xref: /linux/kernel/exit.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72 #include <linux/uaccess.h>
73 
74 #include <uapi/linux/wait.h>
75 
76 #include <asm/unistd.h>
77 #include <asm/mmu_context.h>
78 
79 #include "exit.h"
80 
81 /*
82  * The default value should be high enough to not crash a system that randomly
83  * crashes its kernel from time to time, but low enough to at least not permit
84  * overflowing 32-bit refcounts or the ldsem writer count.
85  */
86 static unsigned int oops_limit = 10000;
87 
88 #ifdef CONFIG_SYSCTL
89 static struct ctl_table kern_exit_table[] = {
90 	{
91 		.procname       = "oops_limit",
92 		.data           = &oops_limit,
93 		.maxlen         = sizeof(oops_limit),
94 		.mode           = 0644,
95 		.proc_handler   = proc_douintvec,
96 	},
97 };
98 
99 static __init int kernel_exit_sysctls_init(void)
100 {
101 	register_sysctl_init("kernel", kern_exit_table);
102 	return 0;
103 }
104 late_initcall(kernel_exit_sysctls_init);
105 #endif
106 
107 static atomic_t oops_count = ATOMIC_INIT(0);
108 
109 #ifdef CONFIG_SYSFS
110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
111 			       char *page)
112 {
113 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
114 }
115 
116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
117 
118 static __init int kernel_exit_sysfs_init(void)
119 {
120 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
121 	return 0;
122 }
123 late_initcall(kernel_exit_sysfs_init);
124 #endif
125 
126 static void __unhash_process(struct task_struct *p, bool group_dead)
127 {
128 	nr_threads--;
129 	detach_pid(p, PIDTYPE_PID);
130 	if (group_dead) {
131 		detach_pid(p, PIDTYPE_TGID);
132 		detach_pid(p, PIDTYPE_PGID);
133 		detach_pid(p, PIDTYPE_SID);
134 
135 		list_del_rcu(&p->tasks);
136 		list_del_init(&p->sibling);
137 		__this_cpu_dec(process_counts);
138 	}
139 	list_del_rcu(&p->thread_node);
140 }
141 
142 /*
143  * This function expects the tasklist_lock write-locked.
144  */
145 static void __exit_signal(struct task_struct *tsk)
146 {
147 	struct signal_struct *sig = tsk->signal;
148 	bool group_dead = thread_group_leader(tsk);
149 	struct sighand_struct *sighand;
150 	struct tty_struct *tty;
151 	u64 utime, stime;
152 
153 	sighand = rcu_dereference_check(tsk->sighand,
154 					lockdep_tasklist_lock_is_held());
155 	spin_lock(&sighand->siglock);
156 
157 #ifdef CONFIG_POSIX_TIMERS
158 	posix_cpu_timers_exit(tsk);
159 	if (group_dead)
160 		posix_cpu_timers_exit_group(tsk);
161 #endif
162 
163 	if (group_dead) {
164 		tty = sig->tty;
165 		sig->tty = NULL;
166 	} else {
167 		/*
168 		 * If there is any task waiting for the group exit
169 		 * then notify it:
170 		 */
171 		if (sig->notify_count > 0 && !--sig->notify_count)
172 			wake_up_process(sig->group_exec_task);
173 
174 		if (tsk == sig->curr_target)
175 			sig->curr_target = next_thread(tsk);
176 	}
177 
178 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
179 			      sizeof(unsigned long long));
180 
181 	/*
182 	 * Accumulate here the counters for all threads as they die. We could
183 	 * skip the group leader because it is the last user of signal_struct,
184 	 * but we want to avoid the race with thread_group_cputime() which can
185 	 * see the empty ->thread_head list.
186 	 */
187 	task_cputime(tsk, &utime, &stime);
188 	write_seqlock(&sig->stats_lock);
189 	sig->utime += utime;
190 	sig->stime += stime;
191 	sig->gtime += task_gtime(tsk);
192 	sig->min_flt += tsk->min_flt;
193 	sig->maj_flt += tsk->maj_flt;
194 	sig->nvcsw += tsk->nvcsw;
195 	sig->nivcsw += tsk->nivcsw;
196 	sig->inblock += task_io_get_inblock(tsk);
197 	sig->oublock += task_io_get_oublock(tsk);
198 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
199 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
200 	sig->nr_threads--;
201 	__unhash_process(tsk, group_dead);
202 	write_sequnlock(&sig->stats_lock);
203 
204 	/*
205 	 * Do this under ->siglock, we can race with another thread
206 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
207 	 */
208 	flush_sigqueue(&tsk->pending);
209 	tsk->sighand = NULL;
210 	spin_unlock(&sighand->siglock);
211 
212 	__cleanup_sighand(sighand);
213 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
214 	if (group_dead) {
215 		flush_sigqueue(&sig->shared_pending);
216 		tty_kref_put(tty);
217 	}
218 }
219 
220 static void delayed_put_task_struct(struct rcu_head *rhp)
221 {
222 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
223 
224 	kprobe_flush_task(tsk);
225 	rethook_flush_task(tsk);
226 	perf_event_delayed_put(tsk);
227 	trace_sched_process_free(tsk);
228 	put_task_struct(tsk);
229 }
230 
231 void put_task_struct_rcu_user(struct task_struct *task)
232 {
233 	if (refcount_dec_and_test(&task->rcu_users))
234 		call_rcu(&task->rcu, delayed_put_task_struct);
235 }
236 
237 void __weak release_thread(struct task_struct *dead_task)
238 {
239 }
240 
241 void release_task(struct task_struct *p)
242 {
243 	struct task_struct *leader;
244 	struct pid *thread_pid;
245 	int zap_leader;
246 repeat:
247 	/* don't need to get the RCU readlock here - the process is dead and
248 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
249 	rcu_read_lock();
250 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
251 	rcu_read_unlock();
252 
253 	cgroup_release(p);
254 
255 	write_lock_irq(&tasklist_lock);
256 	ptrace_release_task(p);
257 	thread_pid = get_pid(p->thread_pid);
258 	__exit_signal(p);
259 
260 	/*
261 	 * If we are the last non-leader member of the thread
262 	 * group, and the leader is zombie, then notify the
263 	 * group leader's parent process. (if it wants notification.)
264 	 */
265 	zap_leader = 0;
266 	leader = p->group_leader;
267 	if (leader != p && thread_group_empty(leader)
268 			&& leader->exit_state == EXIT_ZOMBIE) {
269 		/*
270 		 * If we were the last child thread and the leader has
271 		 * exited already, and the leader's parent ignores SIGCHLD,
272 		 * then we are the one who should release the leader.
273 		 */
274 		zap_leader = do_notify_parent(leader, leader->exit_signal);
275 		if (zap_leader)
276 			leader->exit_state = EXIT_DEAD;
277 	}
278 
279 	write_unlock_irq(&tasklist_lock);
280 	seccomp_filter_release(p);
281 	proc_flush_pid(thread_pid);
282 	put_pid(thread_pid);
283 	release_thread(p);
284 	put_task_struct_rcu_user(p);
285 
286 	p = leader;
287 	if (unlikely(zap_leader))
288 		goto repeat;
289 }
290 
291 int rcuwait_wake_up(struct rcuwait *w)
292 {
293 	int ret = 0;
294 	struct task_struct *task;
295 
296 	rcu_read_lock();
297 
298 	/*
299 	 * Order condition vs @task, such that everything prior to the load
300 	 * of @task is visible. This is the condition as to why the user called
301 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
302 	 * barrier (A) in rcuwait_wait_event().
