xref: /linux/kernel/exit.c (revision 8b4a40809e5330c9da5d20107d693d92d73b31dc)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/signalfd.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cpuset.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 
49 #include <asm/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/pgtable.h>
52 #include <asm/mmu_context.h>
53 
54 extern void sem_exit (void);
55 
56 static void exit_mm(struct task_struct * tsk);
57 
58 static void __unhash_process(struct task_struct *p)
59 {
60 	nr_threads--;
61 	detach_pid(p, PIDTYPE_PID);
62 	if (thread_group_leader(p)) {
63 		detach_pid(p, PIDTYPE_PGID);
64 		detach_pid(p, PIDTYPE_SID);
65 
66 		list_del_rcu(&p->tasks);
67 		__get_cpu_var(process_counts)--;
68 	}
69 	list_del_rcu(&p->thread_group);
70 	remove_parent(p);
71 }
72 
73 /*
74  * This function expects the tasklist_lock write-locked.
75  */
76 static void __exit_signal(struct task_struct *tsk)
77 {
78 	struct signal_struct *sig = tsk->signal;
79 	struct sighand_struct *sighand;
80 
81 	BUG_ON(!sig);
82 	BUG_ON(!atomic_read(&sig->count));
83 
84 	rcu_read_lock();
85 	sighand = rcu_dereference(tsk->sighand);
86 	spin_lock(&sighand->siglock);
87 
88 	/*
89 	 * Notify that this sighand has been detached. This must
90 	 * be called with the tsk->sighand lock held. Also, this
91 	 * access tsk->sighand internally, so it must be called
92 	 * before tsk->sighand is reset.
93 	 */
94 	signalfd_detach_locked(tsk);
95 
96 	posix_cpu_timers_exit(tsk);
97 	if (atomic_dec_and_test(&sig->count))
98 		posix_cpu_timers_exit_group(tsk);
99 	else {
100 		/*
101 		 * If there is any task waiting for the group exit
102 		 * then notify it:
103 		 */
104 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
105 			wake_up_process(sig->group_exit_task);
106 			sig->group_exit_task = NULL;
107 		}
108 		if (tsk == sig->curr_target)
109 			sig->curr_target = next_thread(tsk);
110 		/*
111 		 * Accumulate here the counters for all threads but the
112 		 * group leader as they die, so they can be added into
113 		 * the process-wide totals when those are taken.
114 		 * The group leader stays around as a zombie as long
115 		 * as there are other threads.  When it gets reaped,
116 		 * the exit.c code will add its counts into these totals.
117 		 * We won't ever get here for the group leader, since it
118 		 * will have been the last reference on the signal_struct.
119 		 */
120 		sig->utime = cputime_add(sig->utime, tsk->utime);
121 		sig->stime = cputime_add(sig->stime, tsk->stime);
122 		sig->min_flt += tsk->min_flt;
123 		sig->maj_flt += tsk->maj_flt;
124 		sig->nvcsw += tsk->nvcsw;
125 		sig->nivcsw += tsk->nivcsw;
126 		sig->inblock += task_io_get_inblock(tsk);
127 		sig->oublock += task_io_get_oublock(tsk);
128 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
129 		sig = NULL; /* Marker for below. */
130 	}
131 
132 	__unhash_process(tsk);
133 
134 	tsk->signal = NULL;
135 	tsk->sighand = NULL;
136 	spin_unlock(&sighand->siglock);
137 	rcu_read_unlock();
138 
139 	__cleanup_sighand(sighand);
140 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
141 	flush_sigqueue(&tsk->pending);
142 	if (sig) {
143 		flush_sigqueue(&sig->shared_pending);
144 		taskstats_tgid_free(sig);
145 		__cleanup_signal(sig);
146 	}
147 }
148 
149 static void delayed_put_task_struct(struct rcu_head *rhp)
150 {
151 	put_task_struct(container_of(rhp, struct task_struct, rcu));
152 }
153 
154 void release_task(struct task_struct * p)
155 {
156 	struct task_struct *leader;
157 	int zap_leader;
158 repeat:
159 	atomic_dec(&p->user->processes);
160 	write_lock_irq(&tasklist_lock);
161 	ptrace_unlink(p);
162 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
163 	__exit_signal(p);
164 
165 	/*
166 	 * If we are the last non-leader member of the thread
167 	 * group, and the leader is zombie, then notify the
168 	 * group leader's parent process. (if it wants notification.)
169 	 */
170 	zap_leader = 0;
171 	leader = p->group_leader;
172 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
173 		BUG_ON(leader->exit_signal == -1);
174 		do_notify_parent(leader, leader->exit_signal);
175 		/*
176 		 * If we were the last child thread and the leader has
177 		 * exited already, and the leader's parent ignores SIGCHLD,
178 		 * then we are the one who should release the leader.
179 		 *
180 		 * do_notify_parent() will have marked it self-reaping in
181 		 * that case.
182 		 */
183 		zap_leader = (leader->exit_signal == -1);
184 	}
185 
186 	write_unlock_irq(&tasklist_lock);
187 	proc_flush_task(p);
188 	release_thread(p);
189 	call_rcu(&p->rcu, delayed_put_task_struct);
190 
191 	p = leader;
192 	if (unlikely(zap_leader))
193 		goto repeat;
194 }
195 
196 /*
197  * This checks not only the pgrp, but falls back on the pid if no
198  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
199  * without this...
200  *
201  * The caller must hold rcu lock or the tasklist lock.
202  */
203 struct pid *session_of_pgrp(struct pid *pgrp)
204 {
205 	struct task_struct *p;
206 	struct pid *sid = NULL;
207 
208 	p = pid_task(pgrp, PIDTYPE_PGID);
209 	if (p == NULL)
210 		p = pid_task(pgrp, PIDTYPE_PID);
211 	if (p != NULL)
212 		sid = task_session(p);
213 
214 	return sid;
215 }
216 
217 /*
218  * Determine if a process group is "orphaned", according to the POSIX
219  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
220  * by terminal-generated stop signals.  Newly orphaned process groups are
221  * to receive a SIGHUP and a SIGCONT.
222  *
223  * "I ask you, have you ever known what it is to be an orphan?"
224  */
225 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
226 {
227 	struct task_struct *p;
228 	int ret = 1;
229 
230 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
231 		if (p == ignored_task
232 				|| p->exit_state
233 				|| is_init(p->real_parent))
234 			continue;
235 		if (task_pgrp(p->real_parent) != pgrp &&
236 		    task_session(p->real_parent) == task_session(p)) {
237 			ret = 0;
238 			break;
239 		}
240 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
241 	return ret;	/* (sighing) "Often!" */
242 }
243 
244 int is_current_pgrp_orphaned(void)
245 {
246 	int retval;
247 
248 	read_lock(&tasklist_lock);
249 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
250 	read_unlock(&tasklist_lock);
251 
252 	return retval;
253 }
254 
255 static int has_stopped_jobs(struct pid *pgrp)
256 {
257 	int retval = 0;
258 	struct task_struct *p;
259 
260 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
261 		if (p->state != TASK_STOPPED)
262 			continue;
263 		retval = 1;
264 		break;
265 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
266 	return retval;
267 }
268 
269 /**
270  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
271  *
272  * If a kernel thread is launched as a result of a system call, or if
273  * it ever exits, it should generally reparent itself to kthreadd so it
274  * isn't in the way of other processes and is correctly cleaned up on exit.
