xref: /linux/kernel/exit.c (revision 86287543715ac2a6d92d561cc105d79306511457)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71 
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 	nr_threads--;
75 	detach_pid(p, PIDTYPE_PID);
76 	if (group_dead) {
77 		detach_pid(p, PIDTYPE_TGID);
78 		detach_pid(p, PIDTYPE_PGID);
79 		detach_pid(p, PIDTYPE_SID);
80 
81 		list_del_rcu(&p->tasks);
82 		list_del_init(&p->sibling);
83 		__this_cpu_dec(process_counts);
84 	}
85 	list_del_rcu(&p->thread_group);
86 	list_del_rcu(&p->thread_node);
87 }
88 
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94 	struct signal_struct *sig = tsk->signal;
95 	bool group_dead = thread_group_leader(tsk);
96 	struct sighand_struct *sighand;
97 	struct tty_struct *uninitialized_var(tty);
98 	u64 utime, stime;
99 
100 	sighand = rcu_dereference_check(tsk->sighand,
101 					lockdep_tasklist_lock_is_held());
102 	spin_lock(&sighand->siglock);
103 
104 #ifdef CONFIG_POSIX_TIMERS
105 	posix_cpu_timers_exit(tsk);
106 	if (group_dead)
107 		posix_cpu_timers_exit_group(tsk);
108 #endif
109 
110 	if (group_dead) {
111 		tty = sig->tty;
112 		sig->tty = NULL;
113 	} else {
114 		/*
115 		 * If there is any task waiting for the group exit
116 		 * then notify it:
117 		 */
118 		if (sig->notify_count > 0 && !--sig->notify_count)
119 			wake_up_process(sig->group_exit_task);
120 
121 		if (tsk == sig->curr_target)
122 			sig->curr_target = next_thread(tsk);
123 	}
124 
125 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126 			      sizeof(unsigned long long));
127 
128 	/*
129 	 * Accumulate here the counters for all threads as they die. We could
130 	 * skip the group leader because it is the last user of signal_struct,
131 	 * but we want to avoid the race with thread_group_cputime() which can
132 	 * see the empty ->thread_head list.
133 	 */
134 	task_cputime(tsk, &utime, &stime);
135 	write_seqlock(&sig->stats_lock);
136 	sig->utime += utime;
137 	sig->stime += stime;
138 	sig->gtime += task_gtime(tsk);
139 	sig->min_flt += tsk->min_flt;
140 	sig->maj_flt += tsk->maj_flt;
141 	sig->nvcsw += tsk->nvcsw;
142 	sig->nivcsw += tsk->nivcsw;
143 	sig->inblock += task_io_get_inblock(tsk);
144 	sig->oublock += task_io_get_oublock(tsk);
145 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
146 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147 	sig->nr_threads--;
148 	__unhash_process(tsk, group_dead);
149 	write_sequnlock(&sig->stats_lock);
150 
151 	/*
152 	 * Do this under ->siglock, we can race with another thread
153 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154 	 */
155 	flush_sigqueue(&tsk->pending);
156 	tsk->sighand = NULL;
157 	spin_unlock(&sighand->siglock);
158 
159 	__cleanup_sighand(sighand);
160 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161 	if (group_dead) {
162 		flush_sigqueue(&sig->shared_pending);
163 		tty_kref_put(tty);
164 	}
165 }
166 
167 static void delayed_put_task_struct(struct rcu_head *rhp)
168 {
169 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170 
171 	perf_event_delayed_put(tsk);
172 	trace_sched_process_free(tsk);
173 	put_task_struct(tsk);
174 }
175 
176 void put_task_struct_rcu_user(struct task_struct *task)
177 {
178 	if (refcount_dec_and_test(&task->rcu_users))
179 		call_rcu(&task->rcu, delayed_put_task_struct);
180 }
181 
182 void release_task(struct task_struct *p)
183 {
184 	struct task_struct *leader;
185 	int zap_leader;
186 repeat:
187 	/* don't need to get the RCU readlock here - the process is dead and
188 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
189 	rcu_read_lock();
190 	atomic_dec(&__task_cred(p)->user->processes);
191 	rcu_read_unlock();
192 
193 	proc_flush_task(p);
194 	cgroup_release(p);
195 
196 	write_lock_irq(&tasklist_lock);
197 	ptrace_release_task(p);
198 	__exit_signal(p);
199 
200 	/*
201 	 * If we are the last non-leader member of the thread
202 	 * group, and the leader is zombie, then notify the
203 	 * group leader's parent process. (if it wants notification.)
204 	 */
205 	zap_leader = 0;
206 	leader = p->group_leader;
207 	if (leader != p && thread_group_empty(leader)
208 			&& leader->exit_state == EXIT_ZOMBIE) {
209 		/*
210 		 * If we were the last child thread and the leader has
211 		 * exited already, and the leader's parent ignores SIGCHLD,
212 		 * then we are the one who should release the leader.
213 		 */
214 		zap_leader = do_notify_parent(leader, leader->exit_signal);
215 		if (zap_leader)
216 			leader->exit_state = EXIT_DEAD;
217 	}
218 
219 	write_unlock_irq(&tasklist_lock);
220 	release_thread(p);
221 	put_task_struct_rcu_user(p);
222 
223 	p = leader;
224 	if (unlikely(zap_leader))
225 		goto repeat;
226 }
227 
228 void rcuwait_wake_up(struct rcuwait *w)
229 {
230 	struct task_struct *task;
231 
232 	rcu_read_lock();
233 
234 	/*
235 	 * Order condition vs @task, such that everything prior to the load
236 	 * of @task is visible. This is the condition as to why the user called
237 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
238 	 * barrier (A) in rcuwait_wait_event().
239 	 *
240 	 *    WAIT                WAKE
241 	 *    [S] tsk = current	  [S] cond = true
242 	 *        MB (A)	      MB (B)
243 	 *    [L] cond		  [L] tsk
244 	 */
245 	smp_mb(); /* (B) */
246 
247 	task = rcu_dereference(w->task);
248 	if (task)
249 		wake_up_process(task);
250 	rcu_read_unlock();
251 }
252 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
253 
254 /*
255  * Determine if a process group is "orphaned", according to the POSIX
256  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
257  * by terminal-generated stop signals.  Newly orphaned process groups are
258  * to receive a SIGHUP and a SIGCONT.
259  *
260  * "I ask you, have you ever known what it is to be an orphan?"
