xref: /linux/kernel/exit.c (revision 913df4453f85f1fe79b35ecf3c9a0c0b707d22a2)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 
53 #include <asm/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/pgtable.h>
56 #include <asm/mmu_context.h>
57 #include "cred-internals.h"
58 
59 static void exit_mm(struct task_struct * tsk);
60 
61 static void __unhash_process(struct task_struct *p)
62 {
63 	nr_threads--;
64 	detach_pid(p, PIDTYPE_PID);
65 	if (thread_group_leader(p)) {
66 		detach_pid(p, PIDTYPE_PGID);
67 		detach_pid(p, PIDTYPE_SID);
68 
69 		list_del_rcu(&p->tasks);
70 		__get_cpu_var(process_counts)--;
71 	}
72 	list_del_rcu(&p->thread_group);
73 	list_del_init(&p->sibling);
74 }
75 
76 /*
77  * This function expects the tasklist_lock write-locked.
78  */
79 static void __exit_signal(struct task_struct *tsk)
80 {
81 	struct signal_struct *sig = tsk->signal;
82 	struct sighand_struct *sighand;
83 
84 	BUG_ON(!sig);
85 	BUG_ON(!atomic_read(&sig->count));
86 
87 	sighand = rcu_dereference(tsk->sighand);
88 	spin_lock(&sighand->siglock);
89 
90 	posix_cpu_timers_exit(tsk);
91 	if (atomic_dec_and_test(&sig->count))
92 		posix_cpu_timers_exit_group(tsk);
93 	else {
94 		/*
95 		 * If there is any task waiting for the group exit
96 		 * then notify it:
97 		 */
98 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
99 			wake_up_process(sig->group_exit_task);
100 
101 		if (tsk == sig->curr_target)
102 			sig->curr_target = next_thread(tsk);
103 		/*
104 		 * Accumulate here the counters for all threads but the
105 		 * group leader as they die, so they can be added into
106 		 * the process-wide totals when those are taken.
107 		 * The group leader stays around as a zombie as long
108 		 * as there are other threads.  When it gets reaped,
109 		 * the exit.c code will add its counts into these totals.
110 		 * We won't ever get here for the group leader, since it
111 		 * will have been the last reference on the signal_struct.
112 		 */
113 		sig->utime = cputime_add(sig->utime, task_utime(tsk));
114 		sig->stime = cputime_add(sig->stime, task_stime(tsk));
115 		sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
116 		sig->min_flt += tsk->min_flt;
117 		sig->maj_flt += tsk->maj_flt;
118 		sig->nvcsw += tsk->nvcsw;
119 		sig->nivcsw += tsk->nivcsw;
120 		sig->inblock += task_io_get_inblock(tsk);
121 		sig->oublock += task_io_get_oublock(tsk);
122 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
123 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
124 		sig = NULL; /* Marker for below. */
125 	}
126 
127 	__unhash_process(tsk);
128 
129 	/*
130 	 * Do this under ->siglock, we can race with another thread
131 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
132 	 */
133 	flush_sigqueue(&tsk->pending);
134 
135 	tsk->signal = NULL;
136 	tsk->sighand = NULL;
137 	spin_unlock(&sighand->siglock);
138 
139 	__cleanup_sighand(sighand);
140 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
141 	if (sig) {
142 		flush_sigqueue(&sig->shared_pending);
143 		taskstats_tgid_free(sig);
144 		/*
145 		 * Make sure ->signal can't go away under rq->lock,
146 		 * see account_group_exec_runtime().
147 		 */
148 		task_rq_unlock_wait(tsk);
149 		__cleanup_signal(sig);
150 	}
151 }
152 
153 static void delayed_put_task_struct(struct rcu_head *rhp)
154 {
155 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
156 
157 #ifdef CONFIG_PERF_EVENTS
158 	WARN_ON_ONCE(tsk->perf_event_ctxp);
159 #endif
160 	trace_sched_process_free(tsk);
161 	put_task_struct(tsk);
162 }
163 
164 
165 void release_task(struct task_struct * p)
166 {
167 	struct task_struct *leader;
168 	int zap_leader;
169 repeat:
170 	tracehook_prepare_release_task(p);
171 	/* don't need to get the RCU readlock here - the process is dead and
172 	 * can't be modifying its own credentials */
173 	atomic_dec(&__task_cred(p)->user->processes);
174 
175 	proc_flush_task(p);
176 
177 	write_lock_irq(&tasklist_lock);
178 	tracehook_finish_release_task(p);
179 	__exit_signal(p);
180 
181 	/*
182 	 * If we are the last non-leader member of the thread
183 	 * group, and the leader is zombie, then notify the
184 	 * group leader's parent process. (if it wants notification.)
185 	 */
186 	zap_leader = 0;
187 	leader = p->group_leader;
188 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
189 		BUG_ON(task_detached(leader));
190 		do_notify_parent(leader, leader->exit_signal);
191 		/*
192 		 * If we were the last child thread and the leader has
193 		 * exited already, and the leader's parent ignores SIGCHLD,
194 		 * then we are the one who should release the leader.
195 		 *
196 		 * do_notify_parent() will have marked it self-reaping in
197 		 * that case.
198 		 */
199 		zap_leader = task_detached(leader);
200 
201 		/*
202 		 * This maintains the invariant that release_task()
203 		 * only runs on a task in EXIT_DEAD, just for sanity.
204 		 */
205 		if (zap_leader)
206 			leader->exit_state = EXIT_DEAD;
207 	}
208 
209 	write_unlock_irq(&tasklist_lock);
210 	release_thread(p);
211 	call_rcu(&p->rcu, delayed_put_task_struct);
212 
213 	p = leader;
214 	if (unlikely(zap_leader))
215 		goto repeat;
216 }
217 
218 /*
219  * This checks not only the pgrp, but falls back on the pid if no
220  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
221  * without this...
222  *
223  * The caller must hold rcu lock or the tasklist lock.
224  */
225 struct pid *session_of_pgrp(struct pid *pgrp)
226 {
227 	struct task_struct *p;
228 	struct pid *sid = NULL;
229 
230 	p = pid_task(pgrp, PIDTYPE_PGID);
231 	if (p == NULL)
232 		p = pid_task(pgrp, PIDTYPE_PID);
233 	if (p != NULL)
234 		sid = task_session(p);
235 
236 	return sid;
237 }
238 
239 /*
240  * Determine if a process group is "orphaned", according to the POSIX
241  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
242  * by terminal-generated stop signals.  Newly orphaned process groups are
243  * to receive a SIGHUP and a SIGCONT.
244  *
245  * "I ask you, have you ever known what it is to be an orphan?"