275  *
276  * The various task state such as scheduling policy and priority may have
277  * been inherited from a user process, so we reset them to sane values here.
278  *
279  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
280  */
281 static void reparent_to_kthreadd(void)
282 {
283 	write_lock_irq(&tasklist_lock);
284 
285 	ptrace_unlink(current);
286 	/* Reparent to init */
287 	remove_parent(current);
288 	current->real_parent = current->parent = kthreadd_task;
289 	add_parent(current);
290 
291 	/* Set the exit signal to SIGCHLD so we signal init on exit */
292 	current->exit_signal = SIGCHLD;
293 
294 	if (task_nice(current) < 0)
295 		set_user_nice(current, 0);
296 	/* cpus_allowed? */
297 	/* rt_priority? */
298 	/* signals? */
299 	security_task_reparent_to_init(current);
300 	memcpy(current->signal->rlim, init_task.signal->rlim,
301 	       sizeof(current->signal->rlim));
302 	atomic_inc(&(INIT_USER->__count));
303 	write_unlock_irq(&tasklist_lock);
304 	switch_uid(INIT_USER);
305 }
306 
307 void __set_special_pids(pid_t session, pid_t pgrp)
308 {
309 	struct task_struct *curr = current->group_leader;
310 
311 	if (process_session(curr) != session) {
312 		detach_pid(curr, PIDTYPE_SID);
313 		set_signal_session(curr->signal, session);
314 		attach_pid(curr, PIDTYPE_SID, find_pid(session));
315 	}
316 	if (process_group(curr) != pgrp) {
317 		detach_pid(curr, PIDTYPE_PGID);
318 		curr->signal->pgrp = pgrp;
319 		attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp));
320 	}
321 }
322 
323 static void set_special_pids(pid_t session, pid_t pgrp)
324 {
325 	write_lock_irq(&tasklist_lock);
326 	__set_special_pids(session, pgrp);
327 	write_unlock_irq(&tasklist_lock);
328 }
329 
330 /*
331  * Let kernel threads use this to say that they
332  * allow a certain signal (since daemonize() will
333  * have disabled all of them by default).
334  */
335 int allow_signal(int sig)
336 {
337 	if (!valid_signal(sig) || sig < 1)
338 		return -EINVAL;
339 
340 	spin_lock_irq(&current->sighand->siglock);
341 	sigdelset(&current->blocked, sig);
342 	if (!current->mm) {
343 		/* Kernel threads handle their own signals.
344 		   Let the signal code know it'll be handled, so
345 		   that they don't get converted to SIGKILL or
346 		   just silently dropped */
347 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
348 	}
349 	recalc_sigpending();
350 	spin_unlock_irq(&current->sighand->siglock);
351 	return 0;
352 }
353 
354 EXPORT_SYMBOL(allow_signal);
355 
356 int disallow_signal(int sig)
357 {
358 	if (!valid_signal(sig) || sig < 1)
359 		return -EINVAL;
360 
361 	spin_lock_irq(&current->sighand->siglock);
362 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
363 	recalc_sigpending();
364 	spin_unlock_irq(&current->sighand->siglock);
365 	return 0;
366 }
367 
368 EXPORT_SYMBOL(disallow_signal);
369 
370 /*
371  *	Put all the gunge required to become a kernel thread without
372  *	attached user resources in one place where it belongs.
373  */
374 
375 void daemonize(const char *name, ...)
376 {
377 	va_list args;
378 	struct fs_struct *fs;
379 	sigset_t blocked;
380 
381 	va_start(args, name);
382 	vsnprintf(current->comm, sizeof(current->comm), name, args);
383 	va_end(args);
384 
385 	/*
386 	 * If we were started as result of loading a module, close all of the
387 	 * user space pages.  We don't need them, and if we didn't close them
388 	 * they would be locked into memory.
389 	 */
390 	exit_mm(current);
391 	/*
392 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
393 	 * or suspend transition begins right now.
394 	 */
395 	current->flags |= PF_NOFREEZE;
396 
397 	set_special_pids(1, 1);
398 	proc_clear_tty(current);
399 
400 	/* Block and flush all signals */
401 	sigfillset(&blocked);
402 	sigprocmask(SIG_BLOCK, &blocked, NULL);
403 	flush_signals(current);
404 
405 	/* Become as one with the init task */
406 
407 	exit_fs(current);	/* current->fs->count--; */
408 	fs = init_task.fs;
409 	current->fs = fs;
410 	atomic_inc(&fs->count);
411 
412 	exit_task_namespaces(current);
413 	current->nsproxy = init_task.nsproxy;
414 	get_task_namespaces(current);
415 
416  	exit_files(current);
417 	current->files = init_task.files;
418 	atomic_inc(&current->files->count);
419 
420 	reparent_to_kthreadd();
421 }
422 
423 EXPORT_SYMBOL(daemonize);
424 
425 static void close_files(struct files_struct * files)
426 {
427 	int i, j;
428 	struct fdtable *fdt;
429 
430 	j = 0;
431 
432 	/*
433 	 * It is safe to dereference the fd table without RCU or
434 	 * ->file_lock because this is the last reference to the
435 	 * files structure.
436 	 */
437 	fdt = files_fdtable(files);
438 	for (;;) {
439 		unsigned long set;
440 		i = j * __NFDBITS;
441 		if (i >= fdt->max_fds)
442 			break;
443 		set = fdt->open_fds->fds_bits[j++];
444 		while (set) {
445 			if (set & 1) {
446 				struct file * file = xchg(&fdt->fd[i], NULL);
447 				if (file) {
448 					filp_close(file, files);
449 					cond_resched();
450 				}
451 			}
452 			i++;
453 			set >>= 1;
454 		}
455 	}
456 }
457 
458 struct files_struct *get_files_struct(struct task_struct *task)
459 {
460 	struct files_struct *files;
461 
462 	task_lock(task);
463 	files = task->files;
464 	if (files)
465 		atomic_inc(&files->count);
466 	task_unlock(task);
467 
468 	return files;
469 }
470 
471 void fastcall put_files_struct(struct files_struct *files)
472 {
473 	struct fdtable *fdt;
474 
475 	if (atomic_dec_and_test(&files->count)) {
476 		close_files(files);
477 		/*
478 		 * Free the fd and fdset arrays if we expanded them.
479 		 * If the fdtable was embedded, pass files for freeing
480 		 * at the end of the RCU grace period. Otherwise,
481 		 * you can free files immediately.
