1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/blkdev.h> 53 #include <linux/task_work.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/kmsan.h> 64 #include <linux/random.h> 65 #include <linux/rcuwait.h> 66 #include <linux/compat.h> 67 #include <linux/io_uring.h> 68 #include <linux/kprobes.h> 69 #include <linux/rethook.h> 70 #include <linux/sysfs.h> 71 #include <linux/user_events.h> 72 73 #include <linux/uaccess.h> 74 #include <asm/unistd.h> 75 #include <asm/mmu_context.h> 76 77 #include "exit.h" 78 79 /* 80 * The default value should be high enough to not crash a system that randomly 81 * crashes its kernel from time to time, but low enough to at least not permit 82 * overflowing 32-bit refcounts or the ldsem writer count. 83 */ 84 static unsigned int oops_limit = 10000; 85 86 #ifdef CONFIG_SYSCTL 87 static struct ctl_table kern_exit_table[] = { 88 { 89 .procname = "oops_limit", 90 .data = &oops_limit, 91 .maxlen = sizeof(oops_limit), 92 .mode = 0644, 93 .proc_handler = proc_douintvec, 94 }, 95 { } 96 }; 97 98 static __init int kernel_exit_sysctls_init(void) 99 { 100 register_sysctl_init("kernel", kern_exit_table); 101 return 0; 102 } 103 late_initcall(kernel_exit_sysctls_init); 104 #endif 105 106 static atomic_t oops_count = ATOMIC_INIT(0); 107 108 #ifdef CONFIG_SYSFS 109 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr, 110 char *page) 111 { 112 return sysfs_emit(page, "%d\n", atomic_read(&oops_count)); 113 } 114 115 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count); 116 117 static __init int kernel_exit_sysfs_init(void) 118 { 119 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL); 120 return 0; 121 } 122 late_initcall(kernel_exit_sysfs_init); 123 #endif 124 125 static void __unhash_process(struct task_struct *p, bool group_dead) 126 { 127 nr_threads--; 128 detach_pid(p, PIDTYPE_PID); 129 if (group_dead) { 130 detach_pid(p, PIDTYPE_TGID); 131 detach_pid(p, PIDTYPE_PGID); 132 detach_pid(p, PIDTYPE_SID); 133 134 list_del_rcu(&p->tasks); 135 list_del_init(&p->sibling); 136 __this_cpu_dec(process_counts); 137 } 138 list_del_rcu(&p->thread_node); 139 } 140 141 /* 142 * This function expects the tasklist_lock write-locked. 143 */ 144 static void __exit_signal(struct task_struct *tsk) 145 { 146 struct signal_struct *sig = tsk->signal; 147 bool group_dead = thread_group_leader(tsk); 148 struct sighand_struct *sighand; 149 struct tty_struct *tty; 150 u64 utime, stime; 151 152 sighand = rcu_dereference_check(tsk->sighand, 153 lockdep_tasklist_lock_is_held()); 154 spin_lock(&sighand->siglock); 155 156 #ifdef CONFIG_POSIX_TIMERS 157 posix_cpu_timers_exit(tsk); 158 if (group_dead) 159 posix_cpu_timers_exit_group(tsk); 160 #endif 161 162 if (group_dead) { 163 tty = sig->tty; 164 sig->tty = NULL; 165 } else { 166 /* 167 * If there is any task waiting for the group exit 168 * then notify it: 169 */ 170 if (sig->notify_count > 0 && !--sig->notify_count) 171 wake_up_process(sig->group_exec_task); 172 173 if (tsk == sig->curr_target) 174 sig->curr_target = next_thread(tsk); 175 } 176 177 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 178 sizeof(unsigned long long)); 179 180 /* 181 * Accumulate here the counters for all threads as they die. We could 182 * skip the group leader because it is the last user of signal_struct, 183 * but we want to avoid the race with thread_group_cputime() which can 184 * see the empty ->thread_head list. 185 */ 186 task_cputime(tsk, &utime, &stime); 187 write_seqlock(&sig->stats_lock); 188 sig->utime += utime; 189 sig->stime += stime; 190 sig->gtime += task_gtime(tsk); 191 sig->min_flt += tsk->min_flt; 192 sig->maj_flt += tsk->maj_flt; 193 sig->nvcsw += tsk->nvcsw; 194 sig->nivcsw += tsk->nivcsw; 195 sig->inblock += task_io_get_inblock(tsk); 196 sig->oublock += task_io_get_oublock(tsk); 197 task_io_accounting_add(&sig->ioac, &tsk->ioac); 198 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 199 sig->nr_threads--; 200 __unhash_process(tsk, group_dead); 201 write_sequnlock(&sig->stats_lock); 202 203 /* 204 * Do this under ->siglock, we can race with another thread 205 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 206 */ 207 flush_sigqueue(&tsk->pending); 208 tsk->sighand = NULL; 209 spin_unlock(&sighand->siglock); 210 211 __cleanup_sighand(sighand); 212 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 213 if (group_dead) { 214 flush_sigqueue(&sig->shared_pending); 215 tty_kref_put(tty); 216 } 217 } 218 219 static void delayed_put_task_struct(struct rcu_head *rhp) 220 { 221 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 222 223 kprobe_flush_task(tsk); 224 rethook_flush_task(tsk); 225 perf_event_delayed_put(tsk); 226 trace_sched_process_free(tsk); 227 put_task_struct(tsk); 228 } 229 230 void put_task_struct_rcu_user(struct task_struct *task) 231 { 232 if (refcount_dec_and_test(&task->rcu_users)) 233 call_rcu(&task->rcu, delayed_put_task_struct); 234 } 235 236 void __weak release_thread(struct task_struct *dead_task) 237 { 238 } 239 240 void release_task(struct task_struct *p) 241 { 242 struct task_struct *leader; 243 struct pid *thread_pid; 244 int zap_leader; 245 repeat: 246 /* don't need to get the RCU readlock here - the process is dead and 247 * can't be modifying its own credentials. But shut RCU-lockdep up */ 248 rcu_read_lock(); 249 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 250 rcu_read_unlock(); 251 252 cgroup_release(p); 253 254 write_lock_irq(&tasklist_lock); 255 ptrace_release_task(p); 256 thread_pid = get_pid(p->thread_pid); 257 __exit_signal(p); 258 259 /* 260 * If we are the last non-leader member of the thread 261 * group, and the leader is zombie, then notify the 262 * group leader's parent process. (if it wants notification.) 263 */ 264 zap_leader = 0; 265 leader = p->group_leader; 266 if (leader != p && thread_group_empty(leader) 267 && leader->exit_state == EXIT_ZOMBIE) { 268 /* 269 * If we were the last child thread and the leader has 270 * exited already, and the leader's parent ignores SIGCHLD, 271 * then we are the one who should release the leader. 272 */ 273 zap_leader = do_notify_parent(leader, leader->exit_signal); 274 if (zap_leader) 275 leader->exit_state = EXIT_DEAD; 276 } 277 278 write_unlock_irq(&tasklist_lock); 279 seccomp_filter_release(p); 280 proc_flush_pid(thread_pid); 281 put_pid(thread_pid); 282 release_thread(p); 283 put_task_struct_rcu_user(p); 284 285 p = leader; 286 if (unlikely(zap_leader)) 287 goto repeat; 288 } 289 290 int rcuwait_wake_up(struct rcuwait *w) 291 { 292 int ret = 0; 293 struct task_struct *task; 294 295 rcu_read_lock(); 296 297 /* 298 * Order condition vs @task, such that everything prior to the load 299 * of @task is visible. This is the condition as to why the user called 300 * rcuwait_wake() in the first place. Pairs with set_current_state() 301 * barrier (A) in rcuwait_wait_event(). 