303 	 *
304 	 *    WAIT                WAKE
305 	 *    [S] tsk = current	  [S] cond = true
306 	 *        MB (A)	      MB (B)
307 	 *    [L] cond		  [L] tsk
308 	 */
309 	smp_mb(); /* (B) */
310 
311 	task = rcu_dereference(w->task);
312 	if (task)
313 		ret = wake_up_process(task);
314 	rcu_read_unlock();
315 
316 	return ret;
317 }
318 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
319 
320 /*
321  * Determine if a process group is "orphaned", according to the POSIX
322  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
323  * by terminal-generated stop signals.  Newly orphaned process groups are
324  * to receive a SIGHUP and a SIGCONT.
325  *
326  * "I ask you, have you ever known what it is to be an orphan?"
327  */
328 static int will_become_orphaned_pgrp(struct pid *pgrp,
329 					struct task_struct *ignored_task)
330 {
331 	struct task_struct *p;
332 
333 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
334 		if ((p == ignored_task) ||
335 		    (p->exit_state && thread_group_empty(p)) ||
336 		    is_global_init(p->real_parent))
337 			continue;
338 
339 		if (task_pgrp(p->real_parent) != pgrp &&
340 		    task_session(p->real_parent) == task_session(p))
341 			return 0;
342 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
343 
344 	return 1;
345 }
346 
347 int is_current_pgrp_orphaned(void)
348 {
349 	int retval;
350 
351 	read_lock(&tasklist_lock);
352 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
353 	read_unlock(&tasklist_lock);
354 
355 	return retval;
356 }
357 
358 static bool has_stopped_jobs(struct pid *pgrp)
359 {
360 	struct task_struct *p;
361 
362 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
363 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
364 			return true;
365 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
366 
367 	return false;
368 }
369 
370 /*
371  * Check to see if any process groups have become orphaned as
372  * a result of our exiting, and if they have any stopped jobs,
373  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
374  */
375 static void
376 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
377 {
378 	struct pid *pgrp = task_pgrp(tsk);
379 	struct task_struct *ignored_task = tsk;
380 
381 	if (!parent)
382 		/* exit: our father is in a different pgrp than
383 		 * we are and we were the only connection outside.
384 		 */
385 		parent = tsk->real_parent;
386 	else
387 		/* reparent: our child is in a different pgrp than
388 		 * we are, and it was the only connection outside.
389 		 */
390 		ignored_task = NULL;
391 
392 	if (task_pgrp(parent) != pgrp &&
393 	    task_session(parent) == task_session(tsk) &&
394 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
395 	    has_stopped_jobs(pgrp)) {
396 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
397 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
398 	}
399 }
400 
401 static void coredump_task_exit(struct task_struct *tsk)
402 {
403 	struct core_state *core_state;
404 
405 	/*
406 	 * Serialize with any possible pending coredump.
407 	 * We must hold siglock around checking core_state
408 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
409 	 * will increment ->nr_threads for each thread in the
410 	 * group without PF_POSTCOREDUMP set.
411 	 */
412 	spin_lock_irq(&tsk->sighand->siglock);
413 	tsk->flags |= PF_POSTCOREDUMP;
414 	core_state = tsk->signal->core_state;
415 	spin_unlock_irq(&tsk->sighand->siglock);
416 	if (core_state) {
417 		struct core_thread self;
418 
419 		self.task = current;
420 		if (self.task->flags & PF_SIGNALED)
421 			self.next = xchg(&core_state->dumper.next, &self);
422 		else
423 			self.task = NULL;
424 		/*
425 		 * Implies mb(), the result of xchg() must be visible
426 		 * to core_state->dumper.
427 		 */
428 		if (atomic_dec_and_test(&core_state->nr_threads))
429 			complete(&core_state->startup);
430 
431 		for (;;) {
432 			set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
433 			if (!self.task) /* see coredump_finish() */
434 				break;
435 			schedule();
436 		}
437 		__set_current_state(TASK_RUNNING);
438 	}
439 }
440 
441 #ifdef CONFIG_MEMCG
442 /*
443  * A task is exiting.   If it owned this mm, find a new owner for the mm.
444  */
445 void mm_update_next_owner(struct mm_struct *mm)
446 {
447 	struct task_struct *c, *g, *p = current;
448 
449 retry:
450 	/*
451 	 * If the exiting or execing task is not the owner, it's
452 	 * someone else's problem.
453 	 */
454 	if (mm->owner != p)
455 		return;
456 	/*
457 	 * The current owner is exiting/execing and there are no other
458 	 * candidates.  Do not leave the mm pointing to a possibly
459 	 * freed task structure.
460 	 */
461 	if (atomic_read(&mm->mm_users) <= 1) {
462 		WRITE_ONCE(mm->owner, NULL);
463 		return;
464 	}
465 
466 	read_lock(&tasklist_lock);
467 	/*
468 	 * Search in the children
469 	 */
470 	list_for_each_entry(c, &p->children, sibling) {
471 		if (c->mm == mm)
472 			goto assign_new_owner;
473 	}
474 
475 	/*
476 	 * Search in the siblings
477 	 */
478 	list_for_each_entry(c, &p->real_parent->children, sibling) {
479 		if (c->mm == mm)
480 			goto assign_new_owner;
481 	}
482 
483 	/*
484 	 * Search through everything else, we should not get here often.
485 	 */
486 	for_each_process(g) {
487 		if (g->flags & PF_KTHREAD)
488 			continue;
489 		for_each_thread(g, c) {
490 			if (c->mm == mm)
491 				goto assign_new_owner;
492 			if (c->mm)
493 				break;
494 		}
495 	}
496 	read_unlock(&tasklist_lock);
497 	/*
498 	 * We found no owner yet mm_users > 1: this implies that we are
499 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
500 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
501 	 */
502 	WRITE_ONCE(mm->owner, NULL);
503 	return;
504 
505 assign_new_owner:
506 	BUG_ON(c == p);
507 	get_task_struct(c);
508 	/*
509 	 * The task_lock protects c->mm from changing.
510 	 * We always want mm->owner->mm == mm
511 	 */
512 	task_lock(c);
513 	/*
514 	 * Delay read_unlock() till we have the task_lock()
515 	 * to ensure that c does not slip away underneath us
516 	 */
517 	read_unlock(&tasklist_lock);
518 	if (c->mm != mm) {
519 		task_unlock(c);
520 		put_task_struct(c);
521 		goto retry;
522 	}
523 	WRITE_ONCE(mm->owner, c);
524 	lru_gen_migrate_mm(mm);
525 	task_unlock(c);
526 	put_task_struct(c);
527 }
528 #endif /* CONFIG_MEMCG */
529 
530 /*
531  * Turn us into a lazy TLB process if we
532  * aren't already..
