xref: /linux/kernel/exit.c (revision 93d546399c2b7d66a54d5fbd5eee17de19246bf6)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <trace/sched.h>
50 
51 #include <asm/uaccess.h>
52 #include <asm/unistd.h>
53 #include <asm/pgtable.h>
54 #include <asm/mmu_context.h>
55 
56 static void exit_mm(struct task_struct * tsk);
57 
58 static inline int task_detached(struct task_struct *p)
59 {
60 	return p->exit_signal == -1;
61 }
62 
63 static void __unhash_process(struct task_struct *p)
64 {
65 	nr_threads--;
66 	detach_pid(p, PIDTYPE_PID);
67 	if (thread_group_leader(p)) {
68 		detach_pid(p, PIDTYPE_PGID);
69 		detach_pid(p, PIDTYPE_SID);
70 
71 		list_del_rcu(&p->tasks);
72 		__get_cpu_var(process_counts)--;
73 	}
74 	list_del_rcu(&p->thread_group);
75 	list_del_init(&p->sibling);
76 }
77 
78 /*
79  * This function expects the tasklist_lock write-locked.
80  */
81 static void __exit_signal(struct task_struct *tsk)
82 {
83 	struct signal_struct *sig = tsk->signal;
84 	struct sighand_struct *sighand;
85 
86 	BUG_ON(!sig);
87 	BUG_ON(!atomic_read(&sig->count));
88 
89 	sighand = rcu_dereference(tsk->sighand);
90 	spin_lock(&sighand->siglock);
91 
92 	posix_cpu_timers_exit(tsk);
93 	if (atomic_dec_and_test(&sig->count))
94 		posix_cpu_timers_exit_group(tsk);
95 	else {
96 		/*
97 		 * If there is any task waiting for the group exit
98 		 * then notify it:
99 		 */
100 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
101 			wake_up_process(sig->group_exit_task);
102 
103 		if (tsk == sig->curr_target)
104 			sig->curr_target = next_thread(tsk);
105 		/*
106 		 * Accumulate here the counters for all threads but the
107 		 * group leader as they die, so they can be added into
108 		 * the process-wide totals when those are taken.
109 		 * The group leader stays around as a zombie as long
110 		 * as there are other threads.  When it gets reaped,
111 		 * the exit.c code will add its counts into these totals.
112 		 * We won't ever get here for the group leader, since it
113 		 * will have been the last reference on the signal_struct.
114 		 */
115 		sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
116 		sig->min_flt += tsk->min_flt;
117 		sig->maj_flt += tsk->maj_flt;
118 		sig->nvcsw += tsk->nvcsw;
119 		sig->nivcsw += tsk->nivcsw;
120 		sig->inblock += task_io_get_inblock(tsk);
121 		sig->oublock += task_io_get_oublock(tsk);
122 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
123 		sig = NULL; /* Marker for below. */
124 	}
125 
126 	__unhash_process(tsk);
127 
128 	/*
129 	 * Do this under ->siglock, we can race with another thread
130 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
131 	 */
132 	flush_sigqueue(&tsk->pending);
133 
134 	tsk->signal = NULL;
135 	tsk->sighand = NULL;
136 	spin_unlock(&sighand->siglock);
137 
138 	__cleanup_sighand(sighand);
139 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
140 	if (sig) {
141 		flush_sigqueue(&sig->shared_pending);
142 		taskstats_tgid_free(sig);
143 		/*
144 		 * Make sure ->signal can't go away under rq->lock,
145 		 * see account_group_exec_runtime().
146 		 */
147 		task_rq_unlock_wait(tsk);
148 		__cleanup_signal(sig);
149 	}
150 }
151 
152 static void delayed_put_task_struct(struct rcu_head *rhp)
153 {
154 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
155 
156 	trace_sched_process_free(tsk);
157 	put_task_struct(tsk);
158 }
159 
160 
161 void release_task(struct task_struct * p)
162 {
163 	struct task_struct *leader;
164 	int zap_leader;
165 repeat:
166 	tracehook_prepare_release_task(p);
167 	atomic_dec(&p->user->processes);
168 	proc_flush_task(p);
169 	write_lock_irq(&tasklist_lock);
170 	tracehook_finish_release_task(p);
171 	__exit_signal(p);
172 
173 	/*
174 	 * If we are the last non-leader member of the thread
175 	 * group, and the leader is zombie, then notify the
176 	 * group leader's parent process. (if it wants notification.)
177 	 */
178 	zap_leader = 0;
179 	leader = p->group_leader;
180 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
181 		BUG_ON(task_detached(leader));
182 		do_notify_parent(leader, leader->exit_signal);
183 		/*
184 		 * If we were the last child thread and the leader has
185 		 * exited already, and the leader's parent ignores SIGCHLD,
186 		 * then we are the one who should release the leader.
187 		 *
188 		 * do_notify_parent() will have marked it self-reaping in
189 		 * that case.
190 		 */
191 		zap_leader = task_detached(leader);
192 
193 		/*
194 		 * This maintains the invariant that release_task()
195 		 * only runs on a task in EXIT_DEAD, just for sanity.
196 		 */
197 		if (zap_leader)
198 			leader->exit_state = EXIT_DEAD;
199 	}
200 
201 	write_unlock_irq(&tasklist_lock);
202 	release_thread(p);
203 	call_rcu(&p->rcu, delayed_put_task_struct);
204 
205 	p = leader;
206 	if (unlikely(zap_leader))
207 		goto repeat;
208 }
209 
210 /*
211  * This checks not only the pgrp, but falls back on the pid if no
212  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
213  * without this...
214  *
215  * The caller must hold rcu lock or the tasklist lock.
216  */
217 struct pid *session_of_pgrp(struct pid *pgrp)
218 {
219 	struct task_struct *p;
220 	struct pid *sid = NULL;
221 
222 	p = pid_task(pgrp, PIDTYPE_PGID);
223 	if (p == NULL)
224 		p = pid_task(pgrp, PIDTYPE_PID);
225 	if (p != NULL)
226 		sid = task_session(p);
227 
228 	return sid;
229 }
230 
231 /*
232  * Determine if a process group is "orphaned", according to the POSIX
233  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
234  * by terminal-generated stop signals.  Newly orphaned process groups are
235  * to receive a SIGHUP and a SIGCONT.
236  *
237  * "I ask you, have you ever known what it is to be an orphan?"
238  */
239 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
240 {
241 	struct task_struct *p;
242 
243 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
244 		if ((p == ignored_task) ||
245 		    (p->exit_state && thread_group_empty(p)) ||
246 		    is_global_init(p->real_parent))
247 			continue;
248 
249 		if (task_pgrp(p->real_parent) != pgrp &&
250 		    task_session(p->real_parent) == task_session(p))
251 			return 0;
252 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
253 
254 	return 1;
255 }
256 
257 int is_current_pgrp_orphaned(void)
258 {
259 	int retval;
260 
261 	read_lock(&tasklist_lock);
262 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
263 	read_unlock(&tasklist_lock);
264 
265 	return retval;
266 }
267 
268 static int has_stopped_jobs(struct pid *pgrp)
269 {
270 	int retval = 0;
271 	struct task_struct *p;
272 
273 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
274 		if (!task_is_stopped(p))
275 			continue;
276 		retval = 1;
277 		break;
278 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
279 	return retval;
280 }
281 
282 /*
283  * Check to see if any process groups have become orphaned as
284  * a result of our exiting, and if they have any stopped jobs,
285  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
286  */
287 static void
288 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
289 {
290 	struct pid *pgrp = task_pgrp(tsk);
291 	struct task_struct *ignored_task = tsk;
292 
293 	if (!parent)
294 		 /* exit: our father is in a different pgrp than
295 		  * we are and we were the only connection outside.