302 * 303 * WAIT WAKE 304 * [S] tsk = current [S] cond = true 305 * MB (A) MB (B) 306 * [L] cond [L] tsk 307 */ 308 smp_mb(); /* (B) */ 309 310 task = rcu_dereference(w->task); 311 if (task) 312 ret = wake_up_process(task); 313 rcu_read_unlock(); 314 315 return ret; 316 } 317 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 318 319 /* 320 * Determine if a process group is "orphaned", according to the POSIX 321 * definition in 2.2.2.52. Orphaned process groups are not to be affected 322 * by terminal-generated stop signals. Newly orphaned process groups are 323 * to receive a SIGHUP and a SIGCONT. 324 * 325 * "I ask you, have you ever known what it is to be an orphan?" 326 */ 327 static int will_become_orphaned_pgrp(struct pid *pgrp, 328 struct task_struct *ignored_task) 329 { 330 struct task_struct *p; 331 332 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 333 if ((p == ignored_task) || 334 (p->exit_state && thread_group_empty(p)) || 335 is_global_init(p->real_parent)) 336 continue; 337 338 if (task_pgrp(p->real_parent) != pgrp && 339 task_session(p->real_parent) == task_session(p)) 340 return 0; 341 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 342 343 return 1; 344 } 345 346 int is_current_pgrp_orphaned(void) 347 { 348 int retval; 349 350 read_lock(&tasklist_lock); 351 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 352 read_unlock(&tasklist_lock); 353 354 return retval; 355 } 356 357 static bool has_stopped_jobs(struct pid *pgrp) 358 { 359 struct task_struct *p; 360 361 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 362 if (p->signal->flags & SIGNAL_STOP_STOPPED) 363 return true; 364 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 365 366 return false; 367 } 368 369 /* 370 * Check to see if any process groups have become orphaned as 371 * a result of our exiting, and if they have any stopped jobs, 372 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 373 */ 374 static void 375 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 376 { 377 struct pid *pgrp = task_pgrp(tsk); 378 struct task_struct *ignored_task = tsk; 379 380 if (!parent) 381 /* exit: our father is in a different pgrp than 382 * we are and we were the only connection outside. 383 */ 384 parent = tsk->real_parent; 385 else 386 /* reparent: our child is in a different pgrp than 387 * we are, and it was the only connection outside. 388 */ 389 ignored_task = NULL; 390 391 if (task_pgrp(parent) != pgrp && 392 task_session(parent) == task_session(tsk) && 393 will_become_orphaned_pgrp(pgrp, ignored_task) && 394 has_stopped_jobs(pgrp)) { 395 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 396 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 397 } 398 } 399 400 static void coredump_task_exit(struct task_struct *tsk) 401 { 402 struct core_state *core_state; 403 404 /* 405 * Serialize with any possible pending coredump. 406 * We must hold siglock around checking core_state 407 * and setting PF_POSTCOREDUMP. The core-inducing thread 408 * will increment ->nr_threads for each thread in the 409 * group without PF_POSTCOREDUMP set. 410 */ 411 spin_lock_irq(&tsk->sighand->siglock); 412 tsk->flags |= PF_POSTCOREDUMP; 413 core_state = tsk->signal->core_state; 414 spin_unlock_irq(&tsk->sighand->siglock); 415 416 /* The vhost_worker does not particpate in coredumps */ 417 if (core_state && 418 ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) { 419 struct core_thread self; 420 421 self.task = current; 422 if (self.task->flags & PF_SIGNALED) 423 self.next = xchg(&core_state->dumper.next, &self); 424 else 425 self.task = NULL; 426 /* 427 * Implies mb(), the result of xchg() must be visible 428 * to core_state->dumper. 429 */ 430 if (atomic_dec_and_test(&core_state->nr_threads)) 431 complete(&core_state->startup); 432 433 for (;;) { 434 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE); 435 if (!self.task) /* see coredump_finish() */ 436 break; 437 schedule(); 438 } 439 __set_current_state(TASK_RUNNING); 440 } 441 } 442 443 #ifdef CONFIG_MEMCG 444 /* 445 * A task is exiting. If it owned this mm, find a new owner for the mm. 446 */ 447 void mm_update_next_owner(struct mm_struct *mm) 448 { 449 struct task_struct *c, *g, *p = current; 450 451 retry: 452 /* 453 * If the exiting or execing task is not the owner, it's 454 * someone else's problem. 455 */ 456 if (mm->owner != p) 457 return; 458 /* 459 * The current owner is exiting/execing and there are no other 460 * candidates. Do not leave the mm pointing to a possibly 461 * freed task structure. 462 */ 463 if (atomic_read(&mm->mm_users) <= 1) { 464 WRITE_ONCE(mm->owner, NULL); 465 return; 466 } 467 468 read_lock(&tasklist_lock); 469 /* 470 * Search in the children 471 */ 472 list_for_each_entry(c, &p->children, sibling) { 473 if (c->mm == mm) 474 goto assign_new_owner; 475 } 476 477 /* 478 * Search in the siblings 479 */ 480 list_for_each_entry(c, &p->real_parent->children, sibling) { 481 if (c->mm == mm) 482 goto assign_new_owner; 483 } 484 485 /* 486 * Search through everything else, we should not get here often. 487 */ 488 for_each_process(g) { 489 if (g->flags & PF_KTHREAD) 490 continue; 491 for_each_thread(g, c) { 492 if (c->mm == mm) 493 goto assign_new_owner; 494 if (c->mm) 495 break; 496 } 497 } 498 read_unlock(&tasklist_lock); 499 /* 500 * We found no owner yet mm_users > 1: this implies that we are 501 * most likely racing with swapoff (try_to_unuse()) or /proc or 502 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 503 */ 504 WRITE_ONCE(mm->owner, NULL); 505 return; 506 507 assign_new_owner: 508 BUG_ON(c == p); 509 get_task_struct(c); 510 /* 511 * The task_lock protects c->mm from changing. 512 * We always want mm->owner->mm == mm 513 */ 514 task_lock(c); 515 /* 516 * Delay read_unlock() till we have the task_lock() 517 * to ensure that c does not slip away underneath us 518 */ 519 read_unlock(&tasklist_lock); 520 if (c->mm != mm) { 521 task_unlock(c); 522 put_task_struct(c); 523 goto retry; 524 } 525 WRITE_ONCE(mm->owner, c); 526 lru_gen_migrate_mm(mm); 527 task_unlock(c); 528 put_task_struct(c); 529 } 530 #endif /* CONFIG_MEMCG */ 531 532 /* 533 * Turn us into a lazy TLB process if we 534 * aren't already.. 