1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_io_accounting_ops.h> 53 #include <linux/tracehook.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 67 #include <linux/uaccess.h> 68 #include <asm/unistd.h> 69 #include <asm/pgtable.h> 70 #include <asm/mmu_context.h> 71 72 static void __unhash_process(struct task_struct *p, bool group_dead) 73 { 74 nr_threads--; 75 detach_pid(p, PIDTYPE_PID); 76 if (group_dead) { 77 detach_pid(p, PIDTYPE_TGID); 78 detach_pid(p, PIDTYPE_PGID); 79 detach_pid(p, PIDTYPE_SID); 80 81 list_del_rcu(&p->tasks); 82 list_del_init(&p->sibling); 83 __this_cpu_dec(process_counts); 84 } 85 list_del_rcu(&p->thread_group); 86 list_del_rcu(&p->thread_node); 87 } 88 89 /* 90 * This function expects the tasklist_lock write-locked. 91 */ 92 static void __exit_signal(struct task_struct *tsk) 93 { 94 struct signal_struct *sig = tsk->signal; 95 bool group_dead = thread_group_leader(tsk); 96 struct sighand_struct *sighand; 97 struct tty_struct *uninitialized_var(tty); 98 u64 utime, stime; 99 100 sighand = rcu_dereference_check(tsk->sighand, 101 lockdep_tasklist_lock_is_held()); 102 spin_lock(&sighand->siglock); 103 104 #ifdef CONFIG_POSIX_TIMERS 105 posix_cpu_timers_exit(tsk); 106 if (group_dead) 107 posix_cpu_timers_exit_group(tsk); 108 #endif 109 110 if (group_dead) { 111 tty = sig->tty; 112 sig->tty = NULL; 113 } else { 114 /* 115 * If there is any task waiting for the group exit 116 * then notify it: 117 */ 118 if (sig->notify_count > 0 && !--sig->notify_count) 119 wake_up_process(sig->group_exit_task); 120 121 if (tsk == sig->curr_target) 122 sig->curr_target = next_thread(tsk); 123 } 124 125 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 126 sizeof(unsigned long long)); 127 128 /* 129 * Accumulate here the counters for all threads as they die. We could 130 * skip the group leader because it is the last user of signal_struct, 131 * but we want to avoid the race with thread_group_cputime() which can 132 * see the empty ->thread_head list. 133 */ 134 task_cputime(tsk, &utime, &stime); 135 write_seqlock(&sig->stats_lock); 136 sig->utime += utime; 137 sig->stime += stime; 138 sig->gtime += task_gtime(tsk); 139 sig->min_flt += tsk->min_flt; 140 sig->maj_flt += tsk->maj_flt; 141 sig->nvcsw += tsk->nvcsw; 142 sig->nivcsw += tsk->nivcsw; 143 sig->inblock += task_io_get_inblock(tsk); 144 sig->oublock += task_io_get_oublock(tsk); 145 task_io_accounting_add(&sig->ioac, &tsk->ioac); 146 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 147 sig->nr_threads--; 148 __unhash_process(tsk, group_dead); 149 write_sequnlock(&sig->stats_lock); 150 151 /* 152 * Do this under ->siglock, we can race with another thread 153 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 154 */ 155 flush_sigqueue(&tsk->pending); 156 tsk->sighand = NULL; 157 spin_unlock(&sighand->siglock); 158 159 __cleanup_sighand(sighand); 160 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 161 if (group_dead) { 162 flush_sigqueue(&sig->shared_pending); 163 tty_kref_put(tty); 164 } 165 } 166 167 static void delayed_put_task_struct(struct rcu_head *rhp) 168 { 169 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 170 171 perf_event_delayed_put(tsk); 172 trace_sched_process_free(tsk); 173 put_task_struct(tsk); 174 } 175 176 void put_task_struct_rcu_user(struct task_struct *task) 177 { 178 if (refcount_dec_and_test(&task->rcu_users)) 179 call_rcu(&task->rcu, delayed_put_task_struct); 180 } 181 182 void release_task(struct task_struct *p) 183 { 184 struct task_struct *leader; 185 int zap_leader; 186 repeat: 187 /* don't need to get the RCU readlock here - the process is dead and 188 * can't be modifying its own credentials. But shut RCU-lockdep up */ 189 rcu_read_lock(); 190 atomic_dec(&__task_cred(p)->user->processes); 191 rcu_read_unlock(); 192 193 proc_flush_task(p); 194 cgroup_release(p); 195 196 write_lock_irq(&tasklist_lock); 197 ptrace_release_task(p); 198 __exit_signal(p); 199 200 /* 201 * If we are the last non-leader member of the thread 202 * group, and the leader is zombie, then notify the 203 * group leader's parent process. (if it wants notification.) 