1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 53 #include <asm/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/pgtable.h> 56 #include <asm/mmu_context.h> 57 #include "cred-internals.h" 58 59 static void exit_mm(struct task_struct * tsk); 60 61 static void __unhash_process(struct task_struct *p) 62 { 63 nr_threads--; 64 detach_pid(p, PIDTYPE_PID); 65 if (thread_group_leader(p)) { 66 detach_pid(p, PIDTYPE_PGID); 67 detach_pid(p, PIDTYPE_SID); 68 69 list_del_rcu(&p->tasks); 70 __get_cpu_var(process_counts)--; 71 } 72 list_del_rcu(&p->thread_group); 73 list_del_init(&p->sibling); 74 } 75 76 /* 77 * This function expects the tasklist_lock write-locked. 78 */ 79 static void __exit_signal(struct task_struct *tsk) 80 { 81 struct signal_struct *sig = tsk->signal; 82 struct sighand_struct *sighand; 83 84 BUG_ON(!sig); 85 BUG_ON(!atomic_read(&sig->count)); 86 87 sighand = rcu_dereference(tsk->sighand); 88 spin_lock(&sighand->siglock); 89 90 posix_cpu_timers_exit(tsk); 91 if (atomic_dec_and_test(&sig->count)) 92 posix_cpu_timers_exit_group(tsk); 93 else { 94 /* 95 * If there is any task waiting for the group exit 96 * then notify it: 97 */ 98 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 99 wake_up_process(sig->group_exit_task); 100 101 if (tsk == sig->curr_target) 102 sig->curr_target = next_thread(tsk); 103 /* 104 * Accumulate here the counters for all threads but the 105 * group leader as they die, so they can be added into 106 * the process-wide totals when those are taken. 107 * The group leader stays around as a zombie as long 108 * as there are other threads. When it gets reaped, 109 * the exit.c code will add its counts into these totals. 110 * We won't ever get here for the group leader, since it 111 * will have been the last reference on the signal_struct. 112 */ 113 sig->utime = cputime_add(sig->utime, task_utime(tsk)); 114 sig->stime = cputime_add(sig->stime, task_stime(tsk)); 115 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); 116 sig->min_flt += tsk->min_flt; 117 sig->maj_flt += tsk->maj_flt; 118 sig->nvcsw += tsk->nvcsw; 119 sig->nivcsw += tsk->nivcsw; 120 sig->inblock += task_io_get_inblock(tsk); 121 sig->oublock += task_io_get_oublock(tsk); 122 task_io_accounting_add(&sig->ioac, &tsk->ioac); 123 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 124 sig = NULL; /* Marker for below. */ 125 } 126 127 __unhash_process(tsk); 128 129 /* 130 * Do this under ->siglock, we can race with another thread 131 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 132 */ 133 flush_sigqueue(&tsk->pending); 134 135 tsk->signal = NULL; 136 tsk->sighand = NULL; 137 spin_unlock(&sighand->siglock); 138 139 __cleanup_sighand(sighand); 140 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 141 if (sig) { 142 flush_sigqueue(&sig->shared_pending); 143 taskstats_tgid_free(sig); 144 /* 145 * Make sure ->signal can't go away under rq->lock, 146 * see account_group_exec_runtime(). 147 */ 148 task_rq_unlock_wait(tsk); 149 __cleanup_signal(sig); 150 } 151 } 152 153 static void delayed_put_task_struct(struct rcu_head *rhp) 154 { 155 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 156 157 #ifdef CONFIG_PERF_EVENTS 158 WARN_ON_ONCE(tsk->perf_event_ctxp); 159 #endif 160 trace_sched_process_free(tsk); 161 put_task_struct(tsk); 162 } 163 164 165 void release_task(struct task_struct * p) 166 { 167 struct task_struct *leader; 168 int zap_leader; 169 repeat: 170 tracehook_prepare_release_task(p); 171 /* don't need to get the RCU readlock here - the process is dead and 172 * can't be modifying its own credentials */ 173 atomic_dec(&__task_cred(p)->user->processes); 174 175 proc_flush_task(p); 176 177 write_lock_irq(&tasklist_lock); 178 tracehook_finish_release_task(p); 179 __exit_signal(p); 180 181 /* 182 * If we are the last non-leader member of the thread 183 * group, and the leader is zombie, then notify the 184 * group leader's parent process. (if it wants notification.) 185 */ 186 zap_leader = 0; 187 leader = p->group_leader; 188 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 189 BUG_ON(task_detached(leader)); 190 do_notify_parent(leader, leader->exit_signal); 191 /* 192 * If we were the last child thread and the leader has 193 * exited already, and the leader's parent ignores SIGCHLD, 194 * then we are the one who should release the leader. 195 * 196 * do_notify_parent() will have marked it self-reaping in 197 * that case. 198 */ 199 zap_leader = task_detached(leader); 200 201 /* 202 * This maintains the invariant that release_task() 203 * only runs on a task in EXIT_DEAD, just for sanity. 204 */ 205 if (zap_leader) 206 leader->exit_state = EXIT_DEAD; 207 } 208 209 write_unlock_irq(&tasklist_lock); 210 release_thread(p); 211 call_rcu(&p->rcu, delayed_put_task_struct); 212 213 p = leader; 214 if (unlikely(zap_leader)) 215 goto repeat; 216 } 217 218 /* 219 * This checks not only the pgrp, but falls back on the pid if no 220 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 221 * without this... 222 * 223 * The caller must hold rcu lock or the tasklist lock. 224 */ 225 struct pid *session_of_pgrp(struct pid *pgrp) 226 { 227 struct task_struct *p; 228 struct pid *sid = NULL; 229 230 p = pid_task(pgrp, PIDTYPE_PGID); 231 if (p == NULL) 232 p = pid_task(pgrp, PIDTYPE_PID); 233 if (p != NULL) 234 sid = task_session(p); 235 236 return sid; 237 } 238 239 /* 240 * Determine if a process group is "orphaned", according to the POSIX 241 * definition in 2.2.2.52. Orphaned process groups are not to be affected 242 * by terminal-generated stop signals. Newly orphaned process groups are 243 * to receive a SIGHUP and a SIGCONT. 244 * 245 * "I ask you, have you ever known what it is to be an orphan?" 