1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/binfmts.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pid_namespace.h> 25 #include <linux/ptrace.h> 26 #include <linux/profile.h> 27 #include <linux/signalfd.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cpuset.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/compat.h> 43 #include <linux/pipe_fs_i.h> 44 #include <linux/audit.h> /* for audit_free() */ 45 #include <linux/resource.h> 46 #include <linux/blkdev.h> 47 #include <linux/task_io_accounting_ops.h> 48 49 #include <asm/uaccess.h> 50 #include <asm/unistd.h> 51 #include <asm/pgtable.h> 52 #include <asm/mmu_context.h> 53 54 extern void sem_exit (void); 55 56 static void exit_mm(struct task_struct * tsk); 57 58 static void __unhash_process(struct task_struct *p) 59 { 60 nr_threads--; 61 detach_pid(p, PIDTYPE_PID); 62 if (thread_group_leader(p)) { 63 detach_pid(p, PIDTYPE_PGID); 64 detach_pid(p, PIDTYPE_SID); 65 66 list_del_rcu(&p->tasks); 67 __get_cpu_var(process_counts)--; 68 } 69 list_del_rcu(&p->thread_group); 70 remove_parent(p); 71 } 72 73 /* 74 * This function expects the tasklist_lock write-locked. 75 */ 76 static void __exit_signal(struct task_struct *tsk) 77 { 78 struct signal_struct *sig = tsk->signal; 79 struct sighand_struct *sighand; 80 81 BUG_ON(!sig); 82 BUG_ON(!atomic_read(&sig->count)); 83 84 rcu_read_lock(); 85 sighand = rcu_dereference(tsk->sighand); 86 spin_lock(&sighand->siglock); 87 88 /* 89 * Notify that this sighand has been detached. This must 90 * be called with the tsk->sighand lock held. Also, this 91 * access tsk->sighand internally, so it must be called 92 * before tsk->sighand is reset. 93 */ 94 signalfd_detach_locked(tsk); 95 96 posix_cpu_timers_exit(tsk); 97 if (atomic_dec_and_test(&sig->count)) 98 posix_cpu_timers_exit_group(tsk); 99 else { 100 /* 101 * If there is any task waiting for the group exit 102 * then notify it: 103 */ 104 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) { 105 wake_up_process(sig->group_exit_task); 106 sig->group_exit_task = NULL; 107 } 108 if (tsk == sig->curr_target) 109 sig->curr_target = next_thread(tsk); 110 /* 111 * Accumulate here the counters for all threads but the 112 * group leader as they die, so they can be added into 113 * the process-wide totals when those are taken. 114 * The group leader stays around as a zombie as long 115 * as there are other threads. When it gets reaped, 116 * the exit.c code will add its counts into these totals. 117 * We won't ever get here for the group leader, since it 118 * will have been the last reference on the signal_struct. 119 */ 120 sig->utime = cputime_add(sig->utime, tsk->utime); 121 sig->stime = cputime_add(sig->stime, tsk->stime); 122 sig->min_flt += tsk->min_flt; 123 sig->maj_flt += tsk->maj_flt; 124 sig->nvcsw += tsk->nvcsw; 125 sig->nivcsw += tsk->nivcsw; 126 sig->inblock += task_io_get_inblock(tsk); 127 sig->oublock += task_io_get_oublock(tsk); 128 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 129 sig = NULL; /* Marker for below. */ 130 } 131 132 __unhash_process(tsk); 133 134 tsk->signal = NULL; 135 tsk->sighand = NULL; 136 spin_unlock(&sighand->siglock); 137 rcu_read_unlock(); 138 139 __cleanup_sighand(sighand); 140 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 141 flush_sigqueue(&tsk->pending); 142 if (sig) { 143 flush_sigqueue(&sig->shared_pending); 144 taskstats_tgid_free(sig); 145 __cleanup_signal(sig); 146 } 147 } 148 149 static void delayed_put_task_struct(struct rcu_head *rhp) 150 { 151 put_task_struct(container_of(rhp, struct task_struct, rcu)); 152 } 153 154 void release_task(struct task_struct * p) 155 { 156 struct task_struct *leader; 157 int zap_leader; 158 repeat: 159 atomic_dec(&p->user->processes); 160 write_lock_irq(&tasklist_lock); 161 ptrace_unlink(p); 162 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); 163 __exit_signal(p); 164 165 /* 166 * If we are the last non-leader member of the thread 167 * group, and the leader is zombie, then notify the 168 * group leader's parent process. (if it wants notification.) 169 */ 170 zap_leader = 0; 171 leader = p->group_leader; 172 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 173 BUG_ON(leader->exit_signal == -1); 174 do_notify_parent(leader, leader->exit_signal); 175 /* 176 * If we were the last child thread and the leader has 177 * exited already, and the leader's parent ignores SIGCHLD, 178 * then we are the one who should release the leader. 179 * 180 * do_notify_parent() will have marked it self-reaping in 181 * that case. 182 */ 183 zap_leader = (leader->exit_signal == -1); 184 } 185 186 write_unlock_irq(&tasklist_lock); 187 proc_flush_task(p); 188 release_thread(p); 189 call_rcu(&p->rcu, delayed_put_task_struct); 190 191 p = leader; 192 if (unlikely(zap_leader)) 193 goto repeat; 194 } 195 196 /* 197 * This checks not only the pgrp, but falls back on the pid if no 198 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 199 * without this... 200 * 201 * The caller must hold rcu lock or the tasklist lock. 202 */ 203 struct pid *session_of_pgrp(struct pid *pgrp) 204 { 205 struct task_struct *p; 206 struct pid *sid = NULL; 207 208 p = pid_task(pgrp, PIDTYPE_PGID); 209 if (p == NULL) 210 p = pid_task(pgrp, PIDTYPE_PID); 211 if (p != NULL) 212 sid = task_session(p); 213 214 return sid; 215 } 216 217 /* 218 * Determine if a process group is "orphaned", according to the POSIX 219 * definition in 2.2.2.52. Orphaned process groups are not to be affected 220 * by terminal-generated stop signals. Newly orphaned process groups are 221 * to receive a SIGHUP and a SIGCONT. 222 * 223 * "I ask you, have you ever known what it is to be an orphan?" 