296 		  */
297 		parent = tsk->real_parent;
298 	else
299 		/* reparent: our child is in a different pgrp than
300 		 * we are, and it was the only connection outside.
301 		 */
302 		ignored_task = NULL;
303 
304 	if (task_pgrp(parent) != pgrp &&
305 	    task_session(parent) == task_session(tsk) &&
306 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
307 	    has_stopped_jobs(pgrp)) {
308 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
309 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
310 	}
311 }
312 
313 /**
314  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
315  *
316  * If a kernel thread is launched as a result of a system call, or if
317  * it ever exits, it should generally reparent itself to kthreadd so it
318  * isn't in the way of other processes and is correctly cleaned up on exit.
319  *
320  * The various task state such as scheduling policy and priority may have
321  * been inherited from a user process, so we reset them to sane values here.
322  *
323  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
324  */
325 static void reparent_to_kthreadd(void)
326 {
327 	write_lock_irq(&tasklist_lock);
328 
329 	ptrace_unlink(current);
330 	/* Reparent to init */
331 	current->real_parent = current->parent = kthreadd_task;
332 	list_move_tail(&current->sibling, &current->real_parent->children);
333 
334 	/* Set the exit signal to SIGCHLD so we signal init on exit */
335 	current->exit_signal = SIGCHLD;
336 
337 	if (task_nice(current) < 0)
338 		set_user_nice(current, 0);
339 	/* cpus_allowed? */
340 	/* rt_priority? */
341 	/* signals? */
342 	security_task_reparent_to_init(current);
343 	memcpy(current->signal->rlim, init_task.signal->rlim,
344 	       sizeof(current->signal->rlim));
345 	atomic_inc(&(INIT_USER->__count));
346 	write_unlock_irq(&tasklist_lock);
347 	switch_uid(INIT_USER);
348 }
349 
350 void __set_special_pids(struct pid *pid)
351 {
352 	struct task_struct *curr = current->group_leader;
353 	pid_t nr = pid_nr(pid);
354 
355 	if (task_session(curr) != pid) {
356 		change_pid(curr, PIDTYPE_SID, pid);
357 		set_task_session(curr, nr);
358 	}
359 	if (task_pgrp(curr) != pid) {
360 		change_pid(curr, PIDTYPE_PGID, pid);
361 		set_task_pgrp(curr, nr);
362 	}
363 }
364 
365 static void set_special_pids(struct pid *pid)
366 {
367 	write_lock_irq(&tasklist_lock);
368 	__set_special_pids(pid);
369 	write_unlock_irq(&tasklist_lock);
370 }
371 
372 /*
373  * Let kernel threads use this to say that they
374  * allow a certain signal (since daemonize() will
375  * have disabled all of them by default).
376  */
377 int allow_signal(int sig)
378 {
379 	if (!valid_signal(sig) || sig < 1)
380 		return -EINVAL;
381 
382 	spin_lock_irq(&current->sighand->siglock);
383 	sigdelset(&current->blocked, sig);
384 	if (!current->mm) {
385 		/* Kernel threads handle their own signals.
386 		   Let the signal code know it'll be handled, so
387 		   that they don't get converted to SIGKILL or
388 		   just silently dropped */
389 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
390 	}
391 	recalc_sigpending();
392 	spin_unlock_irq(&current->sighand->siglock);
393 	return 0;
394 }
395 
396 EXPORT_SYMBOL(allow_signal);
397 
398 int disallow_signal(int sig)
399 {
400 	if (!valid_signal(sig) || sig < 1)
401 		return -EINVAL;
402 
403 	spin_lock_irq(&current->sighand->siglock);
404 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
405 	recalc_sigpending();
406 	spin_unlock_irq(&current->sighand->siglock);
407 	return 0;
408 }
409 
410 EXPORT_SYMBOL(disallow_signal);
411 
412 /*
413  *	Put all the gunge required to become a kernel thread without
414  *	attached user resources in one place where it belongs.
415  */
416 
417 void daemonize(const char *name, ...)
418 {
419 	va_list args;
420 	struct fs_struct *fs;
421 	sigset_t blocked;
422 
423 	va_start(args, name);
424 	vsnprintf(current->comm, sizeof(current->comm), name, args);
425 	va_end(args);
426 
427 	/*
428 	 * If we were started as result of loading a module, close all of the
429 	 * user space pages.  We don't need them, and if we didn't close them
430 	 * they would be locked into memory.
431 	 */
432 	exit_mm(current);
433 	/*
434 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
435 	 * or suspend transition begins right now.
436 	 */
437 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
438 
439 	if (current->nsproxy != &init_nsproxy) {
440 		get_nsproxy(&init_nsproxy);
441 		switch_task_namespaces(current, &init_nsproxy);
442 	}
443 	set_special_pids(&init_struct_pid);
444 	proc_clear_tty(current);
445 
446 	/* Block and flush all signals */
447 	sigfillset(&blocked);
448 	sigprocmask(SIG_BLOCK, &blocked, NULL);
449 	flush_signals(current);
450 
451 	/* Become as one with the init task */
452 
453 	exit_fs(current);	/* current->fs->count--; */
454 	fs = init_task.fs;
455 	current->fs = fs;
456 	atomic_inc(&fs->count);
457 
458 	exit_files(current);
459 	current->files = init_task.files;
460 	atomic_inc(&current->files->count);
461 
462 	reparent_to_kthreadd();
463 }
464 
465 EXPORT_SYMBOL(daemonize);
466 
467 static void close_files(struct files_struct * files)
468 {
469 	int i, j;
470 	struct fdtable *fdt;
471 
472 	j = 0;
473 
474 	/*
475 	 * It is safe to dereference the fd table without RCU or
476 	 * ->file_lock because this is the last reference to the
477 	 * files structure.
478 	 */
479 	fdt = files_fdtable(files);
480 	for (;;) {
481 		unsigned long set;
482 		i = j * __NFDBITS;
483 		if (i >= fdt->max_fds)
484 			break;
485 		set = fdt->open_fds->fds_bits[j++];
486 		while (set) {
487 			if (set & 1) {
488 				struct file * file = xchg(&fdt->fd[i], NULL);
489 				if (file) {
490 					filp_close(file, files);
491 					cond_resched();
492 				}
493 			}
494 			i++;
495 			set >>= 1;
496 		}
497 	}
498 }
499 
500 struct files_struct *get_files_struct(struct task_struct *task)
501 {
502 	struct files_struct *files;
503 
504 	task_lock(task);
505 	files = task->files;
506 	if (files)
507 		atomic_inc(&files->count);
508 	task_unlock(task);
509 
510 	return files;
511 }
512 
513 void put_files_struct(struct files_struct *files)
514 {
515 	struct fdtable *fdt;
516 
517 	if (atomic_dec_and_test(&files->count)) {
518 		close_files(files);
519 		/*
520 		 * Free the fd and fdset arrays if we expanded them.
