1204 { 1205 int err; 1206 1207 if (type < PIDTYPE_MAX) { 1208 if (task_pid_type(p, type) != pid) 1209 return 0; 1210 } 1211 1212 /* Wait for all children (clone and not) if __WALL is set; 1213 * otherwise, wait for clone children *only* if __WCLONE is 1214 * set; otherwise, wait for non-clone children *only*. (Note: 1215 * A "clone" child here is one that reports to its parent 1216 * using a signal other than SIGCHLD.) */ 1217 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1218 && !(options & __WALL)) 1219 return 0; 1220 1221 err = security_task_wait(p); 1222 if (err) 1223 return err; 1224 1225 return 1; 1226 } 1227 1228 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1229 int why, int status, 1230 struct siginfo __user *infop, 1231 struct rusage __user *rusagep) 1232 { 1233 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1234 1235 put_task_struct(p); 1236 if (!retval) 1237 retval = put_user(SIGCHLD, &infop->si_signo); 1238 if (!retval) 1239 retval = put_user(0, &infop->si_errno); 1240 if (!retval) 1241 retval = put_user((short)why, &infop->si_code); 1242 if (!retval) 1243 retval = put_user(pid, &infop->si_pid); 1244 if (!retval) 1245 retval = put_user(uid, &infop->si_uid); 1246 if (!retval) 1247 retval = put_user(status, &infop->si_status); 1248 if (!retval) 1249 retval = pid; 1250 return retval; 1251 } 1252 1253 /* 1254 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1255 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1256 * the lock and this task is uninteresting. If we return nonzero, we have 1257 * released the lock and the system call should return. 1258 */ 1259 static int wait_task_zombie(struct task_struct *p, int options, 1260 struct siginfo __user *infop, 1261 int __user *stat_addr, struct rusage __user *ru) 1262 { 1263 unsigned long state; 1264 int retval, status, traced; 1265 pid_t pid = task_pid_vnr(p); 1266 1267 if (!likely(options & WEXITED)) 1268 return 0; 1269 1270 if (unlikely(options & WNOWAIT)) { 1271 uid_t uid = p->uid; 1272 int exit_code = p->exit_code; 1273 int why, status; 1274 1275 get_task_struct(p); 1276 read_unlock(&tasklist_lock); 1277 if ((exit_code & 0x7f) == 0) { 1278 why = CLD_EXITED; 1279 status = exit_code >> 8; 1280 } else { 1281 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1282 status = exit_code & 0x7f; 1283 } 1284 return wait_noreap_copyout(p, pid, uid, why, 1285 status, infop, ru); 1286 } 1287 1288 /* 1289 * Try to move the task's state to DEAD 1290 * only one thread is allowed to do this: 1291 */ 1292 state = xchg(&p->exit_state, EXIT_DEAD); 1293 if (state != EXIT_ZOMBIE) { 1294 BUG_ON(state != EXIT_DEAD); 1295 return 0; 1296 } 1297 1298 traced = ptrace_reparented(p); 1299 1300 if (likely(!traced)) { 1301 struct signal_struct *psig; 1302 struct signal_struct *sig; 1303 struct task_cputime cputime; 1304 1305 /* 1306 * The resource counters for the group leader are in its 1307 * own task_struct. Those for dead threads in the group 1308 * are in its signal_struct, as are those for the child 1309 * processes it has previously reaped. All these 1310 * accumulate in the parent's signal_struct c* fields. 1311 * 1312 * We don't bother to take a lock here to protect these 1313 * p->signal fields, because they are only touched by 1314 * __exit_signal, which runs with tasklist_lock 1315 * write-locked anyway, and so is excluded here. We do 1316 * need to protect the access to p->parent->signal fields, 1317 * as other threads in the parent group can be right 1318 * here reaping other children at the same time. 1319 * 1320 * We use thread_group_cputime() to get times for the thread 1321 * group, which consolidates times for all threads in the 1322 * group including the group leader. 