246 */ 247 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 248 { 249 struct task_struct *p; 250 251 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 252 if ((p == ignored_task) || 253 (p->exit_state && thread_group_empty(p)) || 254 is_global_init(p->real_parent)) 255 continue; 256 257 if (task_pgrp(p->real_parent) != pgrp && 258 task_session(p->real_parent) == task_session(p)) 259 return 0; 260 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 261 262 return 1; 263 } 264 265 int is_current_pgrp_orphaned(void) 266 { 267 int retval; 268 269 read_lock(&tasklist_lock); 270 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 271 read_unlock(&tasklist_lock); 272 273 return retval; 274 } 275 276 static int has_stopped_jobs(struct pid *pgrp) 277 { 278 int retval = 0; 279 struct task_struct *p; 280 281 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 282 if (!task_is_stopped(p)) 283 continue; 284 retval = 1; 285 break; 286 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 287 return retval; 288 } 289 290 /* 291 * Check to see if any process groups have become orphaned as 292 * a result of our exiting, and if they have any stopped jobs, 293 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 294 */ 295 static void 296 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 297 { 298 struct pid *pgrp = task_pgrp(tsk); 299 struct task_struct *ignored_task = tsk; 300 301 if (!parent) 302 /* exit: our father is in a different pgrp than 303 * we are and we were the only connection outside. 304 */ 305 parent = tsk->real_parent; 306 else 307 /* reparent: our child is in a different pgrp than 308 * we are, and it was the only connection outside. 309 */ 310 ignored_task = NULL; 311 312 if (task_pgrp(parent) != pgrp && 313 task_session(parent) == task_session(tsk) && 314 will_become_orphaned_pgrp(pgrp, ignored_task) && 315 has_stopped_jobs(pgrp)) { 316 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 317 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 318 } 319 } 320 321 /** 322 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 323 * 324 * If a kernel thread is launched as a result of a system call, or if 325 * it ever exits, it should generally reparent itself to kthreadd so it 326 * isn't in the way of other processes and is correctly cleaned up on exit. 327 * 328 * The various task state such as scheduling policy and priority may have 329 * been inherited from a user process, so we reset them to sane values here. 330 * 331 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 332 */ 333 static void reparent_to_kthreadd(void) 334 { 335 write_lock_irq(&tasklist_lock); 336 337 ptrace_unlink(current); 338 /* Reparent to init */ 339 current->real_parent = current->parent = kthreadd_task; 340 list_move_tail(¤t->sibling, ¤t->real_parent->children); 341 342 /* Set the exit signal to SIGCHLD so we signal init on exit */ 343 current->exit_signal = SIGCHLD; 344 345 if (task_nice(current) < 0) 346 set_user_nice(current, 0); 347 /* cpus_allowed? */ 348 /* rt_priority? */ 349 /* signals? */ 350 memcpy(current->signal->rlim, init_task.signal->rlim, 351 sizeof(current->signal->rlim)); 352 353 atomic_inc(&init_cred.usage); 354 commit_creds(&init_cred); 355 write_unlock_irq(&tasklist_lock); 356 } 357 358 void __set_special_pids(struct pid *pid) 359 { 360 struct task_struct *curr = current->group_leader; 361 362 if (task_session(curr) != pid) { 363 change_pid(curr, PIDTYPE_SID, pid); 364 proc_sid_connector(curr); 365 } 366 367 if (task_pgrp(curr) != pid) 368 change_pid(curr, PIDTYPE_PGID, pid); 369 } 370 371 static void set_special_pids(struct pid *pid) 372 { 373 write_lock_irq(&tasklist_lock); 374 __set_special_pids(pid); 375 write_unlock_irq(&tasklist_lock); 376 } 377 378 /* 379 * Let kernel threads use this to say that they allow a certain signal. 380 * Must not be used if kthread was cloned with CLONE_SIGHAND. 381 */ 382 int allow_signal(int sig) 383 { 384 if (!valid_signal(sig) || sig < 1) 385 return -EINVAL; 386 387 spin_lock_irq(¤t->sighand->siglock); 388 /* This is only needed for daemonize()'ed kthreads */ 389 sigdelset(¤t->blocked, sig); 390 /* 391 * Kernel threads handle their own signals. Let the signal code 392 * know it'll be handled, so that they don't get converted to 393 * SIGKILL or just silently dropped. 394 */ 395 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 396 recalc_sigpending(); 397 spin_unlock_irq(¤t->sighand->siglock); 398 return 0; 399 } 400 401 EXPORT_SYMBOL(allow_signal); 402 403 int disallow_signal(int sig) 404 { 405 if (!valid_signal(sig) || sig < 1) 406 return -EINVAL; 407 408 spin_lock_irq(¤t->sighand->siglock); 409 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 410 recalc_sigpending(); 411 spin_unlock_irq(¤t->sighand->siglock); 412 return 0; 413 } 414 415 EXPORT_SYMBOL(disallow_signal); 416 417 /* 418 * Put all the gunge required to become a kernel thread without 419 * attached user resources in one place where it belongs. 420 */ 421 422 void daemonize(const char *name, ...) 423 { 424 va_list args; 425 sigset_t blocked; 426 427 va_start(args, name); 428 vsnprintf(current->comm, sizeof(current->comm), name, args); 429 va_end(args); 430 431 /* 432 * If we were started as result of loading a module, close all of the 433 * user space pages. We don't need them, and if we didn't close them 434 * they would be locked into memory. 435 */ 436 exit_mm(current); 437 /* 438 * We don't want to have TIF_FREEZE set if the system-wide hibernation 439 * or suspend transition begins right now. 440 */ 441 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 442 443 if (current->nsproxy != &init_nsproxy) { 444 get_nsproxy(&init_nsproxy); 445 switch_task_namespaces(current, &init_nsproxy); 446 } 447 set_special_pids(&init_struct_pid); 448 proc_clear_tty(current); 449 450 /* Block and flush all signals */ 451 sigfillset(&blocked); 452 sigprocmask(SIG_BLOCK, &blocked, NULL); 453 flush_signals(current); 454 455 /* Become as one with the init task */ 456 457 daemonize_fs_struct(); 458 exit_files(current); 459 current->files = init_task.files; 460 atomic_inc(¤t->files->count); 461 462 reparent_to_kthreadd(); 463 } 464 465 EXPORT_SYMBOL(daemonize); 466 467 static void close_files(struct files_struct * files) 468 { 469 int i, j; 470 struct fdtable *fdt; 471 472 j = 0; 473 474 /* 475 * It is safe to dereference the fd table without RCU or 476 * ->file_lock because this is the last reference to the 477 * files structure. 