224 */ 225 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 226 { 227 struct task_struct *p; 228 int ret = 1; 229 230 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 231 if (p == ignored_task 232 || p->exit_state 233 || is_init(p->real_parent)) 234 continue; 235 if (task_pgrp(p->real_parent) != pgrp && 236 task_session(p->real_parent) == task_session(p)) { 237 ret = 0; 238 break; 239 } 240 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 241 return ret; /* (sighing) "Often!" */ 242 } 243 244 int is_current_pgrp_orphaned(void) 245 { 246 int retval; 247 248 read_lock(&tasklist_lock); 249 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 250 read_unlock(&tasklist_lock); 251 252 return retval; 253 } 254 255 static int has_stopped_jobs(struct pid *pgrp) 256 { 257 int retval = 0; 258 struct task_struct *p; 259 260 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 261 if (p->state != TASK_STOPPED) 262 continue; 263 retval = 1; 264 break; 265 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 266 return retval; 267 } 268 269 /** 270 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 271 * 272 * If a kernel thread is launched as a result of a system call, or if 273 * it ever exits, it should generally reparent itself to kthreadd so it 274 * isn't in the way of other processes and is correctly cleaned up on exit. 275 * 276 * The various task state such as scheduling policy and priority may have 277 * been inherited from a user process, so we reset them to sane values here. 278 * 279 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 280 */ 281 static void reparent_to_kthreadd(void) 282 { 283 write_lock_irq(&tasklist_lock); 284 285 ptrace_unlink(current); 286 /* Reparent to init */ 287 remove_parent(current); 288 current->real_parent = current->parent = kthreadd_task; 289 add_parent(current); 290 291 /* Set the exit signal to SIGCHLD so we signal init on exit */ 292 current->exit_signal = SIGCHLD; 293 294 if (task_nice(current) < 0) 295 set_user_nice(current, 0); 296 /* cpus_allowed? */ 297 /* rt_priority? */ 298 /* signals? */ 299 security_task_reparent_to_init(current); 300 memcpy(current->signal->rlim, init_task.signal->rlim, 301 sizeof(current->signal->rlim)); 302 atomic_inc(&(INIT_USER->__count)); 303 write_unlock_irq(&tasklist_lock); 304 switch_uid(INIT_USER); 305 } 306 307 void __set_special_pids(pid_t session, pid_t pgrp) 308 { 309 struct task_struct *curr = current->group_leader; 310 311 if (process_session(curr) != session) { 312 detach_pid(curr, PIDTYPE_SID); 313 set_signal_session(curr->signal, session); 314 attach_pid(curr, PIDTYPE_SID, find_pid(session)); 315 } 316 if (process_group(curr) != pgrp) { 317 detach_pid(curr, PIDTYPE_PGID); 318 curr->signal->pgrp = pgrp; 319 attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp)); 320 } 321 } 322 323 static void set_special_pids(pid_t session, pid_t pgrp) 324 { 325 write_lock_irq(&tasklist_lock); 326 __set_special_pids(session, pgrp); 327 write_unlock_irq(&tasklist_lock); 328 } 329 330 /* 331 * Let kernel threads use this to say that they 332 * allow a certain signal (since daemonize() will 333 * have disabled all of them by default). 334 */ 335 int allow_signal(int sig) 336 { 337 if (!valid_signal(sig) || sig < 1) 338 return -EINVAL; 339 340 spin_lock_irq(¤t->sighand->siglock); 341 sigdelset(¤t->blocked, sig); 342 if (!current->mm) { 343 /* Kernel threads handle their own signals. 344 Let the signal code know it'll be handled, so 345 that they don't get converted to SIGKILL or 346 just silently dropped */ 347 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 348 } 349 recalc_sigpending(); 350 spin_unlock_irq(¤t->sighand->siglock); 351 return 0; 352 } 353 354 EXPORT_SYMBOL(allow_signal); 355 356 int disallow_signal(int sig) 357 { 358 if (!valid_signal(sig) || sig < 1) 359 return -EINVAL; 360 361 spin_lock_irq(¤t->sighand->siglock); 362 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 363 recalc_sigpending(); 364 spin_unlock_irq(¤t->sighand->siglock); 365 return 0; 366 } 367 368 EXPORT_SYMBOL(disallow_signal); 369 370 /* 371 * Put all the gunge required to become a kernel thread without 372 * attached user resources in one place where it belongs. 373 */ 374 375 void daemonize(const char *name, ...) 376 { 377 va_list args; 378 struct fs_struct *fs; 379 sigset_t blocked; 380 381 va_start(args, name); 382 vsnprintf(current->comm, sizeof(current->comm), name, args); 383 va_end(args); 384 385 /* 386 * If we were started as result of loading a module, close all of the 387 * user space pages. We don't need them, and if we didn't close them 388 * they would be locked into memory. 389 */ 390 exit_mm(current); 391 /* 392 * We don't want to have TIF_FREEZE set if the system-wide hibernation 393 * or suspend transition begins right now. 394 */ 395 current->flags |= PF_NOFREEZE; 396 397 set_special_pids(1, 1); 398 proc_clear_tty(current); 399 400 /* Block and flush all signals */ 401 sigfillset(&blocked); 402 sigprocmask(SIG_BLOCK, &blocked, NULL); 403 flush_signals(current); 404 405 /* Become as one with the init task */ 406 407 exit_fs(current); /* current->fs->count--; */ 408 fs = init_task.fs; 409 current->fs = fs; 410 atomic_inc(&fs->count); 411 412 exit_task_namespaces(current); 413 current->nsproxy = init_task.nsproxy; 414 get_task_namespaces(current); 415 416 exit_files(current); 417 current->files = init_task.files; 418 atomic_inc(¤t->files->count); 419 420 reparent_to_kthreadd(); 421 } 422 423 EXPORT_SYMBOL(daemonize); 424 425 static void close_files(struct files_struct * files) 426 { 427 int i, j; 428 struct fdtable *fdt; 429 430 j = 0; 431 432 /* 433 * It is safe to dereference the fd table without RCU or 434 * ->file_lock because this is the last reference to the 435 * files structure. 436 */ 437 fdt = files_fdtable(files); 438 for (;;) { 439 unsigned long set; 440 i = j * __NFDBITS; 441 if (i >= fdt->max_fds) 442 break; 443 set = fdt->open_fds->fds_bits[j++]; 444 while (set) { 445 if (set & 1) { 446 struct file * file = xchg(&fdt->fd[i], NULL); 447 if (file) { 448 filp_close(file, files); 449 cond_resched(); 450 } 451 } 452 i++; 453 set >>= 1; 454 } 455 } 456 } 457 458 struct files_struct *get_files_struct(struct task_struct *task) 459 { 460 struct files_struct *files; 461 462 task_lock(task); 463 files = task->files; 464 if (files) 465 atomic_inc(&files->count); 466 task_unlock(task); 467 468 return files; 469 } 470 471 void fastcall put_files_struct(struct files_struct *files) 472 { 473 struct fdtable *fdt; 474 475 if (atomic_dec_and_test(&files->count)) { 476 close_files(files); 477 /* 478 * Free the fd and fdset arrays if we expanded them. 479 * If the fdtable was embedded, pass files for freeing 480 * at the end of the RCU grace period. Otherwise, 481 * you can free files immediately. 