482 		 */
483 		fdt = files_fdtable(files);
484 		if (fdt != &files->fdtab)
485 			kmem_cache_free(files_cachep, files);
486 		free_fdtable(fdt);
487 	}
488 }
489 
490 EXPORT_SYMBOL(put_files_struct);
491 
492 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
493 {
494 	struct files_struct *old;
495 
496 	old = tsk->files;
497 	task_lock(tsk);
498 	tsk->files = files;
499 	task_unlock(tsk);
500 	put_files_struct(old);
501 }
502 EXPORT_SYMBOL(reset_files_struct);
503 
504 static inline void __exit_files(struct task_struct *tsk)
505 {
506 	struct files_struct * files = tsk->files;
507 
508 	if (files) {
509 		task_lock(tsk);
510 		tsk->files = NULL;
511 		task_unlock(tsk);
512 		put_files_struct(files);
513 	}
514 }
515 
516 void exit_files(struct task_struct *tsk)
517 {
518 	__exit_files(tsk);
519 }
520 
521 static inline void __put_fs_struct(struct fs_struct *fs)
522 {
523 	/* No need to hold fs->lock if we are killing it */
524 	if (atomic_dec_and_test(&fs->count)) {
525 		dput(fs->root);
526 		mntput(fs->rootmnt);
527 		dput(fs->pwd);
528 		mntput(fs->pwdmnt);
529 		if (fs->altroot) {
530 			dput(fs->altroot);
531 			mntput(fs->altrootmnt);
532 		}
533 		kmem_cache_free(fs_cachep, fs);
534 	}
535 }
536 
537 void put_fs_struct(struct fs_struct *fs)
538 {
539 	__put_fs_struct(fs);
540 }
541 
542 static inline void __exit_fs(struct task_struct *tsk)
543 {
544 	struct fs_struct * fs = tsk->fs;
545 
546 	if (fs) {
547 		task_lock(tsk);
548 		tsk->fs = NULL;
549 		task_unlock(tsk);
550 		__put_fs_struct(fs);
551 	}
552 }
553 
554 void exit_fs(struct task_struct *tsk)
555 {
556 	__exit_fs(tsk);
557 }
558 
559 EXPORT_SYMBOL_GPL(exit_fs);
560 
561 /*
562  * Turn us into a lazy TLB process if we
563  * aren't already..
564  */
565 static void exit_mm(struct task_struct * tsk)
566 {
567 	struct mm_struct *mm = tsk->mm;
568 
569 	mm_release(tsk, mm);
570 	if (!mm)
571 		return;
572 	/*
573 	 * Serialize with any possible pending coredump.
574 	 * We must hold mmap_sem around checking core_waiters
575 	 * and clearing tsk->mm.  The core-inducing thread
576 	 * will increment core_waiters for each thread in the
577 	 * group with ->mm != NULL.
578 	 */
579 	down_read(&mm->mmap_sem);
580 	if (mm->core_waiters) {
581 		up_read(&mm->mmap_sem);
582 		down_write(&mm->mmap_sem);
583 		if (!--mm->core_waiters)
584 			complete(mm->core_startup_done);
585 		up_write(&mm->mmap_sem);
586 
587 		wait_for_completion(&mm->core_done);
588 		down_read(&mm->mmap_sem);
589 	}
590 	atomic_inc(&mm->mm_count);
591 	BUG_ON(mm != tsk->active_mm);
592 	/* more a memory barrier than a real lock */
593 	task_lock(tsk);
594 	tsk->mm = NULL;
595 	up_read(&mm->mmap_sem);
596 	enter_lazy_tlb(mm, current);
597 	task_unlock(tsk);
598 	mmput(mm);
599 }
600 
601 static inline void
602 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
603 {
604 	/*
605 	 * Make sure we're not reparenting to ourselves and that
606 	 * the parent is not a zombie.
607 	 */
608 	BUG_ON(p == reaper || reaper->exit_state);
609 	p->real_parent = reaper;
610 }
611 
612 static void
613 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
614 {
615 	if (p->pdeath_signal)
616 		/* We already hold the tasklist_lock here.  */
617 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
618 
619 	/* Move the child from its dying parent to the new one.  */
620 	if (unlikely(traced)) {
621 		/* Preserve ptrace links if someone else is tracing this child.  */
622 		list_del_init(&p->ptrace_list);
623 		if (p->parent != p->real_parent)
624 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
625 	} else {
626 		/* If this child is being traced, then we're the one tracing it
627 		 * anyway, so let go of it.
628 		 */
629 		p->ptrace = 0;
630 		remove_parent(p);
631 		p->parent = p->real_parent;
632 		add_parent(p);
633 
634 		if (p->state == TASK_TRACED) {
635 			/*
636 			 * If it was at a trace stop, turn it into
637 			 * a normal stop since it's no longer being
638 			 * traced.
639 			 */
640 			ptrace_untrace(p);
641 		}
642 	}
643 
644 	/* If this is a threaded reparent there is no need to
645 	 * notify anyone anything has happened.
646 	 */
647 	if (p->real_parent->group_leader == father->group_leader)
648 		return;
649 
650 	/* We don't want people slaying init.  */
651 	if (p->exit_signal != -1)
652 		p->exit_signal = SIGCHLD;
653 
654 	/* If we'd notified the old parent about this child's death,
655 	 * also notify the new parent.
656 	 */
657 	if (!traced && p->exit_state == EXIT_ZOMBIE &&
658 	    p->exit_signal != -1 && thread_group_empty(p))
659 		do_notify_parent(p, p->exit_signal);
660 
661 	/*
662 	 * process group orphan check
663 	 * Case ii: Our child is in a different pgrp
664 	 * than we are, and it was the only connection
665 	 * outside, so the child pgrp is now orphaned.
666 	 */
667 	if ((task_pgrp(p) != task_pgrp(father)) &&
668 	    (task_session(p) == task_session(father))) {
669 		struct pid *pgrp = task_pgrp(p);
670 
671 		if (will_become_orphaned_pgrp(pgrp, NULL) &&
672 		    has_stopped_jobs(pgrp)) {
673 			__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
674 			__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
675 		}
676 	}
677 }
678 
679 /*
680  * When we die, we re-parent all our children.
681  * Try to give them to another thread in our thread
682  * group, and if no such member exists, give it to
683  * the child reaper process (ie "init") in our pid
684  * space.
685  */
686 static void
687 forget_original_parent(struct task_struct *father, struct list_head *to_release)
688 {
689 	struct task_struct *p, *reaper = father;
690 	struct list_head *_p, *_n;
691 
692 	do {
693 		reaper = next_thread(reaper);
694 		if (reaper == father) {
695 			reaper = child_reaper(father);
696 			break;
697 		}
698 	} while (reaper->exit_state);
699 
700 	/*
701 	 * There are only two places where our children can be:
702 	 *
703 	 * - in our child list
704 	 * - in our ptraced child list
705 	 *
706 	 * Search them and reparent children.