535 */ 536 static void exit_mm(void) 537 { 538 struct mm_struct *mm = current->mm; 539 540 exit_mm_release(current, mm); 541 if (!mm) 542 return; 543 mmap_read_lock(mm); 544 mmgrab_lazy_tlb(mm); 545 BUG_ON(mm != current->active_mm); 546 /* more a memory barrier than a real lock */ 547 task_lock(current); 548 /* 549 * When a thread stops operating on an address space, the loop 550 * in membarrier_private_expedited() may not observe that 551 * tsk->mm, and the loop in membarrier_global_expedited() may 552 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 553 * rq->membarrier_state, so those would not issue an IPI. 554 * Membarrier requires a memory barrier after accessing 555 * user-space memory, before clearing tsk->mm or the 556 * rq->membarrier_state. 557 */ 558 smp_mb__after_spinlock(); 559 local_irq_disable(); 560 current->mm = NULL; 561 membarrier_update_current_mm(NULL); 562 enter_lazy_tlb(mm, current); 563 local_irq_enable(); 564 task_unlock(current); 565 mmap_read_unlock(mm); 566 mm_update_next_owner(mm); 567 mmput(mm); 568 if (test_thread_flag(TIF_MEMDIE)) 569 exit_oom_victim(); 570 } 571 572 static struct task_struct *find_alive_thread(struct task_struct *p) 573 { 574 struct task_struct *t; 575 576 for_each_thread(p, t) { 577 if (!(t->flags & PF_EXITING)) 578 return t; 579 } 580 return NULL; 581 } 582 583 static struct task_struct *find_child_reaper(struct task_struct *father, 584 struct list_head *dead) 585 __releases(&tasklist_lock) 586 __acquires(&tasklist_lock) 587 { 588 struct pid_namespace *pid_ns = task_active_pid_ns(father); 589 struct task_struct *reaper = pid_ns->child_reaper; 590 struct task_struct *p, *n; 591 592 if (likely(reaper != father)) 593 return reaper; 594 595 reaper = find_alive_thread(father); 596 if (reaper) { 597 pid_ns->child_reaper = reaper; 598 return reaper; 599 } 600 601 write_unlock_irq(&tasklist_lock); 602 603 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 604 list_del_init(&p->ptrace_entry); 605 release_task(p); 606 } 607 608 zap_pid_ns_processes(pid_ns); 609 write_lock_irq(&tasklist_lock); 610 611 return father; 612 } 613 614 /* 615 * When we die, we re-parent all our children, and try to: 616 * 1. give them to another thread in our thread group, if such a member exists 617 * 2. give it to the first ancestor process which prctl'd itself as a 618 * child_subreaper for its children (like a service manager) 619 * 3. give it to the init process (PID 1) in our pid namespace 620 */ 621 static struct task_struct *find_new_reaper(struct task_struct *father, 622 struct task_struct *child_reaper) 623 { 624 struct task_struct *thread, *reaper; 625 626 thread = find_alive_thread(father); 627 if (thread) 628 return thread; 629 630 if (father->signal->has_child_subreaper) { 631 unsigned int ns_level = task_pid(father)->level; 632 /* 633 * Find the first ->is_child_subreaper ancestor in our pid_ns. 634 * We can't check reaper != child_reaper to ensure we do not 635 * cross the namespaces, the exiting parent could be injected 636 * by setns() + fork(). 637 * We check pid->level, this is slightly more efficient than 638 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 639 */ 640 for (reaper = father->real_parent; 641 task_pid(reaper)->level == ns_level; 642 reaper = reaper->real_parent) { 643 if (reaper == &init_task) 644 break; 645 if (!reaper->signal->is_child_subreaper) 646 continue; 647 thread = find_alive_thread(reaper); 648 if (thread) 649 return thread; 650 } 651 } 652 653 return child_reaper; 654 } 655 656 /* 657 * Any that need to be release_task'd are put on the @dead list. 658 */ 659 static void reparent_leader(struct task_struct *father, struct task_struct *p, 660 struct list_head *dead) 661 { 662 if (unlikely(p->exit_state == EXIT_DEAD)) 663 return; 664 665 /* We don't want people slaying init. */ 666 p->exit_signal = SIGCHLD; 667 668 /* If it has exited notify the new parent about this child's death. */ 669 if (!p->ptrace && 670 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 671 if (do_notify_parent(p, p->exit_signal)) { 672 p->exit_state = EXIT_DEAD; 673 list_add(&p->ptrace_entry, dead); 674 } 675 } 676 677 kill_orphaned_pgrp(p, father); 678 } 679 680 /* 681 * This does two things: 682 * 683 * A. Make init inherit all the child processes 684 * B. Check to see if any process groups have become orphaned 685 * as a result of our exiting, and if they have any stopped 686 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 687 */ 688 static void forget_original_parent(struct task_struct *father, 689 struct list_head *dead) 690 { 691 struct task_struct *p, *t, *reaper; 692 693 if (unlikely(!list_empty(&father->ptraced))) 694 exit_ptrace(father, dead); 695 696 /* Can drop and reacquire tasklist_lock */ 697 reaper = find_child_reaper(father, dead); 698 if (list_empty(&father->children)) 699 return; 700 701 reaper = find_new_reaper(father, reaper); 702 list_for_each_entry(p, &father->children, sibling) { 703 for_each_thread(p, t) { 704 RCU_INIT_POINTER(t->real_parent, reaper); 705 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 706 if (likely(!t->ptrace)) 707 t->parent = t->real_parent; 708 if (t->pdeath_signal) 709 group_send_sig_info(t->pdeath_signal, 710 SEND_SIG_NOINFO, t, 711 PIDTYPE_TGID); 712 } 713 /* 714 * If this is a threaded reparent there is no need to 715 * notify anyone anything has happened. 716 */ 717 if (!same_thread_group(reaper, father)) 718 reparent_leader(father, p, dead); 719 } 720 list_splice_tail_init(&father->children, &reaper->children); 721 } 722 723 /* 724 * Send signals to all our closest relatives so that they know 725 * to properly mourn us.. 726 */ 727 static void exit_notify(struct task_struct *tsk, int group_dead) 728 { 729 bool autoreap; 730 struct task_struct *p, *n; 731 LIST_HEAD(dead); 732 733 write_lock_irq(&tasklist_lock); 734 forget_original_parent(tsk, &dead); 735 736 if (group_dead) 737 kill_orphaned_pgrp(tsk->group_leader, NULL); 738 739 tsk->exit_state = EXIT_ZOMBIE; 740 if (unlikely(tsk->ptrace)) { 741 int sig = thread_group_leader(tsk) && 742 thread_group_empty(tsk) && 743 !ptrace_reparented(tsk) ? 