478 */ 479 fdt = files_fdtable(files); 480 for (;;) { 481 unsigned long set; 482 i = j * __NFDBITS; 483 if (i >= fdt->max_fds) 484 break; 485 set = fdt->open_fds->fds_bits[j++]; 486 while (set) { 487 if (set & 1) { 488 struct file * file = xchg(&fdt->fd[i], NULL); 489 if (file) { 490 filp_close(file, files); 491 cond_resched(); 492 } 493 } 494 i++; 495 set >>= 1; 496 } 497 } 498 } 499 500 struct files_struct *get_files_struct(struct task_struct *task) 501 { 502 struct files_struct *files; 503 504 task_lock(task); 505 files = task->files; 506 if (files) 507 atomic_inc(&files->count); 508 task_unlock(task); 509 510 return files; 511 } 512 513 void put_files_struct(struct files_struct *files) 514 { 515 struct fdtable *fdt; 516 517 if (atomic_dec_and_test(&files->count)) { 518 close_files(files); 519 /* 520 * Free the fd and fdset arrays if we expanded them. 521 * If the fdtable was embedded, pass files for freeing 522 * at the end of the RCU grace period. Otherwise, 523 * you can free files immediately. 524 */ 525 fdt = files_fdtable(files); 526 if (fdt != &files->fdtab) 527 kmem_cache_free(files_cachep, files); 528 free_fdtable(fdt); 529 } 530 } 531 532 void reset_files_struct(struct files_struct *files) 533 { 534 struct task_struct *tsk = current; 535 struct files_struct *old; 536 537 old = tsk->files; 538 task_lock(tsk); 539 tsk->files = files; 540 task_unlock(tsk); 541 put_files_struct(old); 542 } 543 544 void exit_files(struct task_struct *tsk) 545 { 546 struct files_struct * files = tsk->files; 547 548 if (files) { 549 task_lock(tsk); 550 tsk->files = NULL; 551 task_unlock(tsk); 552 put_files_struct(files); 553 } 554 } 555 556 #ifdef CONFIG_MM_OWNER 557 /* 558 * Task p is exiting and it owned mm, lets find a new owner for it 559 */ 560 static inline int 561 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 562 { 563 /* 564 * If there are other users of the mm and the owner (us) is exiting 565 * we need to find a new owner to take on the responsibility. 566 */ 567 if (atomic_read(&mm->mm_users) <= 1) 568 return 0; 569 if (mm->owner != p) 570 return 0; 571 return 1; 572 } 573 574 void mm_update_next_owner(struct mm_struct *mm) 575 { 576 struct task_struct *c, *g, *p = current; 577 578 retry: 579 if (!mm_need_new_owner(mm, p)) 580 return; 581 582 read_lock(&tasklist_lock); 583 /* 584 * Search in the children 585 */ 586 list_for_each_entry(c, &p->children, sibling) { 587 if (c->mm == mm) 588 goto assign_new_owner; 589 } 590 591 /* 592 * Search in the siblings 593 */ 594 list_for_each_entry(c, &p->real_parent->children, sibling) { 595 if (c->mm == mm) 596 goto assign_new_owner; 597 } 598 599 /* 600 * Search through everything else. We should not get 601 * here often 602 */ 603 do_each_thread(g, c) { 604 if (c->mm == mm) 605 goto assign_new_owner; 606 } while_each_thread(g, c); 607 608 read_unlock(&tasklist_lock); 609 /* 610 * We found no owner yet mm_users > 1: this implies that we are 611 * most likely racing with swapoff (try_to_unuse()) or /proc or 612 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 613 */ 614 mm->owner = NULL; 615 return; 616 617 assign_new_owner: 618 BUG_ON(c == p); 619 get_task_struct(c); 620 /* 621 * The task_lock protects c->mm from changing. 622 * We always want mm->owner->mm == mm 623 */ 624 task_lock(c); 625 /* 626 * Delay read_unlock() till we have the task_lock() 627 * to ensure that c does not slip away underneath us 628 */ 629 read_unlock(&tasklist_lock); 630 if (c->mm != mm) { 631 task_unlock(c); 632 put_task_struct(c); 633 goto retry; 634 } 635 mm->owner = c; 636 task_unlock(c); 637 put_task_struct(c); 638 } 639 #endif /* CONFIG_MM_OWNER */ 640 641 /* 642 * Turn us into a lazy TLB process if we 643 * aren't already.. 644 */ 645 static void exit_mm(struct task_struct * tsk) 646 { 647 struct mm_struct *mm = tsk->mm; 648 struct core_state *core_state; 649 650 mm_release(tsk, mm); 651 if (!mm) 652 return; 653 /* 654 * Serialize with any possible pending coredump. 655 * We must hold mmap_sem around checking core_state 656 * and clearing tsk->mm. The core-inducing thread 657 * will increment ->nr_threads for each thread in the 658 * group with ->mm != NULL. 659 */ 660 down_read(&mm->mmap_sem); 661 core_state = mm->core_state; 662 if (core_state) { 663 struct core_thread self; 664 up_read(&mm->mmap_sem); 665 666 self.task = tsk; 667 self.next = xchg(&core_state->dumper.next, &self); 668 /* 669 * Implies mb(), the result of xchg() must be visible 670 * to core_state->dumper. 671 */ 672 if (atomic_dec_and_test(&core_state->nr_threads)) 673 complete(&core_state->startup); 674 675 for (;;) { 676 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 677 if (!self.task) /* see coredump_finish() */ 678 break; 679 schedule(); 680 } 681 __set_task_state(tsk, TASK_RUNNING); 682 down_read(&mm->mmap_sem); 683 } 684 atomic_inc(&mm->mm_count); 685 BUG_ON(mm != tsk->active_mm); 686 /* more a memory barrier than a real lock */ 687 task_lock(tsk); 688 tsk->mm = NULL; 689 up_read(&mm->mmap_sem); 690 enter_lazy_tlb(mm, current); 691 /* We don't want this task to be frozen prematurely */ 692 clear_freeze_flag(tsk); 693 task_unlock(tsk); 694 mm_update_next_owner(mm); 695 mmput(mm); 696 } 697 698 /* 699 * When we die, we re-parent all our children. 700 * Try to give them to another thread in our thread 701 * group, and if no such member exists, give it to 702 * the child reaper process (ie "init") in our pid 703 * space. 