261  */
262 static int will_become_orphaned_pgrp(struct pid *pgrp,
263 					struct task_struct *ignored_task)
264 {
265 	struct task_struct *p;
266 
267 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
268 		if ((p == ignored_task) ||
269 		    (p->exit_state && thread_group_empty(p)) ||
270 		    is_global_init(p->real_parent))
271 			continue;
272 
273 		if (task_pgrp(p->real_parent) != pgrp &&
274 		    task_session(p->real_parent) == task_session(p))
275 			return 0;
276 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
277 
278 	return 1;
279 }
280 
281 int is_current_pgrp_orphaned(void)
282 {
283 	int retval;
284 
285 	read_lock(&tasklist_lock);
286 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
287 	read_unlock(&tasklist_lock);
288 
289 	return retval;
290 }
291 
292 static bool has_stopped_jobs(struct pid *pgrp)
293 {
294 	struct task_struct *p;
295 
296 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
297 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
298 			return true;
299 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
300 
301 	return false;
302 }
303 
304 /*
305  * Check to see if any process groups have become orphaned as
306  * a result of our exiting, and if they have any stopped jobs,
307  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
308  */
309 static void
310 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
311 {
312 	struct pid *pgrp = task_pgrp(tsk);
313 	struct task_struct *ignored_task = tsk;
314 
315 	if (!parent)
316 		/* exit: our father is in a different pgrp than
317 		 * we are and we were the only connection outside.
318 		 */
319 		parent = tsk->real_parent;
320 	else
321 		/* reparent: our child is in a different pgrp than
322 		 * we are, and it was the only connection outside.
323 		 */
324 		ignored_task = NULL;
325 
326 	if (task_pgrp(parent) != pgrp &&
327 	    task_session(parent) == task_session(tsk) &&
328 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
329 	    has_stopped_jobs(pgrp)) {
330 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
331 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
332 	}
333 }
334 
335 #ifdef CONFIG_MEMCG
336 /*
337  * A task is exiting.   If it owned this mm, find a new owner for the mm.
338  */
339 void mm_update_next_owner(struct mm_struct *mm)
340 {
341 	struct task_struct *c, *g, *p = current;
342 
343 retry:
344 	/*
345 	 * If the exiting or execing task is not the owner, it's
346 	 * someone else's problem.
347 	 */
348 	if (mm->owner != p)
349 		return;
350 	/*
351 	 * The current owner is exiting/execing and there are no other
352 	 * candidates.  Do not leave the mm pointing to a possibly
353 	 * freed task structure.
354 	 */
355 	if (atomic_read(&mm->mm_users) <= 1) {
356 		WRITE_ONCE(mm->owner, NULL);
357 		return;
358 	}
359 
360 	read_lock(&tasklist_lock);
361 	/*
362 	 * Search in the children
363 	 */
364 	list_for_each_entry(c, &p->children, sibling) {
365 		if (c->mm == mm)
366 			goto assign_new_owner;
367 	}
368 
369 	/*
370 	 * Search in the siblings
371 	 */
372 	list_for_each_entry(c, &p->real_parent->children, sibling) {
373 		if (c->mm == mm)
374 			goto assign_new_owner;
375 	}
376 
377 	/*
378 	 * Search through everything else, we should not get here often.
379 	 */
380 	for_each_process(g) {
381 		if (g->flags & PF_KTHREAD)
382 			continue;
383 		for_each_thread(g, c) {
384 			if (c->mm == mm)
385 				goto assign_new_owner;
386 			if (c->mm)
387 				break;
388 		}
389 	}
390 	read_unlock(&tasklist_lock);
391 	/*
392 	 * We found no owner yet mm_users > 1: this implies that we are
393 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
394 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
395 	 */
396 	WRITE_ONCE(mm->owner, NULL);
397 	return;
398 
399 assign_new_owner:
400 	BUG_ON(c == p);
401 	get_task_struct(c);
402 	/*
403 	 * The task_lock protects c->mm from changing.
404 	 * We always want mm->owner->mm == mm
405 	 */
406 	task_lock(c);
407 	/*
408 	 * Delay read_unlock() till we have the task_lock()
409 	 * to ensure that c does not slip away underneath us
410 	 */
411 	read_unlock(&tasklist_lock);
412 	if (c->mm != mm) {
413 		task_unlock(c);
414 		put_task_struct(c);
415 		goto retry;
416 	}
417 	WRITE_ONCE(mm->owner, c);
418 	task_unlock(c);
419 	put_task_struct(c);
420 }
421 #endif /* CONFIG_MEMCG */
422 
423 /*
424  * Turn us into a lazy TLB process if we
425  * aren't already..
426  */
427 static void exit_mm(void)
428 {
429 	struct mm_struct *mm = current->mm;
430 	struct core_state *core_state;
431 
432 	exit_mm_release(current, mm);
433 	if (!mm)
434 		return;
435 	sync_mm_rss(mm);
436 	/*
437 	 * Serialize with any possible pending coredump.
438 	 * We must hold mmap_sem around checking core_state
439 	 * and clearing tsk->mm.  The core-inducing thread
440 	 * will increment ->nr_threads for each thread in the
441 	 * group with ->mm != NULL.
442 	 */
443 	down_read(&mm->mmap_sem);
444 	core_state = mm->core_state;
445 	if (core_state) {
446 		struct core_thread self;
447 
448 		up_read(&mm->mmap_sem);
449 
450 		self.task = current;
451 		self.next = xchg(&core_state->dumper.next, &self);
452 		/*
453 		 * Implies mb(), the result of xchg() must be visible
454 		 * to core_state->dumper.