246  */
247 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
248 {
249 	struct task_struct *p;
250 
251 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
252 		if ((p == ignored_task) ||
253 		    (p->exit_state && thread_group_empty(p)) ||
254 		    is_global_init(p->real_parent))
255 			continue;
256 
257 		if (task_pgrp(p->real_parent) != pgrp &&
258 		    task_session(p->real_parent) == task_session(p))
259 			return 0;
260 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
261 
262 	return 1;
263 }
264 
265 int is_current_pgrp_orphaned(void)
266 {
267 	int retval;
268 
269 	read_lock(&tasklist_lock);
270 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
271 	read_unlock(&tasklist_lock);
272 
273 	return retval;
274 }
275 
276 static int has_stopped_jobs(struct pid *pgrp)
277 {
278 	int retval = 0;
279 	struct task_struct *p;
280 
281 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
282 		if (!task_is_stopped(p))
283 			continue;
284 		retval = 1;
285 		break;
286 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
287 	return retval;
288 }
289 
290 /*
291  * Check to see if any process groups have become orphaned as
292  * a result of our exiting, and if they have any stopped jobs,
293  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
294  */
295 static void
296 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
297 {
298 	struct pid *pgrp = task_pgrp(tsk);
299 	struct task_struct *ignored_task = tsk;
300 
301 	if (!parent)
302 		 /* exit: our father is in a different pgrp than
303 		  * we are and we were the only connection outside.
304 		  */
305 		parent = tsk->real_parent;
306 	else
307 		/* reparent: our child is in a different pgrp than
308 		 * we are, and it was the only connection outside.
309 		 */
310 		ignored_task = NULL;
311 
312 	if (task_pgrp(parent) != pgrp &&
313 	    task_session(parent) == task_session(tsk) &&
314 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
315 	    has_stopped_jobs(pgrp)) {
316 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
317 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
318 	}
319 }
320 
321 /**
322  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
323  *
324  * If a kernel thread is launched as a result of a system call, or if
325  * it ever exits, it should generally reparent itself to kthreadd so it
326  * isn't in the way of other processes and is correctly cleaned up on exit.
327  *
328  * The various task state such as scheduling policy and priority may have
329  * been inherited from a user process, so we reset them to sane values here.
330  *
331  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
332  */
333 static void reparent_to_kthreadd(void)
334 {
335 	write_lock_irq(&tasklist_lock);
336 
337 	ptrace_unlink(current);
338 	/* Reparent to init */
339 	current->real_parent = current->parent = kthreadd_task;
340 	list_move_tail(&current->sibling, &current->real_parent->children);
341 
342 	/* Set the exit signal to SIGCHLD so we signal init on exit */
343 	current->exit_signal = SIGCHLD;
344 
345 	if (task_nice(current) < 0)
346 		set_user_nice(current, 0);
347 	/* cpus_allowed? */
348 	/* rt_priority? */
349 	/* signals? */
350 	memcpy(current->signal->rlim, init_task.signal->rlim,
351 	       sizeof(current->signal->rlim));
352 
353 	atomic_inc(&init_cred.usage);
354 	commit_creds(&init_cred);
355 	write_unlock_irq(&tasklist_lock);
356 }
357 
358 void __set_special_pids(struct pid *pid)
359 {
360 	struct task_struct *curr = current->group_leader;
361 
362 	if (task_session(curr) != pid) {
363 		change_pid(curr, PIDTYPE_SID, pid);
364 		proc_sid_connector(curr);
365 	}
366 
367 	if (task_pgrp(curr) != pid)
368 		change_pid(curr, PIDTYPE_PGID, pid);
369 }
370 
371 static void set_special_pids(struct pid *pid)
372 {
373 	write_lock_irq(&tasklist_lock);
374 	__set_special_pids(pid);
375 	write_unlock_irq(&tasklist_lock);
376 }
377 
378 /*
379  * Let kernel threads use this to say that they allow a certain signal.
380  * Must not be used if kthread was cloned with CLONE_SIGHAND.
381  */
382 int allow_signal(int sig)
383 {
384 	if (!valid_signal(sig) || sig < 1)
385 		return -EINVAL;
386 
387 	spin_lock_irq(&current->sighand->siglock);
388 	/* This is only needed for daemonize()'ed kthreads */
389 	sigdelset(&current->blocked, sig);
390 	/*
391 	 * Kernel threads handle their own signals. Let the signal code
392 	 * know it'll be handled, so that they don't get converted to
393 	 * SIGKILL or just silently dropped.
394 	 */
395 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
396 	recalc_sigpending();
397 	spin_unlock_irq(&current->sighand->siglock);
398 	return 0;
399 }
400 
401 EXPORT_SYMBOL(allow_signal);
402 
403 int disallow_signal(int sig)
404 {
405 	if (!valid_signal(sig) || sig < 1)
406 		return -EINVAL;
407 
408 	spin_lock_irq(&current->sighand->siglock);
409 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
410 	recalc_sigpending();
411 	spin_unlock_irq(&current->sighand->siglock);
412 	return 0;
413 }
414 
415 EXPORT_SYMBOL(disallow_signal);
416 
417 /*
418  *	Put all the gunge required to become a kernel thread without
419  *	attached user resources in one place where it belongs.
420  */
421 
422 void daemonize(const char *name, ...)
423 {
424 	va_list args;
425 	sigset_t blocked;
426 
427 	va_start(args, name);
428 	vsnprintf(current->comm, sizeof(current->comm), name, args);
429 	va_end(args);
430 
431 	/*
432 	 * If we were started as result of loading a module, close all of the
433 	 * user space pages.  We don't need them, and if we didn't close them
434 	 * they would be locked into memory.
435 	 */
436 	exit_mm(current);
437 	/*
438 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
439 	 * or suspend transition begins right now.
440 	 */
441 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
442 
443 	if (current->nsproxy != &init_nsproxy) {
444 		get_nsproxy(&init_nsproxy);
445 		switch_task_namespaces(current, &init_nsproxy);
446 	}
447 	set_special_pids(&init_struct_pid);
448 	proc_clear_tty(current);
449 
450 	/* Block and flush all signals */
451 	sigfillset(&blocked);
452 	sigprocmask(SIG_BLOCK, &blocked, NULL);
453 	flush_signals(current);
454 
455 	/* Become as one with the init task */
456 
457 	daemonize_fs_struct();
458 	exit_files(current);
459 	current->files = init_task.files;
460 	atomic_inc(&current->files->count);
461 
462 	reparent_to_kthreadd();
463 }
464 
465 EXPORT_SYMBOL(daemonize);
466 
467 static void close_files(struct files_struct * files)
468 {
469 	int i, j;
470 	struct fdtable *fdt;
471 
472 	j = 0;
473 
474 	/*
475 	 * It is safe to dereference the fd table without RCU or
476 	 * ->file_lock because this is the last reference to the
477 	 * files structure.