1323 */ 1324 spin_lock_irq(&p->parent->sighand->siglock); 1325 psig = p->parent->signal; 1326 sig = p->signal; 1327 thread_group_cputime(p, &cputime); 1328 psig->cutime = 1329 cputime_add(psig->cutime, 1330 cputime_add(cputime.utime, 1331 sig->cutime)); 1332 psig->cstime = 1333 cputime_add(psig->cstime, 1334 cputime_add(cputime.stime, 1335 sig->cstime)); 1336 psig->cgtime = 1337 cputime_add(psig->cgtime, 1338 cputime_add(p->gtime, 1339 cputime_add(sig->gtime, 1340 sig->cgtime))); 1341 psig->cmin_flt += 1342 p->min_flt + sig->min_flt + sig->cmin_flt; 1343 psig->cmaj_flt += 1344 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1345 psig->cnvcsw += 1346 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1347 psig->cnivcsw += 1348 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1349 psig->cinblock += 1350 task_io_get_inblock(p) + 1351 sig->inblock + sig->cinblock; 1352 psig->coublock += 1353 task_io_get_oublock(p) + 1354 sig->oublock + sig->coublock; 1355 task_io_accounting_add(&psig->ioac, &p->ioac); 1356 task_io_accounting_add(&psig->ioac, &sig->ioac); 1357 spin_unlock_irq(&p->parent->sighand->siglock); 1358 } 1359 1360 /* 1361 * Now we are sure this task is interesting, and no other 1362 * thread can reap it because we set its state to EXIT_DEAD. 1363 */ 1364 read_unlock(&tasklist_lock); 1365 1366 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1367 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1368 ? p->signal->group_exit_code : p->exit_code; 1369 if (!retval && stat_addr) 1370 retval = put_user(status, stat_addr); 1371 if (!retval && infop) 1372 retval = put_user(SIGCHLD, &infop->si_signo); 1373 if (!retval && infop) 1374 retval = put_user(0, &infop->si_errno); 1375 if (!retval && infop) { 1376 int why; 1377 1378 if ((status & 0x7f) == 0) { 1379 why = CLD_EXITED; 1380 status >>= 8; 1381 } else { 1382 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1383 status &= 0x7f; 1384 } 1385 retval = put_user((short)why, &infop->si_code); 1386 if (!retval) 1387 retval = put_user(status, &infop->si_status); 1388 } 1389 if (!retval && infop) 1390 retval = put_user(pid, &infop->si_pid); 1391 if (!retval && infop) 1392 retval = put_user(p->uid, &infop->si_uid); 1393 if (!retval) 1394 retval = pid; 1395 1396 if (traced) { 1397 write_lock_irq(&tasklist_lock); 1398 /* We dropped tasklist, ptracer could die and untrace */ 1399 ptrace_unlink(p); 1400 /* 1401 * If this is not a detached task, notify the parent. 1402 * If it's still not detached after that, don't release 1403 * it now. 1404 */ 1405 if (!task_detached(p)) { 1406 do_notify_parent(p, p->exit_signal); 1407 if (!task_detached(p)) { 1408 p->exit_state = EXIT_ZOMBIE; 1409 p = NULL; 1410 } 1411 } 1412 write_unlock_irq(&tasklist_lock); 1413 } 1414 if (p != NULL) 1415 release_task(p); 1416 1417 return retval; 1418 } 1419 1420 /* 1421 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1422 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1423 * the lock and this task is uninteresting. If we return nonzero, we have 1424 * released the lock and the system call should return. 1425 */ 1426 static int wait_task_stopped(int ptrace, struct task_struct *p, 1427 int options, struct siginfo __user *infop, 1428 int __user *stat_addr, struct rusage __user *ru) 1429 { 1430 int retval, exit_code, why; 1431 uid_t uid = 0; /* unneeded, required by compiler */ 1432 pid_t pid; 1433 1434 if (!(options & WUNTRACED)) 1435 return 0; 1436 1437 exit_code = 0; 1438 spin_lock_irq(&p->sighand->siglock); 1439 1440 if (unlikely(!task_is_stopped_or_traced(p))) 1441 goto unlock_sig; 1442 1443 if (!ptrace && p->signal->group_stop_count > 0) 1444 /* 1445 * A group stop is in progress and this is the group leader. 