455 		 */
456 		if (atomic_dec_and_test(&core_state->nr_threads))
457 			complete(&core_state->startup);
458 
459 		for (;;) {
460 			set_current_state(TASK_UNINTERRUPTIBLE);
461 			if (!self.task) /* see coredump_finish() */
462 				break;
463 			freezable_schedule();
464 		}
465 		__set_current_state(TASK_RUNNING);
466 		down_read(&mm->mmap_sem);
467 	}
468 	mmgrab(mm);
469 	BUG_ON(mm != current->active_mm);
470 	/* more a memory barrier than a real lock */
471 	task_lock(current);
472 	current->mm = NULL;
473 	up_read(&mm->mmap_sem);
474 	enter_lazy_tlb(mm, current);
475 	task_unlock(current);
476 	mm_update_next_owner(mm);
477 	mmput(mm);
478 	if (test_thread_flag(TIF_MEMDIE))
479 		exit_oom_victim();
480 }
481 
482 static struct task_struct *find_alive_thread(struct task_struct *p)
483 {
484 	struct task_struct *t;
485 
486 	for_each_thread(p, t) {
487 		if (!(t->flags & PF_EXITING))
488 			return t;
489 	}
490 	return NULL;
491 }
492 
493 static struct task_struct *find_child_reaper(struct task_struct *father,
494 						struct list_head *dead)
495 	__releases(&tasklist_lock)
496 	__acquires(&tasklist_lock)
497 {
498 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
499 	struct task_struct *reaper = pid_ns->child_reaper;
500 	struct task_struct *p, *n;
501 
502 	if (likely(reaper != father))
503 		return reaper;
504 
505 	reaper = find_alive_thread(father);
506 	if (reaper) {
507 		pid_ns->child_reaper = reaper;
508 		return reaper;
509 	}
510 
511 	write_unlock_irq(&tasklist_lock);
512 
513 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
514 		list_del_init(&p->ptrace_entry);
515 		release_task(p);
516 	}
517 
518 	zap_pid_ns_processes(pid_ns);
519 	write_lock_irq(&tasklist_lock);
520 
521 	return father;
522 }
523 
524 /*
525  * When we die, we re-parent all our children, and try to:
526  * 1. give them to another thread in our thread group, if such a member exists
527  * 2. give it to the first ancestor process which prctl'd itself as a
528  *    child_subreaper for its children (like a service manager)
529  * 3. give it to the init process (PID 1) in our pid namespace
530  */
531 static struct task_struct *find_new_reaper(struct task_struct *father,
532 					   struct task_struct *child_reaper)
533 {
534 	struct task_struct *thread, *reaper;
535 
536 	thread = find_alive_thread(father);
537 	if (thread)
538 		return thread;
539 
540 	if (father->signal->has_child_subreaper) {
541 		unsigned int ns_level = task_pid(father)->level;
542 		/*
543 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
544 		 * We can't check reaper != child_reaper to ensure we do not
545 		 * cross the namespaces, the exiting parent could be injected
546 		 * by setns() + fork().
547 		 * We check pid->level, this is slightly more efficient than
548 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
549 		 */
550 		for (reaper = father->real_parent;
551 		     task_pid(reaper)->level == ns_level;
552 		     reaper = reaper->real_parent) {
553 			if (reaper == &init_task)
554 				break;
555 			if (!reaper->signal->is_child_subreaper)
556 				continue;
557 			thread = find_alive_thread(reaper);
558 			if (thread)
559 				return thread;
560 		}
561 	}
562 
563 	return child_reaper;
564 }
565 
566 /*
567 * Any that need to be release_task'd are put on the @dead list.
568  */
569 static void reparent_leader(struct task_struct *father, struct task_struct *p,
570 				struct list_head *dead)
571 {
572 	if (unlikely(p->exit_state == EXIT_DEAD))
573 		return;
574 
575 	/* We don't want people slaying init. */
576 	p->exit_signal = SIGCHLD;
577 
578 	/* If it has exited notify the new parent about this child's death. */
579 	if (!p->ptrace &&
580 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
581 		if (do_notify_parent(p, p->exit_signal)) {
582 			p->exit_state = EXIT_DEAD;
583 			list_add(&p->ptrace_entry, dead);
584 		}
585 	}
586 
587 	kill_orphaned_pgrp(p, father);
588 }
589 
590 /*
591  * This does two things:
592  *
593  * A.  Make init inherit all the child processes
594  * B.  Check to see if any process groups have become orphaned
595  *	as a result of our exiting, and if they have any stopped
596  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
597  */
598 static void forget_original_parent(struct task_struct *father,
599 					struct list_head *dead)
600 {
601 	struct task_struct *p, *t, *reaper;
602 
603 	if (unlikely(!list_empty(&father->ptraced)))
604 		exit_ptrace(father, dead);
605 
606 	/* Can drop and reacquire tasklist_lock */
607 	reaper = find_child_reaper(father, dead);
608 	if (list_empty(&father->children))
609 		return;
610 
611 	reaper = find_new_reaper(father, reaper);
612 	list_for_each_entry(p, &father->children, sibling) {
613 		for_each_thread(p, t) {
614 			RCU_INIT_POINTER(t->real_parent, reaper);
615 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
616 			if (likely(!t->ptrace))
617 				t->parent = t->real_parent;
618 			if (t->pdeath_signal)
619 				group_send_sig_info(t->pdeath_signal,
620 						    SEND_SIG_NOINFO, t,
621 						    PIDTYPE_TGID);
622 		}
623 		/*
624 		 * If this is a threaded reparent there is no need to
625 		 * notify anyone anything has happened.
626 		 */
627 		if (!same_thread_group(reaper, father))
628 			reparent_leader(father, p, dead);
629 	}
630 	list_splice_tail_init(&father->children, &reaper->children);
631 }
632 
633 /*
634  * Send signals to all our closest relatives so that they know
635  * to properly mourn us..
636  */
637 static void exit_notify(struct task_struct *tsk, int group_dead)
638 {
639 	bool autoreap;
640 	struct task_struct *p, *n;
641 	LIST_HEAD(dead);
642 
643 	write_lock_irq(&tasklist_lock);
644 	forget_original_parent(tsk, &dead);
645 
646 	if (group_dead)
647 		kill_orphaned_pgrp(tsk->group_leader, NULL);
648 
649 	tsk->exit_state = EXIT_ZOMBIE;
650 	if (unlikely(tsk->ptrace)) {
651 		int sig = thread_group_leader(tsk) &&
652 				thread_group_empty(tsk) &&
653 				!ptrace_reparented(tsk) ?