707 	 */
708 	list_for_each_safe(_p, _n, &father->children) {
709 		int ptrace;
710 		p = list_entry(_p, struct task_struct, sibling);
711 
712 		ptrace = p->ptrace;
713 
714 		/* if father isn't the real parent, then ptrace must be enabled */
715 		BUG_ON(father != p->real_parent && !ptrace);
716 
717 		if (father == p->real_parent) {
718 			/* reparent with a reaper, real father it's us */
719 			choose_new_parent(p, reaper);
720 			reparent_thread(p, father, 0);
721 		} else {
722 			/* reparent ptraced task to its real parent */
723 			__ptrace_unlink (p);
724 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
725 			    thread_group_empty(p))
726 				do_notify_parent(p, p->exit_signal);
727 		}
728 
729 		/*
730 		 * if the ptraced child is a zombie with exit_signal == -1
731 		 * we must collect it before we exit, or it will remain
732 		 * zombie forever since we prevented it from self-reap itself
733 		 * while it was being traced by us, to be able to see it in wait4.
734 		 */
735 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
736 			list_add(&p->ptrace_list, to_release);
737 	}
738 	list_for_each_safe(_p, _n, &father->ptrace_children) {
739 		p = list_entry(_p, struct task_struct, ptrace_list);
740 		choose_new_parent(p, reaper);
741 		reparent_thread(p, father, 1);
742 	}
743 }
744 
745 /*
746  * Send signals to all our closest relatives so that they know
747  * to properly mourn us..
748  */
749 static void exit_notify(struct task_struct *tsk)
750 {
751 	int state;
752 	struct task_struct *t;
753 	struct list_head ptrace_dead, *_p, *_n;
754 	struct pid *pgrp;
755 
756 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
757 	    && !thread_group_empty(tsk)) {
758 		/*
759 		 * This occurs when there was a race between our exit
760 		 * syscall and a group signal choosing us as the one to
761 		 * wake up.  It could be that we are the only thread
762 		 * alerted to check for pending signals, but another thread
763 		 * should be woken now to take the signal since we will not.
764 		 * Now we'll wake all the threads in the group just to make
765 		 * sure someone gets all the pending signals.
766 		 */
767 		read_lock(&tasklist_lock);
768 		spin_lock_irq(&tsk->sighand->siglock);
769 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
770 			if (!signal_pending(t) && !(t->flags & PF_EXITING))
771 				recalc_sigpending_and_wake(t);
772 		spin_unlock_irq(&tsk->sighand->siglock);
773 		read_unlock(&tasklist_lock);
774 	}
775 
776 	write_lock_irq(&tasklist_lock);
777 
778 	/*
779 	 * This does two things:
780 	 *
781   	 * A.  Make init inherit all the child processes
782 	 * B.  Check to see if any process groups have become orphaned
783 	 *	as a result of our exiting, and if they have any stopped
784 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
785 	 */
786 
787 	INIT_LIST_HEAD(&ptrace_dead);
788 	forget_original_parent(tsk, &ptrace_dead);
789 	BUG_ON(!list_empty(&tsk->children));
790 	BUG_ON(!list_empty(&tsk->ptrace_children));
791 
792 	/*
793 	 * Check to see if any process groups have become orphaned
794 	 * as a result of our exiting, and if they have any stopped
795 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
796 	 *
797 	 * Case i: Our father is in a different pgrp than we are
798 	 * and we were the only connection outside, so our pgrp
799 	 * is about to become orphaned.
800 	 */
801 
802 	t = tsk->real_parent;
803 
804 	pgrp = task_pgrp(tsk);
805 	if ((task_pgrp(t) != pgrp) &&
806 	    (task_session(t) == task_session(tsk)) &&
807 	    will_become_orphaned_pgrp(pgrp, tsk) &&
808 	    has_stopped_jobs(pgrp)) {
809 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
810 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
811 	}
812 
813 	/* Let father know we died
814 	 *
815 	 * Thread signals are configurable, but you aren't going to use
816 	 * that to send signals to arbitary processes.
817 	 * That stops right now.
818 	 *
819 	 * If the parent exec id doesn't match the exec id we saved
820 	 * when we started then we know the parent has changed security
821 	 * domain.
822 	 *
823 	 * If our self_exec id doesn't match our parent_exec_id then
824 	 * we have changed execution domain as these two values started
825 	 * the same after a fork.
826 	 *
827 	 */
828 
829 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
830 	    ( tsk->parent_exec_id != t->self_exec_id  ||
831 	      tsk->self_exec_id != tsk->parent_exec_id)
832 	    && !capable(CAP_KILL))
833 		tsk->exit_signal = SIGCHLD;
834 
835 
836 	/* If something other than our normal parent is ptracing us, then
837 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
838 	 * only has special meaning to our real parent.
839 	 */
840 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
841 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
842 		do_notify_parent(tsk, signal);
843 	} else if (tsk->ptrace) {
844 		do_notify_parent(tsk, SIGCHLD);
845 	}
846 
847 	state = EXIT_ZOMBIE;
848 	if (tsk->exit_signal == -1 &&
849 	    (likely(tsk->ptrace == 0) ||
850 	     unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
851 		state = EXIT_DEAD;
852 	tsk->exit_state = state;
853 
854 	write_unlock_irq(&tasklist_lock);
855 
856 	list_for_each_safe(_p, _n, &ptrace_dead) {
857 		list_del_init(_p);
858 		t = list_entry(_p, struct task_struct, ptrace_list);
859 		release_task(t);
860 	}
861 
862 	/* If the process is dead, release it - nobody will wait for it */
863 	if (state == EXIT_DEAD)
864 		release_task(tsk);
865 }
866 
867 #ifdef CONFIG_DEBUG_STACK_USAGE
868 static void check_stack_usage(void)
869 {
870 	static DEFINE_SPINLOCK(low_water_lock);
871 	static int lowest_to_date = THREAD_SIZE;
872 	unsigned long *n = end_of_stack(current);
873 	unsigned long free;
874 
875 	while (*n == 0)
876 		n++;
877 	free = (unsigned long)n - (unsigned long)end_of_stack(current);
878 
879 	if (free >= lowest_to_date)
880 		return;
881 
882 	spin_lock(&low_water_lock);
883 	if (free < lowest_to_date) {
884 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
885 				"left\n",
886 				current->comm, free);
887 		lowest_to_date = free;
888 	}
889 	spin_unlock(&low_water_lock);
890 }
891 #else
892 static inline void check_stack_usage(void) {}
893 #endif
894 
895 fastcall NORET_TYPE void do_exit(long code)
896 {
897 	struct task_struct *tsk = current;
898 	int group_dead;
899 
900 	profile_task_exit(tsk);
901 
902 	WARN_ON(atomic_read(&tsk->fs_excl));
903 
904 	if (unlikely(in_interrupt()))
905 		panic("Aiee, killing interrupt handler!");
906 	if (unlikely(!tsk->pid))
907 		panic("Attempted to kill the idle task!");
908 	if (unlikely(tsk == child_reaper(tsk))) {
909 		if (tsk->nsproxy->pid_ns != &init_pid_ns)
910 			tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper;
911 		else
912 			panic("Attempted to kill init!");
913 	}
914 
915 
916 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
917 		current->ptrace_message = code;
918 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
919 	}
920 
921 	/*
922 	 * We're taking recursive faults here in do_exit. Safest is to just
923 	 * leave this task alone and wait for reboot.