744 tsk->exit_signal : SIGCHLD; 745 autoreap = do_notify_parent(tsk, sig); 746 } else if (thread_group_leader(tsk)) { 747 autoreap = thread_group_empty(tsk) && 748 do_notify_parent(tsk, tsk->exit_signal); 749 } else { 750 autoreap = true; 751 } 752 753 if (autoreap) { 754 tsk->exit_state = EXIT_DEAD; 755 list_add(&tsk->ptrace_entry, &dead); 756 } 757 758 /* mt-exec, de_thread() is waiting for group leader */ 759 if (unlikely(tsk->signal->notify_count < 0)) 760 wake_up_process(tsk->signal->group_exec_task); 761 write_unlock_irq(&tasklist_lock); 762 763 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 764 list_del_init(&p->ptrace_entry); 765 release_task(p); 766 } 767 } 768 769 #ifdef CONFIG_DEBUG_STACK_USAGE 770 static void check_stack_usage(void) 771 { 772 static DEFINE_SPINLOCK(low_water_lock); 773 static int lowest_to_date = THREAD_SIZE; 774 unsigned long free; 775 776 free = stack_not_used(current); 777 778 if (free >= lowest_to_date) 779 return; 780 781 spin_lock(&low_water_lock); 782 if (free < lowest_to_date) { 783 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 784 current->comm, task_pid_nr(current), free); 785 lowest_to_date = free; 786 } 787 spin_unlock(&low_water_lock); 788 } 789 #else 790 static inline void check_stack_usage(void) {} 791 #endif 792 793 static void synchronize_group_exit(struct task_struct *tsk, long code) 794 { 795 struct sighand_struct *sighand = tsk->sighand; 796 struct signal_struct *signal = tsk->signal; 797 798 spin_lock_irq(&sighand->siglock); 799 signal->quick_threads--; 800 if ((signal->quick_threads == 0) && 801 !(signal->flags & SIGNAL_GROUP_EXIT)) { 802 signal->flags = SIGNAL_GROUP_EXIT; 803 signal->group_exit_code = code; 804 signal->group_stop_count = 0; 805 } 806 spin_unlock_irq(&sighand->siglock); 807 } 808 809 void __noreturn do_exit(long code) 810 { 811 struct task_struct *tsk = current; 812 int group_dead; 813 814 WARN_ON(irqs_disabled()); 815 816 synchronize_group_exit(tsk, code); 817 818 WARN_ON(tsk->plug); 819 820 kcov_task_exit(tsk); 821 kmsan_task_exit(tsk); 822 823 coredump_task_exit(tsk); 824 ptrace_event(PTRACE_EVENT_EXIT, code); 825 user_events_exit(tsk); 826 827 io_uring_files_cancel(); 828 exit_signals(tsk); /* sets PF_EXITING */ 829 830 acct_update_integrals(tsk); 831 group_dead = atomic_dec_and_test(&tsk->signal->live); 832 if (group_dead) { 833 /* 834 * If the last thread of global init has exited, panic 835 * immediately to get a useable coredump. 836 */ 837 if (unlikely(is_global_init(tsk))) 838 panic("Attempted to kill init! exitcode=0x%08x\n", 839 tsk->signal->group_exit_code ?: (int)code); 840 841 #ifdef CONFIG_POSIX_TIMERS 842 hrtimer_cancel(&tsk->signal->real_timer); 843 exit_itimers(tsk); 844 #endif 845 if (tsk->mm) 846 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 847 } 848 acct_collect(code, group_dead); 849 if (group_dead) 850 tty_audit_exit(); 851 audit_free(tsk); 852 853 tsk->exit_code = code; 854 taskstats_exit(tsk, group_dead); 855 856 exit_mm(); 857 858 if (group_dead) 859 acct_process(); 860 trace_sched_process_exit(tsk); 861 862 exit_sem(tsk); 863 exit_shm(tsk); 864 exit_files(tsk); 865 exit_fs(tsk); 866 if (group_dead) 867 disassociate_ctty(1); 868 exit_task_namespaces(tsk); 869 exit_task_work(tsk); 870 exit_thread(tsk); 871 872 /* 873 * Flush inherited counters to the parent - before the parent 874 * gets woken up by child-exit notifications. 875 * 876 * because of cgroup mode, must be called before cgroup_exit() 877 */ 878 perf_event_exit_task(tsk); 879 880 sched_autogroup_exit_task(tsk); 881 cgroup_exit(tsk); 882 883 /* 884 * FIXME: do that only when needed, using sched_exit tracepoint 885 */ 886 flush_ptrace_hw_breakpoint(tsk); 887 888 exit_tasks_rcu_start(); 889 exit_notify(tsk, group_dead); 890 proc_exit_connector(tsk); 891 mpol_put_task_policy(tsk); 892 #ifdef CONFIG_FUTEX 893 if (unlikely(current->pi_state_cache)) 894 kfree(current->pi_state_cache); 895 #endif 896 /* 897 * Make sure we are holding no locks: 898 */ 899 debug_check_no_locks_held(); 900 901 if (tsk->io_context) 902 exit_io_context(tsk); 903 904 if (tsk->splice_pipe) 905 free_pipe_info(tsk->splice_pipe); 906 907 if (tsk->task_frag.page) 908 put_page(tsk->task_frag.page); 909 910 exit_task_stack_account(tsk); 911 912 check_stack_usage(); 913 preempt_disable(); 914 if (tsk->nr_dirtied) 915 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 916 exit_rcu(); 917 exit_tasks_rcu_finish(); 918 919 lockdep_free_task(tsk); 920 do_task_dead(); 921 } 922 923 void __noreturn make_task_dead(int signr) 924 { 925 /* 926 * Take the task off the cpu after something catastrophic has 927 * happened. 928 * 929 * We can get here from a kernel oops, sometimes with preemption off. 930 * Start by checking for critical errors. 931 * Then fix up important state like USER_DS and preemption. 932 * Then do everything else. 933 */ 934 struct task_struct *tsk = current; 935 unsigned int limit; 936 937 if (unlikely(in_interrupt())) 938 panic("Aiee, killing interrupt handler!"); 939 if (unlikely(!tsk->pid)) 940 panic("Attempted to kill the idle task!"); 941 942 if (unlikely(irqs_disabled())) { 943 pr_info("note: %s[%d] exited with irqs disabled\n", 944 current->comm, task_pid_nr(current)); 945 local_irq_enable(); 946 } 947 if (unlikely(in_atomic())) { 948 pr_info("note: %s[%d] exited with preempt_count %d\n", 949 current->comm, task_pid_nr(current), 950 preempt_count()); 951 preempt_count_set(PREEMPT_ENABLED); 952 } 953 954 /* 955 * Every time the system oopses, if the oops happens while a reference 956 * to an object was held, the reference leaks. 957 * If the oops doesn't also leak memory, repeated oopsing can cause 958 * reference counters to wrap around (if they're not using refcount_t). 959 * This means that repeated oopsing can make unexploitable-looking bugs 960 * exploitable through repeated oopsing. 961 * To make sure this can't happen, place an upper bound on how often the 962 * kernel may oops without panic(). 963 */ 964 limit = READ_ONCE(oops_limit); 965 if (atomic_inc_return(&oops_count) >= limit && limit) 966 panic("Oopsed too often (kernel.oops_limit is %d)", limit); 967 968 /* 969 * We're taking recursive faults here in make_task_dead. Safest is to just 970 * leave this task alone and wait for reboot. 971 */ 972 if (unlikely(tsk->flags & PF_EXITING)) { 973 pr_alert("Fixing recursive fault but reboot is needed!\n"); 974 futex_exit_recursive(tsk); 975 tsk->exit_state = EXIT_DEAD; 976 refcount_inc(&tsk->rcu_users); 977 do_task_dead(); 978 } 979 980 do_exit(signr); 981 } 982 983 SYSCALL_DEFINE1(exit, int, error_code) 984 { 985 do_exit((error_code&0xff)<<8); 986 } 987 988 /* 989 * Take down every thread in the group. This is called by fatal signals 990 * as well as by sys_exit_group (below). 