654 			tsk->exit_signal : SIGCHLD;
655 		autoreap = do_notify_parent(tsk, sig);
656 	} else if (thread_group_leader(tsk)) {
657 		autoreap = thread_group_empty(tsk) &&
658 			do_notify_parent(tsk, tsk->exit_signal);
659 	} else {
660 		autoreap = true;
661 	}
662 
663 	if (autoreap) {
664 		tsk->exit_state = EXIT_DEAD;
665 		list_add(&tsk->ptrace_entry, &dead);
666 	}
667 
668 	/* mt-exec, de_thread() is waiting for group leader */
669 	if (unlikely(tsk->signal->notify_count < 0))
670 		wake_up_process(tsk->signal->group_exit_task);
671 	write_unlock_irq(&tasklist_lock);
672 
673 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
674 		list_del_init(&p->ptrace_entry);
675 		release_task(p);
676 	}
677 }
678 
679 #ifdef CONFIG_DEBUG_STACK_USAGE
680 static void check_stack_usage(void)
681 {
682 	static DEFINE_SPINLOCK(low_water_lock);
683 	static int lowest_to_date = THREAD_SIZE;
684 	unsigned long free;
685 
686 	free = stack_not_used(current);
687 
688 	if (free >= lowest_to_date)
689 		return;
690 
691 	spin_lock(&low_water_lock);
692 	if (free < lowest_to_date) {
693 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
694 			current->comm, task_pid_nr(current), free);
695 		lowest_to_date = free;
696 	}
697 	spin_unlock(&low_water_lock);
698 }
699 #else
700 static inline void check_stack_usage(void) {}
701 #endif
702 
703 void __noreturn do_exit(long code)
704 {
705 	struct task_struct *tsk = current;
706 	int group_dead;
707 
708 	profile_task_exit(tsk);
709 	kcov_task_exit(tsk);
710 
711 	WARN_ON(blk_needs_flush_plug(tsk));
712 
713 	if (unlikely(in_interrupt()))
714 		panic("Aiee, killing interrupt handler!");
715 	if (unlikely(!tsk->pid))
716 		panic("Attempted to kill the idle task!");
717 
718 	/*
719 	 * If do_exit is called because this processes oopsed, it's possible
720 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
721 	 * continuing. Amongst other possible reasons, this is to prevent
722 	 * mm_release()->clear_child_tid() from writing to a user-controlled
723 	 * kernel address.
724 	 */
725 	set_fs(USER_DS);
726 
727 	ptrace_event(PTRACE_EVENT_EXIT, code);
728 
729 	validate_creds_for_do_exit(tsk);
730 
731 	/*
732 	 * We're taking recursive faults here in do_exit. Safest is to just
733 	 * leave this task alone and wait for reboot.
734 	 */
735 	if (unlikely(tsk->flags & PF_EXITING)) {
736 		pr_alert("Fixing recursive fault but reboot is needed!\n");
737 		futex_exit_recursive(tsk);
738 		set_current_state(TASK_UNINTERRUPTIBLE);
739 		schedule();
740 	}
741 
742 	exit_signals(tsk);  /* sets PF_EXITING */
743 
744 	if (unlikely(in_atomic())) {
745 		pr_info("note: %s[%d] exited with preempt_count %d\n",
746 			current->comm, task_pid_nr(current),
747 			preempt_count());
748 		preempt_count_set(PREEMPT_ENABLED);
749 	}
750 
751 	/* sync mm's RSS info before statistics gathering */
752 	if (tsk->mm)
753 		sync_mm_rss(tsk->mm);
754 	acct_update_integrals(tsk);
755 	group_dead = atomic_dec_and_test(&tsk->signal->live);
756 	if (group_dead) {
757 		/*
758 		 * If the last thread of global init has exited, panic
759 		 * immediately to get a useable coredump.
760 		 */
761 		if (unlikely(is_global_init(tsk)))
762 			panic("Attempted to kill init! exitcode=0x%08x\n",
763 				tsk->signal->group_exit_code ?: (int)code);
764 
765 #ifdef CONFIG_POSIX_TIMERS
766 		hrtimer_cancel(&tsk->signal->real_timer);
767 		exit_itimers(tsk->signal);
768 #endif
769 		if (tsk->mm)
770 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
771 	}
772 	acct_collect(code, group_dead);
773 	if (group_dead)
774 		tty_audit_exit();
775 	audit_free(tsk);
776 
777 	tsk->exit_code = code;
778 	taskstats_exit(tsk, group_dead);
779 
780 	exit_mm();
781 
782 	if (group_dead)
783 		acct_process();
784 	trace_sched_process_exit(tsk);
785 
786 	exit_sem(tsk);
787 	exit_shm(tsk);
788 	exit_files(tsk);
789 	exit_fs(tsk);
790 	if (group_dead)
791 		disassociate_ctty(1);
792 	exit_task_namespaces(tsk);
793 	exit_task_work(tsk);
794 	exit_thread(tsk);
795 	exit_umh(tsk);
796 
797 	/*
798 	 * Flush inherited counters to the parent - before the parent
799 	 * gets woken up by child-exit notifications.
800 	 *
801 	 * because of cgroup mode, must be called before cgroup_exit()
802 	 */
803 	perf_event_exit_task(tsk);
804 
805 	sched_autogroup_exit_task(tsk);
806 	cgroup_exit(tsk);
807 
808 	/*
809 	 * FIXME: do that only when needed, using sched_exit tracepoint
810 	 */
811 	flush_ptrace_hw_breakpoint(tsk);
812 
813 	exit_tasks_rcu_start();
814 	exit_notify(tsk, group_dead);
815 	proc_exit_connector(tsk);
816 	mpol_put_task_policy(tsk);
817 #ifdef CONFIG_FUTEX
818 	if (unlikely(current->pi_state_cache))
819 		kfree(current->pi_state_cache);
820 #endif
821 	/*
822 	 * Make sure we are holding no locks:
823 	 */
824 	debug_check_no_locks_held();
825 
826 	if (tsk->io_context)
827 		exit_io_context(tsk);
828 
829 	if (tsk->splice_pipe)
830 		free_pipe_info(tsk->splice_pipe);
831 
832 	if (tsk->task_frag.page)
833 		put_page(tsk->task_frag.page);
834 
835 	validate_creds_for_do_exit(tsk);
836 
837 	check_stack_usage();
838 	preempt_disable();
839 	if (tsk->nr_dirtied)
840 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
841 	exit_rcu();
842 	exit_tasks_rcu_finish();
843 
844 	lockdep_free_task(tsk);
845 	do_task_dead();
846 }
847 EXPORT_SYMBOL_GPL(do_exit);
848 
849 void complete_and_exit(struct completion *comp, long code)
850 {
851 	if (comp)
852 		complete(comp);
853 
854 	do_exit(code);
855 }
856 EXPORT_SYMBOL(complete_and_exit);
857 
858 SYSCALL_DEFINE1(exit, int, error_code)
859 {
860 	do_exit((error_code&0xff)<<8);
861 }
862 
863 /*
864  * Take down every thread in the group.  This is called by fatal signals
865  * as well as by sys_exit_group (below).