533  */
534 static void exit_mm(void)
535 {
536 	struct mm_struct *mm = current->mm;
537 
538 	exit_mm_release(current, mm);
539 	if (!mm)
540 		return;
541 	mmap_read_lock(mm);
542 	mmgrab_lazy_tlb(mm);
543 	BUG_ON(mm != current->active_mm);
544 	/* more a memory barrier than a real lock */
545 	task_lock(current);
546 	/*
547 	 * When a thread stops operating on an address space, the loop
548 	 * in membarrier_private_expedited() may not observe that
549 	 * tsk->mm, and the loop in membarrier_global_expedited() may
550 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
551 	 * rq->membarrier_state, so those would not issue an IPI.
552 	 * Membarrier requires a memory barrier after accessing
553 	 * user-space memory, before clearing tsk->mm or the
554 	 * rq->membarrier_state.
555 	 */
556 	smp_mb__after_spinlock();
557 	local_irq_disable();
558 	current->mm = NULL;
559 	membarrier_update_current_mm(NULL);
560 	enter_lazy_tlb(mm, current);
561 	local_irq_enable();
562 	task_unlock(current);
563 	mmap_read_unlock(mm);
564 	mm_update_next_owner(mm);
565 	mmput(mm);
566 	if (test_thread_flag(TIF_MEMDIE))
567 		exit_oom_victim();
568 }
569 
570 static struct task_struct *find_alive_thread(struct task_struct *p)
571 {
572 	struct task_struct *t;
573 
574 	for_each_thread(p, t) {
575 		if (!(t->flags & PF_EXITING))
576 			return t;
577 	}
578 	return NULL;
579 }
580 
581 static struct task_struct *find_child_reaper(struct task_struct *father,
582 						struct list_head *dead)
583 	__releases(&tasklist_lock)
584 	__acquires(&tasklist_lock)
585 {
586 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
587 	struct task_struct *reaper = pid_ns->child_reaper;
588 	struct task_struct *p, *n;
589 
590 	if (likely(reaper != father))
591 		return reaper;
592 
593 	reaper = find_alive_thread(father);
594 	if (reaper) {
595 		pid_ns->child_reaper = reaper;
596 		return reaper;
597 	}
598 
599 	write_unlock_irq(&tasklist_lock);
600 
601 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
602 		list_del_init(&p->ptrace_entry);
603 		release_task(p);
604 	}
605 
606 	zap_pid_ns_processes(pid_ns);
607 	write_lock_irq(&tasklist_lock);
608 
609 	return father;
610 }
611 
612 /*
613  * When we die, we re-parent all our children, and try to:
614  * 1. give them to another thread in our thread group, if such a member exists
615  * 2. give it to the first ancestor process which prctl'd itself as a
616  *    child_subreaper for its children (like a service manager)
617  * 3. give it to the init process (PID 1) in our pid namespace
618  */
619 static struct task_struct *find_new_reaper(struct task_struct *father,
620 					   struct task_struct *child_reaper)
621 {
622 	struct task_struct *thread, *reaper;
623 
624 	thread = find_alive_thread(father);
625 	if (thread)
626 		return thread;
627 
628 	if (father->signal->has_child_subreaper) {
629 		unsigned int ns_level = task_pid(father)->level;
630 		/*
631 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
632 		 * We can't check reaper != child_reaper to ensure we do not
633 		 * cross the namespaces, the exiting parent could be injected
634 		 * by setns() + fork().
635 		 * We check pid->level, this is slightly more efficient than
636 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
637 		 */
638 		for (reaper = father->real_parent;
639 		     task_pid(reaper)->level == ns_level;
640 		     reaper = reaper->real_parent) {
641 			if (reaper == &init_task)
642 				break;
643 			if (!reaper->signal->is_child_subreaper)
644 				continue;
645 			thread = find_alive_thread(reaper);
646 			if (thread)
647 				return thread;
648 		}
649 	}
650 
651 	return child_reaper;
652 }
653 
654 /*
655 * Any that need to be release_task'd are put on the @dead list.
656  */
657 static void reparent_leader(struct task_struct *father, struct task_struct *p,
658 				struct list_head *dead)
659 {
660 	if (unlikely(p->exit_state == EXIT_DEAD))
661 		return;
662 
663 	/* We don't want people slaying init. */
664 	p->exit_signal = SIGCHLD;
665 
666 	/* If it has exited notify the new parent about this child's death. */
667 	if (!p->ptrace &&
668 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
669 		if (do_notify_parent(p, p->exit_signal)) {
670 			p->exit_state = EXIT_DEAD;
671 			list_add(&p->ptrace_entry, dead);
672 		}
673 	}
674 
675 	kill_orphaned_pgrp(p, father);
676 }
677 
678 /*
679  * This does two things:
680  *
681  * A.  Make init inherit all the child processes
682  * B.  Check to see if any process groups have become orphaned
683  *	as a result of our exiting, and if they have any stopped
684  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
685  */
686 static void forget_original_parent(struct task_struct *father,
687 					struct list_head *dead)
688 {
689 	struct task_struct *p, *t, *reaper;
690 
691 	if (unlikely(!list_empty(&father->ptraced)))
692 		exit_ptrace(father, dead);
693 
694 	/* Can drop and reacquire tasklist_lock */
695 	reaper = find_child_reaper(father, dead);
696 	if (list_empty(&father->children))
697 		return;
698 
699 	reaper = find_new_reaper(father, reaper);
700 	list_for_each_entry(p, &father->children, sibling) {
701 		for_each_thread(p, t) {
702 			RCU_INIT_POINTER(t->real_parent, reaper);
703 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
704 			if (likely(!t->ptrace))
705 				t->parent = t->real_parent;
706 			if (t->pdeath_signal)
707 				group_send_sig_info(t->pdeath_signal,
708 						    SEND_SIG_NOINFO, t,
709 						    PIDTYPE_TGID);
710 		}
711 		/*
712 		 * If this is a threaded reparent there is no need to
713 		 * notify anyone anything has happened.
714 		 */
715 		if (!same_thread_group(reaper, father))
716 			reparent_leader(father, p, dead);
717 	}
718 	list_splice_tail_init(&father->children, &reaper->children);
719 }
720 
721 /*
722  * Send signals to all our closest relatives so that they know
723  * to properly mourn us..
724  */
725 static void exit_notify(struct task_struct *tsk, int group_dead)
726 {
727 	bool autoreap;
728 	struct task_struct *p, *n;
729 	LIST_HEAD(dead);
730 
731 	write_lock_irq(&tasklist_lock);
732 	forget_original_parent(tsk, &dead);
733 
734 	if (group_dead)
735 		kill_orphaned_pgrp(tsk->group_leader, NULL);
736 
737 	tsk->exit_state = EXIT_ZOMBIE;
738 	/*
739 	 * sub-thread or delay_group_leader(), wake up the
740 	 * PIDFD_THREAD waiters.
741 	 */
742 	if (!thread_group_empty(tsk))
743 		do_notify_pidfd(tsk);
744 
745 	if (unlikely(tsk->ptrace)) {
746 		int sig = thread_group_leader(tsk) &&
747 				thread_group_empty(tsk) &&
748 				!ptrace_reparented(tsk) ?