204 */ 205 zap_leader = 0; 206 leader = p->group_leader; 207 if (leader != p && thread_group_empty(leader) 208 && leader->exit_state == EXIT_ZOMBIE) { 209 /* 210 * If we were the last child thread and the leader has 211 * exited already, and the leader's parent ignores SIGCHLD, 212 * then we are the one who should release the leader. 213 */ 214 zap_leader = do_notify_parent(leader, leader->exit_signal); 215 if (zap_leader) 216 leader->exit_state = EXIT_DEAD; 217 } 218 219 write_unlock_irq(&tasklist_lock); 220 release_thread(p); 221 put_task_struct_rcu_user(p); 222 223 p = leader; 224 if (unlikely(zap_leader)) 225 goto repeat; 226 } 227 228 void rcuwait_wake_up(struct rcuwait *w) 229 { 230 struct task_struct *task; 231 232 rcu_read_lock(); 233 234 /* 235 * Order condition vs @task, such that everything prior to the load 236 * of @task is visible. This is the condition as to why the user called 237 * rcuwait_trywake() in the first place. Pairs with set_current_state() 238 * barrier (A) in rcuwait_wait_event(). 239 * 240 * WAIT WAKE 241 * [S] tsk = current [S] cond = true 242 * MB (A) MB (B) 243 * [L] cond [L] tsk 244 */ 245 smp_mb(); /* (B) */ 246 247 task = rcu_dereference(w->task); 248 if (task) 249 wake_up_process(task); 250 rcu_read_unlock(); 251 } 252 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 253 254 /* 255 * Determine if a process group is "orphaned", according to the POSIX 256 * definition in 2.2.2.52. Orphaned process groups are not to be affected 257 * by terminal-generated stop signals. Newly orphaned process groups are 258 * to receive a SIGHUP and a SIGCONT. 259 * 260 * "I ask you, have you ever known what it is to be an orphan?" 261 */ 262 static int will_become_orphaned_pgrp(struct pid *pgrp, 263 struct task_struct *ignored_task) 264 { 265 struct task_struct *p; 266 267 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 268 if ((p == ignored_task) || 269 (p->exit_state && thread_group_empty(p)) || 270 is_global_init(p->real_parent)) 271 continue; 272 273 if (task_pgrp(p->real_parent) != pgrp && 274 task_session(p->real_parent) == task_session(p)) 275 return 0; 276 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 277 278 return 1; 279 } 280 281 int is_current_pgrp_orphaned(void) 282 { 283 int retval; 284 285 read_lock(&tasklist_lock); 286 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 287 read_unlock(&tasklist_lock); 288 289 return retval; 290 } 291 292 static bool has_stopped_jobs(struct pid *pgrp) 293 { 294 struct task_struct *p; 295 296 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 297 if (p->signal->flags & SIGNAL_STOP_STOPPED) 298 return true; 299 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 300 301 return false; 302 } 303 304 /* 305 * Check to see if any process groups have become orphaned as 306 * a result of our exiting, and if they have any stopped jobs, 307 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 308 */ 309 static void 310 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 311 { 312 struct pid *pgrp = task_pgrp(tsk); 313 struct task_struct *ignored_task = tsk; 314 315 if (!parent) 316 /* exit: our father is in a different pgrp than 317 * we are and we were the only connection outside. 318 */ 319 parent = tsk->real_parent; 320 else 321 /* reparent: our child is in a different pgrp than 322 * we are, and it was the only connection outside. 323 */ 324 ignored_task = NULL; 325 326 if (task_pgrp(parent) != pgrp && 327 task_session(parent) == task_session(tsk) && 328 will_become_orphaned_pgrp(pgrp, ignored_task) && 329 has_stopped_jobs(pgrp)) { 330 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 331 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 332 } 333 } 334 335 #ifdef CONFIG_MEMCG 336 /* 337 * A task is exiting. If it owned this mm, find a new owner for the mm. 338 */ 339 void mm_update_next_owner(struct mm_struct *mm) 340 { 341 struct task_struct *c, *g, *p = current; 342 343 retry: 344 /* 345 * If the exiting or execing task is not the owner, it's 346 * someone else's problem. 347 */ 348 if (mm->owner != p) 349 return; 350 /* 351 * The current owner is exiting/execing and there are no other 352 * candidates. Do not leave the mm pointing to a possibly 353 * freed task structure. 