991 */ 992 void __noreturn 993 do_group_exit(int exit_code) 994 { 995 struct signal_struct *sig = current->signal; 996 997 if (sig->flags & SIGNAL_GROUP_EXIT) 998 exit_code = sig->group_exit_code; 999 else if (sig->group_exec_task) 1000 exit_code = 0; 1001 else { 1002 struct sighand_struct *const sighand = current->sighand; 1003 1004 spin_lock_irq(&sighand->siglock); 1005 if (sig->flags & SIGNAL_GROUP_EXIT) 1006 /* Another thread got here before we took the lock. */ 1007 exit_code = sig->group_exit_code; 1008 else if (sig->group_exec_task) 1009 exit_code = 0; 1010 else { 1011 sig->group_exit_code = exit_code; 1012 sig->flags = SIGNAL_GROUP_EXIT; 1013 zap_other_threads(current); 1014 } 1015 spin_unlock_irq(&sighand->siglock); 1016 } 1017 1018 do_exit(exit_code); 1019 /* NOTREACHED */ 1020 } 1021 1022 /* 1023 * this kills every thread in the thread group. Note that any externally 1024 * wait4()-ing process will get the correct exit code - even if this 1025 * thread is not the thread group leader. 1026 */ 1027 SYSCALL_DEFINE1(exit_group, int, error_code) 1028 { 1029 do_group_exit((error_code & 0xff) << 8); 1030 /* NOTREACHED */ 1031 return 0; 1032 } 1033 1034 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1035 { 1036 return wo->wo_type == PIDTYPE_MAX || 1037 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1038 } 1039 1040 static int 1041 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1042 { 1043 if (!eligible_pid(wo, p)) 1044 return 0; 1045 1046 /* 1047 * Wait for all children (clone and not) if __WALL is set or 1048 * if it is traced by us. 1049 */ 1050 if (ptrace || (wo->wo_flags & __WALL)) 1051 return 1; 1052 1053 /* 1054 * Otherwise, wait for clone children *only* if __WCLONE is set; 1055 * otherwise, wait for non-clone children *only*. 1056 * 1057 * Note: a "clone" child here is one that reports to its parent 1058 * using a signal other than SIGCHLD, or a non-leader thread which 1059 * we can only see if it is traced by us. 1060 */ 1061 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1062 return 0; 1063 1064 return 1; 1065 } 1066 1067 /* 1068 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1069 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1070 * the lock and this task is uninteresting. If we return nonzero, we have 1071 * released the lock and the system call should return. 1072 */ 1073 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1074 { 1075 int state, status; 1076 pid_t pid = task_pid_vnr(p); 1077 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1078 struct waitid_info *infop; 1079 1080 if (!likely(wo->wo_flags & WEXITED)) 1081 return 0; 1082 1083 if (unlikely(wo->wo_flags & WNOWAIT)) { 1084 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1085 ? p->signal->group_exit_code : p->exit_code; 1086 get_task_struct(p); 1087 read_unlock(&tasklist_lock); 1088 sched_annotate_sleep(); 1089 if (wo->wo_rusage) 1090 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1091 put_task_struct(p); 1092 goto out_info; 1093 } 1094 /* 1095 * Move the task's state to DEAD/TRACE, only one thread can do this. 1096 */ 1097 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1098 EXIT_TRACE : EXIT_DEAD; 1099 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1100 return 0; 1101 /* 1102 * We own this thread, nobody else can reap it. 1103 */ 1104 read_unlock(&tasklist_lock); 1105 sched_annotate_sleep(); 1106 1107 /* 1108 * Check thread_group_leader() to exclude the traced sub-threads. 1109 */ 1110 if (state == EXIT_DEAD && thread_group_leader(p)) { 1111 struct signal_struct *sig = p->signal; 1112 struct signal_struct *psig = current->signal; 1113 unsigned long maxrss; 1114 u64 tgutime, tgstime; 1115 1116 /* 1117 * The resource counters for the group leader are in its 1118 * own task_struct. Those for dead threads in the group 1119 * are in its signal_struct, as are those for the child 1120 * processes it has previously reaped. All these 1121 * accumulate in the parent's signal_struct c* fields. 1122 * 1123 * We don't bother to take a lock here to protect these 1124 * p->signal fields because the whole thread group is dead 1125 * and nobody can change them. 1126 * 1127 * psig->stats_lock also protects us from our sub-threads 1128 * which can reap other children at the same time. Until 1129 * we change k_getrusage()-like users to rely on this lock 1130 * we have to take ->siglock as well. 1131 * 1132 * We use thread_group_cputime_adjusted() to get times for 1133 * the thread group, which consolidates times for all threads 1134 * in the group including the group leader. 1135 */ 1136 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1137 spin_lock_irq(¤t->sighand->siglock); 1138 write_seqlock(&psig->stats_lock); 1139 psig->cutime += tgutime + sig->cutime; 1140 psig->cstime += tgstime + sig->cstime; 1141 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1142 psig->cmin_flt += 1143 p->min_flt + sig->min_flt + sig->cmin_flt; 1144 psig->cmaj_flt += 1145 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1146 psig->cnvcsw += 1147 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1148 psig->cnivcsw += 1149 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1150 psig->cinblock += 1151 task_io_get_inblock(p) + 1152 sig->inblock + sig->cinblock; 1153 psig->coublock += 1154 task_io_get_oublock(p) + 1155 sig->oublock + sig->coublock; 1156 maxrss = max(sig->maxrss, sig->cmaxrss); 1157 if (psig->cmaxrss < maxrss) 1158 psig->cmaxrss = maxrss; 1159 task_io_accounting_add(&psig->ioac, &p->ioac); 1160 task_io_accounting_add(&psig->ioac, &sig->ioac); 1161 write_sequnlock(&psig->stats_lock); 1162 spin_unlock_irq(¤t->sighand->siglock); 1163 } 1164 1165 if (wo->wo_rusage) 1166 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1167 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1168 ? p->signal->group_exit_code : p->exit_code; 1169 wo->wo_stat = status; 1170 1171 if (state == EXIT_TRACE) { 1172 write_lock_irq(&tasklist_lock); 1173 /* We dropped tasklist, ptracer could die and untrace */ 1174 ptrace_unlink(p); 1175 1176 /* If parent wants a zombie, don't release it now */ 1177 state = EXIT_ZOMBIE; 1178 if (do_notify_parent(p, p->exit_signal)) 1179 state = EXIT_DEAD; 1180 p->exit_state = state; 1181 write_unlock_irq(&tasklist_lock); 1182 } 1183 if (state == EXIT_DEAD) 1184 release_task(p); 1185 1186 out_info: 1187 infop = wo->wo_info; 1188 if (infop) { 1189 if ((status & 0x7f) == 0) { 1190 infop->cause = CLD_EXITED; 1191 infop->status = status >> 8; 1192 } else { 1193 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1194 infop->status = status & 0x7f; 1195 } 1196 infop->pid = pid; 1197 infop->uid = uid; 1198 } 1199 1200 return pid; 1201 } 1202 1203 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1204 { 1205 if (ptrace) { 1206 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1207 return &p->exit_code; 1208 } else { 1209 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1210 return &p->signal->group_exit_code; 1211 } 1212 return NULL; 1213 } 1214 1215 /** 1216 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1217 * @wo: wait options 1218 * @ptrace: is the wait for ptrace 1219 * @p: task to wait for 1220 * 1221 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1222 * 1223 * CONTEXT: 1224 * read_lock(&tasklist_lock), which is released if return value is 1225 * non-zero. Also, grabs and releases @p->sighand->siglock. 