924 	 */
925 	if (unlikely(tsk->flags & PF_EXITING)) {
926 		printk(KERN_ALERT
927 			"Fixing recursive fault but reboot is needed!\n");
928 		/*
929 		 * We can do this unlocked here. The futex code uses
930 		 * this flag just to verify whether the pi state
931 		 * cleanup has been done or not. In the worst case it
932 		 * loops once more. We pretend that the cleanup was
933 		 * done as there is no way to return. Either the
934 		 * OWNER_DIED bit is set by now or we push the blocked
935 		 * task into the wait for ever nirwana as well.
936 		 */
937 		tsk->flags |= PF_EXITPIDONE;
938 		if (tsk->io_context)
939 			exit_io_context();
940 		set_current_state(TASK_UNINTERRUPTIBLE);
941 		schedule();
942 	}
943 
944 	/*
945 	 * tsk->flags are checked in the futex code to protect against
946 	 * an exiting task cleaning up the robust pi futexes.
947 	 */
948 	spin_lock_irq(&tsk->pi_lock);
949 	tsk->flags |= PF_EXITING;
950 	spin_unlock_irq(&tsk->pi_lock);
951 
952 	if (unlikely(in_atomic()))
953 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
954 				current->comm, current->pid,
955 				preempt_count());
956 
957 	acct_update_integrals(tsk);
958 	if (tsk->mm) {
959 		update_hiwater_rss(tsk->mm);
960 		update_hiwater_vm(tsk->mm);
961 	}
962 	group_dead = atomic_dec_and_test(&tsk->signal->live);
963 	if (group_dead) {
964 		hrtimer_cancel(&tsk->signal->real_timer);
965 		exit_itimers(tsk->signal);
966 	}
967 	acct_collect(code, group_dead);
968 	if (unlikely(tsk->robust_list))
969 		exit_robust_list(tsk);
970 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
971 	if (unlikely(tsk->compat_robust_list))
972 		compat_exit_robust_list(tsk);
973 #endif
974 	if (group_dead)
975 		tty_audit_exit();
976 	if (unlikely(tsk->audit_context))
977 		audit_free(tsk);
978 
979 	taskstats_exit(tsk, group_dead);
980 
981 	exit_mm(tsk);
982 
983 	if (group_dead)
984 		acct_process();
985 	exit_sem(tsk);
986 	__exit_files(tsk);
987 	__exit_fs(tsk);
988 	check_stack_usage();
989 	exit_thread();
990 	cpuset_exit(tsk);
991 	exit_keys(tsk);
992 
993 	if (group_dead && tsk->signal->leader)
994 		disassociate_ctty(1);
995 
996 	module_put(task_thread_info(tsk)->exec_domain->module);
997 	if (tsk->binfmt)
998 		module_put(tsk->binfmt->module);
999 
1000 	tsk->exit_code = code;
1001 	proc_exit_connector(tsk);
1002 	exit_task_namespaces(tsk);
1003 	exit_notify(tsk);
1004 #ifdef CONFIG_NUMA
1005 	mpol_free(tsk->mempolicy);
1006 	tsk->mempolicy = NULL;
1007 #endif
1008 	/*
1009 	 * This must happen late, after the PID is not
1010 	 * hashed anymore:
1011 	 */
1012 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1013 		exit_pi_state_list(tsk);
1014 	if (unlikely(current->pi_state_cache))
1015 		kfree(current->pi_state_cache);
1016 	/*
1017 	 * Make sure we are holding no locks:
1018 	 */
1019 	debug_check_no_locks_held(tsk);
1020 	/*
1021 	 * We can do this unlocked here. The futex code uses this flag
1022 	 * just to verify whether the pi state cleanup has been done
1023 	 * or not. In the worst case it loops once more.
1024 	 */
1025 	tsk->flags |= PF_EXITPIDONE;
1026 
1027 	if (tsk->io_context)
1028 		exit_io_context();
1029 
1030 	if (tsk->splice_pipe)
1031 		__free_pipe_info(tsk->splice_pipe);
1032 
1033 	preempt_disable();
1034 	/* causes final put_task_struct in finish_task_switch(). */
1035 	tsk->state = TASK_DEAD;
1036 
1037 	schedule();
1038 	BUG();
1039 	/* Avoid "noreturn function does return".  */
1040 	for (;;)
1041 		cpu_relax();	/* For when BUG is null */
1042 }
1043 
1044 EXPORT_SYMBOL_GPL(do_exit);
1045 
1046 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1047 {
1048 	if (comp)
1049 		complete(comp);
1050 
1051 	do_exit(code);
1052 }
1053 
1054 EXPORT_SYMBOL(complete_and_exit);
1055 
1056 asmlinkage long sys_exit(int error_code)
1057 {
1058 	do_exit((error_code&0xff)<<8);
1059 }
1060 
1061 /*
1062  * Take down every thread in the group.  This is called by fatal signals
1063  * as well as by sys_exit_group (below).
1064  */
1065 NORET_TYPE void
1066 do_group_exit(int exit_code)
1067 {
1068 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1069 
1070 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1071 		exit_code = current->signal->group_exit_code;
1072 	else if (!thread_group_empty(current)) {
1073 		struct signal_struct *const sig = current->signal;
1074 		struct sighand_struct *const sighand = current->sighand;
1075 		spin_lock_irq(&sighand->siglock);
1076 		if (sig->flags & SIGNAL_GROUP_EXIT)
1077 			/* Another thread got here before we took the lock.  */
1078 			exit_code = sig->group_exit_code;
1079 		else {
1080 			sig->group_exit_code = exit_code;
1081 			zap_other_threads(current);
1082 		}
1083 		spin_unlock_irq(&sighand->siglock);
1084 	}
1085 
1086 	do_exit(exit_code);
1087 	/* NOTREACHED */
1088 }
1089 
1090 /*
1091  * this kills every thread in the thread group. Note that any externally
1092  * wait4()-ing process will get the correct exit code - even if this
1093  * thread is not the thread group leader.