749 			tsk->exit_signal : SIGCHLD;
750 		autoreap = do_notify_parent(tsk, sig);
751 	} else if (thread_group_leader(tsk)) {
752 		autoreap = thread_group_empty(tsk) &&
753 			do_notify_parent(tsk, tsk->exit_signal);
754 	} else {
755 		autoreap = true;
756 	}
757 
758 	if (autoreap) {
759 		tsk->exit_state = EXIT_DEAD;
760 		list_add(&tsk->ptrace_entry, &dead);
761 	}
762 
763 	/* mt-exec, de_thread() is waiting for group leader */
764 	if (unlikely(tsk->signal->notify_count < 0))
765 		wake_up_process(tsk->signal->group_exec_task);
766 	write_unlock_irq(&tasklist_lock);
767 
768 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
769 		list_del_init(&p->ptrace_entry);
770 		release_task(p);
771 	}
772 }
773 
774 #ifdef CONFIG_DEBUG_STACK_USAGE
775 static void check_stack_usage(void)
776 {
777 	static DEFINE_SPINLOCK(low_water_lock);
778 	static int lowest_to_date = THREAD_SIZE;
779 	unsigned long free;
780 
781 	free = stack_not_used(current);
782 
783 	if (free >= lowest_to_date)
784 		return;
785 
786 	spin_lock(&low_water_lock);
787 	if (free < lowest_to_date) {
788 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
789 			current->comm, task_pid_nr(current), free);
790 		lowest_to_date = free;
791 	}
792 	spin_unlock(&low_water_lock);
793 }
794 #else
795 static inline void check_stack_usage(void) {}
796 #endif
797 
798 static void synchronize_group_exit(struct task_struct *tsk, long code)
799 {
800 	struct sighand_struct *sighand = tsk->sighand;
801 	struct signal_struct *signal = tsk->signal;
802 
803 	spin_lock_irq(&sighand->siglock);
804 	signal->quick_threads--;
805 	if ((signal->quick_threads == 0) &&
806 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
807 		signal->flags = SIGNAL_GROUP_EXIT;
808 		signal->group_exit_code = code;
809 		signal->group_stop_count = 0;
810 	}
811 	spin_unlock_irq(&sighand->siglock);
812 }
813 
814 void __noreturn do_exit(long code)
815 {
816 	struct task_struct *tsk = current;
817 	int group_dead;
818 
819 	WARN_ON(irqs_disabled());
820 
821 	synchronize_group_exit(tsk, code);
822 
823 	WARN_ON(tsk->plug);
824 
825 	kcov_task_exit(tsk);
826 	kmsan_task_exit(tsk);
827 
828 	coredump_task_exit(tsk);
829 	ptrace_event(PTRACE_EVENT_EXIT, code);
830 	user_events_exit(tsk);
831 
832 	io_uring_files_cancel();
833 	exit_signals(tsk);  /* sets PF_EXITING */
834 
835 	acct_update_integrals(tsk);
836 	group_dead = atomic_dec_and_test(&tsk->signal->live);
837 	if (group_dead) {
838 		/*
839 		 * If the last thread of global init has exited, panic
840 		 * immediately to get a useable coredump.
841 		 */
842 		if (unlikely(is_global_init(tsk)))
843 			panic("Attempted to kill init! exitcode=0x%08x\n",
844 				tsk->signal->group_exit_code ?: (int)code);
845 
846 #ifdef CONFIG_POSIX_TIMERS
847 		hrtimer_cancel(&tsk->signal->real_timer);
848 		exit_itimers(tsk);
849 #endif
850 		if (tsk->mm)
851 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
852 	}
853 	acct_collect(code, group_dead);
854 	if (group_dead)
855 		tty_audit_exit();
856 	audit_free(tsk);
857 
858 	tsk->exit_code = code;
859 	taskstats_exit(tsk, group_dead);
860 
861 	exit_mm();
862 
863 	if (group_dead)
864 		acct_process();
865 	trace_sched_process_exit(tsk);
866 
867 	exit_sem(tsk);
868 	exit_shm(tsk);
869 	exit_files(tsk);
870 	exit_fs(tsk);
871 	if (group_dead)
872 		disassociate_ctty(1);
873 	exit_task_namespaces(tsk);
874 	exit_task_work(tsk);
875 	exit_thread(tsk);
876 
877 	/*
878 	 * Flush inherited counters to the parent - before the parent
879 	 * gets woken up by child-exit notifications.
880 	 *
881 	 * because of cgroup mode, must be called before cgroup_exit()
882 	 */
883 	perf_event_exit_task(tsk);
884 
885 	sched_autogroup_exit_task(tsk);
886 	cgroup_exit(tsk);
887 
888 	/*
889 	 * FIXME: do that only when needed, using sched_exit tracepoint
890 	 */
891 	flush_ptrace_hw_breakpoint(tsk);
892 
893 	exit_tasks_rcu_start();
894 	exit_notify(tsk, group_dead);
895 	proc_exit_connector(tsk);
896 	mpol_put_task_policy(tsk);
897 #ifdef CONFIG_FUTEX
898 	if (unlikely(current->pi_state_cache))
899 		kfree(current->pi_state_cache);
900 #endif
901 	/*
902 	 * Make sure we are holding no locks:
903 	 */
904 	debug_check_no_locks_held();
905 
906 	if (tsk->io_context)
907 		exit_io_context(tsk);
908 
909 	if (tsk->splice_pipe)
910 		free_pipe_info(tsk->splice_pipe);
911 
912 	if (tsk->task_frag.page)
913 		put_page(tsk->task_frag.page);
914 
915 	exit_task_stack_account(tsk);
916 
917 	check_stack_usage();
918 	preempt_disable();
919 	if (tsk->nr_dirtied)
920 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
921 	exit_rcu();
922 	exit_tasks_rcu_finish();
923 
924 	lockdep_free_task(tsk);
925 	do_task_dead();
926 }
927 
928 void __noreturn make_task_dead(int signr)
929 {
930 	/*
931 	 * Take the task off the cpu after something catastrophic has
932 	 * happened.
933 	 *
934 	 * We can get here from a kernel oops, sometimes with preemption off.
935 	 * Start by checking for critical errors.
936 	 * Then fix up important state like USER_DS and preemption.
937 	 * Then do everything else.
938 	 */
939 	struct task_struct *tsk = current;
940 	unsigned int limit;
941 
942 	if (unlikely(in_interrupt()))
943 		panic("Aiee, killing interrupt handler!");
944 	if (unlikely(!tsk->pid))
945 		panic("Attempted to kill the idle task!");
946 
947 	if (unlikely(irqs_disabled())) {
948 		pr_info("note: %s[%d] exited with irqs disabled\n",
949 			current->comm, task_pid_nr(current));
950 		local_irq_enable();
951 	}
952 	if (unlikely(in_atomic())) {
953 		pr_info("note: %s[%d] exited with preempt_count %d\n",
954 			current->comm, task_pid_nr(current),
955 			preempt_count());
956 		preempt_count_set(PREEMPT_ENABLED);
957 	}
958 
959 	/*
960 	 * Every time the system oopses, if the oops happens while a reference
961 	 * to an object was held, the reference leaks.
962 	 * If the oops doesn't also leak memory, repeated oopsing can cause
963 	 * reference counters to wrap around (if they're not using refcount_t).
964 	 * This means that repeated oopsing can make unexploitable-looking bugs
965 	 * exploitable through repeated oopsing.
966 	 * To make sure this can't happen, place an upper bound on how often the
967 	 * kernel may oops without panic().
968 	 */
969 	limit = READ_ONCE(oops_limit);
970 	if (atomic_inc_return(&oops_count) >= limit && limit)
971 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
972 
973 	/*
974 	 * We're taking recursive faults here in make_task_dead. Safest is to just
975 	 * leave this task alone and wait for reboot.