478 	 */
479 	fdt = files_fdtable(files);
480 	for (;;) {
481 		unsigned long set;
482 		i = j * __NFDBITS;
483 		if (i >= fdt->max_fds)
484 			break;
485 		set = fdt->open_fds->fds_bits[j++];
486 		while (set) {
487 			if (set & 1) {
488 				struct file * file = xchg(&fdt->fd[i], NULL);
489 				if (file) {
490 					filp_close(file, files);
491 					cond_resched();
492 				}
493 			}
494 			i++;
495 			set >>= 1;
496 		}
497 	}
498 }
499 
500 struct files_struct *get_files_struct(struct task_struct *task)
501 {
502 	struct files_struct *files;
503 
504 	task_lock(task);
505 	files = task->files;
506 	if (files)
507 		atomic_inc(&files->count);
508 	task_unlock(task);
509 
510 	return files;
511 }
512 
513 void put_files_struct(struct files_struct *files)
514 {
515 	struct fdtable *fdt;
516 
517 	if (atomic_dec_and_test(&files->count)) {
518 		close_files(files);
519 		/*
520 		 * Free the fd and fdset arrays if we expanded them.
521 		 * If the fdtable was embedded, pass files for freeing
522 		 * at the end of the RCU grace period. Otherwise,
523 		 * you can free files immediately.
524 		 */
525 		fdt = files_fdtable(files);
526 		if (fdt != &files->fdtab)
527 			kmem_cache_free(files_cachep, files);
528 		free_fdtable(fdt);
529 	}
530 }
531 
532 void reset_files_struct(struct files_struct *files)
533 {
534 	struct task_struct *tsk = current;
535 	struct files_struct *old;
536 
537 	old = tsk->files;
538 	task_lock(tsk);
539 	tsk->files = files;
540 	task_unlock(tsk);
541 	put_files_struct(old);
542 }
543 
544 void exit_files(struct task_struct *tsk)
545 {
546 	struct files_struct * files = tsk->files;
547 
548 	if (files) {
549 		task_lock(tsk);
550 		tsk->files = NULL;
551 		task_unlock(tsk);
552 		put_files_struct(files);
553 	}
554 }
555 
556 #ifdef CONFIG_MM_OWNER
557 /*
558  * Task p is exiting and it owned mm, lets find a new owner for it
559  */
560 static inline int
561 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
562 {
563 	/*
564 	 * If there are other users of the mm and the owner (us) is exiting
565 	 * we need to find a new owner to take on the responsibility.
566 	 */
567 	if (atomic_read(&mm->mm_users) <= 1)
568 		return 0;
569 	if (mm->owner != p)
570 		return 0;
571 	return 1;
572 }
573 
574 void mm_update_next_owner(struct mm_struct *mm)
575 {
576 	struct task_struct *c, *g, *p = current;
577 
578 retry:
579 	if (!mm_need_new_owner(mm, p))
580 		return;
581 
582 	read_lock(&tasklist_lock);
583 	/*
584 	 * Search in the children
585 	 */
586 	list_for_each_entry(c, &p->children, sibling) {
587 		if (c->mm == mm)
588 			goto assign_new_owner;
589 	}
590 
591 	/*
592 	 * Search in the siblings
593 	 */
594 	list_for_each_entry(c, &p->real_parent->children, sibling) {
595 		if (c->mm == mm)
596 			goto assign_new_owner;
597 	}
598 
599 	/*
600 	 * Search through everything else. We should not get
601 	 * here often
602 	 */
603 	do_each_thread(g, c) {
604 		if (c->mm == mm)
605 			goto assign_new_owner;
606 	} while_each_thread(g, c);
607 
608 	read_unlock(&tasklist_lock);
609 	/*
610 	 * We found no owner yet mm_users > 1: this implies that we are
611 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
612 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
613 	 */
614 	mm->owner = NULL;
615 	return;
616 
617 assign_new_owner:
618 	BUG_ON(c == p);
619 	get_task_struct(c);
620 	/*
621 	 * The task_lock protects c->mm from changing.
622 	 * We always want mm->owner->mm == mm
623 	 */
624 	task_lock(c);
625 	/*
626 	 * Delay read_unlock() till we have the task_lock()
627 	 * to ensure that c does not slip away underneath us
628 	 */
629 	read_unlock(&tasklist_lock);
630 	if (c->mm != mm) {
631 		task_unlock(c);
632 		put_task_struct(c);
633 		goto retry;
634 	}
635 	mm->owner = c;
636 	task_unlock(c);
637 	put_task_struct(c);
638 }
639 #endif /* CONFIG_MM_OWNER */
640 
641 /*
642  * Turn us into a lazy TLB process if we
643  * aren't already..
644  */
645 static void exit_mm(struct task_struct * tsk)
646 {
647 	struct mm_struct *mm = tsk->mm;
648 	struct core_state *core_state;
649 
650 	mm_release(tsk, mm);
651 	if (!mm)
652 		return;
653 	/*
654 	 * Serialize with any possible pending coredump.
655 	 * We must hold mmap_sem around checking core_state
656 	 * and clearing tsk->mm.  The core-inducing thread
657 	 * will increment ->nr_threads for each thread in the
658 	 * group with ->mm != NULL.
659 	 */
660 	down_read(&mm->mmap_sem);
661 	core_state = mm->core_state;
662 	if (core_state) {
663 		struct core_thread self;
664 		up_read(&mm->mmap_sem);
665 
666 		self.task = tsk;
667 		self.next = xchg(&core_state->dumper.next, &self);
668 		/*
669 		 * Implies mb(), the result of xchg() must be visible
670 		 * to core_state->dumper.
671 		 */
672 		if (atomic_dec_and_test(&core_state->nr_threads))
673 			complete(&core_state->startup);
674 
675 		for (;;) {
676 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
677 			if (!self.task) /* see coredump_finish() */
678 				break;
679 			schedule();
680 		}
681 		__set_task_state(tsk, TASK_RUNNING);
682 		down_read(&mm->mmap_sem);
683 	}
684 	atomic_inc(&mm->mm_count);
685 	BUG_ON(mm != tsk->active_mm);
686 	/* more a memory barrier than a real lock */
687 	task_lock(tsk);
688 	tsk->mm = NULL;
689 	up_read(&mm->mmap_sem);
690 	enter_lazy_tlb(mm, current);
691 	/* We don't want this task to be frozen prematurely */
692 	clear_freeze_flag(tsk);
693 	task_unlock(tsk);
694 	mm_update_next_owner(mm);
695 	mmput(mm);
696 }
697 
698 /*
699  * When we die, we re-parent all our children.
700  * Try to give them to another thread in our thread
701  * group, and if no such member exists, give it to
702  * the child reaper process (ie "init") in our pid
703  * space.