521 		 * If the fdtable was embedded, pass files for freeing
522 		 * at the end of the RCU grace period. Otherwise,
523 		 * you can free files immediately.
524 		 */
525 		fdt = files_fdtable(files);
526 		if (fdt != &files->fdtab)
527 			kmem_cache_free(files_cachep, files);
528 		free_fdtable(fdt);
529 	}
530 }
531 
532 void reset_files_struct(struct files_struct *files)
533 {
534 	struct task_struct *tsk = current;
535 	struct files_struct *old;
536 
537 	old = tsk->files;
538 	task_lock(tsk);
539 	tsk->files = files;
540 	task_unlock(tsk);
541 	put_files_struct(old);
542 }
543 
544 void exit_files(struct task_struct *tsk)
545 {
546 	struct files_struct * files = tsk->files;
547 
548 	if (files) {
549 		task_lock(tsk);
550 		tsk->files = NULL;
551 		task_unlock(tsk);
552 		put_files_struct(files);
553 	}
554 }
555 
556 void put_fs_struct(struct fs_struct *fs)
557 {
558 	/* No need to hold fs->lock if we are killing it */
559 	if (atomic_dec_and_test(&fs->count)) {
560 		path_put(&fs->root);
561 		path_put(&fs->pwd);
562 		kmem_cache_free(fs_cachep, fs);
563 	}
564 }
565 
566 void exit_fs(struct task_struct *tsk)
567 {
568 	struct fs_struct * fs = tsk->fs;
569 
570 	if (fs) {
571 		task_lock(tsk);
572 		tsk->fs = NULL;
573 		task_unlock(tsk);
574 		put_fs_struct(fs);
575 	}
576 }
577 
578 EXPORT_SYMBOL_GPL(exit_fs);
579 
580 #ifdef CONFIG_MM_OWNER
581 /*
582  * Task p is exiting and it owned mm, lets find a new owner for it
583  */
584 static inline int
585 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
586 {
587 	/*
588 	 * If there are other users of the mm and the owner (us) is exiting
589 	 * we need to find a new owner to take on the responsibility.
590 	 */
591 	if (atomic_read(&mm->mm_users) <= 1)
592 		return 0;
593 	if (mm->owner != p)
594 		return 0;
595 	return 1;
596 }
597 
598 void mm_update_next_owner(struct mm_struct *mm)
599 {
600 	struct task_struct *c, *g, *p = current;
601 
602 retry:
603 	if (!mm_need_new_owner(mm, p))
604 		return;
605 
606 	read_lock(&tasklist_lock);
607 	/*
608 	 * Search in the children
609 	 */
610 	list_for_each_entry(c, &p->children, sibling) {
611 		if (c->mm == mm)
612 			goto assign_new_owner;
613 	}
614 
615 	/*
616 	 * Search in the siblings
617 	 */
618 	list_for_each_entry(c, &p->parent->children, sibling) {
619 		if (c->mm == mm)
620 			goto assign_new_owner;
621 	}
622 
623 	/*
624 	 * Search through everything else. We should not get
625 	 * here often
626 	 */
627 	do_each_thread(g, c) {
628 		if (c->mm == mm)
629 			goto assign_new_owner;
630 	} while_each_thread(g, c);
631 
632 	read_unlock(&tasklist_lock);
633 	/*
634 	 * We found no owner yet mm_users > 1: this implies that we are
635 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
636 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL,
637 	 * so that subsystems can understand the callback and take action.
638 	 */
639 	down_write(&mm->mmap_sem);
640 	cgroup_mm_owner_callbacks(mm->owner, NULL);
641 	mm->owner = NULL;
642 	up_write(&mm->mmap_sem);
643 	return;
644 
645 assign_new_owner:
646 	BUG_ON(c == p);
647 	get_task_struct(c);
648 	read_unlock(&tasklist_lock);
649 	down_write(&mm->mmap_sem);
650 	/*
651 	 * The task_lock protects c->mm from changing.
652 	 * We always want mm->owner->mm == mm
653 	 */
654 	task_lock(c);
655 	if (c->mm != mm) {
656 		task_unlock(c);
657 		up_write(&mm->mmap_sem);
658 		put_task_struct(c);
659 		goto retry;
660 	}
661 	cgroup_mm_owner_callbacks(mm->owner, c);
662 	mm->owner = c;
663 	task_unlock(c);
664 	up_write(&mm->mmap_sem);
665 	put_task_struct(c);
666 }
667 #endif /* CONFIG_MM_OWNER */
668 
669 /*
670  * Turn us into a lazy TLB process if we
671  * aren't already..
672  */
673 static void exit_mm(struct task_struct * tsk)
674 {
675 	struct mm_struct *mm = tsk->mm;
676 	struct core_state *core_state;
677 
678 	mm_release(tsk, mm);
679 	if (!mm)
680 		return;
681 	/*
682 	 * Serialize with any possible pending coredump.
683 	 * We must hold mmap_sem around checking core_state
684 	 * and clearing tsk->mm.  The core-inducing thread
685 	 * will increment ->nr_threads for each thread in the
686 	 * group with ->mm != NULL.
687 	 */
688 	down_read(&mm->mmap_sem);
689 	core_state = mm->core_state;
690 	if (core_state) {
691 		struct core_thread self;
692 		up_read(&mm->mmap_sem);
693 
694 		self.task = tsk;
695 		self.next = xchg(&core_state->dumper.next, &self);
696 		/*
697 		 * Implies mb(), the result of xchg() must be visible
698 		 * to core_state->dumper.
699 		 */
700 		if (atomic_dec_and_test(&core_state->nr_threads))
701 			complete(&core_state->startup);
702 
703 		for (;;) {
704 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
705 			if (!self.task) /* see coredump_finish() */
706 				break;
707 			schedule();
708 		}
709 		__set_task_state(tsk, TASK_RUNNING);
710 		down_read(&mm->mmap_sem);
711 	}
712 	atomic_inc(&mm->mm_count);
713 	BUG_ON(mm != tsk->active_mm);
714 	/* more a memory barrier than a real lock */
715 	task_lock(tsk);
716 	tsk->mm = NULL;
717 	up_read(&mm->mmap_sem);
718 	enter_lazy_tlb(mm, current);
719 	/* We don't want this task to be frozen prematurely */
720 	clear_freeze_flag(tsk);
721 	task_unlock(tsk);
722 	mm_update_next_owner(mm);
723 	mmput(mm);
724 }
725 
726 /*
727  * Return nonzero if @parent's children should reap themselves.
728  *
729  * Called with write_lock_irq(&tasklist_lock) held.
730  */
731 static int ignoring_children(struct task_struct *parent)
732 {
733 	int ret;
734 	struct sighand_struct *psig = parent->sighand;
735 	unsigned long flags;
736 	spin_lock_irqsave(&psig->siglock, flags);
737 	ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
738 	       (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
739 	spin_unlock_irqrestore(&psig->siglock, flags);
740 	return ret;
741 }
742 
743 /*
744  * Detach all tasks we were using ptrace on.
745  * Any that need to be release_task'd are put on the @dead list.
746  *
747  * Called with write_lock(&tasklist_lock) held.
748  */
749 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
750 {
751 	struct task_struct *p, *n;
752 	int ign = -1;
753 
754 	list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
755 		__ptrace_unlink(p);
756 
757 		if (p->exit_state != EXIT_ZOMBIE)
758 			continue;
759 
760 		/*
761 		 * If it's a zombie, our attachedness prevented normal
762 		 * parent notification or self-reaping.  Do notification
763 		 * now if it would have happened earlier.  If it should
764 		 * reap itself, add it to the @dead list.  We can't call
765 		 * release_task() here because we already hold tasklist_lock.