354 */ 355 if (atomic_read(&mm->mm_users) <= 1) { 356 WRITE_ONCE(mm->owner, NULL); 357 return; 358 } 359 360 read_lock(&tasklist_lock); 361 /* 362 * Search in the children 363 */ 364 list_for_each_entry(c, &p->children, sibling) { 365 if (c->mm == mm) 366 goto assign_new_owner; 367 } 368 369 /* 370 * Search in the siblings 371 */ 372 list_for_each_entry(c, &p->real_parent->children, sibling) { 373 if (c->mm == mm) 374 goto assign_new_owner; 375 } 376 377 /* 378 * Search through everything else, we should not get here often. 379 */ 380 for_each_process(g) { 381 if (g->flags & PF_KTHREAD) 382 continue; 383 for_each_thread(g, c) { 384 if (c->mm == mm) 385 goto assign_new_owner; 386 if (c->mm) 387 break; 388 } 389 } 390 read_unlock(&tasklist_lock); 391 /* 392 * We found no owner yet mm_users > 1: this implies that we are 393 * most likely racing with swapoff (try_to_unuse()) or /proc or 394 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 395 */ 396 WRITE_ONCE(mm->owner, NULL); 397 return; 398 399 assign_new_owner: 400 BUG_ON(c == p); 401 get_task_struct(c); 402 /* 403 * The task_lock protects c->mm from changing. 404 * We always want mm->owner->mm == mm 405 */ 406 task_lock(c); 407 /* 408 * Delay read_unlock() till we have the task_lock() 409 * to ensure that c does not slip away underneath us 410 */ 411 read_unlock(&tasklist_lock); 412 if (c->mm != mm) { 413 task_unlock(c); 414 put_task_struct(c); 415 goto retry; 416 } 417 WRITE_ONCE(mm->owner, c); 418 task_unlock(c); 419 put_task_struct(c); 420 } 421 #endif /* CONFIG_MEMCG */ 422 423 /* 424 * Turn us into a lazy TLB process if we 425 * aren't already.. 426 */ 427 static void exit_mm(void) 428 { 429 struct mm_struct *mm = current->mm; 430 struct core_state *core_state; 431 432 exit_mm_release(current, mm); 433 if (!mm) 434 return; 435 sync_mm_rss(mm); 436 /* 437 * Serialize with any possible pending coredump. 438 * We must hold mmap_sem around checking core_state 439 * and clearing tsk->mm. The core-inducing thread 440 * will increment ->nr_threads for each thread in the 441 * group with ->mm != NULL. 442 */ 443 down_read(&mm->mmap_sem); 444 core_state = mm->core_state; 445 if (core_state) { 446 struct core_thread self; 447 448 up_read(&mm->mmap_sem); 449 450 self.task = current; 451 self.next = xchg(&core_state->dumper.next, &self); 452 /* 453 * Implies mb(), the result of xchg() must be visible 454 * to core_state->dumper. 455 */ 456 if (atomic_dec_and_test(&core_state->nr_threads)) 457 complete(&core_state->startup); 458 459 for (;;) { 460 set_current_state(TASK_UNINTERRUPTIBLE); 461 if (!self.task) /* see coredump_finish() */ 462 break; 463 freezable_schedule(); 464 } 465 __set_current_state(TASK_RUNNING); 466 down_read(&mm->mmap_sem); 467 } 468 mmgrab(mm); 469 BUG_ON(mm != current->active_mm); 470 /* more a memory barrier than a real lock */ 471 task_lock(current); 472 current->mm = NULL; 473 up_read(&mm->mmap_sem); 474 enter_lazy_tlb(mm, current); 475 task_unlock(current); 476 mm_update_next_owner(mm); 477 mmput(mm); 478 if (test_thread_flag(TIF_MEMDIE)) 479 exit_oom_victim(); 480 } 481 482 static struct task_struct *find_alive_thread(struct task_struct *p) 483 { 484 struct task_struct *t; 485 486 for_each_thread(p, t) { 487 if (!(t->flags & PF_EXITING)) 488 return t; 489 } 490 return NULL; 491 } 492 493 static struct task_struct *find_child_reaper(struct task_struct *father, 494 struct list_head *dead) 495 __releases(&tasklist_lock) 496 __acquires(&tasklist_lock) 497 { 498 struct pid_namespace *pid_ns = task_active_pid_ns(father); 499 struct task_struct *reaper = pid_ns->child_reaper; 500 struct task_struct *p, *n; 501 502 if (likely(reaper != father)) 503 return reaper; 504 505 reaper = find_alive_thread(father); 506 if (reaper) { 507 pid_ns->child_reaper = reaper; 508 return reaper; 509 } 510 511 write_unlock_irq(&tasklist_lock); 512 513 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 514 list_del_init(&p->ptrace_entry); 515 release_task(p); 516 } 517 518 zap_pid_ns_processes(pid_ns); 519 write_lock_irq(&tasklist_lock); 520 521 return father; 522 } 523 524 /* 525 * When we die, we re-parent all our children, and try to: 526 * 1. give them to another thread in our thread group, if such a member exists 527 * 2. give it to the first ancestor process which prctl'd itself as a 528 * child_subreaper for its children (like a service manager) 529 * 3. give it to the init process (PID 1) in our pid namespace 530 */ 531 static struct task_struct *find_new_reaper(struct task_struct *father, 532 struct task_struct *child_reaper) 533 { 534 struct task_struct *thread, *reaper; 535 536 thread = find_alive_thread(father); 537 if (thread) 538 return thread; 539 540 if (father->signal->has_child_subreaper) { 541 unsigned int ns_level = task_pid(father)->level; 542 /* 543 * Find the first ->is_child_subreaper ancestor in our pid_ns. 544 * We can't check reaper != child_reaper to ensure we do not 545 * cross the namespaces, the exiting parent could be injected 546 * by setns() + fork(). 