1094  */
1095 asmlinkage void sys_exit_group(int error_code)
1096 {
1097 	do_group_exit((error_code & 0xff) << 8);
1098 }
1099 
1100 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1101 {
1102 	int err;
1103 
1104 	if (pid > 0) {
1105 		if (p->pid != pid)
1106 			return 0;
1107 	} else if (!pid) {
1108 		if (process_group(p) != process_group(current))
1109 			return 0;
1110 	} else if (pid != -1) {
1111 		if (process_group(p) != -pid)
1112 			return 0;
1113 	}
1114 
1115 	/*
1116 	 * Do not consider detached threads that are
1117 	 * not ptraced:
1118 	 */
1119 	if (p->exit_signal == -1 && !p->ptrace)
1120 		return 0;
1121 
1122 	/* Wait for all children (clone and not) if __WALL is set;
1123 	 * otherwise, wait for clone children *only* if __WCLONE is
1124 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1125 	 * A "clone" child here is one that reports to its parent
1126 	 * using a signal other than SIGCHLD.) */
1127 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1128 	    && !(options & __WALL))
1129 		return 0;
1130 	/*
1131 	 * Do not consider thread group leaders that are
1132 	 * in a non-empty thread group:
1133 	 */
1134 	if (delay_group_leader(p))
1135 		return 2;
1136 
1137 	err = security_task_wait(p);
1138 	if (err)
1139 		return err;
1140 
1141 	return 1;
1142 }
1143 
1144 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1145 			       int why, int status,
1146 			       struct siginfo __user *infop,
1147 			       struct rusage __user *rusagep)
1148 {
1149 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1150 
1151 	put_task_struct(p);
1152 	if (!retval)
1153 		retval = put_user(SIGCHLD, &infop->si_signo);
1154 	if (!retval)
1155 		retval = put_user(0, &infop->si_errno);
1156 	if (!retval)
1157 		retval = put_user((short)why, &infop->si_code);
1158 	if (!retval)
1159 		retval = put_user(pid, &infop->si_pid);
1160 	if (!retval)
1161 		retval = put_user(uid, &infop->si_uid);
1162 	if (!retval)
1163 		retval = put_user(status, &infop->si_status);
1164 	if (!retval)
1165 		retval = pid;
1166 	return retval;
1167 }
1168 
1169 /*
1170  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1171  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1172  * the lock and this task is uninteresting.  If we return nonzero, we have
1173  * released the lock and the system call should return.
1174  */
1175 static int wait_task_zombie(struct task_struct *p, int noreap,
1176 			    struct siginfo __user *infop,
1177 			    int __user *stat_addr, struct rusage __user *ru)
1178 {
1179 	unsigned long state;
1180 	int retval;
1181 	int status;
1182 
1183 	if (unlikely(noreap)) {
1184 		pid_t pid = p->pid;
1185 		uid_t uid = p->uid;
1186 		int exit_code = p->exit_code;
1187 		int why, status;
1188 
1189 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1190 			return 0;
1191 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1192 			return 0;
1193 		get_task_struct(p);
1194 		read_unlock(&tasklist_lock);
1195 		if ((exit_code & 0x7f) == 0) {
1196 			why = CLD_EXITED;
1197 			status = exit_code >> 8;
1198 		} else {
1199 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1200 			status = exit_code & 0x7f;
1201 		}
1202 		return wait_noreap_copyout(p, pid, uid, why,
1203 					   status, infop, ru);
1204 	}
1205 
1206 	/*
1207 	 * Try to move the task's state to DEAD
1208 	 * only one thread is allowed to do this:
1209 	 */
1210 	state = xchg(&p->exit_state, EXIT_DEAD);
1211 	if (state != EXIT_ZOMBIE) {
1212 		BUG_ON(state != EXIT_DEAD);
1213 		return 0;
1214 	}
1215 	if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1216 		/*
1217 		 * This can only happen in a race with a ptraced thread
1218 		 * dying on another processor.
1219 		 */
1220 		return 0;
1221 	}
1222 
1223 	if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1224 		struct signal_struct *psig;
1225 		struct signal_struct *sig;
1226 
1227 		/*
1228 		 * The resource counters for the group leader are in its
1229 		 * own task_struct.  Those for dead threads in the group
1230 		 * are in its signal_struct, as are those for the child
1231 		 * processes it has previously reaped.  All these
1232 		 * accumulate in the parent's signal_struct c* fields.
1233 		 *
1234 		 * We don't bother to take a lock here to protect these
1235 		 * p->signal fields, because they are only touched by
1236 		 * __exit_signal, which runs with tasklist_lock
1237 		 * write-locked anyway, and so is excluded here.  We do
1238 		 * need to protect the access to p->parent->signal fields,
1239 		 * as other threads in the parent group can be right
1240 		 * here reaping other children at the same time.
1241 		 */
1242 		spin_lock_irq(&p->parent->sighand->siglock);
1243 		psig = p->parent->signal;
1244 		sig = p->signal;
1245 		psig->cutime =
1246 			cputime_add(psig->cutime,
1247 			cputime_add(p->utime,
1248 			cputime_add(sig->utime,
1249 				    sig->cutime)));
1250 		psig->cstime =
1251 			cputime_add(psig->cstime,
1252 			cputime_add(p->stime,
1253 			cputime_add(sig->stime,
1254 				    sig->cstime)));
1255 		psig->cmin_flt +=
1256 			p->min_flt + sig->min_flt + sig->cmin_flt;
1257 		psig->cmaj_flt +=
1258 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1259 		psig->cnvcsw +=
1260 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1261 		psig->cnivcsw +=
1262 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1263 		psig->cinblock +=
1264 			task_io_get_inblock(p) +
1265 			sig->inblock + sig->cinblock;
1266 		psig->coublock +=
1267 			task_io_get_oublock(p) +
1268 			sig->oublock + sig->coublock;
1269 		spin_unlock_irq(&p->parent->sighand->siglock);
1270 	}
1271 
1272 	/*
1273 	 * Now we are sure this task is interesting, and no other
1274 	 * thread can reap it because we set its state to EXIT_DEAD.
1275 	 */
1276 	read_unlock(&tasklist_lock);
1277 
1278 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1279 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1280 		? p->signal->group_exit_code : p->exit_code;
1281 	if (!retval && stat_addr)
1282 		retval = put_user(status, stat_addr);
1283 	if (!retval && infop)
1284 		retval = put_user(SIGCHLD, &infop->si_signo);
1285 	if (!retval && infop)
1286 		retval = put_user(0, &infop->si_errno);
1287 	if (!retval && infop) {
1288 		int why;
1289 
1290 		if ((status & 0x7f) == 0) {
1291 			why = CLD_EXITED;
1292 			status >>= 8;
1293 		} else {
1294 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1295 			status &= 0x7f;
1296 		}
1297 		retval = put_user((short)why, &infop->si_code);
1298 		if (!retval)
1299 			retval = put_user(status, &infop->si_status);
1300 	}
1301 	if (!retval && infop)
1302 		retval = put_user(p->pid, &infop->si_pid);
1303 	if (!retval && infop)
1304 		retval = put_user(p->uid, &infop->si_uid);
1305 	if (retval) {
1306 		// TODO: is this safe?
1307 		p->exit_state = EXIT_ZOMBIE;
1308 		return retval;
1309 	}
1310 	retval = p->pid;
1311 	if (p->real_parent != p->parent) {
1312 		write_lock_irq(&tasklist_lock);
1313 		/* Double-check with lock held.  */
1314 		if (p->real_parent != p->parent) {
1315 			__ptrace_unlink(p);
1316 			// TODO: is this safe?
1317 			p->exit_state = EXIT_ZOMBIE;
1318 			/*
1319 			 * If this is not a detached task, notify the parent.
1320 			 * If it's still not detached after that, don't release
1321 			 * it now.