766 		 *
767 		 * If it's our own child, there is no notification to do.
768 		 * But if our normal children self-reap, then this child
769 		 * was prevented by ptrace and we must reap it now.
770 		 */
771 		if (!task_detached(p) && thread_group_empty(p)) {
772 			if (!same_thread_group(p->real_parent, parent))
773 				do_notify_parent(p, p->exit_signal);
774 			else {
775 				if (ign < 0)
776 					ign = ignoring_children(parent);
777 				if (ign)
778 					p->exit_signal = -1;
779 			}
780 		}
781 
782 		if (task_detached(p)) {
783 			/*
784 			 * Mark it as in the process of being reaped.
785 			 */
786 			p->exit_state = EXIT_DEAD;
787 			list_add(&p->ptrace_entry, dead);
788 		}
789 	}
790 }
791 
792 /*
793  * Finish up exit-time ptrace cleanup.
794  *
795  * Called without locks.
796  */
797 static void ptrace_exit_finish(struct task_struct *parent,
798 			       struct list_head *dead)
799 {
800 	struct task_struct *p, *n;
801 
802 	BUG_ON(!list_empty(&parent->ptraced));
803 
804 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
805 		list_del_init(&p->ptrace_entry);
806 		release_task(p);
807 	}
808 }
809 
810 static void reparent_thread(struct task_struct *p, struct task_struct *father)
811 {
812 	if (p->pdeath_signal)
813 		/* We already hold the tasklist_lock here.  */
814 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
815 
816 	list_move_tail(&p->sibling, &p->real_parent->children);
817 
818 	/* If this is a threaded reparent there is no need to
819 	 * notify anyone anything has happened.
820 	 */
821 	if (same_thread_group(p->real_parent, father))
822 		return;
823 
824 	/* We don't want people slaying init.  */
825 	if (!task_detached(p))
826 		p->exit_signal = SIGCHLD;
827 
828 	/* If we'd notified the old parent about this child's death,
829 	 * also notify the new parent.
830 	 */
831 	if (!ptrace_reparented(p) &&
832 	    p->exit_state == EXIT_ZOMBIE &&
833 	    !task_detached(p) && thread_group_empty(p))
834 		do_notify_parent(p, p->exit_signal);
835 
836 	kill_orphaned_pgrp(p, father);
837 }
838 
839 /*
840  * When we die, we re-parent all our children.
841  * Try to give them to another thread in our thread
842  * group, and if no such member exists, give it to
843  * the child reaper process (ie "init") in our pid
844  * space.
845  */
846 static struct task_struct *find_new_reaper(struct task_struct *father)
847 {
848 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
849 	struct task_struct *thread;
850 
851 	thread = father;
852 	while_each_thread(father, thread) {
853 		if (thread->flags & PF_EXITING)
854 			continue;
855 		if (unlikely(pid_ns->child_reaper == father))
856 			pid_ns->child_reaper = thread;
857 		return thread;
858 	}
859 
860 	if (unlikely(pid_ns->child_reaper == father)) {
861 		write_unlock_irq(&tasklist_lock);
862 		if (unlikely(pid_ns == &init_pid_ns))
863 			panic("Attempted to kill init!");
864 
865 		zap_pid_ns_processes(pid_ns);
866 		write_lock_irq(&tasklist_lock);
867 		/*
868 		 * We can not clear ->child_reaper or leave it alone.
869 		 * There may by stealth EXIT_DEAD tasks on ->children,
870 		 * forget_original_parent() must move them somewhere.
871 		 */
872 		pid_ns->child_reaper = init_pid_ns.child_reaper;
873 	}
874 
875 	return pid_ns->child_reaper;
876 }
877 
878 static void forget_original_parent(struct task_struct *father)
879 {
880 	struct task_struct *p, *n, *reaper;
881 	LIST_HEAD(ptrace_dead);
882 
883 	write_lock_irq(&tasklist_lock);
884 	reaper = find_new_reaper(father);
885 	/*
886 	 * First clean up ptrace if we were using it.
887 	 */
888 	ptrace_exit(father, &ptrace_dead);
889 
890 	list_for_each_entry_safe(p, n, &father->children, sibling) {
891 		p->real_parent = reaper;
892 		if (p->parent == father) {
893 			BUG_ON(p->ptrace);
894 			p->parent = p->real_parent;
895 		}
896 		reparent_thread(p, father);
897 	}
898 
899 	write_unlock_irq(&tasklist_lock);
900 	BUG_ON(!list_empty(&father->children));
901 
902 	ptrace_exit_finish(father, &ptrace_dead);
903 }
904 
905 /*
906  * Send signals to all our closest relatives so that they know
907  * to properly mourn us..
908  */
909 static void exit_notify(struct task_struct *tsk, int group_dead)
910 {
911 	int signal;
912 	void *cookie;
913 
914 	/*
915 	 * This does two things:
916 	 *
917   	 * A.  Make init inherit all the child processes
918 	 * B.  Check to see if any process groups have become orphaned
919 	 *	as a result of our exiting, and if they have any stopped
920 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
921 	 */
922 	forget_original_parent(tsk);
923 	exit_task_namespaces(tsk);
924 
925 	write_lock_irq(&tasklist_lock);
926 	if (group_dead)
927 		kill_orphaned_pgrp(tsk->group_leader, NULL);
928 
929 	/* Let father know we died
930 	 *
931 	 * Thread signals are configurable, but you aren't going to use
932 	 * that to send signals to arbitary processes.
933 	 * That stops right now.
934 	 *
935 	 * If the parent exec id doesn't match the exec id we saved
936 	 * when we started then we know the parent has changed security
937 	 * domain.
938 	 *
939 	 * If our self_exec id doesn't match our parent_exec_id then
940 	 * we have changed execution domain as these two values started
941 	 * the same after a fork.
942 	 */
943 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
944 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
945 	     tsk->self_exec_id != tsk->parent_exec_id) &&
946 	    !capable(CAP_KILL))
947 		tsk->exit_signal = SIGCHLD;
948 
949 	signal = tracehook_notify_death(tsk, &cookie, group_dead);
950 	if (signal >= 0)
951 		signal = do_notify_parent(tsk, signal);
952 
953 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
954 
955 	/* mt-exec, de_thread() is waiting for us */
956 	if (thread_group_leader(tsk) &&
957 	    tsk->signal->group_exit_task &&
958 	    tsk->signal->notify_count < 0)
959 		wake_up_process(tsk->signal->group_exit_task);
960 
961 	write_unlock_irq(&tasklist_lock);
962 
963 	tracehook_report_death(tsk, signal, cookie, group_dead);
964 
965 	/* If the process is dead, release it - nobody will wait for it */
966 	if (signal == DEATH_REAP)
967 		release_task(tsk);
968 }
969 
970 #ifdef CONFIG_DEBUG_STACK_USAGE
971 static void check_stack_usage(void)
972 {
973 	static DEFINE_SPINLOCK(low_water_lock);
974 	static int lowest_to_date = THREAD_SIZE;
975 	unsigned long *n = end_of_stack(current);
976 	unsigned long free;
977 
978 	while (*n == 0)
979 		n++;
980 	free = (unsigned long)n - (unsigned long)end_of_stack(current);
981 
982 	if (free >= lowest_to_date)
983 		return;
984 
985 	spin_lock(&low_water_lock);
986 	if (free < lowest_to_date) {
987 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
988 				"left\n",
989 				current->comm, free);
990 		lowest_to_date = free;
991 	}
992 	spin_unlock(&low_water_lock);
993 }
994 #else
995 static inline void check_stack_usage(void) {}
996 #endif
997 
998 NORET_TYPE void do_exit(long code)
999 {
1000 	struct task_struct *tsk = current;
1001 	int group_dead;
1002 
1003 	profile_task_exit(tsk);
1004 
1005 	WARN_ON(atomic_read(&tsk->fs_excl));
1006 
1007 	if (unlikely(in_interrupt()))
1008 		panic("Aiee, killing interrupt handler!");
1009 	if (unlikely(!tsk->pid))
1010 		panic("Attempted to kill the idle task!");
1011 
1012 	tracehook_report_exit(&code);
1013 
1014 	/*
1015 	 * We're taking recursive faults here in do_exit. Safest is to just
1016 	 * leave this task alone and wait for reboot.