1446 * We won't report until all threads have stopped. 1447 */ 1448 goto unlock_sig; 1449 1450 exit_code = p->exit_code; 1451 if (!exit_code) 1452 goto unlock_sig; 1453 1454 if (!unlikely(options & WNOWAIT)) 1455 p->exit_code = 0; 1456 1457 uid = p->uid; 1458 unlock_sig: 1459 spin_unlock_irq(&p->sighand->siglock); 1460 if (!exit_code) 1461 return 0; 1462 1463 /* 1464 * Now we are pretty sure this task is interesting. 1465 * Make sure it doesn't get reaped out from under us while we 1466 * give up the lock and then examine it below. We don't want to 1467 * keep holding onto the tasklist_lock while we call getrusage and 1468 * possibly take page faults for user memory. 1469 */ 1470 get_task_struct(p); 1471 pid = task_pid_vnr(p); 1472 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1473 read_unlock(&tasklist_lock); 1474 1475 if (unlikely(options & WNOWAIT)) 1476 return wait_noreap_copyout(p, pid, uid, 1477 why, exit_code, 1478 infop, ru); 1479 1480 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1481 if (!retval && stat_addr) 1482 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1483 if (!retval && infop) 1484 retval = put_user(SIGCHLD, &infop->si_signo); 1485 if (!retval && infop) 1486 retval = put_user(0, &infop->si_errno); 1487 if (!retval && infop) 1488 retval = put_user((short)why, &infop->si_code); 1489 if (!retval && infop) 1490 retval = put_user(exit_code, &infop->si_status); 1491 if (!retval && infop) 1492 retval = put_user(pid, &infop->si_pid); 1493 if (!retval && infop) 1494 retval = put_user(uid, &infop->si_uid); 1495 if (!retval) 1496 retval = pid; 1497 put_task_struct(p); 1498 1499 BUG_ON(!retval); 1500 return retval; 1501 } 1502 1503 /* 1504 * Handle do_wait work for one task in a live, non-stopped state. 1505 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1506 * the lock and this task is uninteresting. If we return nonzero, we have 1507 * released the lock and the system call should return. 1508 */ 1509 static int wait_task_continued(struct task_struct *p, int options, 1510 struct siginfo __user *infop, 1511 int __user *stat_addr, struct rusage __user *ru) 1512 { 1513 int retval; 1514 pid_t pid; 1515 uid_t uid; 1516 1517 if (!unlikely(options & WCONTINUED)) 1518 return 0; 1519 1520 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1521 return 0; 1522 1523 spin_lock_irq(&p->sighand->siglock); 1524 /* Re-check with the lock held. */ 1525 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1526 spin_unlock_irq(&p->sighand->siglock); 1527 return 0; 1528 } 1529 if (!unlikely(options & WNOWAIT)) 1530 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1531 spin_unlock_irq(&p->sighand->siglock); 1532 1533 pid = task_pid_vnr(p); 1534 uid = p->uid; 1535 get_task_struct(p); 1536 read_unlock(&tasklist_lock); 1537 1538 if (!infop) { 1539 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1540 put_task_struct(p); 1541 if (!retval && stat_addr) 1542 retval = put_user(0xffff, stat_addr); 1543 if (!retval) 1544 retval = pid; 1545 } else { 1546 retval = wait_noreap_copyout(p, pid, uid, 1547 CLD_CONTINUED, SIGCONT, 1548 infop, ru); 1549 BUG_ON(retval == 0); 1550 } 1551 1552 return retval; 1553 } 1554 1555 /* 1556 * Consider @p for a wait by @parent. 1557 * 1558 * -ECHILD should be in *@notask_error before the first call. 1559 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1560 * Returns zero if the search for a child should continue; 1561 * then *@notask_error is 0 if @p is an eligible child, 1562 * or another error from security_task_wait(), or still -ECHILD. 