704  */
705 static struct task_struct *find_new_reaper(struct task_struct *father)
706 {
707 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
708 	struct task_struct *thread;
709 
710 	thread = father;
711 	while_each_thread(father, thread) {
712 		if (thread->flags & PF_EXITING)
713 			continue;
714 		if (unlikely(pid_ns->child_reaper == father))
715 			pid_ns->child_reaper = thread;
716 		return thread;
717 	}
718 
719 	if (unlikely(pid_ns->child_reaper == father)) {
720 		write_unlock_irq(&tasklist_lock);
721 		if (unlikely(pid_ns == &init_pid_ns))
722 			panic("Attempted to kill init!");
723 
724 		zap_pid_ns_processes(pid_ns);
725 		write_lock_irq(&tasklist_lock);
726 		/*
727 		 * We can not clear ->child_reaper or leave it alone.
728 		 * There may by stealth EXIT_DEAD tasks on ->children,
729 		 * forget_original_parent() must move them somewhere.
730 		 */
731 		pid_ns->child_reaper = init_pid_ns.child_reaper;
732 	}
733 
734 	return pid_ns->child_reaper;
735 }
736 
737 /*
738 * Any that need to be release_task'd are put on the @dead list.
739  */
740 static void reparent_thread(struct task_struct *father, struct task_struct *p,
741 				struct list_head *dead)
742 {
743 	if (p->pdeath_signal)
744 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
745 
746 	list_move_tail(&p->sibling, &p->real_parent->children);
747 
748 	if (task_detached(p))
749 		return;
750 	/*
751 	 * If this is a threaded reparent there is no need to
752 	 * notify anyone anything has happened.
753 	 */
754 	if (same_thread_group(p->real_parent, father))
755 		return;
756 
757 	/* We don't want people slaying init.  */
758 	p->exit_signal = SIGCHLD;
759 
760 	/* If it has exited notify the new parent about this child's death. */
761 	if (!task_ptrace(p) &&
762 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
763 		do_notify_parent(p, p->exit_signal);
764 		if (task_detached(p)) {
765 			p->exit_state = EXIT_DEAD;
766 			list_move_tail(&p->sibling, dead);
767 		}
768 	}
769 
770 	kill_orphaned_pgrp(p, father);
771 }
772 
773 static void forget_original_parent(struct task_struct *father)
774 {
775 	struct task_struct *p, *n, *reaper;
776 	LIST_HEAD(dead_children);
777 
778 	exit_ptrace(father);
779 
780 	write_lock_irq(&tasklist_lock);
781 	reaper = find_new_reaper(father);
782 
783 	list_for_each_entry_safe(p, n, &father->children, sibling) {
784 		p->real_parent = reaper;
785 		if (p->parent == father) {
786 			BUG_ON(task_ptrace(p));
787 			p->parent = p->real_parent;
788 		}
789 		reparent_thread(father, p, &dead_children);
790 	}
791 	write_unlock_irq(&tasklist_lock);
792 
793 	BUG_ON(!list_empty(&father->children));
794 
795 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
796 		list_del_init(&p->sibling);
797 		release_task(p);
798 	}
799 }
800 
801 /*
802  * Send signals to all our closest relatives so that they know
803  * to properly mourn us..
804  */
805 static void exit_notify(struct task_struct *tsk, int group_dead)
806 {
807 	int signal;
808 	void *cookie;
809 
810 	/*
811 	 * This does two things:
812 	 *
813   	 * A.  Make init inherit all the child processes
814 	 * B.  Check to see if any process groups have become orphaned
815 	 *	as a result of our exiting, and if they have any stopped
816 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
817 	 */
818 	forget_original_parent(tsk);
819 	exit_task_namespaces(tsk);
820 
821 	write_lock_irq(&tasklist_lock);
822 	if (group_dead)
823 		kill_orphaned_pgrp(tsk->group_leader, NULL);
824 
825 	/* Let father know we died
826 	 *
827 	 * Thread signals are configurable, but you aren't going to use
828 	 * that to send signals to arbitary processes.
829 	 * That stops right now.
830 	 *
831 	 * If the parent exec id doesn't match the exec id we saved
832 	 * when we started then we know the parent has changed security
833 	 * domain.
834 	 *
835 	 * If our self_exec id doesn't match our parent_exec_id then
836 	 * we have changed execution domain as these two values started
837 	 * the same after a fork.
838 	 */
839 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
840 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
841 	     tsk->self_exec_id != tsk->parent_exec_id))
842 		tsk->exit_signal = SIGCHLD;
843 
844 	signal = tracehook_notify_death(tsk, &cookie, group_dead);
845 	if (signal >= 0)
846 		signal = do_notify_parent(tsk, signal);
847 
848 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
849 
850 	/* mt-exec, de_thread() is waiting for us */
851 	if (thread_group_leader(tsk) &&
852 	    tsk->signal->group_exit_task &&
853 	    tsk->signal->notify_count < 0)
854 		wake_up_process(tsk->signal->group_exit_task);
855 
856 	write_unlock_irq(&tasklist_lock);
857 
858 	tracehook_report_death(tsk, signal, cookie, group_dead);
859 
860 	/* If the process is dead, release it - nobody will wait for it */
861 	if (signal == DEATH_REAP)
862 		release_task(tsk);
863 }
864 
865 #ifdef CONFIG_DEBUG_STACK_USAGE
866 static void check_stack_usage(void)
867 {
868 	static DEFINE_SPINLOCK(low_water_lock);
869 	static int lowest_to_date = THREAD_SIZE;
870 	unsigned long free;
871 
872 	free = stack_not_used(current);
873 
874 	if (free >= lowest_to_date)
875 		return;
876 
877 	spin_lock(&low_water_lock);
878 	if (free < lowest_to_date) {
879 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
880 				"left\n",
881 				current->comm, free);
882 		lowest_to_date = free;
883 	}
884 	spin_unlock(&low_water_lock);
885 }
886 #else
887 static inline void check_stack_usage(void) {}
888 #endif
889 
890 NORET_TYPE void do_exit(long code)
891 {
892 	struct task_struct *tsk = current;
893 	int group_dead;
894 
895 	profile_task_exit(tsk);
896 
897 	WARN_ON(atomic_read(&tsk->fs_excl));
898 
899 	if (unlikely(in_interrupt()))
900 		panic("Aiee, killing interrupt handler!");
901 	if (unlikely(!tsk->pid))
902 		panic("Attempted to kill the idle task!");
903 
904 	tracehook_report_exit(&code);
905 
906 	validate_creds_for_do_exit(tsk);
907 
908 	/*
909 	 * We're taking recursive faults here in do_exit. Safest is to just
910 	 * leave this task alone and wait for reboot.
911 	 */
912 	if (unlikely(tsk->flags & PF_EXITING)) {
913 		printk(KERN_ALERT
914 			"Fixing recursive fault but reboot is needed!\n");
915 		/*
916 		 * We can do this unlocked here. The futex code uses
917 		 * this flag just to verify whether the pi state
918 		 * cleanup has been done or not. In the worst case it
919 		 * loops once more. We pretend that the cleanup was
920 		 * done as there is no way to return. Either the
921 		 * OWNER_DIED bit is set by now or we push the blocked
922 		 * task into the wait for ever nirwana as well.