482 */ 483 fdt = files_fdtable(files); 484 if (fdt != &files->fdtab) 485 kmem_cache_free(files_cachep, files); 486 free_fdtable(fdt); 487 } 488 } 489 490 EXPORT_SYMBOL(put_files_struct); 491 492 void reset_files_struct(struct task_struct *tsk, struct files_struct *files) 493 { 494 struct files_struct *old; 495 496 old = tsk->files; 497 task_lock(tsk); 498 tsk->files = files; 499 task_unlock(tsk); 500 put_files_struct(old); 501 } 502 EXPORT_SYMBOL(reset_files_struct); 503 504 static inline void __exit_files(struct task_struct *tsk) 505 { 506 struct files_struct * files = tsk->files; 507 508 if (files) { 509 task_lock(tsk); 510 tsk->files = NULL; 511 task_unlock(tsk); 512 put_files_struct(files); 513 } 514 } 515 516 void exit_files(struct task_struct *tsk) 517 { 518 __exit_files(tsk); 519 } 520 521 static inline void __put_fs_struct(struct fs_struct *fs) 522 { 523 /* No need to hold fs->lock if we are killing it */ 524 if (atomic_dec_and_test(&fs->count)) { 525 dput(fs->root); 526 mntput(fs->rootmnt); 527 dput(fs->pwd); 528 mntput(fs->pwdmnt); 529 if (fs->altroot) { 530 dput(fs->altroot); 531 mntput(fs->altrootmnt); 532 } 533 kmem_cache_free(fs_cachep, fs); 534 } 535 } 536 537 void put_fs_struct(struct fs_struct *fs) 538 { 539 __put_fs_struct(fs); 540 } 541 542 static inline void __exit_fs(struct task_struct *tsk) 543 { 544 struct fs_struct * fs = tsk->fs; 545 546 if (fs) { 547 task_lock(tsk); 548 tsk->fs = NULL; 549 task_unlock(tsk); 550 __put_fs_struct(fs); 551 } 552 } 553 554 void exit_fs(struct task_struct *tsk) 555 { 556 __exit_fs(tsk); 557 } 558 559 EXPORT_SYMBOL_GPL(exit_fs); 560 561 /* 562 * Turn us into a lazy TLB process if we 563 * aren't already.. 564 */ 565 static void exit_mm(struct task_struct * tsk) 566 { 567 struct mm_struct *mm = tsk->mm; 568 569 mm_release(tsk, mm); 570 if (!mm) 571 return; 572 /* 573 * Serialize with any possible pending coredump. 574 * We must hold mmap_sem around checking core_waiters 575 * and clearing tsk->mm. The core-inducing thread 576 * will increment core_waiters for each thread in the 577 * group with ->mm != NULL. 578 */ 579 down_read(&mm->mmap_sem); 580 if (mm->core_waiters) { 581 up_read(&mm->mmap_sem); 582 down_write(&mm->mmap_sem); 583 if (!--mm->core_waiters) 584 complete(mm->core_startup_done); 585 up_write(&mm->mmap_sem); 586 587 wait_for_completion(&mm->core_done); 588 down_read(&mm->mmap_sem); 589 } 590 atomic_inc(&mm->mm_count); 591 BUG_ON(mm != tsk->active_mm); 592 /* more a memory barrier than a real lock */ 593 task_lock(tsk); 594 tsk->mm = NULL; 595 up_read(&mm->mmap_sem); 596 enter_lazy_tlb(mm, current); 597 task_unlock(tsk); 598 mmput(mm); 599 } 600 601 static inline void 602 choose_new_parent(struct task_struct *p, struct task_struct *reaper) 603 { 604 /* 605 * Make sure we're not reparenting to ourselves and that 606 * the parent is not a zombie. 607 */ 608 BUG_ON(p == reaper || reaper->exit_state); 609 p->real_parent = reaper; 610 } 611 612 static void 613 reparent_thread(struct task_struct *p, struct task_struct *father, int traced) 614 { 615 if (p->pdeath_signal) 616 /* We already hold the tasklist_lock here. */ 617 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 618 619 /* Move the child from its dying parent to the new one. */ 620 if (unlikely(traced)) { 621 /* Preserve ptrace links if someone else is tracing this child. */ 622 list_del_init(&p->ptrace_list); 623 if (p->parent != p->real_parent) 624 list_add(&p->ptrace_list, &p->real_parent->ptrace_children); 625 } else { 626 /* If this child is being traced, then we're the one tracing it 627 * anyway, so let go of it. 628 */ 629 p->ptrace = 0; 630 remove_parent(p); 631 p->parent = p->real_parent; 632 add_parent(p); 633 634 if (p->state == TASK_TRACED) { 635 /* 636 * If it was at a trace stop, turn it into 637 * a normal stop since it's no longer being 638 * traced. 639 */ 640 ptrace_untrace(p); 641 } 642 } 643 644 /* If this is a threaded reparent there is no need to 645 * notify anyone anything has happened. 646 */ 647 if (p->real_parent->group_leader == father->group_leader) 648 return; 649 650 /* We don't want people slaying init. */ 651 if (p->exit_signal != -1) 652 p->exit_signal = SIGCHLD; 653 654 /* If we'd notified the old parent about this child's death, 655 * also notify the new parent. 656 */ 657 if (!traced && p->exit_state == EXIT_ZOMBIE && 658 p->exit_signal != -1 && thread_group_empty(p)) 659 do_notify_parent(p, p->exit_signal); 660 661 /* 662 * process group orphan check 663 * Case ii: Our child is in a different pgrp 664 * than we are, and it was the only connection 665 * outside, so the child pgrp is now orphaned. 666 */ 667 if ((task_pgrp(p) != task_pgrp(father)) && 668 (task_session(p) == task_session(father))) { 669 struct pid *pgrp = task_pgrp(p); 670 671 if (will_become_orphaned_pgrp(pgrp, NULL) && 672 has_stopped_jobs(pgrp)) { 673 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 674 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 675 } 676 } 677 } 678 679 /* 680 * When we die, we re-parent all our children. 681 * Try to give them to another thread in our thread 682 * group, and if no such member exists, give it to 683 * the child reaper process (ie "init") in our pid 684 * space. 685 */ 686 static void 687 forget_original_parent(struct task_struct *father, struct list_head *to_release) 688 { 689 struct task_struct *p, *reaper = father; 690 struct list_head *_p, *_n; 691 692 do { 693 reaper = next_thread(reaper); 694 if (reaper == father) { 695 reaper = child_reaper(father); 696 break; 697 } 698 } while (reaper->exit_state); 699 700 /* 701 * There are only two places where our children can be: 702 * 703 * - in our child list 704 * - in our ptraced child list 705 * 706 * Search them and reparent children. 