1322 			 */
1323 			if (p->exit_signal != -1) {
1324 				do_notify_parent(p, p->exit_signal);
1325 				if (p->exit_signal != -1)
1326 					p = NULL;
1327 			}
1328 		}
1329 		write_unlock_irq(&tasklist_lock);
1330 	}
1331 	if (p != NULL)
1332 		release_task(p);
1333 	BUG_ON(!retval);
1334 	return retval;
1335 }
1336 
1337 /*
1338  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1339  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1340  * the lock and this task is uninteresting.  If we return nonzero, we have
1341  * released the lock and the system call should return.
1342  */
1343 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1344 			     int noreap, struct siginfo __user *infop,
1345 			     int __user *stat_addr, struct rusage __user *ru)
1346 {
1347 	int retval, exit_code;
1348 
1349 	if (!p->exit_code)
1350 		return 0;
1351 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1352 	    p->signal && p->signal->group_stop_count > 0)
1353 		/*
1354 		 * A group stop is in progress and this is the group leader.
1355 		 * We won't report until all threads have stopped.
1356 		 */
1357 		return 0;
1358 
1359 	/*
1360 	 * Now we are pretty sure this task is interesting.
1361 	 * Make sure it doesn't get reaped out from under us while we
1362 	 * give up the lock and then examine it below.  We don't want to
1363 	 * keep holding onto the tasklist_lock while we call getrusage and
1364 	 * possibly take page faults for user memory.
1365 	 */
1366 	get_task_struct(p);
1367 	read_unlock(&tasklist_lock);
1368 
1369 	if (unlikely(noreap)) {
1370 		pid_t pid = p->pid;
1371 		uid_t uid = p->uid;
1372 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1373 
1374 		exit_code = p->exit_code;
1375 		if (unlikely(!exit_code) ||
1376 		    unlikely(p->state & TASK_TRACED))
1377 			goto bail_ref;
1378 		return wait_noreap_copyout(p, pid, uid,
1379 					   why, (exit_code << 8) | 0x7f,
1380 					   infop, ru);
1381 	}
1382 
1383 	write_lock_irq(&tasklist_lock);
1384 
1385 	/*
1386 	 * This uses xchg to be atomic with the thread resuming and setting
1387 	 * it.  It must also be done with the write lock held to prevent a
1388 	 * race with the EXIT_ZOMBIE case.
1389 	 */
1390 	exit_code = xchg(&p->exit_code, 0);
1391 	if (unlikely(p->exit_state)) {
1392 		/*
1393 		 * The task resumed and then died.  Let the next iteration
1394 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1395 		 * already be zero here if it resumed and did _exit(0).
1396 		 * The task itself is dead and won't touch exit_code again;
1397 		 * other processors in this function are locked out.
1398 		 */
1399 		p->exit_code = exit_code;
1400 		exit_code = 0;
1401 	}
1402 	if (unlikely(exit_code == 0)) {
1403 		/*
1404 		 * Another thread in this function got to it first, or it
1405 		 * resumed, or it resumed and then died.
1406 		 */
1407 		write_unlock_irq(&tasklist_lock);
1408 bail_ref:
1409 		put_task_struct(p);
1410 		/*
1411 		 * We are returning to the wait loop without having successfully
1412 		 * removed the process and having released the lock. We cannot
1413 		 * continue, since the "p" task pointer is potentially stale.
1414 		 *
1415 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1416 		 * beginning. Do _not_ re-acquire the lock.
1417 		 */
1418 		return -EAGAIN;
1419 	}
1420 
1421 	/* move to end of parent's list to avoid starvation */
1422 	remove_parent(p);
1423 	add_parent(p);
1424 
1425 	write_unlock_irq(&tasklist_lock);
1426 
1427 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1428 	if (!retval && stat_addr)
1429 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1430 	if (!retval && infop)
1431 		retval = put_user(SIGCHLD, &infop->si_signo);
1432 	if (!retval && infop)
1433 		retval = put_user(0, &infop->si_errno);
1434 	if (!retval && infop)
1435 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1436 					  ? CLD_TRAPPED : CLD_STOPPED),
1437 				  &infop->si_code);
1438 	if (!retval && infop)
1439 		retval = put_user(exit_code, &infop->si_status);
1440 	if (!retval && infop)
1441 		retval = put_user(p->pid, &infop->si_pid);
1442 	if (!retval && infop)
1443 		retval = put_user(p->uid, &infop->si_uid);
1444 	if (!retval)
1445 		retval = p->pid;
1446 	put_task_struct(p);
1447 
1448 	BUG_ON(!retval);
1449 	return retval;
1450 }
1451 
1452 /*
1453  * Handle do_wait work for one task in a live, non-stopped state.
1454  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1455  * the lock and this task is uninteresting.  If we return nonzero, we have
1456  * released the lock and the system call should return.
1457  */
1458 static int wait_task_continued(struct task_struct *p, int noreap,
1459 			       struct siginfo __user *infop,
1460 			       int __user *stat_addr, struct rusage __user *ru)
1461 {
1462 	int retval;
1463 	pid_t pid;
1464 	uid_t uid;
1465 
1466 	if (unlikely(!p->signal))
1467 		return 0;
1468 
1469 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1470 		return 0;
1471 
1472 	spin_lock_irq(&p->sighand->siglock);
1473 	/* Re-check with the lock held.  */
1474 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1475 		spin_unlock_irq(&p->sighand->siglock);
1476 		return 0;
1477 	}
1478 	if (!noreap)
1479 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1480 	spin_unlock_irq(&p->sighand->siglock);
1481 
1482 	pid = p->pid;
1483 	uid = p->uid;
1484 	get_task_struct(p);
1485 	read_unlock(&tasklist_lock);
1486 
1487 	if (!infop) {
1488 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1489 		put_task_struct(p);
1490 		if (!retval && stat_addr)
1491 			retval = put_user(0xffff, stat_addr);
1492 		if (!retval)
1493 			retval = p->pid;
1494 	} else {
1495 		retval = wait_noreap_copyout(p, pid, uid,
1496 					     CLD_CONTINUED, SIGCONT,
1497 					     infop, ru);
1498 		BUG_ON(retval == 0);
1499 	}
1500 
1501 	return retval;
1502 }
1503 
1504 
1505 static inline int my_ptrace_child(struct task_struct *p)
1506 {
1507 	if (!(p->ptrace & PT_PTRACED))
1508 		return 0;
1509 	if (!(p->ptrace & PT_ATTACHED))
1510 		return 1;
1511 	/*
1512 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1513 	 * we are the attacher.  If we are the real parent, this is a race
1514 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1515 	 * which we have to switch the parent links, but has already set
1516 	 * the flags in p->ptrace.
1517 	 */
1518 	return (p->parent != p->real_parent);
1519 }
1520 
1521 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1522 		    int __user *stat_addr, struct rusage __user *ru)
1523 {
1524 	DECLARE_WAITQUEUE(wait, current);
1525 	struct task_struct *tsk;
1526 	int flag, retval;
1527 	int allowed, denied;
1528 
1529 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1530 repeat:
1531 	/*
1532 	 * We will set this flag if we see any child that might later
1533 	 * match our criteria, even if we are not able to reap it yet.