704 */ 705 static struct task_struct *find_new_reaper(struct task_struct *father) 706 { 707 struct pid_namespace *pid_ns = task_active_pid_ns(father); 708 struct task_struct *thread; 709 710 thread = father; 711 while_each_thread(father, thread) { 712 if (thread->flags & PF_EXITING) 713 continue; 714 if (unlikely(pid_ns->child_reaper == father)) 715 pid_ns->child_reaper = thread; 716 return thread; 717 } 718 719 if (unlikely(pid_ns->child_reaper == father)) { 720 write_unlock_irq(&tasklist_lock); 721 if (unlikely(pid_ns == &init_pid_ns)) 722 panic("Attempted to kill init!"); 723 724 zap_pid_ns_processes(pid_ns); 725 write_lock_irq(&tasklist_lock); 726 /* 727 * We can not clear ->child_reaper or leave it alone. 728 * There may by stealth EXIT_DEAD tasks on ->children, 729 * forget_original_parent() must move them somewhere. 730 */ 731 pid_ns->child_reaper = init_pid_ns.child_reaper; 732 } 733 734 return pid_ns->child_reaper; 735 } 736 737 /* 738 * Any that need to be release_task'd are put on the @dead list. 739 */ 740 static void reparent_thread(struct task_struct *father, struct task_struct *p, 741 struct list_head *dead) 742 { 743 if (p->pdeath_signal) 744 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 745 746 list_move_tail(&p->sibling, &p->real_parent->children); 747 748 if (task_detached(p)) 749 return; 750 /* 751 * If this is a threaded reparent there is no need to 752 * notify anyone anything has happened. 753 */ 754 if (same_thread_group(p->real_parent, father)) 755 return; 756 757 /* We don't want people slaying init. */ 758 p->exit_signal = SIGCHLD; 759 760 /* If it has exited notify the new parent about this child's death. */ 761 if (!task_ptrace(p) && 762 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 763 do_notify_parent(p, p->exit_signal); 764 if (task_detached(p)) { 765 p->exit_state = EXIT_DEAD; 766 list_move_tail(&p->sibling, dead); 767 } 768 } 769 770 kill_orphaned_pgrp(p, father); 771 } 772 773 static void forget_original_parent(struct task_struct *father) 774 { 775 struct task_struct *p, *n, *reaper; 776 LIST_HEAD(dead_children); 777 778 exit_ptrace(father); 779 780 write_lock_irq(&tasklist_lock); 781 reaper = find_new_reaper(father); 782 783 list_for_each_entry_safe(p, n, &father->children, sibling) { 784 p->real_parent = reaper; 785 if (p->parent == father) { 786 BUG_ON(task_ptrace(p)); 787 p->parent = p->real_parent; 788 } 789 reparent_thread(father, p, &dead_children); 790 } 791 write_unlock_irq(&tasklist_lock); 792 793 BUG_ON(!list_empty(&father->children)); 794 795 list_for_each_entry_safe(p, n, &dead_children, sibling) { 796 list_del_init(&p->sibling); 797 release_task(p); 798 } 799 } 800 801 /* 802 * Send signals to all our closest relatives so that they know 803 * to properly mourn us.. 804 */ 805 static void exit_notify(struct task_struct *tsk, int group_dead) 806 { 807 int signal; 808 void *cookie; 809 810 /* 811 * This does two things: 812 * 813 * A. Make init inherit all the child processes 814 * B. Check to see if any process groups have become orphaned 815 * as a result of our exiting, and if they have any stopped 816 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 817 */ 818 forget_original_parent(tsk); 819 exit_task_namespaces(tsk); 820 821 write_lock_irq(&tasklist_lock); 822 if (group_dead) 823 kill_orphaned_pgrp(tsk->group_leader, NULL); 824 825 /* Let father know we died 826 * 827 * Thread signals are configurable, but you aren't going to use 828 * that to send signals to arbitary processes. 829 * That stops right now. 830 * 831 * If the parent exec id doesn't match the exec id we saved 832 * when we started then we know the parent has changed security 833 * domain. 834 * 835 * If our self_exec id doesn't match our parent_exec_id then 836 * we have changed execution domain as these two values started 837 * the same after a fork. 838 */ 839 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 840 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 841 tsk->self_exec_id != tsk->parent_exec_id)) 842 tsk->exit_signal = SIGCHLD; 843 844 signal = tracehook_notify_death(tsk, &cookie, group_dead); 845 if (signal >= 0) 846 signal = do_notify_parent(tsk, signal); 847 848 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 849 850 /* mt-exec, de_thread() is waiting for us */ 851 if (thread_group_leader(tsk) && 852 tsk->signal->group_exit_task && 853 tsk->signal->notify_count < 0) 854 wake_up_process(tsk->signal->group_exit_task); 855 856 write_unlock_irq(&tasklist_lock); 857 858 tracehook_report_death(tsk, signal, cookie, group_dead); 859 860 /* If the process is dead, release it - nobody will wait for it */ 861 if (signal == DEATH_REAP) 862 release_task(tsk); 863 } 864 865 #ifdef CONFIG_DEBUG_STACK_USAGE 866 static void check_stack_usage(void) 867 { 868 static DEFINE_SPINLOCK(low_water_lock); 869 static int lowest_to_date = THREAD_SIZE; 870 unsigned long free; 871 872 free = stack_not_used(current); 873 874 if (free >= lowest_to_date) 875 return; 876 877 spin_lock(&low_water_lock); 878 if (free < lowest_to_date) { 879 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 880 "left\n", 881 current->comm, free); 882 lowest_to_date = free; 883 } 884 spin_unlock(&low_water_lock); 885 } 886 #else 887 static inline void check_stack_usage(void) {} 888 #endif 889 890 NORET_TYPE void do_exit(long code) 891 { 892 struct task_struct *tsk = current; 893 int group_dead; 894 895 profile_task_exit(tsk); 896 897 WARN_ON(atomic_read(&tsk->fs_excl)); 898 899 if (unlikely(in_interrupt())) 900 panic("Aiee, killing interrupt handler!"); 901 if (unlikely(!tsk->pid)) 902 panic("Attempted to kill the idle task!"); 903 904 tracehook_report_exit(&code); 905 906 validate_creds_for_do_exit(tsk); 907 908 /* 909 * We're taking recursive faults here in do_exit. Safest is to just 910 * leave this task alone and wait for reboot. 911 */ 912 if (unlikely(tsk->flags & PF_EXITING)) { 913 printk(KERN_ALERT 914 "Fixing recursive fault but reboot is needed!