1226 * 1227 * RETURNS: 1228 * 0 if wait condition didn't exist and search for other wait conditions 1229 * should continue. Non-zero return, -errno on failure and @p's pid on 1230 * success, implies that tasklist_lock is released and wait condition 1231 * search should terminate. 1232 */ 1233 static int wait_task_stopped(struct wait_opts *wo, 1234 int ptrace, struct task_struct *p) 1235 { 1236 struct waitid_info *infop; 1237 int exit_code, *p_code, why; 1238 uid_t uid = 0; /* unneeded, required by compiler */ 1239 pid_t pid; 1240 1241 /* 1242 * Traditionally we see ptrace'd stopped tasks regardless of options. 1243 */ 1244 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1245 return 0; 1246 1247 if (!task_stopped_code(p, ptrace)) 1248 return 0; 1249 1250 exit_code = 0; 1251 spin_lock_irq(&p->sighand->siglock); 1252 1253 p_code = task_stopped_code(p, ptrace); 1254 if (unlikely(!p_code)) 1255 goto unlock_sig; 1256 1257 exit_code = *p_code; 1258 if (!exit_code) 1259 goto unlock_sig; 1260 1261 if (!unlikely(wo->wo_flags & WNOWAIT)) 1262 *p_code = 0; 1263 1264 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1265 unlock_sig: 1266 spin_unlock_irq(&p->sighand->siglock); 1267 if (!exit_code) 1268 return 0; 1269 1270 /* 1271 * Now we are pretty sure this task is interesting. 1272 * Make sure it doesn't get reaped out from under us while we 1273 * give up the lock and then examine it below. We don't want to 1274 * keep holding onto the tasklist_lock while we call getrusage and 1275 * possibly take page faults for user memory. 1276 */ 1277 get_task_struct(p); 1278 pid = task_pid_vnr(p); 1279 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1280 read_unlock(&tasklist_lock); 1281 sched_annotate_sleep(); 1282 if (wo->wo_rusage) 1283 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1284 put_task_struct(p); 1285 1286 if (likely(!(wo->wo_flags & WNOWAIT))) 1287 wo->wo_stat = (exit_code << 8) | 0x7f; 1288 1289 infop = wo->wo_info; 1290 if (infop) { 1291 infop->cause = why; 1292 infop->status = exit_code; 1293 infop->pid = pid; 1294 infop->uid = uid; 1295 } 1296 return pid; 1297 } 1298 1299 /* 1300 * Handle do_wait work for one task in a live, non-stopped state. 1301 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1302 * the lock and this task is uninteresting. If we return nonzero, we have 1303 * released the lock and the system call should return. 1304 */ 1305 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1306 { 1307 struct waitid_info *infop; 1308 pid_t pid; 1309 uid_t uid; 1310 1311 if (!unlikely(wo->wo_flags & WCONTINUED)) 1312 return 0; 1313 1314 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1315 return 0; 1316 1317 spin_lock_irq(&p->sighand->siglock); 1318 /* Re-check with the lock held. */ 1319 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1320 spin_unlock_irq(&p->sighand->siglock); 1321 return 0; 1322 } 1323 if (!unlikely(wo->wo_flags & WNOWAIT)) 1324 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1325 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1326 spin_unlock_irq(&p->sighand->siglock); 1327 1328 pid = task_pid_vnr(p); 1329 get_task_struct(p); 1330 read_unlock(&tasklist_lock); 1331 sched_annotate_sleep(); 1332 if (wo->wo_rusage) 1333 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1334 put_task_struct(p); 1335 1336 infop = wo->wo_info; 1337 if (!infop) { 1338 wo->wo_stat = 0xffff; 1339 } else { 1340 infop->cause = CLD_CONTINUED; 1341 infop->pid = pid; 1342 infop->uid = uid; 1343 infop->status = SIGCONT; 1344 } 1345 return pid; 1346 } 1347 1348 /* 1349 * Consider @p for a wait by @parent. 1350 * 1351 * -ECHILD should be in ->notask_error before the first call. 1352 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1353 * Returns zero if the search for a child should continue; 1354 * then ->notask_error is 0 if @p is an eligible child, 1355 * or still -ECHILD. 1356 */ 1357 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1358 struct task_struct *p) 1359 { 1360 /* 1361 * We can race with wait_task_zombie() from another thread. 1362 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1363 * can't confuse the checks below. 1364 */ 1365 int exit_state = READ_ONCE(p->exit_state); 1366 int ret; 1367 1368 if (unlikely(exit_state == EXIT_DEAD)) 1369 return 0; 1370 1371 ret = eligible_child(wo, ptrace, p); 1372 if (!ret) 1373 return ret; 1374 1375 if (unlikely(exit_state == EXIT_TRACE)) { 1376 /* 1377 * ptrace == 0 means we are the natural parent. In this case 1378 * we should clear notask_error, debugger will notify us. 1379 */ 1380 if (likely(!ptrace)) 1381 wo->notask_error = 0; 1382 return 0; 1383 } 1384 1385 if (likely(!ptrace) && unlikely(p->ptrace)) { 1386 /* 1387 * If it is traced by its real parent's group, just pretend 1388 * the caller is ptrace_do_wait() and reap this child if it 1389 * is zombie. 1390 * 1391 * This also hides group stop state from real parent; otherwise 1392 * a single stop can be reported twice as group and ptrace stop. 1393 * If a ptracer wants to distinguish these two events for its 1394 * own children it should create a separate process which takes 1395 * the role of real parent. 1396 */ 1397 if (!ptrace_reparented(p)) 1398 ptrace = 1; 1399 } 1400 1401 /* slay zombie? */ 1402 if (exit_state == EXIT_ZOMBIE) { 1403 /* we don't reap group leaders with subthreads */ 1404 if (!delay_group_leader(p)) { 1405 /* 1406 * A zombie ptracee is only visible to its ptracer. 1407 * Notification and reaping will be cascaded to the 1408 * real parent when the ptracer detaches. 1409 */ 1410 if (unlikely(ptrace) || likely(!p->ptrace)) 1411 return wait_task_zombie(wo, p); 1412 } 1413 1414 /* 1415 * Allow access to stopped/continued state via zombie by 1416 * falling through. Clearing of notask_error is complex. 1417 * 1418 * When !@ptrace: 1419 * 1420 * If WEXITED is set, notask_error should naturally be 1421 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1422 * so, if there are live subthreads, there are events to 1423 * wait for. If all subthreads are dead, it's still safe 1424 * to clear - this function will be called again in finite 1425 * amount time once all the subthreads are released and 1426 * will then return without clearing. 