707 */ 708 list_for_each_safe(_p, _n, &father->children) { 709 int ptrace; 710 p = list_entry(_p, struct task_struct, sibling); 711 712 ptrace = p->ptrace; 713 714 /* if father isn't the real parent, then ptrace must be enabled */ 715 BUG_ON(father != p->real_parent && !ptrace); 716 717 if (father == p->real_parent) { 718 /* reparent with a reaper, real father it's us */ 719 choose_new_parent(p, reaper); 720 reparent_thread(p, father, 0); 721 } else { 722 /* reparent ptraced task to its real parent */ 723 __ptrace_unlink (p); 724 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && 725 thread_group_empty(p)) 726 do_notify_parent(p, p->exit_signal); 727 } 728 729 /* 730 * if the ptraced child is a zombie with exit_signal == -1 731 * we must collect it before we exit, or it will remain 732 * zombie forever since we prevented it from self-reap itself 733 * while it was being traced by us, to be able to see it in wait4. 734 */ 735 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) 736 list_add(&p->ptrace_list, to_release); 737 } 738 list_for_each_safe(_p, _n, &father->ptrace_children) { 739 p = list_entry(_p, struct task_struct, ptrace_list); 740 choose_new_parent(p, reaper); 741 reparent_thread(p, father, 1); 742 } 743 } 744 745 /* 746 * Send signals to all our closest relatives so that they know 747 * to properly mourn us.. 748 */ 749 static void exit_notify(struct task_struct *tsk) 750 { 751 int state; 752 struct task_struct *t; 753 struct list_head ptrace_dead, *_p, *_n; 754 struct pid *pgrp; 755 756 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT) 757 && !thread_group_empty(tsk)) { 758 /* 759 * This occurs when there was a race between our exit 760 * syscall and a group signal choosing us as the one to 761 * wake up. It could be that we are the only thread 762 * alerted to check for pending signals, but another thread 763 * should be woken now to take the signal since we will not. 764 * Now we'll wake all the threads in the group just to make 765 * sure someone gets all the pending signals. 766 */ 767 read_lock(&tasklist_lock); 768 spin_lock_irq(&tsk->sighand->siglock); 769 for (t = next_thread(tsk); t != tsk; t = next_thread(t)) 770 if (!signal_pending(t) && !(t->flags & PF_EXITING)) 771 recalc_sigpending_and_wake(t); 772 spin_unlock_irq(&tsk->sighand->siglock); 773 read_unlock(&tasklist_lock); 774 } 775 776 write_lock_irq(&tasklist_lock); 777 778 /* 779 * This does two things: 780 * 781 * A. Make init inherit all the child processes 782 * B. Check to see if any process groups have become orphaned 783 * as a result of our exiting, and if they have any stopped 784 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 785 */ 786 787 INIT_LIST_HEAD(&ptrace_dead); 788 forget_original_parent(tsk, &ptrace_dead); 789 BUG_ON(!list_empty(&tsk->children)); 790 BUG_ON(!list_empty(&tsk->ptrace_children)); 791 792 /* 793 * Check to see if any process groups have become orphaned 794 * as a result of our exiting, and if they have any stopped 795 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 796 * 797 * Case i: Our father is in a different pgrp than we are 798 * and we were the only connection outside, so our pgrp 799 * is about to become orphaned. 800 */ 801 802 t = tsk->real_parent; 803 804 pgrp = task_pgrp(tsk); 805 if ((task_pgrp(t) != pgrp) && 806 (task_session(t) == task_session(tsk)) && 807 will_become_orphaned_pgrp(pgrp, tsk) && 808 has_stopped_jobs(pgrp)) { 809 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 810 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 811 } 812 813 /* Let father know we died 814 * 815 * Thread signals are configurable, but you aren't going to use 816 * that to send signals to arbitary processes. 817 * That stops right now. 818 * 819 * If the parent exec id doesn't match the exec id we saved 820 * when we started then we know the parent has changed security 821 * domain. 822 * 823 * If our self_exec id doesn't match our parent_exec_id then 824 * we have changed execution domain as these two values started 825 * the same after a fork. 826 * 827 */ 828 829 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && 830 ( tsk->parent_exec_id != t->self_exec_id || 831 tsk->self_exec_id != tsk->parent_exec_id) 832 && !capable(CAP_KILL)) 833 tsk->exit_signal = SIGCHLD; 834 835 836 /* If something other than our normal parent is ptracing us, then 837 * send it a SIGCHLD instead of honoring exit_signal. exit_signal 838 * only has special meaning to our real parent. 839 */ 840 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { 841 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; 842 do_notify_parent(tsk, signal); 843 } else if (tsk->ptrace) { 844 do_notify_parent(tsk, SIGCHLD); 845 } 846 847 state = EXIT_ZOMBIE; 848 if (tsk->exit_signal == -1 && 849 (likely(tsk->ptrace == 0) || 850 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT))) 851 state = EXIT_DEAD; 852 tsk->exit_state = state; 853 854 write_unlock_irq(&tasklist_lock); 855 856 list_for_each_safe(_p, _n, &ptrace_dead) { 857 list_del_init(_p); 858 t = list_entry(_p, struct task_struct, ptrace_list); 859 release_task(t); 860 } 861 862 /* If the process is dead, release it - nobody will wait for it */ 863 if (state == EXIT_DEAD) 864 release_task(tsk); 865 } 866 867 #ifdef CONFIG_DEBUG_STACK_USAGE 868 static void check_stack_usage(void) 869 { 870 static DEFINE_SPINLOCK(low_water_lock); 871 static int lowest_to_date = THREAD_SIZE; 872 unsigned long *n = end_of_stack(current); 873 unsigned long free; 874 875 while (*n == 0) 876 n++; 877 free = (unsigned long)n - (unsigned long)end_of_stack(current); 878 879 if (free >= lowest_to_date) 880 return; 881 882 spin_lock(&low_water_lock); 883 if (free < lowest_to_date) { 884 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 885 "left\n", 886 current->comm, free); 887 lowest_to_date = free; 888 } 889 spin_unlock(&low_water_lock); 890 } 891 #else 892 static inline void check_stack_usage(void) {} 893 #endif 894 895 fastcall NORET_TYPE void do_exit(long code) 896 { 897 struct task_struct *tsk = current; 898 int group_dead; 899 900 profile_task_exit(tsk); 901 902 WARN_ON(atomic_read(&tsk->fs_excl)); 903 904 if (unlikely(in_interrupt())) 905 panic("Aiee, killing interrupt handler!"); 906 if (unlikely(!tsk->pid)) 907 panic("Attempted to kill the idle task!"); 908 if (unlikely(tsk == child_reaper(tsk))) { 909 if (tsk->nsproxy->pid_ns != &init_pid_ns) 910 tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper; 911 else 912 panic("Attempted to kill init!"); 913 } 914 915 916 if (unlikely(current->ptrace & PT_TRACE_EXIT)) { 917 current->ptrace_message = code; 918 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); 919 } 920 921 /* 922 * We're taking recursive faults here in do_exit. Safest is to just 923 * leave this task alone and wait for reboot. 