1017 	 */
1018 	if (unlikely(tsk->flags & PF_EXITING)) {
1019 		printk(KERN_ALERT
1020 			"Fixing recursive fault but reboot is needed!\n");
1021 		/*
1022 		 * We can do this unlocked here. The futex code uses
1023 		 * this flag just to verify whether the pi state
1024 		 * cleanup has been done or not. In the worst case it
1025 		 * loops once more. We pretend that the cleanup was
1026 		 * done as there is no way to return. Either the
1027 		 * OWNER_DIED bit is set by now or we push the blocked
1028 		 * task into the wait for ever nirwana as well.
1029 		 */
1030 		tsk->flags |= PF_EXITPIDONE;
1031 		if (tsk->io_context)
1032 			exit_io_context();
1033 		set_current_state(TASK_UNINTERRUPTIBLE);
1034 		schedule();
1035 	}
1036 
1037 	exit_signals(tsk);  /* sets PF_EXITING */
1038 	/*
1039 	 * tsk->flags are checked in the futex code to protect against
1040 	 * an exiting task cleaning up the robust pi futexes.
1041 	 */
1042 	smp_mb();
1043 	spin_unlock_wait(&tsk->pi_lock);
1044 
1045 	if (unlikely(in_atomic()))
1046 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1047 				current->comm, task_pid_nr(current),
1048 				preempt_count());
1049 
1050 	acct_update_integrals(tsk);
1051 	if (tsk->mm) {
1052 		update_hiwater_rss(tsk->mm);
1053 		update_hiwater_vm(tsk->mm);
1054 	}
1055 	group_dead = atomic_dec_and_test(&tsk->signal->live);
1056 	if (group_dead) {
1057 		hrtimer_cancel(&tsk->signal->real_timer);
1058 		exit_itimers(tsk->signal);
1059 	}
1060 	acct_collect(code, group_dead);
1061 	if (group_dead)
1062 		tty_audit_exit();
1063 	if (unlikely(tsk->audit_context))
1064 		audit_free(tsk);
1065 
1066 	tsk->exit_code = code;
1067 	taskstats_exit(tsk, group_dead);
1068 
1069 	exit_mm(tsk);
1070 
1071 	if (group_dead)
1072 		acct_process();
1073 	trace_sched_process_exit(tsk);
1074 
1075 	exit_sem(tsk);
1076 	exit_files(tsk);
1077 	exit_fs(tsk);
1078 	check_stack_usage();
1079 	exit_thread();
1080 	cgroup_exit(tsk, 1);
1081 	exit_keys(tsk);
1082 
1083 	if (group_dead && tsk->signal->leader)
1084 		disassociate_ctty(1);
1085 
1086 	module_put(task_thread_info(tsk)->exec_domain->module);
1087 	if (tsk->binfmt)
1088 		module_put(tsk->binfmt->module);
1089 
1090 	proc_exit_connector(tsk);
1091 	exit_notify(tsk, group_dead);
1092 #ifdef CONFIG_NUMA
1093 	mpol_put(tsk->mempolicy);
1094 	tsk->mempolicy = NULL;
1095 #endif
1096 #ifdef CONFIG_FUTEX
1097 	/*
1098 	 * This must happen late, after the PID is not
1099 	 * hashed anymore:
1100 	 */
1101 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1102 		exit_pi_state_list(tsk);
1103 	if (unlikely(current->pi_state_cache))
1104 		kfree(current->pi_state_cache);
1105 #endif
1106 	/*
1107 	 * Make sure we are holding no locks:
1108 	 */
1109 	debug_check_no_locks_held(tsk);
1110 	/*
1111 	 * We can do this unlocked here. The futex code uses this flag
1112 	 * just to verify whether the pi state cleanup has been done
1113 	 * or not. In the worst case it loops once more.
1114 	 */
1115 	tsk->flags |= PF_EXITPIDONE;
1116 
1117 	if (tsk->io_context)
1118 		exit_io_context();
1119 
1120 	if (tsk->splice_pipe)
1121 		__free_pipe_info(tsk->splice_pipe);
1122 
1123 	preempt_disable();
1124 	/* causes final put_task_struct in finish_task_switch(). */
1125 	tsk->state = TASK_DEAD;
1126 
1127 	schedule();
1128 	BUG();
1129 	/* Avoid "noreturn function does return".  */
1130 	for (;;)
1131 		cpu_relax();	/* For when BUG is null */
1132 }
1133 
1134 EXPORT_SYMBOL_GPL(do_exit);
1135 
1136 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1137 {
1138 	if (comp)
1139 		complete(comp);
1140 
1141 	do_exit(code);
1142 }
1143 
1144 EXPORT_SYMBOL(complete_and_exit);
1145 
1146 asmlinkage long sys_exit(int error_code)
1147 {
1148 	do_exit((error_code&0xff)<<8);
1149 }
1150 
1151 /*
1152  * Take down every thread in the group.  This is called by fatal signals
1153  * as well as by sys_exit_group (below).
1154  */
1155 NORET_TYPE void
1156 do_group_exit(int exit_code)
1157 {
1158 	struct signal_struct *sig = current->signal;
1159 
1160 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1161 
1162 	if (signal_group_exit(sig))
1163 		exit_code = sig->group_exit_code;
1164 	else if (!thread_group_empty(current)) {
1165 		struct sighand_struct *const sighand = current->sighand;
1166 		spin_lock_irq(&sighand->siglock);
1167 		if (signal_group_exit(sig))
1168 			/* Another thread got here before we took the lock.  */
1169 			exit_code = sig->group_exit_code;
1170 		else {
1171 			sig->group_exit_code = exit_code;
1172 			sig->flags = SIGNAL_GROUP_EXIT;
1173 			zap_other_threads(current);
1174 		}
1175 		spin_unlock_irq(&sighand->siglock);
1176 	}
1177 
1178 	do_exit(exit_code);
1179 	/* NOTREACHED */
1180 }
1181 
1182 /*
1183  * this kills every thread in the thread group. Note that any externally
1184  * wait4()-ing process will get the correct exit code - even if this
1185  * thread is not the thread group leader.