1563 */ 1564 static int wait_consider_task(struct task_struct *parent, int ptrace, 1565 struct task_struct *p, int *notask_error, 1566 enum pid_type type, struct pid *pid, int options, 1567 struct siginfo __user *infop, 1568 int __user *stat_addr, struct rusage __user *ru) 1569 { 1570 int ret = eligible_child(type, pid, options, p); 1571 if (!ret) 1572 return ret; 1573 1574 if (unlikely(ret < 0)) { 1575 /* 1576 * If we have not yet seen any eligible child, 1577 * then let this error code replace -ECHILD. 1578 * A permission error will give the user a clue 1579 * to look for security policy problems, rather 1580 * than for mysterious wait bugs. 1581 */ 1582 if (*notask_error) 1583 *notask_error = ret; 1584 } 1585 1586 if (likely(!ptrace) && unlikely(p->ptrace)) { 1587 /* 1588 * This child is hidden by ptrace. 1589 * We aren't allowed to see it now, but eventually we will. 1590 */ 1591 *notask_error = 0; 1592 return 0; 1593 } 1594 1595 if (p->exit_state == EXIT_DEAD) 1596 return 0; 1597 1598 /* 1599 * We don't reap group leaders with subthreads. 1600 */ 1601 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1602 return wait_task_zombie(p, options, infop, stat_addr, ru); 1603 1604 /* 1605 * It's stopped or running now, so it might 1606 * later continue, exit, or stop again. 1607 */ 1608 *notask_error = 0; 1609 1610 if (task_is_stopped_or_traced(p)) 1611 return wait_task_stopped(ptrace, p, options, 1612 infop, stat_addr, ru); 1613 1614 return wait_task_continued(p, options, infop, stat_addr, ru); 1615 } 1616 1617 /* 1618 * Do the work of do_wait() for one thread in the group, @tsk. 1619 * 1620 * -ECHILD should be in *@notask_error before the first call. 1621 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1622 * Returns zero if the search for a child should continue; then 1623 * *@notask_error is 0 if there were any eligible children, 1624 * or another error from security_task_wait(), or still -ECHILD. 1625 */ 1626 static int do_wait_thread(struct task_struct *tsk, int *notask_error, 1627 enum pid_type type, struct pid *pid, int options, 1628 struct siginfo __user *infop, int __user *stat_addr, 1629 struct rusage __user *ru) 1630 { 1631 struct task_struct *p; 1632 1633 list_for_each_entry(p, &tsk->children, sibling) { 1634 /* 1635 * Do not consider detached threads. 1636 */ 1637 if (!task_detached(p)) { 1638 int ret = wait_consider_task(tsk, 0, p, notask_error, 1639 type, pid, options, 1640 infop, stat_addr, ru); 1641 if (ret) 1642 return ret; 1643 } 1644 } 1645 1646 return 0; 1647 } 1648 1649 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error, 1650 enum pid_type type, struct pid *pid, int options, 1651 struct siginfo __user *infop, int __user *stat_addr, 1652 struct rusage __user *ru) 1653 { 1654 struct task_struct *p; 1655 1656 /* 1657 * Traditionally we see ptrace'd stopped tasks regardless of options. 1658 */ 1659 options |= WUNTRACED; 1660 1661 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1662 int ret = wait_consider_task(tsk, 1, p, notask_error, 1663 type, pid, options, 1664 infop, stat_addr, ru); 1665 if (ret) 1666 return ret; 1667 } 1668 1669 return 0; 1670 } 1671 1672 static long do_wait(enum pid_type type, struct pid *pid, int options, 1673 struct siginfo __user *infop, int __user *stat_addr, 1674 struct rusage __user *ru) 1675 { 1676 DECLARE_WAITQUEUE(wait, current); 1677 struct task_struct *tsk; 1678 int retval; 1679 1680 trace_sched_process_wait(pid); 1681 1682 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1683 repeat: 1684 /* 1685 * If there is nothing that can match our critiera just get out. 1686 * We will clear @retval to zero if we see any child that might later 1687 * match our criteria, even if we are not able to reap it yet. 1688 */ 1689 retval = -ECHILD; 1690 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type]))) 1691 goto end; 1692 1693 current->state = TASK_INTERRUPTIBLE; 1694 read_lock(&tasklist_lock); 1695 tsk = current; 1696 do { 1697 int tsk_result = do_wait_thread(tsk, &retval, 1698 type, pid, options, 1699 infop, stat_addr, ru); 1700 if (!tsk_result) 1701 tsk_result = ptrace_do_wait(tsk, &retval, 1702 type, pid, options, 1703 infop, stat_addr, ru); 1704 if (tsk_result) { 1705 /* 1706 * tasklist_lock is unlocked and we have a final result. 