924 */ 925 if (unlikely(tsk->flags & PF_EXITING)) { 926 printk(KERN_ALERT 927 "Fixing recursive fault but reboot is needed!\n"); 928 /* 929 * We can do this unlocked here. The futex code uses 930 * this flag just to verify whether the pi state 931 * cleanup has been done or not. In the worst case it 932 * loops once more. We pretend that the cleanup was 933 * done as there is no way to return. Either the 934 * OWNER_DIED bit is set by now or we push the blocked 935 * task into the wait for ever nirwana as well. 936 */ 937 tsk->flags |= PF_EXITPIDONE; 938 if (tsk->io_context) 939 exit_io_context(); 940 set_current_state(TASK_UNINTERRUPTIBLE); 941 schedule(); 942 } 943 944 /* 945 * tsk->flags are checked in the futex code to protect against 946 * an exiting task cleaning up the robust pi futexes. 947 */ 948 spin_lock_irq(&tsk->pi_lock); 949 tsk->flags |= PF_EXITING; 950 spin_unlock_irq(&tsk->pi_lock); 951 952 if (unlikely(in_atomic())) 953 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 954 current->comm, current->pid, 955 preempt_count()); 956 957 acct_update_integrals(tsk); 958 if (tsk->mm) { 959 update_hiwater_rss(tsk->mm); 960 update_hiwater_vm(tsk->mm); 961 } 962 group_dead = atomic_dec_and_test(&tsk->signal->live); 963 if (group_dead) { 964 hrtimer_cancel(&tsk->signal->real_timer); 965 exit_itimers(tsk->signal); 966 } 967 acct_collect(code, group_dead); 968 if (unlikely(tsk->robust_list)) 969 exit_robust_list(tsk); 970 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT) 971 if (unlikely(tsk->compat_robust_list)) 972 compat_exit_robust_list(tsk); 973 #endif 974 if (group_dead) 975 tty_audit_exit(); 976 if (unlikely(tsk->audit_context)) 977 audit_free(tsk); 978 979 taskstats_exit(tsk, group_dead); 980 981 exit_mm(tsk); 982 983 if (group_dead) 984 acct_process(); 985 exit_sem(tsk); 986 __exit_files(tsk); 987 __exit_fs(tsk); 988 check_stack_usage(); 989 exit_thread(); 990 cpuset_exit(tsk); 991 exit_keys(tsk); 992 993 if (group_dead && tsk->signal->leader) 994 disassociate_ctty(1); 995 996 module_put(task_thread_info(tsk)->exec_domain->module); 997 if (tsk->binfmt) 998 module_put(tsk->binfmt->module); 999 1000 tsk->exit_code = code; 1001 proc_exit_connector(tsk); 1002 exit_task_namespaces(tsk); 1003 exit_notify(tsk); 1004 #ifdef CONFIG_NUMA 1005 mpol_free(tsk->mempolicy); 1006 tsk->mempolicy = NULL; 1007 #endif 1008 /* 1009 * This must happen late, after the PID is not 1010 * hashed anymore: 1011 */ 1012 if (unlikely(!list_empty(&tsk->pi_state_list))) 1013 exit_pi_state_list(tsk); 1014 if (unlikely(current->pi_state_cache)) 1015 kfree(current->pi_state_cache); 1016 /* 1017 * Make sure we are holding no locks: 1018 */ 1019 debug_check_no_locks_held(tsk); 1020 /* 1021 * We can do this unlocked here. The futex code uses this flag 1022 * just to verify whether the pi state cleanup has been done 1023 * or not. In the worst case it loops once more. 1024 */ 1025 tsk->flags |= PF_EXITPIDONE; 1026 1027 if (tsk->io_context) 1028 exit_io_context(); 1029 1030 if (tsk->splice_pipe) 1031 __free_pipe_info(tsk->splice_pipe); 1032 1033 preempt_disable(); 1034 /* causes final put_task_struct in finish_task_switch(). */ 1035 tsk->state = TASK_DEAD; 1036 1037 schedule(); 1038 BUG(); 1039 /* Avoid "noreturn function does return". */ 1040 for (;;) 1041 cpu_relax(); /* For when BUG is null */ 1042 } 1043 1044 EXPORT_SYMBOL_GPL(do_exit); 1045 1046 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1047 { 1048 if (comp) 1049 complete(comp); 1050 1051 do_exit(code); 1052 } 1053 1054 EXPORT_SYMBOL(complete_and_exit); 1055 1056 asmlinkage long sys_exit(int error_code) 1057 { 1058 do_exit((error_code&0xff)<<8); 1059 } 1060 1061 /* 1062 * Take down every thread in the group. This is called by fatal signals 1063 * as well as by sys_exit_group (below). 1064 */ 1065 NORET_TYPE void 1066 do_group_exit(int exit_code) 1067 { 1068 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1069 1070 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1071 exit_code = current->signal->group_exit_code; 1072 else if (!thread_group_empty(current)) { 1073 struct signal_struct *const sig = current->signal; 1074 struct sighand_struct *const sighand = current->sighand; 1075 spin_lock_irq(&sighand->siglock); 1076 if (sig->flags & SIGNAL_GROUP_EXIT) 1077 /* Another thread got here before we took the lock. */ 1078 exit_code = sig->group_exit_code; 1079 else { 1080 sig->group_exit_code = exit_code; 1081 zap_other_threads(current); 1082 } 1083 spin_unlock_irq(&sighand->siglock); 1084 } 1085 1086 do_exit(exit_code); 1087 /* NOTREACHED */ 1088 } 1089 1090 /* 1091 * this kills every thread in the thread group. Note that any externally 1092 * wait4()-ing process will get the correct exit code - even if this 1093 * thread is not the thread group leader. 