976 	 */
977 	if (unlikely(tsk->flags & PF_EXITING)) {
978 		pr_alert("Fixing recursive fault but reboot is needed!\n");
979 		futex_exit_recursive(tsk);
980 		tsk->exit_state = EXIT_DEAD;
981 		refcount_inc(&tsk->rcu_users);
982 		do_task_dead();
983 	}
984 
985 	do_exit(signr);
986 }
987 
988 SYSCALL_DEFINE1(exit, int, error_code)
989 {
990 	do_exit((error_code&0xff)<<8);
991 }
992 
993 /*
994  * Take down every thread in the group.  This is called by fatal signals
995  * as well as by sys_exit_group (below).
996  */
997 void __noreturn
998 do_group_exit(int exit_code)
999 {
1000 	struct signal_struct *sig = current->signal;
1001 
1002 	if (sig->flags & SIGNAL_GROUP_EXIT)
1003 		exit_code = sig->group_exit_code;
1004 	else if (sig->group_exec_task)
1005 		exit_code = 0;
1006 	else {
1007 		struct sighand_struct *const sighand = current->sighand;
1008 
1009 		spin_lock_irq(&sighand->siglock);
1010 		if (sig->flags & SIGNAL_GROUP_EXIT)
1011 			/* Another thread got here before we took the lock.  */
1012 			exit_code = sig->group_exit_code;
1013 		else if (sig->group_exec_task)
1014 			exit_code = 0;
1015 		else {
1016 			sig->group_exit_code = exit_code;
1017 			sig->flags = SIGNAL_GROUP_EXIT;
1018 			zap_other_threads(current);
1019 		}
1020 		spin_unlock_irq(&sighand->siglock);
1021 	}
1022 
1023 	do_exit(exit_code);
1024 	/* NOTREACHED */
1025 }
1026 
1027 /*
1028  * this kills every thread in the thread group. Note that any externally
1029  * wait4()-ing process will get the correct exit code - even if this
1030  * thread is not the thread group leader.
1031  */
1032 SYSCALL_DEFINE1(exit_group, int, error_code)
1033 {
1034 	do_group_exit((error_code & 0xff) << 8);
1035 	/* NOTREACHED */
1036 	return 0;
1037 }
1038 
1039 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1040 {
1041 	return	wo->wo_type == PIDTYPE_MAX ||
1042 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1043 }
1044 
1045 static int
1046 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1047 {
1048 	if (!eligible_pid(wo, p))
1049 		return 0;
1050 
1051 	/*
1052 	 * Wait for all children (clone and not) if __WALL is set or
1053 	 * if it is traced by us.
1054 	 */
1055 	if (ptrace || (wo->wo_flags & __WALL))
1056 		return 1;
1057 
1058 	/*
1059 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1060 	 * otherwise, wait for non-clone children *only*.
1061 	 *
1062 	 * Note: a "clone" child here is one that reports to its parent
1063 	 * using a signal other than SIGCHLD, or a non-leader thread which
1064 	 * we can only see if it is traced by us.
1065 	 */
1066 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1067 		return 0;
1068 
1069 	return 1;
1070 }
1071 
1072 /*
1073  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1074  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1075  * the lock and this task is uninteresting.  If we return nonzero, we have
1076  * released the lock and the system call should return.
1077  */
1078 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1079 {
1080 	int state, status;
1081 	pid_t pid = task_pid_vnr(p);
1082 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1083 	struct waitid_info *infop;
1084 
1085 	if (!likely(wo->wo_flags & WEXITED))
1086 		return 0;
1087 
1088 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1089 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1090 			? p->signal->group_exit_code : p->exit_code;
1091 		get_task_struct(p);
1092 		read_unlock(&tasklist_lock);
1093 		sched_annotate_sleep();
1094 		if (wo->wo_rusage)
1095 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1096 		put_task_struct(p);
1097 		goto out_info;
1098 	}
1099 	/*
1100 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1101 	 */
1102 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1103 		EXIT_TRACE : EXIT_DEAD;
1104 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1105 		return 0;
1106 	/*
1107 	 * We own this thread, nobody else can reap it.
1108 	 */
1109 	read_unlock(&tasklist_lock);
1110 	sched_annotate_sleep();
1111 
1112 	/*
1113 	 * Check thread_group_leader() to exclude the traced sub-threads.
1114 	 */
1115 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1116 		struct signal_struct *sig = p->signal;
1117 		struct signal_struct *psig = current->signal;
1118 		unsigned long maxrss;
1119 		u64 tgutime, tgstime;
1120 
1121 		/*
1122 		 * The resource counters for the group leader are in its
1123 		 * own task_struct.  Those for dead threads in the group
1124 		 * are in its signal_struct, as are those for the child
1125 		 * processes it has previously reaped.  All these
1126 		 * accumulate in the parent's signal_struct c* fields.
1127 		 *
1128 		 * We don't bother to take a lock here to protect these
1129 		 * p->signal fields because the whole thread group is dead
1130 		 * and nobody can change them.
1131 		 *
1132 		 * psig->stats_lock also protects us from our sub-threads
1133 		 * which can reap other children at the same time.
1134 		 *
1135 		 * We use thread_group_cputime_adjusted() to get times for
1136 		 * the thread group, which consolidates times for all threads
1137 		 * in the group including the group leader.
1138 		 */
1139 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1140 		write_seqlock_irq(&psig->stats_lock);
1141 		psig->cutime += tgutime + sig->cutime;
1142 		psig->cstime += tgstime + sig->cstime;
1143 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1144 		psig->cmin_flt +=
1145 			p->min_flt + sig->min_flt + sig->cmin_flt;
1146 		psig->cmaj_flt +=
1147 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1148 		psig->cnvcsw +=
1149 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1150 		psig->cnivcsw +=
1151 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1152 		psig->cinblock +=
1153 			task_io_get_inblock(p) +
1154 			sig->inblock + sig->cinblock;
1155 		psig->coublock +=
1156 			task_io_get_oublock(p) +
1157 			sig->oublock + sig->coublock;
1158 		maxrss = max(sig->maxrss, sig->cmaxrss);
1159 		if (psig->cmaxrss < maxrss)
1160 			psig->cmaxrss = maxrss;
1161 		task_io_accounting_add(&psig->ioac, &p->ioac);
1162 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1163 		write_sequnlock_irq(&psig->stats_lock);
1164 	}
1165 
1166 	if (wo->wo_rusage)
1167 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1168 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1169 		? p->signal->group_exit_code : p->exit_code;
1170 	wo->wo_stat = status;
1171 
1172 	if (state == EXIT_TRACE) {
1173 		write_lock_irq(&tasklist_lock);
1174 		/* We dropped tasklist, ptracer could die and untrace */
1175 		ptrace_unlink(p);
1176 
1177 		/* If parent wants a zombie, don't release it now */
1178 		state = EXIT_ZOMBIE;
1179 		if (do_notify_parent(p, p->exit_signal))
1180 			state = EXIT_DEAD;
1181 		p->exit_state = state;
1182 		write_unlock_irq(&tasklist_lock);
1183 	}
1184 	if (state == EXIT_DEAD)
1185 		release_task(p);
1186 
1187 out_info:
1188 	infop = wo->wo_info;
1189 	if (infop) {
1190 		if ((status & 0x7f) == 0) {
1191 			infop->cause = CLD_EXITED;
1192 			infop->status = status >> 8;
1193 		} else {
1194 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1195 			infop->status = status & 0x7f;
1196 		}
1197 		infop->pid = pid;
1198 		infop->uid = uid;
1199 	}
1200 
1201 	return pid;
1202 }
1203 
1204 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1205 {
1206 	if (ptrace) {
1207 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1208 			return &p->exit_code;
1209 	} else {
1210 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1211 			return &p->signal->group_exit_code;
1212 	}
1213 	return NULL;
1214 }
1215 
1216 /**
1217  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1218  * @wo: wait options
1219  * @ptrace: is the wait for ptrace
1220  * @p: task to wait for
1221  *
1222  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1223  *
1224  * CONTEXT:
1225  * read_lock(&tasklist_lock), which is released if return value is
1226  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1227  *
1228  * RETURNS:
1229  * 0 if wait condition didn't exist and search for other wait conditions
1230  * should continue.  Non-zero return, -errno on failure and @p's pid on
1231  * success, implies that tasklist_lock is released and wait condition
1232  * search should terminate.