923 		 */
924 		tsk->flags |= PF_EXITPIDONE;
925 		set_current_state(TASK_UNINTERRUPTIBLE);
926 		schedule();
927 	}
928 
929 	exit_irq_thread();
930 
931 	exit_signals(tsk);  /* sets PF_EXITING */
932 	/*
933 	 * tsk->flags are checked in the futex code to protect against
934 	 * an exiting task cleaning up the robust pi futexes.
935 	 */
936 	smp_mb();
937 	spin_unlock_wait(&tsk->pi_lock);
938 
939 	if (unlikely(in_atomic()))
940 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
941 				current->comm, task_pid_nr(current),
942 				preempt_count());
943 
944 	acct_update_integrals(tsk);
945 
946 	group_dead = atomic_dec_and_test(&tsk->signal->live);
947 	if (group_dead) {
948 		hrtimer_cancel(&tsk->signal->real_timer);
949 		exit_itimers(tsk->signal);
950 		if (tsk->mm)
951 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
952 	}
953 	acct_collect(code, group_dead);
954 	if (group_dead)
955 		tty_audit_exit();
956 	if (unlikely(tsk->audit_context))
957 		audit_free(tsk);
958 
959 	tsk->exit_code = code;
960 	taskstats_exit(tsk, group_dead);
961 
962 	exit_mm(tsk);
963 
964 	if (group_dead)
965 		acct_process();
966 	trace_sched_process_exit(tsk);
967 
968 	exit_sem(tsk);
969 	exit_files(tsk);
970 	exit_fs(tsk);
971 	check_stack_usage();
972 	exit_thread();
973 	cgroup_exit(tsk, 1);
974 
975 	if (group_dead && tsk->signal->leader)
976 		disassociate_ctty(1);
977 
978 	module_put(task_thread_info(tsk)->exec_domain->module);
979 
980 	proc_exit_connector(tsk);
981 
982 	/*
983 	 * Flush inherited counters to the parent - before the parent
984 	 * gets woken up by child-exit notifications.
985 	 */
986 	perf_event_exit_task(tsk);
987 
988 	exit_notify(tsk, group_dead);
989 #ifdef CONFIG_NUMA
990 	mpol_put(tsk->mempolicy);
991 	tsk->mempolicy = NULL;
992 #endif
993 #ifdef CONFIG_FUTEX
994 	if (unlikely(current->pi_state_cache))
995 		kfree(current->pi_state_cache);
996 #endif
997 	/*
998 	 * Make sure we are holding no locks:
999 	 */
1000 	debug_check_no_locks_held(tsk);
1001 	/*
1002 	 * We can do this unlocked here. The futex code uses this flag
1003 	 * just to verify whether the pi state cleanup has been done
1004 	 * or not. In the worst case it loops once more.
1005 	 */
1006 	tsk->flags |= PF_EXITPIDONE;
1007 
1008 	if (tsk->io_context)
1009 		exit_io_context();
1010 
1011 	if (tsk->splice_pipe)
1012 		__free_pipe_info(tsk->splice_pipe);
1013 
1014 	validate_creds_for_do_exit(tsk);
1015 
1016 	preempt_disable();
1017 	exit_rcu();
1018 	/* causes final put_task_struct in finish_task_switch(). */
1019 	tsk->state = TASK_DEAD;
1020 	schedule();
1021 	BUG();
1022 	/* Avoid "noreturn function does return".  */
1023 	for (;;)
1024 		cpu_relax();	/* For when BUG is null */
1025 }
1026 
1027 EXPORT_SYMBOL_GPL(do_exit);
1028 
1029 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1030 {
1031 	if (comp)
1032 		complete(comp);
1033 
1034 	do_exit(code);
1035 }
1036 
1037 EXPORT_SYMBOL(complete_and_exit);
1038 
1039 SYSCALL_DEFINE1(exit, int, error_code)
1040 {
1041 	do_exit((error_code&0xff)<<8);
1042 }
1043 
1044 /*
1045  * Take down every thread in the group.  This is called by fatal signals
1046  * as well as by sys_exit_group (below).
1047  */
1048 NORET_TYPE void
1049 do_group_exit(int exit_code)
1050 {
1051 	struct signal_struct *sig = current->signal;
1052 
1053 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1054 
1055 	if (signal_group_exit(sig))
1056 		exit_code = sig->group_exit_code;
1057 	else if (!thread_group_empty(current)) {
1058 		struct sighand_struct *const sighand = current->sighand;
1059 		spin_lock_irq(&sighand->siglock);
1060 		if (signal_group_exit(sig))
1061 			/* Another thread got here before we took the lock.  */
1062 			exit_code = sig->group_exit_code;
1063 		else {
1064 			sig->group_exit_code = exit_code;
1065 			sig->flags = SIGNAL_GROUP_EXIT;
1066 			zap_other_threads(current);
1067 		}
1068 		spin_unlock_irq(&sighand->siglock);
1069 	}
1070 
1071 	do_exit(exit_code);
1072 	/* NOTREACHED */
1073 }
1074 
1075 /*
1076  * this kills every thread in the thread group. Note that any externally
1077  * wait4()-ing process will get the correct exit code - even if this
1078  * thread is not the thread group leader.
1079  */
1080 SYSCALL_DEFINE1(exit_group, int, error_code)
1081 {
1082 	do_group_exit((error_code & 0xff) << 8);
1083 	/* NOTREACHED */
1084 	return 0;
1085 }
1086 
1087 struct wait_opts {
1088 	enum pid_type		wo_type;
1089 	int			wo_flags;
1090 	struct pid		*wo_pid;
1091 
1092 	struct siginfo __user	*wo_info;
1093 	int __user		*wo_stat;
1094 	struct rusage __user	*wo_rusage;
1095 
1096 	wait_queue_t		child_wait;
1097 	int			notask_error;
1098 };
1099 
1100 static inline
1101 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1102 {
1103 	if (type != PIDTYPE_PID)
1104 		task = task->group_leader;
1105 	return task->pids[type].pid;
1106 }
1107 
1108 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1109 {
1110 	return	wo->wo_type == PIDTYPE_MAX ||
1111 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1112 }
1113 
1114 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1115 {
1116 	if (!eligible_pid(wo, p))
1117 		return 0;
1118 	/* Wait for all children (clone and not) if __WALL is set;
1119 	 * otherwise, wait for clone children *only* if __WCLONE is
1120 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1121 	 * A "clone" child here is one that reports to its parent
1122 	 * using a signal other than SIGCHLD.) */
1123 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1124 	    && !(wo->wo_flags & __WALL))
1125 		return 0;
1126 
1127 	return 1;
1128 }
1129 
1130 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1131 				pid_t pid, uid_t uid, int why, int status)
1132 {
1133 	struct siginfo __user *infop;
1134 	int retval = wo->wo_rusage
1135 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1136 
1137 	put_task_struct(p);
1138 	infop = wo->wo_info;
1139 	if (infop) {
1140 		if (!retval)
1141 			retval = put_user(SIGCHLD, &infop->si_signo);
1142 		if (!retval)
1143 			retval = put_user(0, &infop->si_errno);
1144 		if (!retval)
1145 			retval = put_user((short)why, &infop->si_code);
1146 		if (!retval)
1147 			retval = put_user(pid, &infop->si_pid);
1148 		if (!retval)
1149 			retval = put_user(uid, &infop->si_uid);
1150 		if (!retval)
1151 			retval = put_user(status, &infop->si_status);
1152 	}
1153 	if (!retval)
1154 		retval = pid;
1155 	return retval;
1156 }
1157 
1158 /*
1159  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1160  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1161  * the lock and this task is uninteresting.  If we return nonzero, we have
1162  * released the lock and the system call should return.