1094 */ 1095 asmlinkage void sys_exit_group(int error_code) 1096 { 1097 do_group_exit((error_code & 0xff) << 8); 1098 } 1099 1100 static int eligible_child(pid_t pid, int options, struct task_struct *p) 1101 { 1102 int err; 1103 1104 if (pid > 0) { 1105 if (p->pid != pid) 1106 return 0; 1107 } else if (!pid) { 1108 if (process_group(p) != process_group(current)) 1109 return 0; 1110 } else if (pid != -1) { 1111 if (process_group(p) != -pid) 1112 return 0; 1113 } 1114 1115 /* 1116 * Do not consider detached threads that are 1117 * not ptraced: 1118 */ 1119 if (p->exit_signal == -1 && !p->ptrace) 1120 return 0; 1121 1122 /* Wait for all children (clone and not) if __WALL is set; 1123 * otherwise, wait for clone children *only* if __WCLONE is 1124 * set; otherwise, wait for non-clone children *only*. (Note: 1125 * A "clone" child here is one that reports to its parent 1126 * using a signal other than SIGCHLD.) */ 1127 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1128 && !(options & __WALL)) 1129 return 0; 1130 /* 1131 * Do not consider thread group leaders that are 1132 * in a non-empty thread group: 1133 */ 1134 if (delay_group_leader(p)) 1135 return 2; 1136 1137 err = security_task_wait(p); 1138 if (err) 1139 return err; 1140 1141 return 1; 1142 } 1143 1144 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1145 int why, int status, 1146 struct siginfo __user *infop, 1147 struct rusage __user *rusagep) 1148 { 1149 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1150 1151 put_task_struct(p); 1152 if (!retval) 1153 retval = put_user(SIGCHLD, &infop->si_signo); 1154 if (!retval) 1155 retval = put_user(0, &infop->si_errno); 1156 if (!retval) 1157 retval = put_user((short)why, &infop->si_code); 1158 if (!retval) 1159 retval = put_user(pid, &infop->si_pid); 1160 if (!retval) 1161 retval = put_user(uid, &infop->si_uid); 1162 if (!retval) 1163 retval = put_user(status, &infop->si_status); 1164 if (!retval) 1165 retval = pid; 1166 return retval; 1167 } 1168 1169 /* 1170 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1171 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1172 * the lock and this task is uninteresting. If we return nonzero, we have 1173 * released the lock and the system call should return. 1174 */ 1175 static int wait_task_zombie(struct task_struct *p, int noreap, 1176 struct siginfo __user *infop, 1177 int __user *stat_addr, struct rusage __user *ru) 1178 { 1179 unsigned long state; 1180 int retval; 1181 int status; 1182 1183 if (unlikely(noreap)) { 1184 pid_t pid = p->pid; 1185 uid_t uid = p->uid; 1186 int exit_code = p->exit_code; 1187 int why, status; 1188 1189 if (unlikely(p->exit_state != EXIT_ZOMBIE)) 1190 return 0; 1191 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) 1192 return 0; 1193 get_task_struct(p); 1194 read_unlock(&tasklist_lock); 1195 if ((exit_code & 0x7f) == 0) { 1196 why = CLD_EXITED; 1197 status = exit_code >> 8; 1198 } else { 1199 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1200 status = exit_code & 0x7f; 1201 } 1202 return wait_noreap_copyout(p, pid, uid, why, 1203 status, infop, ru); 1204 } 1205 1206 /* 1207 * Try to move the task's state to DEAD 1208 * only one thread is allowed to do this: 1209 */ 1210 state = xchg(&p->exit_state, EXIT_DEAD); 1211 if (state != EXIT_ZOMBIE) { 1212 BUG_ON(state != EXIT_DEAD); 1213 return 0; 1214 } 1215 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) { 1216 /* 1217 * This can only happen in a race with a ptraced thread 1218 * dying on another processor. 1219 */ 1220 return 0; 1221 } 1222 1223 if (likely(p->real_parent == p->parent) && likely(p->signal)) { 1224 struct signal_struct *psig; 1225 struct signal_struct *sig; 1226 1227 /* 1228 * The resource counters for the group leader are in its 1229 * own task_struct. Those for dead threads in the group 1230 * are in its signal_struct, as are those for the child 1231 * processes it has previously reaped. All these 1232 * accumulate in the parent's signal_struct c* fields. 1233 * 1234 * We don't bother to take a lock here to protect these 1235 * p->signal fields, because they are only touched by 1236 * __exit_signal, which runs with tasklist_lock 1237 * write-locked anyway, and so is excluded here. We do 1238 * need to protect the access to p->parent->signal fields, 1239 * as other threads in the parent group can be right 1240 * here reaping other children at the same time. 1241 */ 1242 spin_lock_irq(&p->parent->sighand->siglock); 1243 psig = p->parent->signal; 1244 sig = p->signal; 1245 psig->cutime = 1246 cputime_add(psig->cutime, 1247 cputime_add(p->utime, 1248 cputime_add(sig->utime, 1249 sig->cutime))); 1250 psig->cstime = 1251 cputime_add(psig->cstime, 1252 cputime_add(p->stime, 1253 cputime_add(sig->stime, 1254 sig->cstime))); 1255 psig->cmin_flt += 1256 p->min_flt + sig->min_flt + sig->cmin_flt; 1257 psig->cmaj_flt += 1258 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1259 psig->cnvcsw += 1260 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1261 psig->cnivcsw += 1262 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1263 psig->cinblock += 1264 task_io_get_inblock(p) + 1265 sig->inblock + sig->cinblock; 1266 psig->coublock += 1267 task_io_get_oublock(p) + 1268 sig->oublock + sig->coublock; 1269 spin_unlock_irq(&p->parent->sighand->siglock); 1270 } 1271 1272 /* 1273 * Now we are sure this task is interesting, and no other 1274 * thread can reap it because we set its state to EXIT_DEAD. 1275 */ 1276 read_unlock(&tasklist_lock); 1277 1278 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1279 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1280 ? p->signal->group_exit_code : p->exit_code; 1281 if (!retval && stat_addr) 1282 retval = put_user(status, stat_addr); 1283 if (!retval && infop) 1284 retval = put_user(SIGCHLD, &infop->si_signo); 1285 if (!retval && infop) 1286 retval = put_user(0, &infop->si_errno); 1287 if (!retval && infop) { 1288 int why; 1289 1290 if ((status & 0x7f) == 0) { 1291 why = CLD_EXITED; 1292 status >>= 8; 1293 } else { 1294 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1295 status &= 0x7f; 1296 } 1297 retval = put_user((short)why, &infop->si_code); 1298 if (!retval) 1299 retval = put_user(status, &infop->si_status); 1300 } 1301 if (!retval && infop) 1302 retval = put_user(p->pid, &infop->si_pid); 1303 if (!retval && infop) 1304 retval = put_user(p->uid, &infop->si_uid); 1305 if (retval) { 1306 // TODO: is this safe? 1307 p->exit_state = EXIT_ZOMBIE; 1308 return retval; 1309 } 1310 retval = p->pid; 1311 if (p->real_parent != p->parent) { 1312 write_lock_irq(&tasklist_lock); 1313 /* Double-check with lock held. */ 1314 if (p->real_parent != p->parent) { 1315 __ptrace_unlink(p); 1316 // TODO: is this safe? 1317 p->exit_state = EXIT_ZOMBIE; 1318 /* 1319 * If this is not a detached task, notify the parent. 