866  */
867 void
868 do_group_exit(int exit_code)
869 {
870 	struct signal_struct *sig = current->signal;
871 
872 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
873 
874 	if (signal_group_exit(sig))
875 		exit_code = sig->group_exit_code;
876 	else if (!thread_group_empty(current)) {
877 		struct sighand_struct *const sighand = current->sighand;
878 
879 		spin_lock_irq(&sighand->siglock);
880 		if (signal_group_exit(sig))
881 			/* Another thread got here before we took the lock.  */
882 			exit_code = sig->group_exit_code;
883 		else {
884 			sig->group_exit_code = exit_code;
885 			sig->flags = SIGNAL_GROUP_EXIT;
886 			zap_other_threads(current);
887 		}
888 		spin_unlock_irq(&sighand->siglock);
889 	}
890 
891 	do_exit(exit_code);
892 	/* NOTREACHED */
893 }
894 
895 /*
896  * this kills every thread in the thread group. Note that any externally
897  * wait4()-ing process will get the correct exit code - even if this
898  * thread is not the thread group leader.
899  */
900 SYSCALL_DEFINE1(exit_group, int, error_code)
901 {
902 	do_group_exit((error_code & 0xff) << 8);
903 	/* NOTREACHED */
904 	return 0;
905 }
906 
907 struct waitid_info {
908 	pid_t pid;
909 	uid_t uid;
910 	int status;
911 	int cause;
912 };
913 
914 struct wait_opts {
915 	enum pid_type		wo_type;
916 	int			wo_flags;
917 	struct pid		*wo_pid;
918 
919 	struct waitid_info	*wo_info;
920 	int			wo_stat;
921 	struct rusage		*wo_rusage;
922 
923 	wait_queue_entry_t		child_wait;
924 	int			notask_error;
925 };
926 
927 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
928 {
929 	return	wo->wo_type == PIDTYPE_MAX ||
930 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
931 }
932 
933 static int
934 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
935 {
936 	if (!eligible_pid(wo, p))
937 		return 0;
938 
939 	/*
940 	 * Wait for all children (clone and not) if __WALL is set or
941 	 * if it is traced by us.
942 	 */
943 	if (ptrace || (wo->wo_flags & __WALL))
944 		return 1;
945 
946 	/*
947 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
948 	 * otherwise, wait for non-clone children *only*.
949 	 *
950 	 * Note: a "clone" child here is one that reports to its parent
951 	 * using a signal other than SIGCHLD, or a non-leader thread which
952 	 * we can only see if it is traced by us.
953 	 */
954 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
955 		return 0;
956 
957 	return 1;
958 }
959 
960 /*
961  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
962  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
963  * the lock and this task is uninteresting.  If we return nonzero, we have
964  * released the lock and the system call should return.
965  */
966 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
967 {
968 	int state, status;
969 	pid_t pid = task_pid_vnr(p);
970 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
971 	struct waitid_info *infop;
972 
973 	if (!likely(wo->wo_flags & WEXITED))
974 		return 0;
975 
976 	if (unlikely(wo->wo_flags & WNOWAIT)) {
977 		status = p->exit_code;
978 		get_task_struct(p);
979 		read_unlock(&tasklist_lock);
980 		sched_annotate_sleep();
981 		if (wo->wo_rusage)
982 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
983 		put_task_struct(p);
984 		goto out_info;
985 	}
986 	/*
987 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
988 	 */
989 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
990 		EXIT_TRACE : EXIT_DEAD;
991 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
992 		return 0;
993 	/*
994 	 * We own this thread, nobody else can reap it.
995 	 */
996 	read_unlock(&tasklist_lock);
997 	sched_annotate_sleep();
998 
999 	/*
1000 	 * Check thread_group_leader() to exclude the traced sub-threads.
1001 	 */
1002 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1003 		struct signal_struct *sig = p->signal;
1004 		struct signal_struct *psig = current->signal;
1005 		unsigned long maxrss;
1006 		u64 tgutime, tgstime;
1007 
1008 		/*
1009 		 * The resource counters for the group leader are in its
1010 		 * own task_struct.  Those for dead threads in the group
1011 		 * are in its signal_struct, as are those for the child
1012 		 * processes it has previously reaped.  All these
1013 		 * accumulate in the parent's signal_struct c* fields.
1014 		 *
1015 		 * We don't bother to take a lock here to protect these
1016 		 * p->signal fields because the whole thread group is dead
1017 		 * and nobody can change them.
1018 		 *
1019 		 * psig->stats_lock also protects us from our sub-theads
1020 		 * which can reap other children at the same time. Until
1021 		 * we change k_getrusage()-like users to rely on this lock
1022 		 * we have to take ->siglock as well.
1023 		 *
1024 		 * We use thread_group_cputime_adjusted() to get times for
1025 		 * the thread group, which consolidates times for all threads
1026 		 * in the group including the group leader.
1027 		 */
1028 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1029 		spin_lock_irq(&current->sighand->siglock);
1030 		write_seqlock(&psig->stats_lock);
1031 		psig->cutime += tgutime + sig->cutime;
1032 		psig->cstime += tgstime + sig->cstime;
1033 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1034 		psig->cmin_flt +=
1035 			p->min_flt + sig->min_flt + sig->cmin_flt;
1036 		psig->cmaj_flt +=
1037 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1038 		psig->cnvcsw +=
1039 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1040 		psig->cnivcsw +=
1041 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1042 		psig->cinblock +=
1043 			task_io_get_inblock(p) +
1044 			sig->inblock + sig->cinblock;
1045 		psig->coublock +=
1046 			task_io_get_oublock(p) +
1047 			sig->oublock + sig->coublock;
1048 		maxrss = max(sig->maxrss, sig->cmaxrss);
1049 		if (psig->cmaxrss < maxrss)
1050 			psig->cmaxrss = maxrss;
1051 		task_io_accounting_add(&psig->ioac, &p->ioac);
1052 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1053 		write_sequnlock(&psig->stats_lock);
1054 		spin_unlock_irq(&current->sighand->siglock);
1055 	}
1056 
1057 	if (wo->wo_rusage)
1058 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1059 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1060 		? p->signal->group_exit_code : p->exit_code;
1061 	wo->wo_stat = status;
1062 
1063 	if (state == EXIT_TRACE) {
1064 		write_lock_irq(&tasklist_lock);
1065 		/* We dropped tasklist, ptracer could die and untrace */
1066 		ptrace_unlink(p);
1067 
1068 		/* If parent wants a zombie, don't release it now */
1069 		state = EXIT_ZOMBIE;
1070 		if (do_notify_parent(p, p->exit_signal))
1071 			state = EXIT_DEAD;
1072 		p->exit_state = state;
1073 		write_unlock_irq(&tasklist_lock);
1074 	}
1075 	if (state == EXIT_DEAD)
1076 		release_task(p);
1077 
1078 out_info:
1079 	infop = wo->wo_info;
1080 	if (infop) {
1081 		if ((status & 0x7f) == 0) {
1082 			infop->cause = CLD_EXITED;
1083 			infop->status = status >> 8;
1084 		} else {
1085 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1086 			infop->status = status & 0x7f;
1087 		}
1088 		infop->pid = pid;
1089 		infop->uid = uid;
1090 	}
1091 
1092 	return pid;
1093 }
1094 
1095 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1096 {
1097 	if (ptrace) {
1098 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1099 			return &p->exit_code;
1100 	} else {
1101 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1102 			return &p->signal->group_exit_code;
1103 	}
1104 	return NULL;
1105 }
1106 
1107 /**
1108  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1109  * @wo: wait options
1110  * @ptrace: is the wait for ptrace
1111  * @p: task to wait for
1112  *
1113  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1114  *
1115  * CONTEXT:
1116  * read_lock(&tasklist_lock), which is released if return value is
1117  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1118  *
1119  * RETURNS:
1120  * 0 if wait condition didn't exist and search for other wait conditions
1121  * should continue.  Non-zero return, -errno on failure and @p's pid on
1122  * success, implies that tasklist_lock is released and wait condition
1123  * search should terminate.