1163  */
1164 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1165 {
1166 	unsigned long state;
1167 	int retval, status, traced;
1168 	pid_t pid = task_pid_vnr(p);
1169 	uid_t uid = __task_cred(p)->uid;
1170 	struct siginfo __user *infop;
1171 
1172 	if (!likely(wo->wo_flags & WEXITED))
1173 		return 0;
1174 
1175 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1176 		int exit_code = p->exit_code;
1177 		int why, status;
1178 
1179 		get_task_struct(p);
1180 		read_unlock(&tasklist_lock);
1181 		if ((exit_code & 0x7f) == 0) {
1182 			why = CLD_EXITED;
1183 			status = exit_code >> 8;
1184 		} else {
1185 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1186 			status = exit_code & 0x7f;
1187 		}
1188 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1189 	}
1190 
1191 	/*
1192 	 * Try to move the task's state to DEAD
1193 	 * only one thread is allowed to do this:
1194 	 */
1195 	state = xchg(&p->exit_state, EXIT_DEAD);
1196 	if (state != EXIT_ZOMBIE) {
1197 		BUG_ON(state != EXIT_DEAD);
1198 		return 0;
1199 	}
1200 
1201 	traced = ptrace_reparented(p);
1202 	/*
1203 	 * It can be ptraced but not reparented, check
1204 	 * !task_detached() to filter out sub-threads.
1205 	 */
1206 	if (likely(!traced) && likely(!task_detached(p))) {
1207 		struct signal_struct *psig;
1208 		struct signal_struct *sig;
1209 		unsigned long maxrss;
1210 
1211 		/*
1212 		 * The resource counters for the group leader are in its
1213 		 * own task_struct.  Those for dead threads in the group
1214 		 * are in its signal_struct, as are those for the child
1215 		 * processes it has previously reaped.  All these
1216 		 * accumulate in the parent's signal_struct c* fields.
1217 		 *
1218 		 * We don't bother to take a lock here to protect these
1219 		 * p->signal fields, because they are only touched by
1220 		 * __exit_signal, which runs with tasklist_lock
1221 		 * write-locked anyway, and so is excluded here.  We do
1222 		 * need to protect the access to parent->signal fields,
1223 		 * as other threads in the parent group can be right
1224 		 * here reaping other children at the same time.
1225 		 */
1226 		spin_lock_irq(&p->real_parent->sighand->siglock);
1227 		psig = p->real_parent->signal;
1228 		sig = p->signal;
1229 		psig->cutime =
1230 			cputime_add(psig->cutime,
1231 			cputime_add(p->utime,
1232 			cputime_add(sig->utime,
1233 				    sig->cutime)));
1234 		psig->cstime =
1235 			cputime_add(psig->cstime,
1236 			cputime_add(p->stime,
1237 			cputime_add(sig->stime,
1238 				    sig->cstime)));
1239 		psig->cgtime =
1240 			cputime_add(psig->cgtime,
1241 			cputime_add(p->gtime,
1242 			cputime_add(sig->gtime,
1243 				    sig->cgtime)));
1244 		psig->cmin_flt +=
1245 			p->min_flt + sig->min_flt + sig->cmin_flt;
1246 		psig->cmaj_flt +=
1247 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1248 		psig->cnvcsw +=
1249 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1250 		psig->cnivcsw +=
1251 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1252 		psig->cinblock +=
1253 			task_io_get_inblock(p) +
1254 			sig->inblock + sig->cinblock;
1255 		psig->coublock +=
1256 			task_io_get_oublock(p) +
1257 			sig->oublock + sig->coublock;
1258 		maxrss = max(sig->maxrss, sig->cmaxrss);
1259 		if (psig->cmaxrss < maxrss)
1260 			psig->cmaxrss = maxrss;
1261 		task_io_accounting_add(&psig->ioac, &p->ioac);
1262 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1263 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1264 	}
1265 
1266 	/*
1267 	 * Now we are sure this task is interesting, and no other
1268 	 * thread can reap it because we set its state to EXIT_DEAD.
1269 	 */
1270 	read_unlock(&tasklist_lock);
1271 
1272 	retval = wo->wo_rusage
1273 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1274 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1275 		? p->signal->group_exit_code : p->exit_code;
1276 	if (!retval && wo->wo_stat)
1277 		retval = put_user(status, wo->wo_stat);
1278 
1279 	infop = wo->wo_info;
1280 	if (!retval && infop)
1281 		retval = put_user(SIGCHLD, &infop->si_signo);
1282 	if (!retval && infop)
1283 		retval = put_user(0, &infop->si_errno);
1284 	if (!retval && infop) {
1285 		int why;
1286 
1287 		if ((status & 0x7f) == 0) {
1288 			why = CLD_EXITED;
1289 			status >>= 8;
1290 		} else {
1291 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1292 			status &= 0x7f;
1293 		}
1294 		retval = put_user((short)why, &infop->si_code);
1295 		if (!retval)
1296 			retval = put_user(status, &infop->si_status);
1297 	}
1298 	if (!retval && infop)
1299 		retval = put_user(pid, &infop->si_pid);
1300 	if (!retval && infop)
1301 		retval = put_user(uid, &infop->si_uid);
1302 	if (!retval)
1303 		retval = pid;
1304 
1305 	if (traced) {
1306 		write_lock_irq(&tasklist_lock);
1307 		/* We dropped tasklist, ptracer could die and untrace */
1308 		ptrace_unlink(p);
1309 		/*
1310 		 * If this is not a detached task, notify the parent.
1311 		 * If it's still not detached after that, don't release
1312 		 * it now.