1320 * If it's still not detached after that, don't release 1321 * it now. 1322 */ 1323 if (p->exit_signal != -1) { 1324 do_notify_parent(p, p->exit_signal); 1325 if (p->exit_signal != -1) 1326 p = NULL; 1327 } 1328 } 1329 write_unlock_irq(&tasklist_lock); 1330 } 1331 if (p != NULL) 1332 release_task(p); 1333 BUG_ON(!retval); 1334 return retval; 1335 } 1336 1337 /* 1338 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1339 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1340 * the lock and this task is uninteresting. If we return nonzero, we have 1341 * released the lock and the system call should return. 1342 */ 1343 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader, 1344 int noreap, struct siginfo __user *infop, 1345 int __user *stat_addr, struct rusage __user *ru) 1346 { 1347 int retval, exit_code; 1348 1349 if (!p->exit_code) 1350 return 0; 1351 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) && 1352 p->signal && p->signal->group_stop_count > 0) 1353 /* 1354 * A group stop is in progress and this is the group leader. 1355 * We won't report until all threads have stopped. 1356 */ 1357 return 0; 1358 1359 /* 1360 * Now we are pretty sure this task is interesting. 1361 * Make sure it doesn't get reaped out from under us while we 1362 * give up the lock and then examine it below. We don't want to 1363 * keep holding onto the tasklist_lock while we call getrusage and 1364 * possibly take page faults for user memory. 1365 */ 1366 get_task_struct(p); 1367 read_unlock(&tasklist_lock); 1368 1369 if (unlikely(noreap)) { 1370 pid_t pid = p->pid; 1371 uid_t uid = p->uid; 1372 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; 1373 1374 exit_code = p->exit_code; 1375 if (unlikely(!exit_code) || 1376 unlikely(p->state & TASK_TRACED)) 1377 goto bail_ref; 1378 return wait_noreap_copyout(p, pid, uid, 1379 why, (exit_code << 8) | 0x7f, 1380 infop, ru); 1381 } 1382 1383 write_lock_irq(&tasklist_lock); 1384 1385 /* 1386 * This uses xchg to be atomic with the thread resuming and setting 1387 * it. It must also be done with the write lock held to prevent a 1388 * race with the EXIT_ZOMBIE case. 1389 */ 1390 exit_code = xchg(&p->exit_code, 0); 1391 if (unlikely(p->exit_state)) { 1392 /* 1393 * The task resumed and then died. Let the next iteration 1394 * catch it in EXIT_ZOMBIE. Note that exit_code might 1395 * already be zero here if it resumed and did _exit(0). 1396 * The task itself is dead and won't touch exit_code again; 1397 * other processors in this function are locked out. 1398 */ 1399 p->exit_code = exit_code; 1400 exit_code = 0; 1401 } 1402 if (unlikely(exit_code == 0)) { 1403 /* 1404 * Another thread in this function got to it first, or it 1405 * resumed, or it resumed and then died. 1406 */ 1407 write_unlock_irq(&tasklist_lock); 1408 bail_ref: 1409 put_task_struct(p); 1410 /* 1411 * We are returning to the wait loop without having successfully 1412 * removed the process and having released the lock. We cannot 1413 * continue, since the "p" task pointer is potentially stale. 1414 * 1415 * Return -EAGAIN, and do_wait() will restart the loop from the 1416 * beginning. Do _not_ re-acquire the lock. 1417 */ 1418 return -EAGAIN; 1419 } 1420 1421 /* move to end of parent's list to avoid starvation */ 1422 remove_parent(p); 1423 add_parent(p); 1424 1425 write_unlock_irq(&tasklist_lock); 1426 1427 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1428 if (!retval && stat_addr) 1429 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1430 if (!retval && infop) 1431 retval = put_user(SIGCHLD, &infop->si_signo); 1432 if (!retval && infop) 1433 retval = put_user(0, &infop->si_errno); 1434 if (!retval && infop) 1435 retval = put_user((short)((p->ptrace & PT_PTRACED) 1436 ? CLD_TRAPPED : CLD_STOPPED), 1437 &infop->si_code); 1438 if (!retval && infop) 1439 retval = put_user(exit_code, &infop->si_status); 1440 if (!retval && infop) 1441 retval = put_user(p->pid, &infop->si_pid); 1442 if (!retval && infop) 1443 retval = put_user(p->uid, &infop->si_uid); 1444 if (!retval) 1445 retval = p->pid; 1446 put_task_struct(p); 1447 1448 BUG_ON(!retval); 1449 return retval; 1450 } 1451 1452 /* 1453 * Handle do_wait work for one task in a live, non-stopped state. 1454 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1455 * the lock and this task is uninteresting. If we return nonzero, we have 1456 * released the lock and the system call should return. 1457 */ 1458 static int wait_task_continued(struct task_struct *p, int noreap, 1459 struct siginfo __user *infop, 1460 int __user *stat_addr, struct rusage __user *ru) 1461 { 1462 int retval; 1463 pid_t pid; 1464 uid_t uid; 1465 1466 if (unlikely(!p->signal)) 1467 return 0; 1468 1469 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1470 return 0; 1471 1472 spin_lock_irq(&p->sighand->siglock); 1473 /* Re-check with the lock held. */ 1474 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1475 spin_unlock_irq(&p->sighand->siglock); 1476 return 0; 1477 } 1478 if (!noreap) 1479 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1480 spin_unlock_irq(&p->sighand->siglock); 1481 1482 pid = p->pid; 1483 uid = p->uid; 1484 get_task_struct(p); 1485 read_unlock(&tasklist_lock); 1486 1487 if (!infop) { 1488 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1489 put_task_struct(p); 1490 if (!retval && stat_addr) 1491 retval = put_user(0xffff, stat_addr); 1492 if (!retval) 1493 retval = p->pid; 1494 } else { 1495 retval = wait_noreap_copyout(p, pid, uid, 1496 CLD_CONTINUED, SIGCONT, 1497 infop, ru); 1498 BUG_ON(retval == 0); 1499 } 1500 1501 return retval; 1502 } 1503 1504 1505 static inline int my_ptrace_child(struct task_struct *p) 1506 { 1507 if (!(p->ptrace & PT_PTRACED)) 1508 return 0; 1509 if (!