1534 	 */
1535 	flag = 0;
1536 	allowed = denied = 0;
1537 	current->state = TASK_INTERRUPTIBLE;
1538 	read_lock(&tasklist_lock);
1539 	tsk = current;
1540 	do {
1541 		struct task_struct *p;
1542 		struct list_head *_p;
1543 		int ret;
1544 
1545 		list_for_each(_p,&tsk->children) {
1546 			p = list_entry(_p, struct task_struct, sibling);
1547 
1548 			ret = eligible_child(pid, options, p);
1549 			if (!ret)
1550 				continue;
1551 
1552 			if (unlikely(ret < 0)) {
1553 				denied = ret;
1554 				continue;
1555 			}
1556 			allowed = 1;
1557 
1558 			switch (p->state) {
1559 			case TASK_TRACED:
1560 				/*
1561 				 * When we hit the race with PTRACE_ATTACH,
1562 				 * we will not report this child.  But the
1563 				 * race means it has not yet been moved to
1564 				 * our ptrace_children list, so we need to
1565 				 * set the flag here to avoid a spurious ECHILD
1566 				 * when the race happens with the only child.
1567 				 */
1568 				flag = 1;
1569 				if (!my_ptrace_child(p))
1570 					continue;
1571 				/*FALLTHROUGH*/
1572 			case TASK_STOPPED:
1573 				/*
1574 				 * It's stopped now, so it might later
1575 				 * continue, exit, or stop again.
1576 				 */
1577 				flag = 1;
1578 				if (!(options & WUNTRACED) &&
1579 				    !my_ptrace_child(p))
1580 					continue;
1581 				retval = wait_task_stopped(p, ret == 2,
1582 							   (options & WNOWAIT),
1583 							   infop,
1584 							   stat_addr, ru);
1585 				if (retval == -EAGAIN)
1586 					goto repeat;
1587 				if (retval != 0) /* He released the lock.  */
1588 					goto end;
1589 				break;
1590 			default:
1591 			// case EXIT_DEAD:
1592 				if (p->exit_state == EXIT_DEAD)
1593 					continue;
1594 			// case EXIT_ZOMBIE:
1595 				if (p->exit_state == EXIT_ZOMBIE) {
1596 					/*
1597 					 * Eligible but we cannot release
1598 					 * it yet:
1599 					 */
1600 					if (ret == 2)
1601 						goto check_continued;
1602 					if (!likely(options & WEXITED))
1603 						continue;
1604 					retval = wait_task_zombie(
1605 						p, (options & WNOWAIT),
1606 						infop, stat_addr, ru);
1607 					/* He released the lock.  */
1608 					if (retval != 0)
1609 						goto end;
1610 					break;
1611 				}
1612 check_continued:
1613 				/*
1614 				 * It's running now, so it might later
1615 				 * exit, stop, or stop and then continue.
1616 				 */
1617 				flag = 1;
1618 				if (!unlikely(options & WCONTINUED))
1619 					continue;
1620 				retval = wait_task_continued(
1621 					p, (options & WNOWAIT),
1622 					infop, stat_addr, ru);
1623 				if (retval != 0) /* He released the lock.  */
1624 					goto end;
1625 				break;
1626 			}
1627 		}
1628 		if (!flag) {
1629 			list_for_each(_p, &tsk->ptrace_children) {
1630 				p = list_entry(_p, struct task_struct,
1631 						ptrace_list);
1632 				if (!eligible_child(pid, options, p))
1633 					continue;
1634 				flag = 1;
1635 				break;
1636 			}
1637 		}
1638 		if (options & __WNOTHREAD)
1639 			break;
1640 		tsk = next_thread(tsk);
1641 		BUG_ON(tsk->signal != current->signal);
1642 	} while (tsk != current);
1643 
1644 	read_unlock(&tasklist_lock);
1645 	if (flag) {
1646 		retval = 0;
1647 		if (options & WNOHANG)
1648 			goto end;
1649 		retval = -ERESTARTSYS;
1650 		if (signal_pending(current))
1651 			goto end;
1652 		schedule();
1653 		goto repeat;
1654 	}
1655 	retval = -ECHILD;
1656 	if (unlikely(denied) && !allowed)
1657 		retval = denied;
1658 end:
1659 	current->state = TASK_RUNNING;
1660 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1661 	if (infop) {
1662 		if (retval > 0)
1663 		retval = 0;
1664 		else {
1665 			/*
1666 			 * For a WNOHANG return, clear out all the fields
1667 			 * we would set so the user can easily tell the
1668 			 * difference.
1669 			 */
1670 			if (!retval)
1671 				retval = put_user(0, &infop->si_signo);
1672 			if (!retval)
1673 				retval = put_user(0, &infop->si_errno);
1674 			if (!retval)
1675 				retval = put_user(0, &infop->si_code);
1676 			if (!retval)
1677 				retval = put_user(0, &infop->si_pid);
1678 			if (!retval)
1679 				retval = put_user(0, &infop->si_uid);
1680 			if (!retval)
1681 				retval = put_user(0, &infop->si_status);
1682 		}
1683 	}
1684 	return retval;
1685 }
1686 
1687 asmlinkage long sys_waitid(int which, pid_t pid,
1688 			   struct siginfo __user *infop, int options,
1689 			   struct rusage __user *ru)
1690 {
1691 	long ret;
1692 
1693 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1694 		return -EINVAL;
1695 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1696 		return -EINVAL;
1697 
1698 	switch (which) {
1699 	case P_ALL:
1700 		pid = -1;
1701 		break;
1702 	case P_PID:
1703 		if (pid <= 0)
1704 			return -EINVAL;
1705 		break;
1706 	case P_PGID:
1707 		if (pid <= 0)
1708 			return -EINVAL;
1709 		pid = -pid;
1710 		break;
1711 	default:
1712 		return -EINVAL;
1713 	}
1714 
1715 	ret = do_wait(pid, options, infop, NULL, ru);
1716 
1717 	/* avoid REGPARM breakage on x86: */
1718 	prevent_tail_call(ret);
1719 	return ret;
1720 }
1721 
1722 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1723 			  int options, struct rusage __user *ru)
1724 {
1725 	long ret;
1726 
1727 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1728 			__WNOTHREAD|__WCLONE|__WALL))
1729 		return -EINVAL;
1730 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1731 
1732 	/* avoid REGPARM breakage on x86: */
1733 	prevent_tail_call(ret);
1734 	return ret;
1735 }
1736 
1737 #ifdef __ARCH_WANT_SYS_WAITPID
1738 
1739 /*
1740  * sys_waitpid() remains for compatibility. waitpid() should be
1741  * implemented by calling sys_wait4() from libc.a.
1742  */
1743 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1744 {
1745 	return sys_wait4(pid, stat_addr, options, NULL);
1746 }
1747 
1748 #endif
1749