1233  */
1234 static int wait_task_stopped(struct wait_opts *wo,
1235 				int ptrace, struct task_struct *p)
1236 {
1237 	struct waitid_info *infop;
1238 	int exit_code, *p_code, why;
1239 	uid_t uid = 0; /* unneeded, required by compiler */
1240 	pid_t pid;
1241 
1242 	/*
1243 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1244 	 */
1245 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1246 		return 0;
1247 
1248 	if (!task_stopped_code(p, ptrace))
1249 		return 0;
1250 
1251 	exit_code = 0;
1252 	spin_lock_irq(&p->sighand->siglock);
1253 
1254 	p_code = task_stopped_code(p, ptrace);
1255 	if (unlikely(!p_code))
1256 		goto unlock_sig;
1257 
1258 	exit_code = *p_code;
1259 	if (!exit_code)
1260 		goto unlock_sig;
1261 
1262 	if (!unlikely(wo->wo_flags & WNOWAIT))
1263 		*p_code = 0;
1264 
1265 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1266 unlock_sig:
1267 	spin_unlock_irq(&p->sighand->siglock);
1268 	if (!exit_code)
1269 		return 0;
1270 
1271 	/*
1272 	 * Now we are pretty sure this task is interesting.
1273 	 * Make sure it doesn't get reaped out from under us while we
1274 	 * give up the lock and then examine it below.  We don't want to
1275 	 * keep holding onto the tasklist_lock while we call getrusage and
1276 	 * possibly take page faults for user memory.
1277 	 */
1278 	get_task_struct(p);
1279 	pid = task_pid_vnr(p);
1280 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1281 	read_unlock(&tasklist_lock);
1282 	sched_annotate_sleep();
1283 	if (wo->wo_rusage)
1284 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1285 	put_task_struct(p);
1286 
1287 	if (likely(!(wo->wo_flags & WNOWAIT)))
1288 		wo->wo_stat = (exit_code << 8) | 0x7f;
1289 
1290 	infop = wo->wo_info;
1291 	if (infop) {
1292 		infop->cause = why;
1293 		infop->status = exit_code;
1294 		infop->pid = pid;
1295 		infop->uid = uid;
1296 	}
1297 	return pid;
1298 }
1299 
1300 /*
1301  * Handle do_wait work for one task in a live, non-stopped state.
1302  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1303  * the lock and this task is uninteresting.  If we return nonzero, we have
1304  * released the lock and the system call should return.
1305  */
1306 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1307 {
1308 	struct waitid_info *infop;
1309 	pid_t pid;
1310 	uid_t uid;
1311 
1312 	if (!unlikely(wo->wo_flags & WCONTINUED))
1313 		return 0;
1314 
1315 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1316 		return 0;
1317 
1318 	spin_lock_irq(&p->sighand->siglock);
1319 	/* Re-check with the lock held.  */
1320 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1321 		spin_unlock_irq(&p->sighand->siglock);
1322 		return 0;
1323 	}
1324 	if (!unlikely(wo->wo_flags & WNOWAIT))
1325 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1326 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1327 	spin_unlock_irq(&p->sighand->siglock);
1328 
1329 	pid = task_pid_vnr(p);
1330 	get_task_struct(p);
1331 	read_unlock(&tasklist_lock);
1332 	sched_annotate_sleep();
1333 	if (wo->wo_rusage)
1334 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1335 	put_task_struct(p);
1336 
1337 	infop = wo->wo_info;
1338 	if (!infop) {
1339 		wo->wo_stat = 0xffff;
1340 	} else {
1341 		infop->cause = CLD_CONTINUED;
1342 		infop->pid = pid;
1343 		infop->uid = uid;
1344 		infop->status = SIGCONT;
1345 	}
1346 	return pid;
1347 }
1348 
1349 /*
1350  * Consider @p for a wait by @parent.
1351  *
1352  * -ECHILD should be in ->notask_error before the first call.
1353  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1354  * Returns zero if the search for a child should continue;
1355  * then ->notask_error is 0 if @p is an eligible child,
1356  * or still -ECHILD.
1357  */
1358 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1359 				struct task_struct *p)
1360 {
1361 	/*
1362 	 * We can race with wait_task_zombie() from another thread.
1363 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1364 	 * can't confuse the checks below.
1365 	 */
1366 	int exit_state = READ_ONCE(p->exit_state);
1367 	int ret;
1368 
1369 	if (unlikely(exit_state == EXIT_DEAD))
1370 		return 0;
1371 
1372 	ret = eligible_child(wo, ptrace, p);
1373 	if (!ret)
1374 		return ret;
1375 
1376 	if (unlikely(exit_state == EXIT_TRACE)) {
1377 		/*
1378 		 * ptrace == 0 means we are the natural parent. In this case
1379 		 * we should clear notask_error, debugger will notify us.
1380 		 */
1381 		if (likely(!ptrace))
1382 			wo->notask_error = 0;
1383 		return 0;
1384 	}
1385 
1386 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1387 		/*
1388 		 * If it is traced by its real parent's group, just pretend
1389 		 * the caller is ptrace_do_wait() and reap this child if it
1390 		 * is zombie.
1391 		 *
1392 		 * This also hides group stop state from real parent; otherwise
1393 		 * a single stop can be reported twice as group and ptrace stop.
1394 		 * If a ptracer wants to distinguish these two events for its
1395 		 * own children it should create a separate process which takes
1396 		 * the role of real parent.
1397 		 */
1398 		if (!ptrace_reparented(p))
1399 			ptrace = 1;
1400 	}
1401 
1402 	/* slay zombie? */
1403 	if (exit_state == EXIT_ZOMBIE) {
1404 		/* we don't reap group leaders with subthreads */
1405 		if (!delay_group_leader(p)) {
1406 			/*
1407 			 * A zombie ptracee is only visible to its ptracer.
1408 			 * Notification and reaping will be cascaded to the
1409 			 * real parent when the ptracer detaches.
1410 			 */
1411 			if (unlikely(ptrace) || likely(!p->ptrace))
1412 				return wait_task_zombie(wo, p);
1413 		}
1414 
1415 		/*
1416 		 * Allow access to stopped/continued state via zombie by
1417 		 * falling through.  Clearing of notask_error is complex.