(p->ptrace & PT_ATTACHED)) 1510 return 1; 1511 /* 1512 * This child was PTRACE_ATTACH'd. We should be seeing it only if 1513 * we are the attacher. If we are the real parent, this is a race 1514 * inside ptrace_attach. It is waiting for the tasklist_lock, 1515 * which we have to switch the parent links, but has already set 1516 * the flags in p->ptrace. 1517 */ 1518 return (p->parent != p->real_parent); 1519 } 1520 1521 static long do_wait(pid_t pid, int options, struct siginfo __user *infop, 1522 int __user *stat_addr, struct rusage __user *ru) 1523 { 1524 DECLARE_WAITQUEUE(wait, current); 1525 struct task_struct *tsk; 1526 int flag, retval; 1527 int allowed, denied; 1528 1529 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1530 repeat: 1531 /* 1532 * We will set this flag if we see any child that might later 1533 * match our criteria, even if we are not able to reap it yet. 1534 */ 1535 flag = 0; 1536 allowed = denied = 0; 1537 current->state = TASK_INTERRUPTIBLE; 1538 read_lock(&tasklist_lock); 1539 tsk = current; 1540 do { 1541 struct task_struct *p; 1542 struct list_head *_p; 1543 int ret; 1544 1545 list_for_each(_p,&tsk->children) { 1546 p = list_entry(_p, struct task_struct, sibling); 1547 1548 ret = eligible_child(pid, options, p); 1549 if (!ret) 1550 continue; 1551 1552 if (unlikely(ret < 0)) { 1553 denied = ret; 1554 continue; 1555 } 1556 allowed = 1; 1557 1558 switch (p->state) { 1559 case TASK_TRACED: 1560 /* 1561 * When we hit the race with PTRACE_ATTACH, 1562 * we will not report this child. But the 1563 * race means it has not yet been moved to 1564 * our ptrace_children list, so we need to 1565 * set the flag here to avoid a spurious ECHILD 1566 * when the race happens with the only child. 1567 */ 1568 flag = 1; 1569 if (!my_ptrace_child(p)) 1570 continue; 1571 /*FALLTHROUGH*/ 1572 case TASK_STOPPED: 1573 /* 1574 * It's stopped now, so it might later 1575 * continue, exit, or stop again. 1576 */ 1577 flag = 1; 1578 if (!(options & WUNTRACED) && 1579 !my_ptrace_child(p)) 1580 continue; 1581 retval = wait_task_stopped(p, ret == 2, 1582 (options & WNOWAIT), 1583 infop, 1584 stat_addr, ru); 1585 if (retval == -EAGAIN) 1586 goto repeat; 1587 if (retval != 0) /* He released the lock. */ 1588 goto end; 1589 break; 1590 default: 1591 // case EXIT_DEAD: 1592 if (p->exit_state == EXIT_DEAD) 1593 continue; 1594 // case EXIT_ZOMBIE: 1595 if (p->exit_state == EXIT_ZOMBIE) { 1596 /* 1597 * Eligible but we cannot release 1598 * it yet: 1599 */ 1600 if (ret == 2) 1601 goto check_continued; 1602 if (!likely(options & WEXITED)) 1603 continue; 1604 retval = wait_task_zombie( 1605 p, (options & WNOWAIT), 1606 infop, stat_addr, ru); 1607 /* He released the lock. */ 1608 if (retval != 0) 1609 goto end; 1610 break; 1611 } 1612 check_continued: 1613 /* 1614 * It's running now, so it might later 1615 * exit, stop, or stop and then continue. 1616 */ 1617 flag = 1; 1618 if (!unlikely(options & WCONTINUED)) 1619 continue; 1620 retval = wait_task_continued( 1621 p, (options & WNOWAIT), 1622 infop, stat_addr, ru); 1623 if (retval != 0) /* He released the lock. */ 1624 goto end; 1625 break; 1626 } 1627 } 1628 if (!flag) { 1629 list_for_each(_p, &tsk->ptrace_children) { 1630 p = list_entry(_p, struct task_struct, 1631 ptrace_list); 1632 if (!eligible_child(pid, options, p)) 1633 continue; 1634 flag = 1; 1635 break; 1636 } 1637 } 1638 if (options & __WNOTHREAD) 1639 break; 1640 tsk = next_thread(tsk); 1641 BUG_ON(tsk->signal != current->signal); 1642 } while (tsk != current); 1643 1644 read_unlock(&tasklist_lock); 1645 if (flag) { 1646 retval = 0; 1647 if (options & WNOHANG) 1648 goto end; 1649 retval = -ERESTARTSYS; 1650 if (signal_pending(current)) 1651 goto end; 1652 schedule(); 1653 goto repeat; 1654 } 1655 retval = -ECHILD; 1656 if (unlikely(denied) && !allowed) 1657 retval = denied; 1658 end: 1659 current->state = TASK_RUNNING; 1660 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1661 if (infop) { 1662 if (retval > 0) 1663 retval = 0; 1664 else { 1665 /* 1666 * For a WNOHANG return, clear out all the fields 1667 * we would set so the user can easily tell the 1668 * difference. 1669 */ 1670 if (!retval) 1671 retval = put_user(0, &infop->si_signo); 1672 if (!retval) 1673 retval = put_user(0, &infop->si_errno); 1674 if (!retval) 1675 retval = put_user(0, &infop->si_code); 1676 if (!retval) 1677 retval = put_user(0, &infop->si_pid); 1678 if (!retval) 1679 retval = put_user(0, &infop->si_uid); 1680 if (!retval) 1681 retval = put_user(0, &infop->si_status); 1682 } 1683 } 1684 return retval; 1685 } 1686 1687 asmlinkage long sys_waitid(int which, pid_t pid, 1688 struct siginfo __user *infop, int options, 1689 struct rusage __user *ru) 1690 { 1691 long ret; 1692 1693 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1694 return -EINVAL; 1695 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1696 return -EINVAL; 1697 1698 switch (which) { 1699 case P_ALL: 1700 pid = -1; 1701 break; 1702 case P_PID: 1703 if (pid <= 0) 1704 return -EINVAL; 1705 break; 1706 case P_PGID: 1707 if (pid <= 0) 1708 return -EINVAL; 1709 pid = -pid; 1710 break; 1711 default: 1712 return -EINVAL; 1713 } 1714 1715 ret = do_wait(pid, options, infop, NULL, ru); 1716 1717 /* avoid REGPARM breakage on x86: */ 1718 prevent_tail_call(ret); 1719 return ret; 1720 } 1721 1722 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr, 1723 int options, struct rusage __user *ru) 1724 { 1725 long ret; 1726 1727 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1728 __WNOTHREAD|__WCLONE|__WALL)) 1729 return -EINVAL; 1730 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru); 1731 1732 /* avoid REGPARM breakage on x86: */ 1733 prevent_tail_call(ret); 1734 return ret; 1735 } 1736 1737 #ifdef __ARCH_WANT_SYS_WAITPID 1738 1739 /* 1740 * sys_waitpid() remains for compatibility. waitpid() should be 1741 * implemented by calling sys_wait4() from libc.a. 1742 */ 1743 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1744 { 1745 return sys_wait4(pid, stat_addr, options, NULL); 1746 } 1747 1748 #endif 1749