1124  */
1125 static int wait_task_stopped(struct wait_opts *wo,
1126 				int ptrace, struct task_struct *p)
1127 {
1128 	struct waitid_info *infop;
1129 	int exit_code, *p_code, why;
1130 	uid_t uid = 0; /* unneeded, required by compiler */
1131 	pid_t pid;
1132 
1133 	/*
1134 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1135 	 */
1136 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1137 		return 0;
1138 
1139 	if (!task_stopped_code(p, ptrace))
1140 		return 0;
1141 
1142 	exit_code = 0;
1143 	spin_lock_irq(&p->sighand->siglock);
1144 
1145 	p_code = task_stopped_code(p, ptrace);
1146 	if (unlikely(!p_code))
1147 		goto unlock_sig;
1148 
1149 	exit_code = *p_code;
1150 	if (!exit_code)
1151 		goto unlock_sig;
1152 
1153 	if (!unlikely(wo->wo_flags & WNOWAIT))
1154 		*p_code = 0;
1155 
1156 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1157 unlock_sig:
1158 	spin_unlock_irq(&p->sighand->siglock);
1159 	if (!exit_code)
1160 		return 0;
1161 
1162 	/*
1163 	 * Now we are pretty sure this task is interesting.
1164 	 * Make sure it doesn't get reaped out from under us while we
1165 	 * give up the lock and then examine it below.  We don't want to
1166 	 * keep holding onto the tasklist_lock while we call getrusage and
1167 	 * possibly take page faults for user memory.
1168 	 */
1169 	get_task_struct(p);
1170 	pid = task_pid_vnr(p);
1171 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1172 	read_unlock(&tasklist_lock);
1173 	sched_annotate_sleep();
1174 	if (wo->wo_rusage)
1175 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1176 	put_task_struct(p);
1177 
1178 	if (likely(!(wo->wo_flags & WNOWAIT)))
1179 		wo->wo_stat = (exit_code << 8) | 0x7f;
1180 
1181 	infop = wo->wo_info;
1182 	if (infop) {
1183 		infop->cause = why;
1184 		infop->status = exit_code;
1185 		infop->pid = pid;
1186 		infop->uid = uid;
1187 	}
1188 	return pid;
1189 }
1190 
1191 /*
1192  * Handle do_wait work for one task in a live, non-stopped state.
1193  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1194  * the lock and this task is uninteresting.  If we return nonzero, we have
1195  * released the lock and the system call should return.
1196  */
1197 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1198 {
1199 	struct waitid_info *infop;
1200 	pid_t pid;
1201 	uid_t uid;
1202 
1203 	if (!unlikely(wo->wo_flags & WCONTINUED))
1204 		return 0;
1205 
1206 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1207 		return 0;
1208 
1209 	spin_lock_irq(&p->sighand->siglock);
1210 	/* Re-check with the lock held.  */
1211 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1212 		spin_unlock_irq(&p->sighand->siglock);
1213 		return 0;
1214 	}
1215 	if (!unlikely(wo->wo_flags & WNOWAIT))
1216 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1217 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1218 	spin_unlock_irq(&p->sighand->siglock);
1219 
1220 	pid = task_pid_vnr(p);
1221 	get_task_struct(p);
1222 	read_unlock(&tasklist_lock);
1223 	sched_annotate_sleep();
1224 	if (wo->wo_rusage)
1225 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1226 	put_task_struct(p);
1227 
1228 	infop = wo->wo_info;
1229 	if (!infop) {
1230 		wo->wo_stat = 0xffff;
1231 	} else {
1232 		infop->cause = CLD_CONTINUED;
1233 		infop->pid = pid;
1234 		infop->uid = uid;
1235 		infop->status = SIGCONT;
1236 	}
1237 	return pid;
1238 }
1239 
1240 /*
1241  * Consider @p for a wait by @parent.
1242  *
1243  * -ECHILD should be in ->notask_error before the first call.
1244  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1245  * Returns zero if the search for a child should continue;
1246  * then ->notask_error is 0 if @p is an eligible child,
1247  * or still -ECHILD.
1248  */
1249 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1250 				struct task_struct *p)
1251 {
1252 	/*
1253 	 * We can race with wait_task_zombie() from another thread.
1254 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1255 	 * can't confuse the checks below.
1256 	 */
1257 	int exit_state = READ_ONCE(p->exit_state);
1258 	int ret;
1259 
1260 	if (unlikely(exit_state == EXIT_DEAD))
1261 		return 0;
1262 
1263 	ret = eligible_child(wo, ptrace, p);
1264 	if (!ret)
1265 		return ret;
1266 
1267 	if (unlikely(exit_state == EXIT_TRACE)) {
1268 		/*
1269 		 * ptrace == 0 means we are the natural parent. In this case
1270 		 * we should clear notask_error, debugger will notify us.
1271 		 */
1272 		if (likely(!ptrace))
1273 			wo->notask_error = 0;
1274 		return 0;
1275 	}
1276 
1277 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1278 		/*
1279 		 * If it is traced by its real parent's group, just pretend
1280 		 * the caller is ptrace_do_wait() and reap this child if it
1281 		 * is zombie.