1418 		 *
1419 		 * When !@ptrace:
1420 		 *
1421 		 * If WEXITED is set, notask_error should naturally be
1422 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1423 		 * so, if there are live subthreads, there are events to
1424 		 * wait for.  If all subthreads are dead, it's still safe
1425 		 * to clear - this function will be called again in finite
1426 		 * amount time once all the subthreads are released and
1427 		 * will then return without clearing.
1428 		 *
1429 		 * When @ptrace:
1430 		 *
1431 		 * Stopped state is per-task and thus can't change once the
1432 		 * target task dies.  Only continued and exited can happen.
1433 		 * Clear notask_error if WCONTINUED | WEXITED.
1434 		 */
1435 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1436 			wo->notask_error = 0;
1437 	} else {
1438 		/*
1439 		 * @p is alive and it's gonna stop, continue or exit, so
1440 		 * there always is something to wait for.
1441 		 */
1442 		wo->notask_error = 0;
1443 	}
1444 
1445 	/*
1446 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1447 	 * is used and the two don't interact with each other.
1448 	 */
1449 	ret = wait_task_stopped(wo, ptrace, p);
1450 	if (ret)
1451 		return ret;
1452 
1453 	/*
1454 	 * Wait for continued.  There's only one continued state and the
1455 	 * ptracer can consume it which can confuse the real parent.  Don't
1456 	 * use WCONTINUED from ptracer.  You don't need or want it.
1457 	 */
1458 	return wait_task_continued(wo, p);
1459 }
1460 
1461 /*
1462  * Do the work of do_wait() for one thread in the group, @tsk.
1463  *
1464  * -ECHILD should be in ->notask_error before the first call.
1465  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1466  * Returns zero if the search for a child should continue; then
1467  * ->notask_error is 0 if there were any eligible children,
1468  * or still -ECHILD.
1469  */
1470 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1471 {
1472 	struct task_struct *p;
1473 
1474 	list_for_each_entry(p, &tsk->children, sibling) {
1475 		int ret = wait_consider_task(wo, 0, p);
1476 
1477 		if (ret)
1478 			return ret;
1479 	}
1480 
1481 	return 0;
1482 }
1483 
1484 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1485 {
1486 	struct task_struct *p;
1487 
1488 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1489 		int ret = wait_consider_task(wo, 1, p);
1490 
1491 		if (ret)
1492 			return ret;
1493 	}
1494 
1495 	return 0;
1496 }
1497 
1498 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1499 {
1500 	if (!eligible_pid(wo, p))
1501 		return false;
1502 
1503 	if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1504 		return false;
1505 
1506 	return true;
1507 }
1508 
1509 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1510 				int sync, void *key)
1511 {
1512 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1513 						child_wait);
1514 	struct task_struct *p = key;
1515 
1516 	if (pid_child_should_wake(wo, p))
1517 		return default_wake_function(wait, mode, sync, key);
1518 
1519 	return 0;
1520 }
1521 
1522 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1523 {
1524 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1525 			   TASK_INTERRUPTIBLE, p);
1526 }
1527 
1528 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1529 				 struct task_struct *target)
1530 {
1531 	struct task_struct *parent =
1532 		!ptrace ? target->real_parent : target->parent;
1533 
1534 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1535 				     same_thread_group(current, parent));
1536 }
1537 
1538 /*
1539  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1540  * and tracee lists to find the target task.
1541  */
1542 static int do_wait_pid(struct wait_opts *wo)
1543 {
1544 	bool ptrace;
1545 	struct task_struct *target;
1546 	int retval;
1547 
1548 	ptrace = false;
1549 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1550 	if (target && is_effectively_child(wo, ptrace, target)) {
1551 		retval = wait_consider_task(wo, ptrace, target);
1552 		if (retval)
1553 			return retval;
1554 	}
1555 
1556 	ptrace = true;
1557 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1558 	if (target && target->ptrace &&
1559 	    is_effectively_child(wo, ptrace, target)) {
1560 		retval = wait_consider_task(wo, ptrace, target);
1561 		if (retval)
1562 			return retval;
1563 	}
1564 
1565 	return 0;
1566 }
1567 
1568 long __do_wait(struct wait_opts *wo)
1569 {
1570 	long retval;
1571 
1572 	/*
1573 	 * If there is nothing that can match our criteria, just get out.
1574 	 * We will clear ->notask_error to zero if we see any child that
1575 	 * might later match our criteria, even if we are not able to reap
1576 	 * it yet.
1577 	 */
1578 	wo->notask_error = -ECHILD;
1579 	if ((wo->wo_type < PIDTYPE_MAX) &&
1580 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1581 		goto notask;
1582 
1583 	read_lock(&tasklist_lock);
1584 
1585 	if (wo->wo_type == PIDTYPE_PID) {
1586 		retval = do_wait_pid(wo);
1587 		if (retval)
1588 			return retval;
1589 	} else {
1590 		struct task_struct *tsk = current;
1591 
1592 		do {
1593 			retval = do_wait_thread(wo, tsk);
1594 			if (retval)
1595 				return retval;
1596 
1597 			retval = ptrace_do_wait(wo, tsk);
1598 			if (retval)
1599 				return retval;
1600 
1601 			if (wo->wo_flags & __WNOTHREAD)
1602 				break;
1603 		} while_each_thread(current, tsk);
1604 	}
1605 	read_unlock(&tasklist_lock);
1606 
1607 notask:
1608 	retval = wo->notask_error;
1609 	if (!retval && !(wo->wo_flags & WNOHANG))
1610 		return -ERESTARTSYS;
1611 
1612 	return retval;
1613 }
1614 
1615 static long do_wait(struct wait_opts *wo)
1616 {
1617 	int retval;
1618 
1619 	trace_sched_process_wait(wo->wo_pid);
1620 
1621 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1622 	wo->child_wait.private = current;
1623 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1624 
1625 	do {
1626 		set_current_state(TASK_INTERRUPTIBLE);
1627 		retval = __do_wait(wo);
1628 		if (retval != -ERESTARTSYS)
1629 			break;
1630 		if (signal_pending(current))
1631 			break;
1632 		schedule();
1633 	} while (1);
1634 
1635 	__set_current_state(TASK_RUNNING);
1636 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1637 	return retval;
1638 }
1639 
1640 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1641 			  struct waitid_info *infop, int options,
1642 			  struct rusage *ru)
1643 {
1644 	unsigned int f_flags = 0;
1645 	struct pid *pid = NULL;
1646 	enum pid_type type;
1647 
1648 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1649 			__WNOTHREAD|__WCLONE|__WALL))
1650 		return -EINVAL;
1651 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1652 		return -EINVAL;
1653 