547 * We check pid->level, this is slightly more efficient than 548 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 549 */ 550 for (reaper = father->real_parent; 551 task_pid(reaper)->level == ns_level; 552 reaper = reaper->real_parent) { 553 if (reaper == &init_task) 554 break; 555 if (!reaper->signal->is_child_subreaper) 556 continue; 557 thread = find_alive_thread(reaper); 558 if (thread) 559 return thread; 560 } 561 } 562 563 return child_reaper; 564 } 565 566 /* 567 * Any that need to be release_task'd are put on the @dead list. 568 */ 569 static void reparent_leader(struct task_struct *father, struct task_struct *p, 570 struct list_head *dead) 571 { 572 if (unlikely(p->exit_state == EXIT_DEAD)) 573 return; 574 575 /* We don't want people slaying init. */ 576 p->exit_signal = SIGCHLD; 577 578 /* If it has exited notify the new parent about this child's death. */ 579 if (!p->ptrace && 580 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 581 if (do_notify_parent(p, p->exit_signal)) { 582 p->exit_state = EXIT_DEAD; 583 list_add(&p->ptrace_entry, dead); 584 } 585 } 586 587 kill_orphaned_pgrp(p, father); 588 } 589 590 /* 591 * This does two things: 592 * 593 * A. Make init inherit all the child processes 594 * B. Check to see if any process groups have become orphaned 595 * as a result of our exiting, and if they have any stopped 596 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 597 */ 598 static void forget_original_parent(struct task_struct *father, 599 struct list_head *dead) 600 { 601 struct task_struct *p, *t, *reaper; 602 603 if (unlikely(!list_empty(&father->ptraced))) 604 exit_ptrace(father, dead); 605 606 /* Can drop and reacquire tasklist_lock */ 607 reaper = find_child_reaper(father, dead); 608 if (list_empty(&father->children)) 609 return; 610 611 reaper = find_new_reaper(father, reaper); 612 list_for_each_entry(p, &father->children, sibling) { 613 for_each_thread(p, t) { 614 RCU_INIT_POINTER(t->real_parent, reaper); 615 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 616 if (likely(!t->ptrace)) 617 t->parent = t->real_parent; 618 if (t->pdeath_signal) 619 group_send_sig_info(t->pdeath_signal, 620 SEND_SIG_NOINFO, t, 621 PIDTYPE_TGID); 622 } 623 /* 624 * If this is a threaded reparent there is no need to 625 * notify anyone anything has happened. 626 */ 627 if (!same_thread_group(reaper, father)) 628 reparent_leader(father, p, dead); 629 } 630 list_splice_tail_init(&father->children, &reaper->children); 631 } 632 633 /* 634 * Send signals to all our closest relatives so that they know 635 * to properly mourn us.. 636 */ 637 static void exit_notify(struct task_struct *tsk, int group_dead) 638 { 639 bool autoreap; 640 struct task_struct *p, *n; 641 LIST_HEAD(dead); 642 643 write_lock_irq(&tasklist_lock); 644 forget_original_parent(tsk, &dead); 645 646 if (group_dead) 647 kill_orphaned_pgrp(tsk->group_leader, NULL); 648 649 tsk->exit_state = EXIT_ZOMBIE; 650 if (unlikely(tsk->ptrace)) { 651 int sig = thread_group_leader(tsk) && 652 thread_group_empty(tsk) && 653 !ptrace_reparented(tsk) ? 