\n"); 915 /* 916 * We can do this unlocked here. The futex code uses 917 * this flag just to verify whether the pi state 918 * cleanup has been done or not. In the worst case it 919 * loops once more. We pretend that the cleanup was 920 * done as there is no way to return. Either the 921 * OWNER_DIED bit is set by now or we push the blocked 922 * task into the wait for ever nirwana as well. 923 */ 924 tsk->flags |= PF_EXITPIDONE; 925 set_current_state(TASK_UNINTERRUPTIBLE); 926 schedule(); 927 } 928 929 exit_irq_thread(); 930 931 exit_signals(tsk); /* sets PF_EXITING */ 932 /* 933 * tsk->flags are checked in the futex code to protect against 934 * an exiting task cleaning up the robust pi futexes. 935 */ 936 smp_mb(); 937 spin_unlock_wait(&tsk->pi_lock); 938 939 if (unlikely(in_atomic())) 940 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 941 current->comm, task_pid_nr(current), 942 preempt_count()); 943 944 acct_update_integrals(tsk); 945 946 group_dead = atomic_dec_and_test(&tsk->signal->live); 947 if (group_dead) { 948 hrtimer_cancel(&tsk->signal->real_timer); 949 exit_itimers(tsk->signal); 950 if (tsk->mm) 951 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 952 } 953 acct_collect(code, group_dead); 954 if (group_dead) 955 tty_audit_exit(); 956 if (unlikely(tsk->audit_context)) 957 audit_free(tsk); 958 959 tsk->exit_code = code; 960 taskstats_exit(tsk, group_dead); 961 962 exit_mm(tsk); 963 964 if (group_dead) 965 acct_process(); 966 trace_sched_process_exit(tsk); 967 968 exit_sem(tsk); 969 exit_files(tsk); 970 exit_fs(tsk); 971 check_stack_usage(); 972 exit_thread(); 973 cgroup_exit(tsk, 1); 974 975 if (group_dead && tsk->signal->leader) 976 disassociate_ctty(1); 977 978 module_put(task_thread_info(tsk)->exec_domain->module); 979 980 proc_exit_connector(tsk); 981 982 /* 983 * Flush inherited counters to the parent - before the parent 984 * gets woken up by child-exit notifications. 985 */ 986 perf_event_exit_task(tsk); 987 988 exit_notify(tsk, group_dead); 989 #ifdef CONFIG_NUMA 990 mpol_put(tsk->mempolicy); 991 tsk->mempolicy = NULL; 992 #endif 993 #ifdef CONFIG_FUTEX 994 if (unlikely(current->pi_state_cache)) 995 kfree(current->pi_state_cache); 996 #endif 997 /* 998 * Make sure we are holding no locks: 999 */ 1000 debug_check_no_locks_held(tsk); 1001 /* 1002 * We can do this unlocked here. The futex code uses this flag 1003 * just to verify whether the pi state cleanup has been done 1004 * or not. In the worst case it loops once more. 1005 */ 1006 tsk->flags |= PF_EXITPIDONE; 1007 1008 if (tsk->io_context) 1009 exit_io_context(); 1010 1011 if (tsk->splice_pipe) 1012 __free_pipe_info(tsk->splice_pipe); 1013 1014 validate_creds_for_do_exit(tsk); 1015 1016 preempt_disable(); 1017 exit_rcu(); 1018 /* causes final put_task_struct in finish_task_switch(). */ 1019 tsk->state = TASK_DEAD; 1020 schedule(); 1021 BUG(); 1022 /* Avoid "noreturn function does return". */ 1023 for (;;) 1024 cpu_relax(); /* For when BUG is null */ 1025 } 1026 1027 EXPORT_SYMBOL_GPL(do_exit); 1028 1029 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1030 { 1031 if (comp) 1032 complete(comp); 1033 1034 do_exit(code); 1035 } 1036 1037 EXPORT_SYMBOL(complete_and_exit); 1038 1039 SYSCALL_DEFINE1(exit, int, error_code) 1040 { 1041 do_exit((error_code&0xff)<<8); 1042 } 1043 1044 /* 1045 * Take down every thread in the group. This is called by fatal signals 1046 * as well as by sys_exit_group (below). 1047 */ 1048 NORET_TYPE void 1049 do_group_exit(int exit_code) 1050 { 1051 struct signal_struct *sig = current->signal; 1052 1053 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1054 1055 if (signal_group_exit(sig)) 1056 exit_code = sig->group_exit_code; 1057 else if (!thread_group_empty(current)) { 1058 struct sighand_struct *const sighand = current->sighand; 1059 spin_lock_irq(&sighand->siglock); 1060 if (signal_group_exit(sig)) 1061 /* Another thread got here before we took the lock. */ 1062 exit_code = sig->group_exit_code; 1063 else { 1064 sig->group_exit_code = exit_code; 1065 sig->flags = SIGNAL_GROUP_EXIT; 1066 zap_other_threads(current); 1067 } 1068 spin_unlock_irq(&sighand->siglock); 1069 } 1070 1071 do_exit(exit_code); 1072 /* NOTREACHED */ 1073 } 1074 1075 /* 1076 * this kills every thread in the thread group. Note that any externally 1077 * wait4()-ing process will get the correct exit code - even if this 1078 * thread is not the thread group leader. 1079 */ 1080 SYSCALL_DEFINE1(exit_group, int, error_code) 1081 { 1082 do_group_exit((error_code & 0xff) << 8); 1083 /* NOTREACHED */ 1084 return 0; 1085 } 1086 1087 struct wait_opts { 1088 enum pid_type wo_type; 1089 int wo_flags; 1090 struct pid *wo_pid; 1091 1092 struct siginfo __user *wo_info; 1093 int __user *wo_stat; 1094 struct rusage __user *wo_rusage; 1095 1096 wait_queue_t child_wait; 1097 int notask_error; 1098 }; 1099 1100 static inline 1101 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1102 { 1103 if (type != PIDTYPE_PID) 1104 task = task->group_leader; 1105 return task->pids[type].pid; 1106 } 1107 1108 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1109 { 1110 return wo->wo_type == PIDTYPE_MAX || 1111 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1112 } 1113 1114 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 1115 { 1116 if (!eligible_pid(wo, p)) 1117 return 0; 1118 /* Wait for all children (clone and not) if __WALL is set; 1119 * otherwise, wait for clone children *only* if __WCLONE is 1120 * set; otherwise, wait for non-clone children *only*. (Note: 1121 * A "clone" child here is one that reports to its parent 1122 * using a signal other than SIGCHLD.) */ 1123 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1124 && !