1313 		 */
1314 		if (!task_detached(p)) {
1315 			do_notify_parent(p, p->exit_signal);
1316 			if (!task_detached(p)) {
1317 				p->exit_state = EXIT_ZOMBIE;
1318 				p = NULL;
1319 			}
1320 		}
1321 		write_unlock_irq(&tasklist_lock);
1322 	}
1323 	if (p != NULL)
1324 		release_task(p);
1325 
1326 	return retval;
1327 }
1328 
1329 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1330 {
1331 	if (ptrace) {
1332 		if (task_is_stopped_or_traced(p))
1333 			return &p->exit_code;
1334 	} else {
1335 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1336 			return &p->signal->group_exit_code;
1337 	}
1338 	return NULL;
1339 }
1340 
1341 /*
1342  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1343  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1344  * the lock and this task is uninteresting.  If we return nonzero, we have
1345  * released the lock and the system call should return.
1346  */
1347 static int wait_task_stopped(struct wait_opts *wo,
1348 				int ptrace, struct task_struct *p)
1349 {
1350 	struct siginfo __user *infop;
1351 	int retval, exit_code, *p_code, why;
1352 	uid_t uid = 0; /* unneeded, required by compiler */
1353 	pid_t pid;
1354 
1355 	/*
1356 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1357 	 */
1358 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1359 		return 0;
1360 
1361 	exit_code = 0;
1362 	spin_lock_irq(&p->sighand->siglock);
1363 
1364 	p_code = task_stopped_code(p, ptrace);
1365 	if (unlikely(!p_code))
1366 		goto unlock_sig;
1367 
1368 	exit_code = *p_code;
1369 	if (!exit_code)
1370 		goto unlock_sig;
1371 
1372 	if (!unlikely(wo->wo_flags & WNOWAIT))
1373 		*p_code = 0;
1374 
1375 	/* don't need the RCU readlock here as we're holding a spinlock */
1376 	uid = __task_cred(p)->uid;
1377 unlock_sig:
1378 	spin_unlock_irq(&p->sighand->siglock);
1379 	if (!exit_code)
1380 		return 0;
1381 
1382 	/*
1383 	 * Now we are pretty sure this task is interesting.
1384 	 * Make sure it doesn't get reaped out from under us while we
1385 	 * give up the lock and then examine it below.  We don't want to
1386 	 * keep holding onto the tasklist_lock while we call getrusage and
1387 	 * possibly take page faults for user memory.
1388 	 */
1389 	get_task_struct(p);
1390 	pid = task_pid_vnr(p);
1391 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1392 	read_unlock(&tasklist_lock);
1393 
1394 	if (unlikely(wo->wo_flags & WNOWAIT))
1395 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1396 
1397 	retval = wo->wo_rusage
1398 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1399 	if (!retval && wo->wo_stat)
1400 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1401 
1402 	infop = wo->wo_info;
1403 	if (!retval && infop)
1404 		retval = put_user(SIGCHLD, &infop->si_signo);
1405 	if (!retval && infop)
1406 		retval = put_user(0, &infop->si_errno);
1407 	if (!retval && infop)
1408 		retval = put_user((short)why, &infop->si_code);
1409 	if (!retval && infop)
1410 		retval = put_user(exit_code, &infop->si_status);
1411 	if (!retval && infop)
1412 		retval = put_user(pid, &infop->si_pid);
1413 	if (!retval && infop)
1414 		retval = put_user(uid, &infop->si_uid);
1415 	if (!retval)
1416 		retval = pid;
1417 	put_task_struct(p);
1418 
1419 	BUG_ON(!retval);
1420 	return retval;
1421 }
1422 
1423 /*
1424  * Handle do_wait work for one task in a live, non-stopped state.
1425  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1426  * the lock and this task is uninteresting.  If we return nonzero, we have
1427  * released the lock and the system call should return.
1428  */
1429 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1430 {
1431 	int retval;
1432 	pid_t pid;
1433 	uid_t uid;
1434 
1435 	if (!unlikely(wo->wo_flags & WCONTINUED))
1436 		return 0;
1437 
1438 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1439 		return 0;
1440 
1441 	spin_lock_irq(&p->sighand->siglock);
1442 	/* Re-check with the lock held.  */
1443 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1444 		spin_unlock_irq(&p->sighand->siglock);
1445 		return 0;
1446 	}
1447 	if (!unlikely(wo->wo_flags & WNOWAIT))
1448 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1449 	uid = __task_cred(p)->uid;
1450 	spin_unlock_irq(&p->sighand->siglock);
1451 
1452 	pid = task_pid_vnr(p);
1453 	get_task_struct(p);
1454 	read_unlock(&tasklist_lock);
1455 
1456 	if (!wo->wo_info) {
1457 		retval = wo->wo_rusage
1458 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1459 		put_task_struct(p);
1460 		if (!retval && wo->wo_stat)
1461 			retval = put_user(0xffff, wo->wo_stat);
1462 		if (!retval)
1463 			retval = pid;
1464 	} else {
1465 		retval = wait_noreap_copyout(wo, p, pid, uid,
1466 					     CLD_CONTINUED, SIGCONT);
1467 		BUG_ON(retval == 0);
1468 	}
1469 
1470 	return retval;
1471 }
1472 
1473 /*
1474  * Consider @p for a wait by @parent.
1475  *
1476  * -ECHILD should be in ->notask_error before the first call.
1477  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1478  * Returns zero if the search for a child should continue;
1479  * then ->notask_error is 0 if @p is an eligible child,
1480  * or another error from security_task_wait(), or still -ECHILD.
1481  */
1482 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1483 				struct task_struct *p)
1484 {
1485 	int ret = eligible_child(wo, p);
1486 	if (!ret)
1487 		return ret;
1488 
1489 	ret = security_task_wait(p);
1490 	if (unlikely(ret < 0)) {
1491 		/*
1492 		 * If we have not yet seen any eligible child,
1493 		 * then let this error code replace -ECHILD.
1494 		 * A permission error will give the user a clue
1495 		 * to look for security policy problems, rather
1496 		 * than for mysterious wait bugs.
1497 		 */
1498 		if (wo->notask_error)
1499 			wo->notask_error = ret;
1500 		return 0;
1501 	}
1502 
1503 	if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1504 		/*
1505 		 * This child is hidden by ptrace.
1506 		 * We aren't allowed to see it now, but eventually we will.
1507 		 */
1508 		wo->notask_error = 0;
1509 		return 0;
1510 	}
1511 
1512 	if (p->exit_state == EXIT_DEAD)
1513 		return 0;
1514 
1515 	/*
1516 	 * We don't reap group leaders with subthreads.
1517 	 */
1518 	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1519 		return wait_task_zombie(wo, p);
1520 
1521 	/*
1522 	 * It's stopped or running now, so it might
1523 	 * later continue, exit, or stop again.
1524 	 */
1525 	wo->notask_error = 0;
1526 
1527 	if (task_stopped_code(p, ptrace))
1528 		return wait_task_stopped(wo, ptrace, p);
1529 
1530 	return wait_task_continued(wo, p);
1531 }
1532 
1533 /*
1534  * Do the work of do_wait() for one thread in the group, @tsk.
1535  *
1536  * -ECHILD should be in ->notask_error before the first call.