654 tsk->exit_signal : SIGCHLD; 655 autoreap = do_notify_parent(tsk, sig); 656 } else if (thread_group_leader(tsk)) { 657 autoreap = thread_group_empty(tsk) && 658 do_notify_parent(tsk, tsk->exit_signal); 659 } else { 660 autoreap = true; 661 } 662 663 if (autoreap) { 664 tsk->exit_state = EXIT_DEAD; 665 list_add(&tsk->ptrace_entry, &dead); 666 } 667 668 /* mt-exec, de_thread() is waiting for group leader */ 669 if (unlikely(tsk->signal->notify_count < 0)) 670 wake_up_process(tsk->signal->group_exit_task); 671 write_unlock_irq(&tasklist_lock); 672 673 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 674 list_del_init(&p->ptrace_entry); 675 release_task(p); 676 } 677 } 678 679 #ifdef CONFIG_DEBUG_STACK_USAGE 680 static void check_stack_usage(void) 681 { 682 static DEFINE_SPINLOCK(low_water_lock); 683 static int lowest_to_date = THREAD_SIZE; 684 unsigned long free; 685 686 free = stack_not_used(current); 687 688 if (free >= lowest_to_date) 689 return; 690 691 spin_lock(&low_water_lock); 692 if (free < lowest_to_date) { 693 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 694 current->comm, task_pid_nr(current), free); 695 lowest_to_date = free; 696 } 697 spin_unlock(&low_water_lock); 698 } 699 #else 700 static inline void check_stack_usage(void) {} 701 #endif 702 703 void __noreturn do_exit(long code) 704 { 705 struct task_struct *tsk = current; 706 int group_dead; 707 708 profile_task_exit(tsk); 709 kcov_task_exit(tsk); 710 711 WARN_ON(blk_needs_flush_plug(tsk)); 712 713 if (unlikely(in_interrupt())) 714 panic("Aiee, killing interrupt handler!"); 715 if (unlikely(!tsk->pid)) 716 panic("Attempted to kill the idle task!"); 717 718 /* 719 * If do_exit is called because this processes oopsed, it's possible 720 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 721 * continuing. Amongst other possible reasons, this is to prevent 722 * mm_release()->clear_child_tid() from writing to a user-controlled 723 * kernel address. 724 */ 725 set_fs(USER_DS); 726 727 ptrace_event(PTRACE_EVENT_EXIT, code); 728 729 validate_creds_for_do_exit(tsk); 730 731 /* 732 * We're taking recursive faults here in do_exit. Safest is to just 733 * leave this task alone and wait for reboot. 734 */ 735 if (unlikely(tsk->flags & PF_EXITING)) { 736 pr_alert("Fixing recursive fault but reboot is needed!\n"); 737 futex_exit_recursive(tsk); 738 set_current_state(TASK_UNINTERRUPTIBLE); 739 schedule(); 740 } 741 742 exit_signals(tsk); /* sets PF_EXITING */ 743 744 if (unlikely(in_atomic())) { 745 pr_info("note: %s[%d] exited with preempt_count %d\n", 746 current->comm, task_pid_nr(current), 747 preempt_count()); 748 preempt_count_set(PREEMPT_ENABLED); 749 } 750 751 /* sync mm's RSS info before statistics gathering */ 752 if (tsk->mm) 753 sync_mm_rss(tsk->mm); 754 acct_update_integrals(tsk); 755 group_dead = atomic_dec_and_test(&tsk->signal->live); 756 if (group_dead) { 757 /* 758 * If the last thread of global init has exited, panic 759 * immediately to get a useable coredump. 760 */ 761 if (unlikely(is_global_init(tsk))) 762 panic("Attempted to kill init! exitcode=0x%08x\n", 763 tsk->signal->group_exit_code ?: (int)code); 764 765 #ifdef CONFIG_POSIX_TIMERS 766 hrtimer_cancel(&tsk->signal->real_timer); 767 exit_itimers(tsk->signal); 768 #endif 769 if (tsk->mm) 770 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 771 } 772 acct_collect(code, group_dead); 773 if (group_dead) 774 tty_audit_exit(); 775 audit_free(tsk); 776 777 tsk->exit_code = code; 778 taskstats_exit(tsk, group_dead); 779 780 exit_mm(); 781 782 if (group_dead) 783 acct_process(); 784 trace_sched_process_exit(tsk); 785 786 exit_sem(tsk); 787 exit_shm(tsk); 788 exit_files(tsk); 789 exit_fs(tsk); 790 if (group_dead) 791 disassociate_ctty(1); 792 exit_task_namespaces(tsk); 793 exit_task_work(tsk); 794 exit_thread(tsk); 795 exit_umh(tsk); 796 797 /* 798 * Flush inherited counters to the parent - before the parent 799 * gets woken up by child-exit notifications. 800 * 801 * because of cgroup mode, must be called before cgroup_exit() 802 */ 803 perf_event_exit_task(tsk); 804 805 sched_autogroup_exit_task(tsk); 806 cgroup_exit(tsk); 807 808 /* 809 * FIXME: do that only when needed, using sched_exit tracepoint 810 */ 811 flush_ptrace_hw_breakpoint(tsk); 812 813 exit_tasks_rcu_start(); 814 exit_notify(tsk, group_dead); 815 proc_exit_connector(tsk); 816 mpol_put_task_policy(tsk); 817 #ifdef CONFIG_FUTEX 818 if (unlikely(current->pi_state_cache)) 819 kfree(current->pi_state_cache); 820 #endif 821 /* 822 * Make sure we are holding no locks: 823 */ 824 debug_check_no_locks_held(); 825 826 if (tsk->io_context) 827 exit_io_context(tsk); 828 829 if (tsk->splice_pipe) 830 free_pipe_info(tsk->splice_pipe); 831 832 if (tsk->task_frag.page) 833 put_page(tsk->task_frag.page); 834 835 validate_creds_for_do_exit(tsk); 836 837 check_stack_usage(); 838 preempt_disable(); 839 if (tsk->nr_dirtied) 840 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 841 exit_rcu(); 842 exit_tasks_rcu_finish(); 843 844 lockdep_free_task(tsk); 845 do_task_dead(); 846 } 847 EXPORT_SYMBOL_GPL(do_exit); 848 849 void complete_and_exit(struct completion *comp, long code) 850 { 851 if (comp) 852 complete(comp); 853 854 do_exit(code); 855 } 856 EXPORT_SYMBOL(complete_and_exit); 857 858 SYSCALL_DEFINE1(exit, int, error_code) 859 { 860 do_exit((error_code&0xff)<<8); 861 } 862 863 /* 864 * Take down every thread in the group. This is called by fatal signals 865 * as well as by sys_exit_group (below). 