1186  */
1187 asmlinkage void sys_exit_group(int error_code)
1188 {
1189 	do_group_exit((error_code & 0xff) << 8);
1190 }
1191 
1192 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1193 {
1194 	struct pid *pid = NULL;
1195 	if (type == PIDTYPE_PID)
1196 		pid = task->pids[type].pid;
1197 	else if (type < PIDTYPE_MAX)
1198 		pid = task->group_leader->pids[type].pid;
1199 	return pid;
1200 }
1201 
1202 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1203 			  struct task_struct *p)
1204 {
1205 	int err;
1206 
1207 	if (type < PIDTYPE_MAX) {
1208 		if (task_pid_type(p, type) != pid)
1209 			return 0;
1210 	}
1211 
1212 	/* Wait for all children (clone and not) if __WALL is set;
1213 	 * otherwise, wait for clone children *only* if __WCLONE is
1214 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1215 	 * A "clone" child here is one that reports to its parent
1216 	 * using a signal other than SIGCHLD.) */
1217 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1218 	    && !(options & __WALL))
1219 		return 0;
1220 
1221 	err = security_task_wait(p);
1222 	if (err)
1223 		return err;
1224 
1225 	return 1;
1226 }
1227 
1228 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1229 			       int why, int status,
1230 			       struct siginfo __user *infop,
1231 			       struct rusage __user *rusagep)
1232 {
1233 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1234 
1235 	put_task_struct(p);
1236 	if (!retval)
1237 		retval = put_user(SIGCHLD, &infop->si_signo);
1238 	if (!retval)
1239 		retval = put_user(0, &infop->si_errno);
1240 	if (!retval)
1241 		retval = put_user((short)why, &infop->si_code);
1242 	if (!retval)
1243 		retval = put_user(pid, &infop->si_pid);
1244 	if (!retval)
1245 		retval = put_user(uid, &infop->si_uid);
1246 	if (!retval)
1247 		retval = put_user(status, &infop->si_status);
1248 	if (!retval)
1249 		retval = pid;
1250 	return retval;
1251 }
1252 
1253 /*
1254  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1255  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1256  * the lock and this task is uninteresting.  If we return nonzero, we have
1257  * released the lock and the system call should return.
1258  */
1259 static int wait_task_zombie(struct task_struct *p, int options,
1260 			    struct siginfo __user *infop,
1261 			    int __user *stat_addr, struct rusage __user *ru)
1262 {
1263 	unsigned long state;
1264 	int retval, status, traced;
1265 	pid_t pid = task_pid_vnr(p);
1266 
1267 	if (!likely(options & WEXITED))
1268 		return 0;
1269 
1270 	if (unlikely(options & WNOWAIT)) {
1271 		uid_t uid = p->uid;
1272 		int exit_code = p->exit_code;
1273 		int why, status;
1274 
1275 		get_task_struct(p);
1276 		read_unlock(&tasklist_lock);
1277 		if ((exit_code & 0x7f) == 0) {
1278 			why = CLD_EXITED;
1279 			status = exit_code >> 8;
1280 		} else {
1281 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1282 			status = exit_code & 0x7f;
1283 		}
1284 		return wait_noreap_copyout(p, pid, uid, why,
1285 					   status, infop, ru);
1286 	}
1287 
1288 	/*
1289 	 * Try to move the task's state to DEAD
1290 	 * only one thread is allowed to do this:
1291 	 */
1292 	state = xchg(&p->exit_state, EXIT_DEAD);
1293 	if (state != EXIT_ZOMBIE) {
1294 		BUG_ON(state != EXIT_DEAD);
1295 		return 0;
1296 	}
1297 
1298 	traced = ptrace_reparented(p);
1299 
1300 	if (likely(!traced)) {
1301 		struct signal_struct *psig;
1302 		struct signal_struct *sig;
1303 		struct task_cputime cputime;
1304 
1305 		/*
1306 		 * The resource counters for the group leader are in its
1307 		 * own task_struct.  Those for dead threads in the group
1308 		 * are in its signal_struct, as are those for the child
1309 		 * processes it has previously reaped.  All these
1310 		 * accumulate in the parent's signal_struct c* fields.
1311 		 *
1312 		 * We don't bother to take a lock here to protect these
1313 		 * p->signal fields, because they are only touched by
1314 		 * __exit_signal, which runs with tasklist_lock
1315 		 * write-locked anyway, and so is excluded here.  We do
1316 		 * need to protect the access to p->parent->signal fields,
1317 		 * as other threads in the parent group can be right
1318 		 * here reaping other children at the same time.
1319 		 *
1320 		 * We use thread_group_cputime() to get times for the thread
1321 		 * group, which consolidates times for all threads in the
1322 		 * group including the group leader.
1323 		 */
1324 		spin_lock_irq(&p->parent->sighand->siglock);
1325 		psig = p->parent->signal;
1326 		sig = p->signal;
1327 		thread_group_cputime(p, &cputime);
1328 		psig->cutime =
1329 			cputime_add(psig->cutime,
1330 			cputime_add(cputime.utime,
1331 				    sig->cutime));
1332 		psig->cstime =
1333 			cputime_add(psig->cstime,
1334 			cputime_add(cputime.stime,
1335 				    sig->cstime));
1336 		psig->cgtime =
1337 			cputime_add(psig->cgtime,
1338 			cputime_add(p->gtime,
1339 			cputime_add(sig->gtime,
1340 				    sig->cgtime)));
1341 		psig->cmin_flt +=
1342 			p->min_flt + sig->min_flt + sig->cmin_flt;
1343 		psig->cmaj_flt +=
1344 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1345 		psig->cnvcsw +=
1346 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1347 		psig->cnivcsw +=
1348 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1349 		psig->cinblock +=
1350 			task_io_get_inblock(p) +
1351 			sig->inblock + sig->cinblock;
1352 		psig->coublock +=
1353 			task_io_get_oublock(p) +
1354 			sig->oublock + sig->coublock;
1355 		task_io_accounting_add(&psig->ioac, &p->ioac);
1356 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1357 		spin_unlock_irq(&p->parent->sighand->siglock);
1358 	}
1359 
1360 	/*
1361 	 * Now we are sure this task is interesting, and no other
1362 	 * thread can reap it because we set its state to EXIT_DEAD.
1363 	 */
1364 	read_unlock(&tasklist_lock);
1365 
1366 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1367 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1368 		? p->signal->group_exit_code : p->exit_code;
1369 	if (!retval && stat_addr)
1370 		retval = put_user(status, stat_addr);
1371 	if (!retval && infop)
1372 		retval = put_user(SIGCHLD, &infop->si_signo);
1373 	if (!retval && infop)
1374 		retval = put_user(0, &infop->si_errno);
1375 	if (!retval && infop) {
1376 		int why;
1377 
1378 		if ((status & 0x7f) == 0) {
1379 			why = CLD_EXITED;
1380 			status >>= 8;
1381 		} else {
1382 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1383 			status &= 0x7f;
1384 		}
1385 		retval = put_user((short)why, &infop->si_code);
1386 		if (!retval)
1387 			retval = put_user(status, &infop->si_status);
1388 	}
1389 	if (!retval && infop)
1390 		retval = put_user(pid, &infop->si_pid);
1391 	if (!retval && infop)
1392 		retval = put_user(p->uid, &infop->si_uid);
1393 	if (!retval)
1394 		retval = pid;
1395 
1396 	if (traced) {
1397 		write_lock_irq(&tasklist_lock);
1398 		/* We dropped tasklist, ptracer could die and untrace */
1399 		ptrace_unlink(p);
1400 		/*
1401 		 * If this is not a detached task, notify the parent.