1282 		 *
1283 		 * This also hides group stop state from real parent; otherwise
1284 		 * a single stop can be reported twice as group and ptrace stop.
1285 		 * If a ptracer wants to distinguish these two events for its
1286 		 * own children it should create a separate process which takes
1287 		 * the role of real parent.
1288 		 */
1289 		if (!ptrace_reparented(p))
1290 			ptrace = 1;
1291 	}
1292 
1293 	/* slay zombie? */
1294 	if (exit_state == EXIT_ZOMBIE) {
1295 		/* we don't reap group leaders with subthreads */
1296 		if (!delay_group_leader(p)) {
1297 			/*
1298 			 * A zombie ptracee is only visible to its ptracer.
1299 			 * Notification and reaping will be cascaded to the
1300 			 * real parent when the ptracer detaches.
1301 			 */
1302 			if (unlikely(ptrace) || likely(!p->ptrace))
1303 				return wait_task_zombie(wo, p);
1304 		}
1305 
1306 		/*
1307 		 * Allow access to stopped/continued state via zombie by
1308 		 * falling through.  Clearing of notask_error is complex.
1309 		 *
1310 		 * When !@ptrace:
1311 		 *
1312 		 * If WEXITED is set, notask_error should naturally be
1313 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1314 		 * so, if there are live subthreads, there are events to
1315 		 * wait for.  If all subthreads are dead, it's still safe
1316 		 * to clear - this function will be called again in finite
1317 		 * amount time once all the subthreads are released and
1318 		 * will then return without clearing.
1319 		 *
1320 		 * When @ptrace:
1321 		 *
1322 		 * Stopped state is per-task and thus can't change once the
1323 		 * target task dies.  Only continued and exited can happen.
1324 		 * Clear notask_error if WCONTINUED | WEXITED.
1325 		 */
1326 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1327 			wo->notask_error = 0;
1328 	} else {
1329 		/*
1330 		 * @p is alive and it's gonna stop, continue or exit, so
1331 		 * there always is something to wait for.
1332 		 */
1333 		wo->notask_error = 0;
1334 	}
1335 
1336 	/*
1337 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1338 	 * is used and the two don't interact with each other.
1339 	 */
1340 	ret = wait_task_stopped(wo, ptrace, p);
1341 	if (ret)
1342 		return ret;
1343 
1344 	/*
1345 	 * Wait for continued.  There's only one continued state and the
1346 	 * ptracer can consume it which can confuse the real parent.  Don't
1347 	 * use WCONTINUED from ptracer.  You don't need or want it.
1348 	 */
1349 	return wait_task_continued(wo, p);
1350 }
1351 
1352 /*
1353  * Do the work of do_wait() for one thread in the group, @tsk.
1354  *
1355  * -ECHILD should be in ->notask_error before the first call.
1356  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1357  * Returns zero if the search for a child should continue; then
1358  * ->notask_error is 0 if there were any eligible children,
1359  * or still -ECHILD.
1360  */
1361 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1362 {
1363 	struct task_struct *p;
1364 
1365 	list_for_each_entry(p, &tsk->children, sibling) {
1366 		int ret = wait_consider_task(wo, 0, p);
1367 
1368 		if (ret)
1369 			return ret;
1370 	}
1371 
1372 	return 0;
1373 }
1374 
1375 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1376 {
1377 	struct task_struct *p;
1378 
1379 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1380 		int ret = wait_consider_task(wo, 1, p);
1381 
1382 		if (ret)
1383 			return ret;
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1390 				int sync, void *key)
1391 {
1392 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1393 						child_wait);
1394 	struct task_struct *p = key;
1395 
1396 	if (!eligible_pid(wo, p))
1397 		return 0;
1398 
1399 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1400 		return 0;
1401 
1402 	return default_wake_function(wait, mode, sync, key);
1403 }
1404 
1405 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1406 {
1407 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1408 			   TASK_INTERRUPTIBLE, p);
1409 }
1410 
1411 static long do_wait(struct wait_opts *wo)
1412 {
1413 	struct task_struct *tsk;
1414 	int retval;
1415 
1416 	trace_sched_process_wait(wo->wo_pid);
1417 
1418 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1419 	wo->child_wait.private = current;
1420 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1421 repeat:
1422 	/*
1423 	 * If there is nothing that can match our criteria, just get out.
1424 	 * We will clear ->notask_error to zero if we see any child that
1425 	 * might later match our criteria, even if we are not able to reap
1426 	 * it yet.
1427 	 */
1428 	wo->notask_error = -ECHILD;
1429 	if ((wo->wo_type < PIDTYPE_MAX) &&
1430 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1431 		goto notask;
1432 
1433 	set_current_state(TASK_INTERRUPTIBLE);
1434 	read_lock(&tasklist_lock);
1435 	tsk = current;
1436 	do {
1437 		retval = do_wait_thread(wo, tsk);
1438 		if (retval)
1439 			goto end;
1440 
1441 		retval = ptrace_do_wait(wo, tsk);
1442 		if (retval)
1443 			goto end;
1444 
1445 		if (wo->wo_flags & __WNOTHREAD)
1446 			break;
1447 	} while_each_thread(current, tsk);
1448 	read_unlock(&tasklist_lock);
1449 
1450 notask:
1451 	retval = wo->notask_error;
1452 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1453 		retval = -ERESTARTSYS;
1454 		if (!signal_pending(current)) {
1455 			schedule();
1456 			goto repeat;
1457 		}
1458 	}
1459 end:
1460 	__set_current_state(TASK_RUNNING);
1461 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1462 	return retval;
1463 }
1464 
1465 static struct pid *pidfd_get_pid(unsigned int fd)
1466 {
1467 	struct fd f;
1468 	struct pid *pid;
1469 
1470 	f = fdget(fd);
1471 	if (!f.file)
1472 		return ERR_PTR(-EBADF);
1473 
1474 	pid = pidfd_pid(f.file);
1475 	if (!IS_ERR(pid))
1476 		get_pid(pid);
1477 
1478 	fdput(f);
1479 	return pid;
1480 }
1481 
1482 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1483 			  int options, struct rusage *ru)