866 */ 867 void 868 do_group_exit(int exit_code) 869 { 870 struct signal_struct *sig = current->signal; 871 872 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 873 874 if (signal_group_exit(sig)) 875 exit_code = sig->group_exit_code; 876 else if (!thread_group_empty(current)) { 877 struct sighand_struct *const sighand = current->sighand; 878 879 spin_lock_irq(&sighand->siglock); 880 if (signal_group_exit(sig)) 881 /* Another thread got here before we took the lock. */ 882 exit_code = sig->group_exit_code; 883 else { 884 sig->group_exit_code = exit_code; 885 sig->flags = SIGNAL_GROUP_EXIT; 886 zap_other_threads(current); 887 } 888 spin_unlock_irq(&sighand->siglock); 889 } 890 891 do_exit(exit_code); 892 /* NOTREACHED */ 893 } 894 895 /* 896 * this kills every thread in the thread group. Note that any externally 897 * wait4()-ing process will get the correct exit code - even if this 898 * thread is not the thread group leader. 899 */ 900 SYSCALL_DEFINE1(exit_group, int, error_code) 901 { 902 do_group_exit((error_code & 0xff) << 8); 903 /* NOTREACHED */ 904 return 0; 905 } 906 907 struct waitid_info { 908 pid_t pid; 909 uid_t uid; 910 int status; 911 int cause; 912 }; 913 914 struct wait_opts { 915 enum pid_type wo_type; 916 int wo_flags; 917 struct pid *wo_pid; 918 919 struct waitid_info *wo_info; 920 int wo_stat; 921 struct rusage *wo_rusage; 922 923 wait_queue_entry_t child_wait; 924 int notask_error; 925 }; 926 927 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 928 { 929 return wo->wo_type == PIDTYPE_MAX || 930 task_pid_type(p, wo->wo_type) == wo->wo_pid; 931 } 932 933 static int 934 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 935 { 936 if (!eligible_pid(wo, p)) 937 return 0; 938 939 /* 940 * Wait for all children (clone and not) if __WALL is set or 941 * if it is traced by us. 942 */ 943 if (ptrace || (wo->wo_flags & __WALL)) 944 return 1; 945 946 /* 947 * Otherwise, wait for clone children *only* if __WCLONE is set; 948 * otherwise, wait for non-clone children *only*. 949 * 950 * Note: a "clone" child here is one that reports to its parent 951 * using a signal other than SIGCHLD, or a non-leader thread which 952 * we can only see if it is traced by us. 953 */ 954 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 955 return 0; 956 957 return 1; 958 } 959 960 /* 961 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 962 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 963 * the lock and this task is uninteresting. If we return nonzero, we have 964 * released the lock and the system call should return. 965 */ 966 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 967 { 968 int state, status; 969 pid_t pid = task_pid_vnr(p); 970 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 971 struct waitid_info *infop; 972 973 if (!likely(wo->wo_flags & WEXITED)) 974 return 0; 975 976 if (unlikely(wo->wo_flags & WNOWAIT)) { 977 status = p->exit_code; 978 get_task_struct(p); 979 read_unlock(&tasklist_lock); 980 sched_annotate_sleep(); 981 if (wo->wo_rusage) 982 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 983 put_task_struct(p); 984 goto out_info; 985 } 986 /* 987 * Move the task's state to DEAD/TRACE, only one thread can do this. 988 */ 989 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 990 EXIT_TRACE : EXIT_DEAD; 991 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 992 return 0; 993 /* 994 * We own this thread, nobody else can reap it. 995 */ 996 read_unlock(&tasklist_lock); 997 sched_annotate_sleep(); 998 999 /* 1000 * Check thread_group_leader() to exclude the traced sub-threads. 