1707 */ 1708 retval = tsk_result; 1709 goto end; 1710 } 1711 1712 if (options & __WNOTHREAD) 1713 break; 1714 tsk = next_thread(tsk); 1715 BUG_ON(tsk->signal != current->signal); 1716 } while (tsk != current); 1717 read_unlock(&tasklist_lock); 1718 1719 if (!retval && !(options & WNOHANG)) { 1720 retval = -ERESTARTSYS; 1721 if (!signal_pending(current)) { 1722 schedule(); 1723 goto repeat; 1724 } 1725 } 1726 1727 end: 1728 current->state = TASK_RUNNING; 1729 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1730 if (infop) { 1731 if (retval > 0) 1732 retval = 0; 1733 else { 1734 /* 1735 * For a WNOHANG return, clear out all the fields 1736 * we would set so the user can easily tell the 1737 * difference. 1738 */ 1739 if (!retval) 1740 retval = put_user(0, &infop->si_signo); 1741 if (!retval) 1742 retval = put_user(0, &infop->si_errno); 1743 if (!retval) 1744 retval = put_user(0, &infop->si_code); 1745 if (!retval) 1746 retval = put_user(0, &infop->si_pid); 1747 if (!retval) 1748 retval = put_user(0, &infop->si_uid); 1749 if (!retval) 1750 retval = put_user(0, &infop->si_status); 1751 } 1752 } 1753 return retval; 1754 } 1755 1756 asmlinkage long sys_waitid(int which, pid_t upid, 1757 struct siginfo __user *infop, int options, 1758 struct rusage __user *ru) 1759 { 1760 struct pid *pid = NULL; 1761 enum pid_type type; 1762 long ret; 1763 1764 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1765 return -EINVAL; 1766 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1767 return -EINVAL; 1768 1769 switch (which) { 1770 case P_ALL: 1771 type = PIDTYPE_MAX; 1772 break; 1773 case P_PID: 1774 type = PIDTYPE_PID; 1775 if (upid <= 0) 1776 return -EINVAL; 1777 break; 1778 case P_PGID: 1779 type = PIDTYPE_PGID; 1780 if (upid <= 0) 1781 return -EINVAL; 1782 break; 1783 default: 1784 return -EINVAL; 1785 } 1786 1787 if (type < PIDTYPE_MAX) 1788 pid = find_get_pid(upid); 1789 ret = do_wait(type, pid, options, infop, NULL, ru); 1790 put_pid(pid); 1791 1792 /* avoid REGPARM breakage on x86: */ 1793 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1794 return ret; 1795 } 1796 1797 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr, 1798 int options, struct rusage __user *ru) 1799 { 1800 struct pid *pid = NULL; 1801 enum pid_type type; 1802 long ret; 1803 1804 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1805 __WNOTHREAD|__WCLONE|__WALL)) 1806 return -EINVAL; 1807 1808 if (upid == -1) 1809 type = PIDTYPE_MAX; 1810 else if (upid < 0) { 1811 type = PIDTYPE_PGID; 1812 pid = find_get_pid(-upid); 1813 } else if (upid == 0) { 1814 type = PIDTYPE_PGID; 1815 pid = get_pid(task_pgrp(current)); 1816 } else /* upid > 0 */ { 1817 type = PIDTYPE_PID; 1818 pid = find_get_pid(upid); 1819 } 1820 1821 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru); 1822 put_pid(pid); 1823 1824 /* avoid REGPARM breakage on x86: */ 1825 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1826 return ret; 1827 } 1828 1829 #ifdef __ARCH_WANT_SYS_WAITPID 1830 1831 /* 1832 * sys_waitpid() remains for compatibility. waitpid() should be 1833 * implemented by calling sys_wait4() from libc.a. 1834 */ 1835 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1836 { 1837 return sys_wait4(pid, stat_addr, options, NULL); 1838 } 1839 1840 #endif 1841