1402 		 * If it's still not detached after that, don't release
1403 		 * it now.
1404 		 */
1405 		if (!task_detached(p)) {
1406 			do_notify_parent(p, p->exit_signal);
1407 			if (!task_detached(p)) {
1408 				p->exit_state = EXIT_ZOMBIE;
1409 				p = NULL;
1410 			}
1411 		}
1412 		write_unlock_irq(&tasklist_lock);
1413 	}
1414 	if (p != NULL)
1415 		release_task(p);
1416 
1417 	return retval;
1418 }
1419 
1420 /*
1421  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1422  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1423  * the lock and this task is uninteresting.  If we return nonzero, we have
1424  * released the lock and the system call should return.
1425  */
1426 static int wait_task_stopped(int ptrace, struct task_struct *p,
1427 			     int options, struct siginfo __user *infop,
1428 			     int __user *stat_addr, struct rusage __user *ru)
1429 {
1430 	int retval, exit_code, why;
1431 	uid_t uid = 0; /* unneeded, required by compiler */
1432 	pid_t pid;
1433 
1434 	if (!(options & WUNTRACED))
1435 		return 0;
1436 
1437 	exit_code = 0;
1438 	spin_lock_irq(&p->sighand->siglock);
1439 
1440 	if (unlikely(!task_is_stopped_or_traced(p)))
1441 		goto unlock_sig;
1442 
1443 	if (!ptrace && p->signal->group_stop_count > 0)
1444 		/*
1445 		 * A group stop is in progress and this is the group leader.
1446 		 * We won't report until all threads have stopped.
1447 		 */
1448 		goto unlock_sig;
1449 
1450 	exit_code = p->exit_code;
1451 	if (!exit_code)
1452 		goto unlock_sig;
1453 
1454 	if (!unlikely(options & WNOWAIT))
1455 		p->exit_code = 0;
1456 
1457 	uid = p->uid;
1458 unlock_sig:
1459 	spin_unlock_irq(&p->sighand->siglock);
1460 	if (!exit_code)
1461 		return 0;
1462 
1463 	/*
1464 	 * Now we are pretty sure this task is interesting.
1465 	 * Make sure it doesn't get reaped out from under us while we
1466 	 * give up the lock and then examine it below.  We don't want to
1467 	 * keep holding onto the tasklist_lock while we call getrusage and
1468 	 * possibly take page faults for user memory.
1469 	 */
1470 	get_task_struct(p);
1471 	pid = task_pid_vnr(p);
1472 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1473 	read_unlock(&tasklist_lock);
1474 
1475 	if (unlikely(options & WNOWAIT))
1476 		return wait_noreap_copyout(p, pid, uid,
1477 					   why, exit_code,
1478 					   infop, ru);
1479 
1480 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1481 	if (!retval && stat_addr)
1482 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1483 	if (!retval && infop)
1484 		retval = put_user(SIGCHLD, &infop->si_signo);
1485 	if (!retval && infop)
1486 		retval = put_user(0, &infop->si_errno);
1487 	if (!retval && infop)
1488 		retval = put_user((short)why, &infop->si_code);
1489 	if (!retval && infop)
1490 		retval = put_user(exit_code, &infop->si_status);
1491 	if (!retval && infop)
1492 		retval = put_user(pid, &infop->si_pid);
1493 	if (!retval && infop)
1494 		retval = put_user(uid, &infop->si_uid);
1495 	if (!retval)
1496 		retval = pid;
1497 	put_task_struct(p);
1498 
1499 	BUG_ON(!retval);
1500 	return retval;
1501 }
1502 
1503 /*
1504  * Handle do_wait work for one task in a live, non-stopped state.
1505  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1506  * the lock and this task is uninteresting.  If we return nonzero, we have
1507  * released the lock and the system call should return.
1508  */
1509 static int wait_task_continued(struct task_struct *p, int options,
1510 			       struct siginfo __user *infop,
1511 			       int __user *stat_addr, struct rusage __user *ru)
1512 {
1513 	int retval;
1514 	pid_t pid;
1515 	uid_t uid;
1516 
1517 	if (!unlikely(options & WCONTINUED))
1518 		return 0;
1519 
1520 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1521 		return 0;
1522 
1523 	spin_lock_irq(&p->sighand->siglock);
1524 	/* Re-check with the lock held.  */
1525 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1526 		spin_unlock_irq(&p->sighand->siglock);
1527 		return 0;
1528 	}
1529 	if (!unlikely(options & WNOWAIT))
1530 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1531 	spin_unlock_irq(&p->sighand->siglock);
1532 
1533 	pid = task_pid_vnr(p);
1534 	uid = p->uid;
1535 	get_task_struct(p);
1536 	read_unlock(&tasklist_lock);
1537 
1538 	if (!infop) {
1539 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1540 		put_task_struct(p);
1541 		if (!retval && stat_addr)
1542 			retval = put_user(0xffff, stat_addr);
1543 		if (!retval)
1544 			retval = pid;
1545 	} else {
1546 		retval = wait_noreap_copyout(p, pid, uid,
1547 					     CLD_CONTINUED, SIGCONT,
1548 					     infop, ru);
1549 		BUG_ON(retval == 0);
1550 	}
1551 
1552 	return retval;
1553 }
1554 
1555 /*
1556  * Consider @p for a wait by @parent.
1557  *
1558  * -ECHILD should be in *@notask_error before the first call.
1559  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1560  * Returns zero if the search for a child should continue;
1561  * then *@notask_error is 0 if @p is an eligible child,
1562  * or another error from security_task_wait(), or still -ECHILD.
1563  */
1564 static int wait_consider_task(struct task_struct *parent, int ptrace,
1565 			      struct task_struct *p, int *notask_error,
1566 			      enum pid_type type, struct pid *pid, int options,
1567 			      struct siginfo __user *infop,
1568 			      int __user *stat_addr, struct rusage __user *ru)
1569 {
1570 	int ret = eligible_child(type, pid, options, p);
1571 	if (!ret)
1572 		return ret;
1573 
1574 	if (unlikely(ret < 0)) {
1575 		/*
1576 		 * If we have not yet seen any eligible child,
1577 		 * then let this error code replace -ECHILD.
1578 		 * A permission error will give the user a clue
1579 		 * to look for security policy problems, rather
1580 		 * than for mysterious wait bugs.
1581 		 */
1582 		if (*notask_error)
1583 			*notask_error = ret;
1584 	}
1585 
1586 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1587 		/*
1588 		 * This child is hidden by ptrace.
1589 		 * We aren't allowed to see it now, but eventually we will.
1590 		 */
1591 		*notask_error = 0;
1592 		return 0;
1593 	}
1594 
1595 	if (p->exit_state == EXIT_DEAD)
1596 		return 0;
1597 
1598 	/*
1599 	 * We don't reap group leaders with subthreads.
1600 	 */
1601 	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1602 		return wait_task_zombie(p, options, infop, stat_addr, ru);
1603 
1604 	/*
1605 	 * It's stopped or running now, so it might
1606 	 * later continue, exit, or stop again.