(wo->wo_flags & __WALL)) 1125 return 0; 1126 1127 return 1; 1128 } 1129 1130 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1131 pid_t pid, uid_t uid, int why, int status) 1132 { 1133 struct siginfo __user *infop; 1134 int retval = wo->wo_rusage 1135 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1136 1137 put_task_struct(p); 1138 infop = wo->wo_info; 1139 if (infop) { 1140 if (!retval) 1141 retval = put_user(SIGCHLD, &infop->si_signo); 1142 if (!retval) 1143 retval = put_user(0, &infop->si_errno); 1144 if (!retval) 1145 retval = put_user((short)why, &infop->si_code); 1146 if (!retval) 1147 retval = put_user(pid, &infop->si_pid); 1148 if (!retval) 1149 retval = put_user(uid, &infop->si_uid); 1150 if (!retval) 1151 retval = put_user(status, &infop->si_status); 1152 } 1153 if (!retval) 1154 retval = pid; 1155 return retval; 1156 } 1157 1158 /* 1159 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1160 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1161 * the lock and this task is uninteresting. If we return nonzero, we have 1162 * released the lock and the system call should return. 1163 */ 1164 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1165 { 1166 unsigned long state; 1167 int retval, status, traced; 1168 pid_t pid = task_pid_vnr(p); 1169 uid_t uid = __task_cred(p)->uid; 1170 struct siginfo __user *infop; 1171 1172 if (!likely(wo->wo_flags & WEXITED)) 1173 return 0; 1174 1175 if (unlikely(wo->wo_flags & WNOWAIT)) { 1176 int exit_code = p->exit_code; 1177 int why, status; 1178 1179 get_task_struct(p); 1180 read_unlock(&tasklist_lock); 1181 if ((exit_code & 0x7f) == 0) { 1182 why = CLD_EXITED; 1183 status = exit_code >> 8; 1184 } else { 1185 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1186 status = exit_code & 0x7f; 1187 } 1188 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1189 } 1190 1191 /* 1192 * Try to move the task's state to DEAD 1193 * only one thread is allowed to do this: 1194 */ 1195 state = xchg(&p->exit_state, EXIT_DEAD); 1196 if (state != EXIT_ZOMBIE) { 1197 BUG_ON(state != EXIT_DEAD); 1198 return 0; 1199 } 1200 1201 traced = ptrace_reparented(p); 1202 /* 1203 * It can be ptraced but not reparented, check 1204 * !task_detached() to filter out sub-threads. 1205 */ 1206 if (likely(!traced) && likely(!task_detached(p))) { 1207 struct signal_struct *psig; 1208 struct signal_struct *sig; 1209 unsigned long maxrss; 1210 1211 /* 1212 * The resource counters for the group leader are in its 1213 * own task_struct. Those for dead threads in the group 1214 * are in its signal_struct, as are those for the child 1215 * processes it has previously reaped. All these 1216 * accumulate in the parent's signal_struct c* fields. 1217 * 1218 * We don't bother to take a lock here to protect these 1219 * p->signal fields, because they are only touched by 1220 * __exit_signal, which runs with tasklist_lock 1221 * write-locked anyway, and so is excluded here. We do 1222 * need to protect the access to parent->signal fields, 1223 * as other threads in the parent group can be right 1224 * here reaping other children at the same time. 1225 */ 1226 spin_lock_irq(&p->real_parent->sighand->siglock); 1227 psig = p->real_parent->signal; 1228 sig = p->signal; 1229 psig->cutime = 1230 cputime_add(psig->cutime, 1231 cputime_add(p->utime, 1232 cputime_add(sig->utime, 1233 sig->cutime))); 1234 psig->cstime = 1235 cputime_add(psig->cstime, 1236 cputime_add(p->stime, 1237 cputime_add(sig->stime, 1238 sig->cstime))); 1239 psig->cgtime = 1240 cputime_add(psig->cgtime, 1241 cputime_add(p->gtime, 1242 cputime_add(sig->gtime, 1243 sig->cgtime))); 1244 psig->cmin_flt += 1245 p->min_flt + sig->min_flt + sig->cmin_flt; 1246 psig->cmaj_flt += 1247 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1248 psig->cnvcsw += 1249 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1250 psig->cnivcsw += 1251 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1252 psig->cinblock += 1253 task_io_get_inblock(p) + 1254 sig->inblock + sig->cinblock; 1255 psig->coublock += 1256 task_io_get_oublock(p) + 1257 sig->oublock + sig->coublock; 1258 maxrss = max(sig->maxrss, sig->cmaxrss); 1259 if (psig->cmaxrss < maxrss) 1260 psig->cmaxrss = maxrss; 1261 task_io_accounting_add(&psig->ioac, &p->ioac); 1262 task_io_accounting_add(&psig->ioac, &sig->ioac); 1263 spin_unlock_irq(&p->real_parent->sighand->siglock); 1264 } 1265 1266 /* 1267 * Now we are sure this task is interesting, and no other 1268 * thread can reap it because we set its state to EXIT_DEAD. 1269 */ 1270 read_unlock(&tasklist_lock); 1271 1272 retval = wo->wo_rusage 1273 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1274 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1275 ? p->signal->group_exit_code : p->exit_code; 1276 if (!retval && wo->wo_stat) 1277 retval = put_user(status, wo->wo_stat); 1278 1279 infop = wo->wo_info; 1280 if (!retval && infop) 1281 retval = put_user(SIGCHLD, &infop->si_signo); 1282 if (!retval && infop) 1283 retval = put_user(0, &infop->si_errno); 1284 if (!retval && infop) { 1285 int why; 1286 1287 if ((status & 0x7f) == 0) { 1288 why = CLD_EXITED; 1289 status >>= 8; 1290 } else { 1291 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1292 status &= 0x7f; 1293 } 1294 retval = put_user((short)why, &infop->si_code); 1295 if (!retval) 1296 retval = put_user(status, &infop->si_status); 1297 } 1298 if (!retval && infop) 1299 retval = put_user(pid, &infop->si_pid); 1300 if (!retval && infop) 1301 retval = put_user(uid, &infop->si_uid); 1302 if (!retval) 1303 retval = pid; 1304 1305 if (traced) { 1306 write_lock_irq(&tasklist_lock); 1307 /* We dropped tasklist, ptracer could die and untrace */ 1308 ptrace_unlink(p); 1309 /* 1310 * If this is not a detached task, notify the parent. 1311 * If it's still not detached after that, don't release 1312 * it now. 1313 */ 1314 if (!task_detached(p)) { 1315 do_notify_parent(p, p->exit_signal); 1316 if (!task_detached(p)) { 1317 p->exit_state = EXIT_ZOMBIE; 1318 p = NULL; 1319 } 1320 } 1321 write_unlock_irq(&tasklist_lock); 1322 } 1323 if (p != NULL) 1324 release_task(p); 1325 1326 return retval; 1327 } 1328 1329 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1330 { 1331 if (ptrace) { 1332 if (task_is_stopped_or_traced(p)) 1333 return &p->exit_code; 1334 } else { 1335 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1336 return &p->signal->group_exit_code; 1337 } 1338 return NULL; 1339 } 1340 1341 /* 1342 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1343 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1344 * the lock and this task is uninteresting. If we return nonzero, we have 1345 * released the lock and the system call should return. 