1001 */ 1002 if (state == EXIT_DEAD && thread_group_leader(p)) { 1003 struct signal_struct *sig = p->signal; 1004 struct signal_struct *psig = current->signal; 1005 unsigned long maxrss; 1006 u64 tgutime, tgstime; 1007 1008 /* 1009 * The resource counters for the group leader are in its 1010 * own task_struct. Those for dead threads in the group 1011 * are in its signal_struct, as are those for the child 1012 * processes it has previously reaped. All these 1013 * accumulate in the parent's signal_struct c* fields. 1014 * 1015 * We don't bother to take a lock here to protect these 1016 * p->signal fields because the whole thread group is dead 1017 * and nobody can change them. 1018 * 1019 * psig->stats_lock also protects us from our sub-theads 1020 * which can reap other children at the same time. Until 1021 * we change k_getrusage()-like users to rely on this lock 1022 * we have to take ->siglock as well. 1023 * 1024 * We use thread_group_cputime_adjusted() to get times for 1025 * the thread group, which consolidates times for all threads 1026 * in the group including the group leader. 1027 */ 1028 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1029 spin_lock_irq(¤t->sighand->siglock); 1030 write_seqlock(&psig->stats_lock); 1031 psig->cutime += tgutime + sig->cutime; 1032 psig->cstime += tgstime + sig->cstime; 1033 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1034 psig->cmin_flt += 1035 p->min_flt + sig->min_flt + sig->cmin_flt; 1036 psig->cmaj_flt += 1037 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1038 psig->cnvcsw += 1039 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1040 psig->cnivcsw += 1041 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1042 psig->cinblock += 1043 task_io_get_inblock(p) + 1044 sig->inblock + sig->cinblock; 1045 psig->coublock += 1046 task_io_get_oublock(p) + 1047 sig->oublock + sig->coublock; 1048 maxrss = max(sig->maxrss, sig->cmaxrss); 1049 if (psig->cmaxrss < maxrss) 1050 psig->cmaxrss = maxrss; 1051 task_io_accounting_add(&psig->ioac, &p->ioac); 1052 task_io_accounting_add(&psig->ioac, &sig->ioac); 1053 write_sequnlock(&psig->stats_lock); 1054 spin_unlock_irq(¤t->sighand->siglock); 1055 } 1056 1057 if (wo->wo_rusage) 1058 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1059 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1060 ? p->signal->group_exit_code : p->exit_code; 1061 wo->wo_stat = status; 1062 1063 if (state == EXIT_TRACE) { 1064 write_lock_irq(&tasklist_lock); 1065 /* We dropped tasklist, ptracer could die and untrace */ 1066 ptrace_unlink(p); 1067 1068 /* If parent wants a zombie, don't release it now */ 1069 state = EXIT_ZOMBIE; 1070 if (do_notify_parent(p, p->exit_signal)) 1071 state = EXIT_DEAD; 1072 p->exit_state = state; 1073 write_unlock_irq(&tasklist_lock); 1074 } 1075 if (state == EXIT_DEAD) 1076 release_task(p); 1077 1078 out_info: 1079 infop = wo->wo_info; 1080 if (infop) { 1081 if ((status & 0x7f) == 0) { 1082 infop->cause = CLD_EXITED; 1083 infop->status = status >> 8; 1084 } else { 1085 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1086 infop->status = status & 0x7f; 1087 } 1088 infop->pid = pid; 1089 infop->uid = uid; 1090 } 1091 1092 return pid; 1093 } 1094 1095 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1096 { 1097 if (ptrace) { 1098 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1099 return &p->exit_code; 1100 } else { 1101 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1102 return &p->signal->group_exit_code; 1103 } 1104 return NULL; 1105 } 1106 1107 /** 1108 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1109 * @wo: wait options 1110 * @ptrace: is the wait for ptrace 1111 * @p: task to wait for 1112 * 1113 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1114 * 1115 * CONTEXT: 1116 * read_lock(&tasklist_lock), which is released if return value is 1117 * non-zero. Also, grabs and releases @p->sighand->siglock. 1118 * 1119 * RETURNS: 1120 * 0 if wait condition didn't exist and search for other wait conditions 1121 * should continue. Non-zero return, -errno on failure and @p's pid on 1122 * success, implies that tasklist_lock is released and wait condition 1123 * search should terminate. 