1427 * 1428 * When @ptrace: 1429 * 1430 * Stopped state is per-task and thus can't change once the 1431 * target task dies. Only continued and exited can happen. 1432 * Clear notask_error if WCONTINUED | WEXITED. 1433 */ 1434 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1435 wo->notask_error = 0; 1436 } else { 1437 /* 1438 * @p is alive and it's gonna stop, continue or exit, so 1439 * there always is something to wait for. 1440 */ 1441 wo->notask_error = 0; 1442 } 1443 1444 /* 1445 * Wait for stopped. Depending on @ptrace, different stopped state 1446 * is used and the two don't interact with each other. 1447 */ 1448 ret = wait_task_stopped(wo, ptrace, p); 1449 if (ret) 1450 return ret; 1451 1452 /* 1453 * Wait for continued. There's only one continued state and the 1454 * ptracer can consume it which can confuse the real parent. Don't 1455 * use WCONTINUED from ptracer. You don't need or want it. 1456 */ 1457 return wait_task_continued(wo, p); 1458 } 1459 1460 /* 1461 * Do the work of do_wait() for one thread in the group, @tsk. 1462 * 1463 * -ECHILD should be in ->notask_error before the first call. 1464 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1465 * Returns zero if the search for a child should continue; then 1466 * ->notask_error is 0 if there were any eligible children, 1467 * or still -ECHILD. 1468 */ 1469 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1470 { 1471 struct task_struct *p; 1472 1473 list_for_each_entry(p, &tsk->children, sibling) { 1474 int ret = wait_consider_task(wo, 0, p); 1475 1476 if (ret) 1477 return ret; 1478 } 1479 1480 return 0; 1481 } 1482 1483 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1484 { 1485 struct task_struct *p; 1486 1487 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1488 int ret = wait_consider_task(wo, 1, p); 1489 1490 if (ret) 1491 return ret; 1492 } 1493 1494 return 0; 1495 } 1496 1497 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p) 1498 { 1499 if (!eligible_pid(wo, p)) 1500 return false; 1501 1502 if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent) 1503 return false; 1504 1505 return true; 1506 } 1507 1508 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1509 int sync, void *key) 1510 { 1511 struct wait_opts *wo = container_of(wait, struct wait_opts, 1512 child_wait); 1513 struct task_struct *p = key; 1514 1515 if (pid_child_should_wake(wo, p)) 1516 return default_wake_function(wait, mode, sync, key); 1517 1518 return 0; 1519 } 1520 1521 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1522 { 1523 __wake_up_sync_key(&parent->signal->wait_chldexit, 1524 TASK_INTERRUPTIBLE, p); 1525 } 1526 1527 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1528 struct task_struct *target) 1529 { 1530 struct task_struct *parent = 1531 !ptrace ? target->real_parent : target->parent; 1532 1533 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1534 same_thread_group(current, parent)); 1535 } 1536 1537 /* 1538 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1539 * and tracee lists to find the target task. 1540 */ 1541 static int do_wait_pid(struct wait_opts *wo) 1542 { 1543 bool ptrace; 1544 struct task_struct *target; 1545 int retval; 1546 1547 ptrace = false; 1548 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1549 if (target && is_effectively_child(wo, ptrace, target)) { 1550 retval = wait_consider_task(wo, ptrace, target); 1551 if (retval) 1552 return retval; 1553 } 1554 1555 ptrace = true; 1556 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1557 if (target && target->ptrace && 1558 is_effectively_child(wo, ptrace, target)) { 1559 retval = wait_consider_task(wo, ptrace, target); 1560 if (retval) 1561 return retval; 1562 } 1563 1564 return 0; 1565 } 1566 1567 long __do_wait(struct wait_opts *wo) 1568 { 1569 long retval; 1570 1571 /* 1572 * If there is nothing that can match our criteria, just get out. 1573 * We will clear ->notask_error to zero if we see any child that 1574 * might later match our criteria, even if we are not able to reap 1575 * it yet. 1576 */ 1577 wo->notask_error = -ECHILD; 1578 if ((wo->wo_type < PIDTYPE_MAX) && 1579 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1580 goto notask; 1581 1582 read_lock(&tasklist_lock); 1583 1584 if (wo->wo_type == PIDTYPE_PID) { 1585 retval = do_wait_pid(wo); 1586 if (retval) 1587 return retval; 1588 } else { 1589 struct task_struct *tsk = current; 1590 1591 do { 1592 retval = do_wait_thread(wo, tsk); 1593 if (retval) 1594 return retval; 1595 1596 retval = ptrace_do_wait(wo, tsk); 1597 if (retval) 1598 return retval; 1599 1600 if (wo->wo_flags & __WNOTHREAD) 1601 break; 1602 } while_each_thread(current, tsk); 1603 } 1604 read_unlock(&tasklist_lock); 1605 1606 notask: 1607 retval = wo->notask_error; 1608 if (!retval && !(wo->wo_flags & WNOHANG)) 1609 return -ERESTARTSYS; 1610 1611 return retval; 1612 } 1613 1614 static long do_wait(struct wait_opts *wo) 1615 { 1616 int retval; 1617 1618 trace_sched_process_wait(wo->wo_pid); 1619 1620 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1621 wo->child_wait.private = current; 1622 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1623 1624 do { 1625 set_current_state(TASK_INTERRUPTIBLE); 1626 retval = __do_wait(wo); 1627 if (retval != -ERESTARTSYS) 1628 break; 1629 if (signal_pending(current)) 1630 break; 1631 schedule(); 1632 } while (1); 1633 1634 __set_current_state(TASK_RUNNING); 1635 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1636 return retval; 1637 } 1638 1639 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid, 1640 struct waitid_info *infop, int options, 1641 struct rusage *ru) 1642 { 1643 unsigned int f_flags = 0; 1644 struct pid *pid = NULL; 1645 enum pid_type type; 1646 1647 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1648 __WNOTHREAD|__WCLONE|__WALL)) 1649 return -EINVAL; 1650 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1651 return -EINVAL; 1652 1653 switch (which) { 1654 case P_ALL: 1655 type = PIDTYPE_MAX; 1656 break; 1657 case P_PID: 1658 type = PIDTYPE_PID; 1659 if (upid <= 0) 1660 return -EINVAL; 1661 1662 pid = find_get_pid(upid); 1663 break; 1664 case P_PGID: 1665 type = PIDTYPE_PGID; 1666 if (upid < 0) 1667 return -EINVAL; 1668 1669 if (upid) 1670 pid = find_get_pid(upid); 1671 else 1672 pid = get_task_pid(current, PIDTYPE_PGID); 1673 break; 1674 case P_PIDFD: 1675 type = PIDTYPE_PID; 1676 if (upid < 0) 1677 return -EINVAL; 1678 1679 pid = pidfd_get_pid(upid, &f_flags); 1680 if (IS_ERR(pid)) 1681 return PTR_ERR(pid); 1682 1683 break; 1684 default: 1685 return -EINVAL; 1686 } 1687 1688 wo->wo_type = type; 1689 wo->wo_pid = pid; 1690 wo->wo_flags = options; 1691 wo->wo_info = infop; 1692 wo->wo_rusage = ru; 1693 if (f_flags & O_NONBLOCK) 1694 wo->wo_flags |= WNOHANG; 1695 1696 return 0; 1697 } 1698 1699 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1700 int options, struct rusage *ru) 1701 { 1702 struct wait_opts wo; 1703 long ret; 1704 1705 ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru); 1706 if (ret) 1707 return ret; 1708 1709 ret = do_wait(&wo); 1710 if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG)) 1711 ret = -EAGAIN; 1712 1713 put_pid(wo.wo_pid); 1714 return ret; 1715 } 1716 1717 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1718 infop, int, options, struct rusage __user *, ru) 1719 { 1720 struct rusage r; 1721 struct waitid_info info = {.status = 0}; 1722 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1723 int signo = 0; 1724 1725 if (err > 0) { 1726 signo = SIGCHLD; 1727 err = 0; 1728 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1729 return -EFAULT; 1730 } 1731 if (!infop) 1732 return err; 1733 1734 if (!user_write_access_begin(infop, sizeof(*infop))) 1735 return -EFAULT; 1736 1737 unsafe_put_user(signo, &infop->si_signo, Efault); 1738 unsafe_put_user(0, &infop->si_errno, Efault); 1739 unsafe_put_user(info.cause, &infop->si_code, Efault); 1740 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1741 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1742 unsafe_put_user(info.status, &infop->si_status, Efault); 1743 user_write_access_end(); 1744 return err; 1745 Efault: 1746 user_write_access_end(); 1747 return -EFAULT; 1748 } 1749 1750 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1751 struct rusage *ru) 1752 { 1753 struct wait_opts wo; 1754 struct pid *pid = NULL; 1755 enum pid_type type; 1756 long ret; 1757 1758 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1759 __WNOTHREAD|__WCLONE|__WALL)) 1760 return -EINVAL; 1761 1762 /* -INT_MIN is not defined */ 1763 if (upid == INT_MIN) 1764 return -ESRCH; 1765 1766 if (upid == -1) 1767 type = PIDTYPE_MAX; 1768 else if (upid < 0) { 1769 type = PIDTYPE_PGID; 1770 pid = find_get_pid(-upid); 1771 } else if (upid == 0) { 1772 type = PIDTYPE_PGID; 1773 pid = get_task_pid(current, PIDTYPE_PGID); 1774 } else /* upid > 0 */ { 1775 type = PIDTYPE_PID; 1776 pid = find_get_pid(upid); 1777 } 1778 1779 wo.wo_type = type; 1780 wo.wo_pid = pid; 1781 wo.wo_flags = options | WEXITED; 1782 wo.wo_info = NULL; 1783 wo.wo_stat = 0; 1784 wo.wo_rusage = ru; 1785 ret = do_wait(&wo); 1786 put_pid(pid); 1787 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1788 ret = -EFAULT; 1789 1790 return ret; 1791 } 1792 1793 int kernel_wait(pid_t pid, int *stat) 1794 { 1795 struct wait_opts wo = { 1796 .wo_type = PIDTYPE_PID, 1797 .wo_pid = find_get_pid(pid), 1798 .wo_flags = WEXITED, 1799 }; 1800 int ret; 1801 1802 ret = do_wait(&wo); 1803 if (ret > 0 && wo.wo_stat) 1804 *stat = wo.wo_stat; 1805 put_pid(wo.wo_pid); 1806 return ret; 1807 } 1808 1809 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1810 int, options, struct rusage __user *, ru) 1811 { 1812 struct rusage r; 1813 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1814 1815 if (err > 0) { 1816 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1817 return -EFAULT; 1818 } 1819 return err; 1820 } 1821 1822 #ifdef __ARCH_WANT_SYS_WAITPID 1823 1824 /* 1825 * sys_waitpid() remains for compatibility. waitpid() should be 1826 * implemented by calling sys_wait4() from libc.a. 1827 */ 1828 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1829 { 1830 return kernel_wait4(pid, stat_addr, options, NULL); 1831 } 1832 1833 #endif 1834 1835 #ifdef CONFIG_COMPAT 1836 COMPAT_SYSCALL_DEFINE4(wait4, 1837 compat_pid_t, pid, 1838 compat_uint_t __user *, stat_addr, 1839 int, options, 1840 struct compat_rusage __user *, ru) 1841 { 1842 struct rusage r; 1843 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1844 if (err > 0) { 1845 if (ru && put_compat_rusage(&r, ru)) 1846 return -EFAULT; 1847 } 1848 return err; 1849 } 1850 1851 COMPAT_SYSCALL_DEFINE5(waitid, 1852 int, which, compat_pid_t, pid, 1853 struct compat_siginfo __user *, infop, int, options, 1854 struct compat_rusage __user *, uru) 1855 { 1856 struct rusage ru; 1857 struct waitid_info info = {.status = 0}; 1858 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1859 int signo = 0; 1860 if (err > 0) { 1861 signo = SIGCHLD; 1862 err = 0; 1863 if (uru) { 1864 /* kernel_waitid() overwrites everything in ru */ 1865 if (COMPAT_USE_64BIT_TIME) 1866 err = copy_to_user(uru, &ru, sizeof(ru)); 1867 else 1868 err = put_compat_rusage(&ru, uru); 1869 if (err) 1870 return -EFAULT; 1871 } 1872 } 1873 1874 if (!infop) 1875 return err; 1876 1877 if (!user_write_access_begin(infop, sizeof(*infop))) 1878 return -EFAULT; 1879 1880 unsafe_put_user(signo, &infop->si_signo, Efault); 1881 unsafe_put_user(0, &infop->si_errno, Efault); 1882 unsafe_put_user(info.cause, &infop->si_code, Efault); 1883 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1884 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1885 unsafe_put_user(info.status, &infop->si_status, Efault); 1886 user_write_access_end(); 1887 return err; 1888 Efault: 1889 user_write_access_end(); 1890 return -EFAULT; 1891 } 1892 #endif 1893 1894 /** 1895 * thread_group_exited - check that a thread group has exited 1896 * @pid: tgid of thread group to be checked. 1897 * 1898 * Test if the thread group represented by tgid has exited (all 1899 * threads are zombies, dead or completely gone). 1900 * 1901 * Return: true if the thread group has exited. false otherwise. 1902 */ 1903 bool thread_group_exited(struct pid *pid) 1904 { 1905 struct task_struct *task; 1906 bool exited; 1907 1908 rcu_read_lock(); 1909 task = pid_task(pid, PIDTYPE_PID); 1910 exited = !task || 1911 (READ_ONCE(task->exit_state) && thread_group_empty(task)); 1912 rcu_read_unlock(); 1913 1914 return exited; 1915 } 1916 EXPORT_SYMBOL(thread_group_exited); 1917 1918 /* 1919 * This needs to be __function_aligned as GCC implicitly makes any 1920 * implementation of abort() cold and drops alignment specified by 1921 * -falign-functions=N. 1922 * 1923 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11 1924 */ 1925 __weak __function_aligned void abort(void) 1926 { 1927 BUG(); 1928 1929 /* if that doesn't kill us, halt */ 1930 panic("Oops failed to kill thread"); 1931 } 1932 EXPORT_SYMBOL(abort); 1933