1346 */ 1347 static int wait_task_stopped(struct wait_opts *wo, 1348 int ptrace, struct task_struct *p) 1349 { 1350 struct siginfo __user *infop; 1351 int retval, exit_code, *p_code, why; 1352 uid_t uid = 0; /* unneeded, required by compiler */ 1353 pid_t pid; 1354 1355 /* 1356 * Traditionally we see ptrace'd stopped tasks regardless of options. 1357 */ 1358 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1359 return 0; 1360 1361 exit_code = 0; 1362 spin_lock_irq(&p->sighand->siglock); 1363 1364 p_code = task_stopped_code(p, ptrace); 1365 if (unlikely(!p_code)) 1366 goto unlock_sig; 1367 1368 exit_code = *p_code; 1369 if (!exit_code) 1370 goto unlock_sig; 1371 1372 if (!unlikely(wo->wo_flags & WNOWAIT)) 1373 *p_code = 0; 1374 1375 /* don't need the RCU readlock here as we're holding a spinlock */ 1376 uid = __task_cred(p)->uid; 1377 unlock_sig: 1378 spin_unlock_irq(&p->sighand->siglock); 1379 if (!exit_code) 1380 return 0; 1381 1382 /* 1383 * Now we are pretty sure this task is interesting. 1384 * Make sure it doesn't get reaped out from under us while we 1385 * give up the lock and then examine it below. We don't want to 1386 * keep holding onto the tasklist_lock while we call getrusage and 1387 * possibly take page faults for user memory. 1388 */ 1389 get_task_struct(p); 1390 pid = task_pid_vnr(p); 1391 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1392 read_unlock(&tasklist_lock); 1393 1394 if (unlikely(wo->wo_flags & WNOWAIT)) 1395 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1396 1397 retval = wo->wo_rusage 1398 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1399 if (!retval && wo->wo_stat) 1400 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1401 1402 infop = wo->wo_info; 1403 if (!retval && infop) 1404 retval = put_user(SIGCHLD, &infop->si_signo); 1405 if (!retval && infop) 1406 retval = put_user(0, &infop->si_errno); 1407 if (!retval && infop) 1408 retval = put_user((short)why, &infop->si_code); 1409 if (!retval && infop) 1410 retval = put_user(exit_code, &infop->si_status); 1411 if (!retval && infop) 1412 retval = put_user(pid, &infop->si_pid); 1413 if (!retval && infop) 1414 retval = put_user(uid, &infop->si_uid); 1415 if (!retval) 1416 retval = pid; 1417 put_task_struct(p); 1418 1419 BUG_ON(!retval); 1420 return retval; 1421 } 1422 1423 /* 1424 * Handle do_wait work for one task in a live, non-stopped state. 1425 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1426 * the lock and this task is uninteresting. If we return nonzero, we have 1427 * released the lock and the system call should return. 1428 */ 1429 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1430 { 1431 int retval; 1432 pid_t pid; 1433 uid_t uid; 1434 1435 if (!unlikely(wo->wo_flags & WCONTINUED)) 1436 return 0; 1437 1438 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1439 return 0; 1440 1441 spin_lock_irq(&p->sighand->siglock); 1442 /* Re-check with the lock held. */ 1443 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1444 spin_unlock_irq(&p->sighand->siglock); 1445 return 0; 1446 } 1447 if (!unlikely(wo->wo_flags & WNOWAIT)) 1448 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1449 uid = __task_cred(p)->uid; 1450 spin_unlock_irq(&p->sighand->siglock); 1451 1452 pid = task_pid_vnr(p); 1453 get_task_struct(p); 1454 read_unlock(&tasklist_lock); 1455 1456 if (!wo->wo_info) { 1457 retval = wo->wo_rusage 1458 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1459 put_task_struct(p); 1460 if (!retval && wo->wo_stat) 1461 retval = put_user(0xffff, wo->wo_stat); 1462 if (!retval) 1463 retval = pid; 1464 } else { 1465 retval = wait_noreap_copyout(wo, p, pid, uid, 1466 CLD_CONTINUED, SIGCONT); 1467 BUG_ON(retval == 0); 1468 } 1469 1470 return retval; 1471 } 1472 1473 /* 1474 * Consider @p for a wait by @parent. 1475 * 1476 * -ECHILD should be in ->notask_error before the first call. 1477 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1478 * Returns zero if the search for a child should continue; 1479 * then ->notask_error is 0 if @p is an eligible child, 1480 * or another error from security_task_wait(), or still -ECHILD. 1481 */ 1482 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1483 struct task_struct *p) 1484 { 1485 int ret = eligible_child(wo, p); 1486 if (!ret) 1487 return ret; 1488 1489 ret = security_task_wait(p); 1490 if (unlikely(ret < 0)) { 1491 /* 1492 * If we have not yet seen any eligible child, 1493 * then let this error code replace -ECHILD. 1494 * A permission error will give the user a clue 1495 * to look for security policy problems, rather 1496 * than for mysterious wait bugs. 1497 */ 1498 if (wo->notask_error) 1499 wo->notask_error = ret; 1500 return 0; 1501 } 1502 1503 if (likely(!ptrace) && unlikely(task_ptrace(p))) { 1504 /* 1505 * This child is hidden by ptrace. 1506 * We aren't allowed to see it now, but eventually we will. 1507 */ 1508 wo->notask_error = 0; 1509 return 0; 1510 } 1511 1512 if (p->exit_state == EXIT_DEAD) 1513 return 0; 1514 1515 /* 1516 * We don't reap group leaders with subthreads. 1517 */ 1518 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1519 return wait_task_zombie(wo, p); 1520 1521 /* 1522 * It's stopped or running now, so it might 1523 * later continue, exit, or stop again. 