1607 	 */
1608 	*notask_error = 0;
1609 
1610 	if (task_is_stopped_or_traced(p))
1611 		return wait_task_stopped(ptrace, p, options,
1612 					 infop, stat_addr, ru);
1613 
1614 	return wait_task_continued(p, options, infop, stat_addr, ru);
1615 }
1616 
1617 /*
1618  * Do the work of do_wait() for one thread in the group, @tsk.
1619  *
1620  * -ECHILD should be in *@notask_error before the first call.
1621  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1622  * Returns zero if the search for a child should continue; then
1623  * *@notask_error is 0 if there were any eligible children,
1624  * or another error from security_task_wait(), or still -ECHILD.
1625  */
1626 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1627 			  enum pid_type type, struct pid *pid, int options,
1628 			  struct siginfo __user *infop, int __user *stat_addr,
1629 			  struct rusage __user *ru)
1630 {
1631 	struct task_struct *p;
1632 
1633 	list_for_each_entry(p, &tsk->children, sibling) {
1634 		/*
1635 		 * Do not consider detached threads.
1636 		 */
1637 		if (!task_detached(p)) {
1638 			int ret = wait_consider_task(tsk, 0, p, notask_error,
1639 						     type, pid, options,
1640 						     infop, stat_addr, ru);
1641 			if (ret)
1642 				return ret;
1643 		}
1644 	}
1645 
1646 	return 0;
1647 }
1648 
1649 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1650 			  enum pid_type type, struct pid *pid, int options,
1651 			  struct siginfo __user *infop, int __user *stat_addr,
1652 			  struct rusage __user *ru)
1653 {
1654 	struct task_struct *p;
1655 
1656 	/*
1657 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1658 	 */
1659 	options |= WUNTRACED;
1660 
1661 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1662 		int ret = wait_consider_task(tsk, 1, p, notask_error,
1663 					     type, pid, options,
1664 					     infop, stat_addr, ru);
1665 		if (ret)
1666 			return ret;
1667 	}
1668 
1669 	return 0;
1670 }
1671 
1672 static long do_wait(enum pid_type type, struct pid *pid, int options,
1673 		    struct siginfo __user *infop, int __user *stat_addr,
1674 		    struct rusage __user *ru)
1675 {
1676 	DECLARE_WAITQUEUE(wait, current);
1677 	struct task_struct *tsk;
1678 	int retval;
1679 
1680 	trace_sched_process_wait(pid);
1681 
1682 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1683 repeat:
1684 	/*
1685 	 * If there is nothing that can match our critiera just get out.
1686 	 * We will clear @retval to zero if we see any child that might later
1687 	 * match our criteria, even if we are not able to reap it yet.
1688 	 */
1689 	retval = -ECHILD;
1690 	if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1691 		goto end;
1692 
1693 	current->state = TASK_INTERRUPTIBLE;
1694 	read_lock(&tasklist_lock);
1695 	tsk = current;
1696 	do {
1697 		int tsk_result = do_wait_thread(tsk, &retval,
1698 						type, pid, options,
1699 						infop, stat_addr, ru);
1700 		if (!tsk_result)
1701 			tsk_result = ptrace_do_wait(tsk, &retval,
1702 						    type, pid, options,
1703 						    infop, stat_addr, ru);
1704 		if (tsk_result) {
1705 			/*
1706 			 * tasklist_lock is unlocked and we have a final result.
1707 			 */
1708 			retval = tsk_result;
1709 			goto end;
1710 		}
1711 
1712 		if (options & __WNOTHREAD)
1713 			break;
1714 		tsk = next_thread(tsk);
1715 		BUG_ON(tsk->signal != current->signal);
1716 	} while (tsk != current);
1717 	read_unlock(&tasklist_lock);
1718 
1719 	if (!retval && !(options & WNOHANG)) {
1720 		retval = -ERESTARTSYS;
1721 		if (!signal_pending(current)) {
1722 			schedule();
1723 			goto repeat;
1724 		}
1725 	}
1726 
1727 end:
1728 	current->state = TASK_RUNNING;
1729 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1730 	if (infop) {
1731 		if (retval > 0)
1732 			retval = 0;
1733 		else {
1734 			/*
1735 			 * For a WNOHANG return, clear out all the fields
1736 			 * we would set so the user can easily tell the
1737 			 * difference.
1738 			 */
1739 			if (!retval)
1740 				retval = put_user(0, &infop->si_signo);
1741 			if (!retval)
1742 				retval = put_user(0, &infop->si_errno);
1743 			if (!retval)
1744 				retval = put_user(0, &infop->si_code);
1745 			if (!retval)
1746 				retval = put_user(0, &infop->si_pid);
1747 			if (!retval)
1748 				retval = put_user(0, &infop->si_uid);
1749 			if (!retval)
1750 				retval = put_user(0, &infop->si_status);
1751 		}
1752 	}
1753 	return retval;
1754 }
1755 
1756 asmlinkage long sys_waitid(int which, pid_t upid,
1757 			   struct siginfo __user *infop, int options,
1758 			   struct rusage __user *ru)
1759 {
1760 	struct pid *pid = NULL;
1761 	enum pid_type type;
1762 	long ret;
1763 
1764 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1765 		return -EINVAL;
1766 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1767 		return -EINVAL;
1768 
1769 	switch (which) {
1770 	case P_ALL:
1771 		type = PIDTYPE_MAX;
1772 		break;
1773 	case P_PID:
1774 		type = PIDTYPE_PID;
1775 		if (upid <= 0)
1776 			return -EINVAL;
1777 		break;
1778 	case P_PGID:
1779 		type = PIDTYPE_PGID;
1780 		if (upid <= 0)
1781 			return -EINVAL;
1782 		break;
1783 	default:
1784 		return -EINVAL;
1785 	}
1786 
1787 	if (type < PIDTYPE_MAX)
1788 		pid = find_get_pid(upid);
1789 	ret = do_wait(type, pid, options, infop, NULL, ru);
1790 	put_pid(pid);
1791 
1792 	/* avoid REGPARM breakage on x86: */
1793 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1794 	return ret;
1795 }
1796 
1797 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1798 			  int options, struct rusage __user *ru)
1799 {
1800 	struct pid *pid = NULL;
1801 	enum pid_type type;
1802 	long ret;
1803 
1804 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1805 			__WNOTHREAD|__WCLONE|__WALL))
1806 		return -EINVAL;
1807 
1808 	if (upid == -1)
1809 		type = PIDTYPE_MAX;
1810 	else if (upid < 0) {
1811 		type = PIDTYPE_PGID;
1812 		pid = find_get_pid(-upid);
1813 	} else if (upid == 0) {
1814 		type = PIDTYPE_PGID;
1815 		pid = get_pid(task_pgrp(current));
1816 	} else /* upid > 0 */ {
1817 		type = PIDTYPE_PID;
1818 		pid = find_get_pid(upid);
1819 	}
1820 
1821 	ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1822 	put_pid(pid);
1823 
1824 	/* avoid REGPARM breakage on x86: */
1825 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1826 	return ret;
1827 }
1828 
1829 #ifdef __ARCH_WANT_SYS_WAITPID
1830 
1831 /*
1832  * sys_waitpid() remains for compatibility. waitpid() should be
1833  * implemented by calling sys_wait4() from libc.a.
1834  */
1835 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1836 {
1837 	return sys_wait4(pid, stat_addr, options, NULL);
1838 }
1839 
1840 #endif
1841