1654 	switch (which) {
1655 	case P_ALL:
1656 		type = PIDTYPE_MAX;
1657 		break;
1658 	case P_PID:
1659 		type = PIDTYPE_PID;
1660 		if (upid <= 0)
1661 			return -EINVAL;
1662 
1663 		pid = find_get_pid(upid);
1664 		break;
1665 	case P_PGID:
1666 		type = PIDTYPE_PGID;
1667 		if (upid < 0)
1668 			return -EINVAL;
1669 
1670 		if (upid)
1671 			pid = find_get_pid(upid);
1672 		else
1673 			pid = get_task_pid(current, PIDTYPE_PGID);
1674 		break;
1675 	case P_PIDFD:
1676 		type = PIDTYPE_PID;
1677 		if (upid < 0)
1678 			return -EINVAL;
1679 
1680 		pid = pidfd_get_pid(upid, &f_flags);
1681 		if (IS_ERR(pid))
1682 			return PTR_ERR(pid);
1683 
1684 		break;
1685 	default:
1686 		return -EINVAL;
1687 	}
1688 
1689 	wo->wo_type	= type;
1690 	wo->wo_pid	= pid;
1691 	wo->wo_flags	= options;
1692 	wo->wo_info	= infop;
1693 	wo->wo_rusage	= ru;
1694 	if (f_flags & O_NONBLOCK)
1695 		wo->wo_flags |= WNOHANG;
1696 
1697 	return 0;
1698 }
1699 
1700 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1701 			  int options, struct rusage *ru)
1702 {
1703 	struct wait_opts wo;
1704 	long ret;
1705 
1706 	ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1707 	if (ret)
1708 		return ret;
1709 
1710 	ret = do_wait(&wo);
1711 	if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1712 		ret = -EAGAIN;
1713 
1714 	put_pid(wo.wo_pid);
1715 	return ret;
1716 }
1717 
1718 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1719 		infop, int, options, struct rusage __user *, ru)
1720 {
1721 	struct rusage r;
1722 	struct waitid_info info = {.status = 0};
1723 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1724 	int signo = 0;
1725 
1726 	if (err > 0) {
1727 		signo = SIGCHLD;
1728 		err = 0;
1729 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1730 			return -EFAULT;
1731 	}
1732 	if (!infop)
1733 		return err;
1734 
1735 	if (!user_write_access_begin(infop, sizeof(*infop)))
1736 		return -EFAULT;
1737 
1738 	unsafe_put_user(signo, &infop->si_signo, Efault);
1739 	unsafe_put_user(0, &infop->si_errno, Efault);
1740 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1741 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1742 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1743 	unsafe_put_user(info.status, &infop->si_status, Efault);
1744 	user_write_access_end();
1745 	return err;
1746 Efault:
1747 	user_write_access_end();
1748 	return -EFAULT;
1749 }
1750 
1751 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1752 		  struct rusage *ru)
1753 {
1754 	struct wait_opts wo;
1755 	struct pid *pid = NULL;
1756 	enum pid_type type;
1757 	long ret;
1758 
1759 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1760 			__WNOTHREAD|__WCLONE|__WALL))
1761 		return -EINVAL;
1762 
1763 	/* -INT_MIN is not defined */
1764 	if (upid == INT_MIN)
1765 		return -ESRCH;
1766 
1767 	if (upid == -1)
1768 		type = PIDTYPE_MAX;
1769 	else if (upid < 0) {
1770 		type = PIDTYPE_PGID;
1771 		pid = find_get_pid(-upid);
1772 	} else if (upid == 0) {
1773 		type = PIDTYPE_PGID;
1774 		pid = get_task_pid(current, PIDTYPE_PGID);
1775 	} else /* upid > 0 */ {
1776 		type = PIDTYPE_PID;
1777 		pid = find_get_pid(upid);
1778 	}
1779 
1780 	wo.wo_type	= type;
1781 	wo.wo_pid	= pid;
1782 	wo.wo_flags	= options | WEXITED;
1783 	wo.wo_info	= NULL;
1784 	wo.wo_stat	= 0;
1785 	wo.wo_rusage	= ru;
1786 	ret = do_wait(&wo);
1787 	put_pid(pid);
1788 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1789 		ret = -EFAULT;
1790 
1791 	return ret;
1792 }
1793 
1794 int kernel_wait(pid_t pid, int *stat)
1795 {
1796 	struct wait_opts wo = {
1797 		.wo_type	= PIDTYPE_PID,
1798 		.wo_pid		= find_get_pid(pid),
1799 		.wo_flags	= WEXITED,
1800 	};
1801 	int ret;
1802 
1803 	ret = do_wait(&wo);
1804 	if (ret > 0 && wo.wo_stat)
1805 		*stat = wo.wo_stat;
1806 	put_pid(wo.wo_pid);
1807 	return ret;
1808 }
1809 
1810 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1811 		int, options, struct rusage __user *, ru)
1812 {
1813 	struct rusage r;
1814 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1815 
1816 	if (err > 0) {
1817 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1818 			return -EFAULT;
1819 	}
1820 	return err;
1821 }
1822 
1823 #ifdef __ARCH_WANT_SYS_WAITPID
1824 
1825 /*
1826  * sys_waitpid() remains for compatibility. waitpid() should be
1827  * implemented by calling sys_wait4() from libc.a.
1828  */
1829 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1830 {
1831 	return kernel_wait4(pid, stat_addr, options, NULL);
1832 }
1833 
1834 #endif
1835 
1836 #ifdef CONFIG_COMPAT
1837 COMPAT_SYSCALL_DEFINE4(wait4,
1838 	compat_pid_t, pid,
1839 	compat_uint_t __user *, stat_addr,
1840 	int, options,
1841 	struct compat_rusage __user *, ru)
1842 {
1843 	struct rusage r;
1844 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1845 	if (err > 0) {
1846 		if (ru && put_compat_rusage(&r, ru))
1847 			return -EFAULT;
1848 	}
1849 	return err;
1850 }
1851 
1852 COMPAT_SYSCALL_DEFINE5(waitid,
1853 		int, which, compat_pid_t, pid,
1854 		struct compat_siginfo __user *, infop, int, options,
1855 		struct compat_rusage __user *, uru)
1856 {
1857 	struct rusage ru;
1858 	struct waitid_info info = {.status = 0};
1859 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1860 	int signo = 0;
1861 	if (err > 0) {
1862 		signo = SIGCHLD;
1863 		err = 0;
1864 		if (uru) {
1865 			/* kernel_waitid() overwrites everything in ru */
1866 			if (COMPAT_USE_64BIT_TIME)
1867 				err = copy_to_user(uru, &ru, sizeof(ru));
1868 			else
1869 				err = put_compat_rusage(&ru, uru);
1870 			if (err)
1871 				return -EFAULT;
1872 		}
1873 	}
1874 
1875 	if (!infop)
1876 		return err;
1877 
1878 	if (!user_write_access_begin(infop, sizeof(*infop)))
1879 		return -EFAULT;
1880 
1881 	unsafe_put_user(signo, &infop->si_signo, Efault);
1882 	unsafe_put_user(0, &infop->si_errno, Efault);
1883 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1884 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1885 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1886 	unsafe_put_user(info.status, &infop->si_status, Efault);
1887 	user_write_access_end();
1888 	return err;
1889 Efault:
1890 	user_write_access_end();
1891 	return -EFAULT;
1892 }
1893 #endif
1894 
1895 /*
1896  * This needs to be __function_aligned as GCC implicitly makes any
1897  * implementation of abort() cold and drops alignment specified by
1898  * -falign-functions=N.
1899  *
1900  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1901  */
1902 __weak __function_aligned void abort(void)
1903 {
1904 	BUG();
1905 
1906 	/* if that doesn't kill us, halt */
1907 	panic("Oops failed to kill thread");
1908 }
1909 EXPORT_SYMBOL(abort);
1910