1484 {
1485 	struct wait_opts wo;
1486 	struct pid *pid = NULL;
1487 	enum pid_type type;
1488 	long ret;
1489 
1490 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1491 			__WNOTHREAD|__WCLONE|__WALL))
1492 		return -EINVAL;
1493 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1494 		return -EINVAL;
1495 
1496 	switch (which) {
1497 	case P_ALL:
1498 		type = PIDTYPE_MAX;
1499 		break;
1500 	case P_PID:
1501 		type = PIDTYPE_PID;
1502 		if (upid <= 0)
1503 			return -EINVAL;
1504 
1505 		pid = find_get_pid(upid);
1506 		break;
1507 	case P_PGID:
1508 		type = PIDTYPE_PGID;
1509 		if (upid < 0)
1510 			return -EINVAL;
1511 
1512 		if (upid)
1513 			pid = find_get_pid(upid);
1514 		else
1515 			pid = get_task_pid(current, PIDTYPE_PGID);
1516 		break;
1517 	case P_PIDFD:
1518 		type = PIDTYPE_PID;
1519 		if (upid < 0)
1520 			return -EINVAL;
1521 
1522 		pid = pidfd_get_pid(upid);
1523 		if (IS_ERR(pid))
1524 			return PTR_ERR(pid);
1525 		break;
1526 	default:
1527 		return -EINVAL;
1528 	}
1529 
1530 	wo.wo_type	= type;
1531 	wo.wo_pid	= pid;
1532 	wo.wo_flags	= options;
1533 	wo.wo_info	= infop;
1534 	wo.wo_rusage	= ru;
1535 	ret = do_wait(&wo);
1536 
1537 	put_pid(pid);
1538 	return ret;
1539 }
1540 
1541 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1542 		infop, int, options, struct rusage __user *, ru)
1543 {
1544 	struct rusage r;
1545 	struct waitid_info info = {.status = 0};
1546 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1547 	int signo = 0;
1548 
1549 	if (err > 0) {
1550 		signo = SIGCHLD;
1551 		err = 0;
1552 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1553 			return -EFAULT;
1554 	}
1555 	if (!infop)
1556 		return err;
1557 
1558 	if (!user_access_begin(infop, sizeof(*infop)))
1559 		return -EFAULT;
1560 
1561 	unsafe_put_user(signo, &infop->si_signo, Efault);
1562 	unsafe_put_user(0, &infop->si_errno, Efault);
1563 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1564 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1565 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1566 	unsafe_put_user(info.status, &infop->si_status, Efault);
1567 	user_access_end();
1568 	return err;
1569 Efault:
1570 	user_access_end();
1571 	return -EFAULT;
1572 }
1573 
1574 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1575 		  struct rusage *ru)
1576 {
1577 	struct wait_opts wo;
1578 	struct pid *pid = NULL;
1579 	enum pid_type type;
1580 	long ret;
1581 
1582 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1583 			__WNOTHREAD|__WCLONE|__WALL))
1584 		return -EINVAL;
1585 
1586 	/* -INT_MIN is not defined */
1587 	if (upid == INT_MIN)
1588 		return -ESRCH;
1589 
1590 	if (upid == -1)
1591 		type = PIDTYPE_MAX;
1592 	else if (upid < 0) {
1593 		type = PIDTYPE_PGID;
1594 		pid = find_get_pid(-upid);
1595 	} else if (upid == 0) {
1596 		type = PIDTYPE_PGID;
1597 		pid = get_task_pid(current, PIDTYPE_PGID);
1598 	} else /* upid > 0 */ {
1599 		type = PIDTYPE_PID;
1600 		pid = find_get_pid(upid);
1601 	}
1602 
1603 	wo.wo_type	= type;
1604 	wo.wo_pid	= pid;
1605 	wo.wo_flags	= options | WEXITED;
1606 	wo.wo_info	= NULL;
1607 	wo.wo_stat	= 0;
1608 	wo.wo_rusage	= ru;
1609 	ret = do_wait(&wo);
1610 	put_pid(pid);
1611 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1612 		ret = -EFAULT;
1613 
1614 	return ret;
1615 }
1616 
1617 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1618 		int, options, struct rusage __user *, ru)
1619 {
1620 	struct rusage r;
1621 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1622 
1623 	if (err > 0) {
1624 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1625 			return -EFAULT;
1626 	}
1627 	return err;
1628 }
1629 
1630 #ifdef __ARCH_WANT_SYS_WAITPID
1631 
1632 /*
1633  * sys_waitpid() remains for compatibility. waitpid() should be
1634  * implemented by calling sys_wait4() from libc.a.
1635  */
1636 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1637 {
1638 	return kernel_wait4(pid, stat_addr, options, NULL);
1639 }
1640 
1641 #endif
1642 
1643 #ifdef CONFIG_COMPAT
1644 COMPAT_SYSCALL_DEFINE4(wait4,
1645 	compat_pid_t, pid,
1646 	compat_uint_t __user *, stat_addr,
1647 	int, options,
1648 	struct compat_rusage __user *, ru)
1649 {
1650 	struct rusage r;
1651 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1652 	if (err > 0) {
1653 		if (ru && put_compat_rusage(&r, ru))
1654 			return -EFAULT;
1655 	}
1656 	return err;
1657 }
1658 
1659 COMPAT_SYSCALL_DEFINE5(waitid,
1660 		int, which, compat_pid_t, pid,
1661 		struct compat_siginfo __user *, infop, int, options,
1662 		struct compat_rusage __user *, uru)
1663 {
1664 	struct rusage ru;
1665 	struct waitid_info info = {.status = 0};
1666 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1667 	int signo = 0;
1668 	if (err > 0) {
1669 		signo = SIGCHLD;
1670 		err = 0;
1671 		if (uru) {
1672 			/* kernel_waitid() overwrites everything in ru */
1673 			if (COMPAT_USE_64BIT_TIME)
1674 				err = copy_to_user(uru, &ru, sizeof(ru));
1675 			else
1676 				err = put_compat_rusage(&ru, uru);
1677 			if (err)
1678 				return -EFAULT;
1679 		}
1680 	}
1681 
1682 	if (!infop)
1683 		return err;
1684 
1685 	if (!user_access_begin(infop, sizeof(*infop)))
1686 		return -EFAULT;
1687 
1688 	unsafe_put_user(signo, &infop->si_signo, Efault);
1689 	unsafe_put_user(0, &infop->si_errno, Efault);
1690 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1691 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1692 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1693 	unsafe_put_user(info.status, &infop->si_status, Efault);
1694 	user_access_end();
1695 	return err;
1696 Efault:
1697 	user_access_end();
1698 	return -EFAULT;
1699 }
1700 #endif
1701 
1702 __weak void abort(void)
1703 {
1704 	BUG();
1705 
1706 	/* if that doesn't kill us, halt */
1707 	panic("Oops failed to kill thread");
1708 }
1709 EXPORT_SYMBOL(abort);
1710