1537  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1538  * Returns zero if the search for a child should continue; then
1539  * ->notask_error is 0 if there were any eligible children,
1540  * or another error from security_task_wait(), or still -ECHILD.
1541  */
1542 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1543 {
1544 	struct task_struct *p;
1545 
1546 	list_for_each_entry(p, &tsk->children, sibling) {
1547 		/*
1548 		 * Do not consider detached threads.
1549 		 */
1550 		if (!task_detached(p)) {
1551 			int ret = wait_consider_task(wo, 0, p);
1552 			if (ret)
1553 				return ret;
1554 		}
1555 	}
1556 
1557 	return 0;
1558 }
1559 
1560 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1561 {
1562 	struct task_struct *p;
1563 
1564 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1565 		int ret = wait_consider_task(wo, 1, p);
1566 		if (ret)
1567 			return ret;
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1574 				int sync, void *key)
1575 {
1576 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1577 						child_wait);
1578 	struct task_struct *p = key;
1579 
1580 	if (!eligible_pid(wo, p))
1581 		return 0;
1582 
1583 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1584 		return 0;
1585 
1586 	return default_wake_function(wait, mode, sync, key);
1587 }
1588 
1589 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1590 {
1591 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1592 				TASK_INTERRUPTIBLE, 1, p);
1593 }
1594 
1595 static long do_wait(struct wait_opts *wo)
1596 {
1597 	struct task_struct *tsk;
1598 	int retval;
1599 
1600 	trace_sched_process_wait(wo->wo_pid);
1601 
1602 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1603 	wo->child_wait.private = current;
1604 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1605 repeat:
1606 	/*
1607 	 * If there is nothing that can match our critiera just get out.
1608 	 * We will clear ->notask_error to zero if we see any child that
1609 	 * might later match our criteria, even if we are not able to reap
1610 	 * it yet.
1611 	 */
1612 	wo->notask_error = -ECHILD;
1613 	if ((wo->wo_type < PIDTYPE_MAX) &&
1614 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1615 		goto notask;
1616 
1617 	set_current_state(TASK_INTERRUPTIBLE);
1618 	read_lock(&tasklist_lock);
1619 	tsk = current;
1620 	do {
1621 		retval = do_wait_thread(wo, tsk);
1622 		if (retval)
1623 			goto end;
1624 
1625 		retval = ptrace_do_wait(wo, tsk);
1626 		if (retval)
1627 			goto end;
1628 
1629 		if (wo->wo_flags & __WNOTHREAD)
1630 			break;
1631 	} while_each_thread(current, tsk);
1632 	read_unlock(&tasklist_lock);
1633 
1634 notask:
1635 	retval = wo->notask_error;
1636 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1637 		retval = -ERESTARTSYS;
1638 		if (!signal_pending(current)) {
1639 			schedule();
1640 			goto repeat;
1641 		}
1642 	}
1643 end:
1644 	__set_current_state(TASK_RUNNING);
1645 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1646 	return retval;
1647 }
1648 
1649 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1650 		infop, int, options, struct rusage __user *, ru)
1651 {
1652 	struct wait_opts wo;
1653 	struct pid *pid = NULL;
1654 	enum pid_type type;
1655 	long ret;
1656 
1657 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1658 		return -EINVAL;
1659 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1660 		return -EINVAL;
1661 
1662 	switch (which) {
1663 	case P_ALL:
1664 		type = PIDTYPE_MAX;
1665 		break;
1666 	case P_PID:
1667 		type = PIDTYPE_PID;
1668 		if (upid <= 0)
1669 			return -EINVAL;
1670 		break;
1671 	case P_PGID:
1672 		type = PIDTYPE_PGID;
1673 		if (upid <= 0)
1674 			return -EINVAL;
1675 		break;
1676 	default:
1677 		return -EINVAL;
1678 	}
1679 
1680 	if (type < PIDTYPE_MAX)
1681 		pid = find_get_pid(upid);
1682 
1683 	wo.wo_type	= type;
1684 	wo.wo_pid	= pid;
1685 	wo.wo_flags	= options;
1686 	wo.wo_info	= infop;
1687 	wo.wo_stat	= NULL;
1688 	wo.wo_rusage	= ru;
1689 	ret = do_wait(&wo);
1690 
1691 	if (ret > 0) {
1692 		ret = 0;
1693 	} else if (infop) {
1694 		/*
1695 		 * For a WNOHANG return, clear out all the fields
1696 		 * we would set so the user can easily tell the
1697 		 * difference.
1698 		 */
1699 		if (!ret)
1700 			ret = put_user(0, &infop->si_signo);
1701 		if (!ret)
1702 			ret = put_user(0, &infop->si_errno);
1703 		if (!ret)
1704 			ret = put_user(0, &infop->si_code);
1705 		if (!ret)
1706 			ret = put_user(0, &infop->si_pid);
1707 		if (!ret)
1708 			ret = put_user(0, &infop->si_uid);
1709 		if (!ret)
1710 			ret = put_user(0, &infop->si_status);
1711 	}
1712 
1713 	put_pid(pid);
1714 
1715 	/* avoid REGPARM breakage on x86: */
1716 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1717 	return ret;
1718 }
1719 
1720 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1721 		int, options, struct rusage __user *, ru)
1722 {
1723 	struct wait_opts wo;
1724 	struct pid *pid = NULL;
1725 	enum pid_type type;
1726 	long ret;
1727 
1728 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1729 			__WNOTHREAD|__WCLONE|__WALL))
1730 		return -EINVAL;
1731 
1732 	if (upid == -1)
1733 		type = PIDTYPE_MAX;
1734 	else if (upid < 0) {
1735 		type = PIDTYPE_PGID;
1736 		pid = find_get_pid(-upid);
1737 	} else if (upid == 0) {
1738 		type = PIDTYPE_PGID;
1739 		pid = get_task_pid(current, PIDTYPE_PGID);
1740 	} else /* upid > 0 */ {
1741 		type = PIDTYPE_PID;
1742 		pid = find_get_pid(upid);
1743 	}
1744 
1745 	wo.wo_type	= type;
1746 	wo.wo_pid	= pid;
1747 	wo.wo_flags	= options | WEXITED;
1748 	wo.wo_info	= NULL;
1749 	wo.wo_stat	= stat_addr;
1750 	wo.wo_rusage	= ru;
1751 	ret = do_wait(&wo);
1752 	put_pid(pid);
1753 
1754 	/* avoid REGPARM breakage on x86: */
1755 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1756 	return ret;
1757 }
1758 
1759 #ifdef __ARCH_WANT_SYS_WAITPID
1760 
1761 /*
1762  * sys_waitpid() remains for compatibility. waitpid() should be
1763  * implemented by calling sys_wait4() from libc.a.
1764  */
1765 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1766 {
1767 	return sys_wait4(pid, stat_addr, options, NULL);
1768 }
1769 
1770 #endif
1771