1524 */ 1525 wo->notask_error = 0; 1526 1527 if (task_stopped_code(p, ptrace)) 1528 return wait_task_stopped(wo, ptrace, p); 1529 1530 return wait_task_continued(wo, p); 1531 } 1532 1533 /* 1534 * Do the work of do_wait() for one thread in the group, @tsk. 1535 * 1536 * -ECHILD should be in ->notask_error before the first call. 1537 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1538 * Returns zero if the search for a child should continue; then 1539 * ->notask_error is 0 if there were any eligible children, 1540 * or another error from security_task_wait(), or still -ECHILD. 1541 */ 1542 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1543 { 1544 struct task_struct *p; 1545 1546 list_for_each_entry(p, &tsk->children, sibling) { 1547 /* 1548 * Do not consider detached threads. 1549 */ 1550 if (!task_detached(p)) { 1551 int ret = wait_consider_task(wo, 0, p); 1552 if (ret) 1553 return ret; 1554 } 1555 } 1556 1557 return 0; 1558 } 1559 1560 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1561 { 1562 struct task_struct *p; 1563 1564 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1565 int ret = wait_consider_task(wo, 1, p); 1566 if (ret) 1567 return ret; 1568 } 1569 1570 return 0; 1571 } 1572 1573 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1574 int sync, void *key) 1575 { 1576 struct wait_opts *wo = container_of(wait, struct wait_opts, 1577 child_wait); 1578 struct task_struct *p = key; 1579 1580 if (!eligible_pid(wo, p)) 1581 return 0; 1582 1583 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1584 return 0; 1585 1586 return default_wake_function(wait, mode, sync, key); 1587 } 1588 1589 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1590 { 1591 __wake_up_sync_key(&parent->signal->wait_chldexit, 1592 TASK_INTERRUPTIBLE, 1, p); 1593 } 1594 1595 static long do_wait(struct wait_opts *wo) 1596 { 1597 struct task_struct *tsk; 1598 int retval; 1599 1600 trace_sched_process_wait(wo->wo_pid); 1601 1602 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1603 wo->child_wait.private = current; 1604 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1605 repeat: 1606 /* 1607 * If there is nothing that can match our critiera just get out. 1608 * We will clear ->notask_error to zero if we see any child that 1609 * might later match our criteria, even if we are not able to reap 1610 * it yet. 1611 */ 1612 wo->notask_error = -ECHILD; 1613 if ((wo->wo_type < PIDTYPE_MAX) && 1614 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1615 goto notask; 1616 1617 set_current_state(TASK_INTERRUPTIBLE); 1618 read_lock(&tasklist_lock); 1619 tsk = current; 1620 do { 1621 retval = do_wait_thread(wo, tsk); 1622 if (retval) 1623 goto end; 1624 1625 retval = ptrace_do_wait(wo, tsk); 1626 if (retval) 1627 goto end; 1628 1629 if (wo->wo_flags & __WNOTHREAD) 1630 break; 1631 } while_each_thread(current, tsk); 1632 read_unlock(&tasklist_lock); 1633 1634 notask: 1635 retval = wo->notask_error; 1636 if (!retval && !(wo->wo_flags & WNOHANG)) { 1637 retval = -ERESTARTSYS; 1638 if (!signal_pending(current)) { 1639 schedule(); 1640 goto repeat; 1641 } 1642 } 1643 end: 1644 __set_current_state(TASK_RUNNING); 1645 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1646 return retval; 1647 } 1648 1649 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1650 infop, int, options, struct rusage __user *, ru) 1651 { 1652 struct wait_opts wo; 1653 struct pid *pid = NULL; 1654 enum pid_type type; 1655 long ret; 1656 1657 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1658 return -EINVAL; 1659 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1660 return -EINVAL; 1661 1662 switch (which) { 1663 case P_ALL: 1664 type = PIDTYPE_MAX; 1665 break; 1666 case P_PID: 1667 type = PIDTYPE_PID; 1668 if (upid <= 0) 1669 return -EINVAL; 1670 break; 1671 case P_PGID: 1672 type = PIDTYPE_PGID; 1673 if (upid <= 0) 1674 return -EINVAL; 1675 break; 1676 default: 1677 return -EINVAL; 1678 } 1679 1680 if (type < PIDTYPE_MAX) 1681 pid = find_get_pid(upid); 1682 1683 wo.wo_type = type; 1684 wo.wo_pid = pid; 1685 wo.wo_flags = options; 1686 wo.wo_info = infop; 1687 wo.wo_stat = NULL; 1688 wo.wo_rusage = ru; 1689 ret = do_wait(&wo); 1690 1691 if (ret > 0) { 1692 ret = 0; 1693 } else if (infop) { 1694 /* 1695 * For a WNOHANG return, clear out all the fields 1696 * we would set so the user can easily tell the 1697 * difference. 1698 */ 1699 if (!ret) 1700 ret = put_user(0, &infop->si_signo); 1701 if (!ret) 1702 ret = put_user(0, &infop->si_errno); 1703 if (!ret) 1704 ret = put_user(0, &infop->si_code); 1705 if (!ret) 1706 ret = put_user(0, &infop->si_pid); 1707 if (!ret) 1708 ret = put_user(0, &infop->si_uid); 1709 if (!ret) 1710 ret = put_user(0, &infop->si_status); 1711 } 1712 1713 put_pid(pid); 1714 1715 /* avoid REGPARM breakage on x86: */ 1716 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1717 return ret; 1718 } 1719 1720 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1721 int, options, struct rusage __user *, ru) 1722 { 1723 struct wait_opts wo; 1724 struct pid *pid = NULL; 1725 enum pid_type type; 1726 long ret; 1727 1728 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1729 __WNOTHREAD|__WCLONE|__WALL)) 1730 return -EINVAL; 1731 1732 if (upid == -1) 1733 type = PIDTYPE_MAX; 1734 else if (upid < 0) { 1735 type = PIDTYPE_PGID; 1736 pid = find_get_pid(-upid); 1737 } else if (upid == 0) { 1738 type = PIDTYPE_PGID; 1739 pid = get_task_pid(current, PIDTYPE_PGID); 1740 } else /* upid > 0 */ { 1741 type = PIDTYPE_PID; 1742 pid = find_get_pid(upid); 1743 } 1744 1745 wo.wo_type = type; 1746 wo.wo_pid = pid; 1747 wo.wo_flags = options | WEXITED; 1748 wo.wo_info = NULL; 1749 wo.wo_stat = stat_addr; 1750 wo.wo_rusage = ru; 1751 ret = do_wait(&wo); 1752 put_pid(pid); 1753 1754 /* avoid REGPARM breakage on x86: */ 1755 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1756 return ret; 1757 } 1758 1759 #ifdef __ARCH_WANT_SYS_WAITPID 1760 1761 /* 1762 * sys_waitpid() remains for compatibility. waitpid() should be 1763 * implemented by calling sys_wait4() from libc.a. 1764 */ 1765 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1766 { 1767 return sys_wait4(pid, stat_addr, options, NULL); 1768 } 1769 1770 #endif 1771