1124 */ 1125 static int wait_task_stopped(struct wait_opts *wo, 1126 int ptrace, struct task_struct *p) 1127 { 1128 struct waitid_info *infop; 1129 int exit_code, *p_code, why; 1130 uid_t uid = 0; /* unneeded, required by compiler */ 1131 pid_t pid; 1132 1133 /* 1134 * Traditionally we see ptrace'd stopped tasks regardless of options. 1135 */ 1136 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1137 return 0; 1138 1139 if (!task_stopped_code(p, ptrace)) 1140 return 0; 1141 1142 exit_code = 0; 1143 spin_lock_irq(&p->sighand->siglock); 1144 1145 p_code = task_stopped_code(p, ptrace); 1146 if (unlikely(!p_code)) 1147 goto unlock_sig; 1148 1149 exit_code = *p_code; 1150 if (!exit_code) 1151 goto unlock_sig; 1152 1153 if (!unlikely(wo->wo_flags & WNOWAIT)) 1154 *p_code = 0; 1155 1156 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1157 unlock_sig: 1158 spin_unlock_irq(&p->sighand->siglock); 1159 if (!exit_code) 1160 return 0; 1161 1162 /* 1163 * Now we are pretty sure this task is interesting. 1164 * Make sure it doesn't get reaped out from under us while we 1165 * give up the lock and then examine it below. We don't want to 1166 * keep holding onto the tasklist_lock while we call getrusage and 1167 * possibly take page faults for user memory. 1168 */ 1169 get_task_struct(p); 1170 pid = task_pid_vnr(p); 1171 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1172 read_unlock(&tasklist_lock); 1173 sched_annotate_sleep(); 1174 if (wo->wo_rusage) 1175 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1176 put_task_struct(p); 1177 1178 if (likely(!(wo->wo_flags & WNOWAIT))) 1179 wo->wo_stat = (exit_code << 8) | 0x7f; 1180 1181 infop = wo->wo_info; 1182 if (infop) { 1183 infop->cause = why; 1184 infop->status = exit_code; 1185 infop->pid = pid; 1186 infop->uid = uid; 1187 } 1188 return pid; 1189 } 1190 1191 /* 1192 * Handle do_wait work for one task in a live, non-stopped state. 1193 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1194 * the lock and this task is uninteresting. If we return nonzero, we have 1195 * released the lock and the system call should return. 1196 */ 1197 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1198 { 1199 struct waitid_info *infop; 1200 pid_t pid; 1201 uid_t uid; 1202 1203 if (!unlikely(wo->wo_flags & WCONTINUED)) 1204 return 0; 1205 1206 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1207 return 0; 1208 1209 spin_lock_irq(&p->sighand->siglock); 1210 /* Re-check with the lock held. */ 1211 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1212 spin_unlock_irq(&p->sighand->siglock); 1213 return 0; 1214 } 1215 if (!unlikely(wo->wo_flags & WNOWAIT)) 1216 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1217 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1218 spin_unlock_irq(&p->sighand->siglock); 1219 1220 pid = task_pid_vnr(p); 1221 get_task_struct(p); 1222 read_unlock(&tasklist_lock); 1223 sched_annotate_sleep(); 1224 if (wo->wo_rusage) 1225 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1226 put_task_struct(p); 1227 1228 infop = wo->wo_info; 1229 if (!infop) { 1230 wo->wo_stat = 0xffff; 1231 } else { 1232 infop->cause = CLD_CONTINUED; 1233 infop->pid = pid; 1234 infop->uid = uid; 1235 infop->status = SIGCONT; 1236 } 1237 return pid; 1238 } 1239 1240 /* 1241 * Consider @p for a wait by @parent. 1242 * 1243 * -ECHILD should be in ->notask_error before the first call. 1244 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1245 * Returns zero if the search for a child should continue; 1246 * then ->notask_error is 0 if @p is an eligible child, 1247 * or still -ECHILD. 1248 */ 1249 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1250 struct task_struct *p) 1251 { 1252 /* 1253 * We can race with wait_task_zombie() from another thread. 1254 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1255 * can't confuse the checks below. 1256 */ 1257 int exit_state = READ_ONCE(p->exit_state); 1258 int ret; 1259 1260 if (unlikely(exit_state == EXIT_DEAD)) 1261 return 0; 1262 1263 ret = eligible_child(wo, ptrace, p); 1264 if (!ret) 1265 return ret; 1266 1267 if (unlikely(exit_state == EXIT_TRACE)) { 1268 /* 1269 * ptrace == 0 means we are the natural parent. In this case 1270 * we should clear notask_error, debugger will notify us. 1271 */ 1272 if (likely(!ptrace)) 1273 wo->notask_error = 0; 1274 return 0; 1275 } 1276 1277 if (likely(!ptrace) && unlikely(p->ptrace)) { 1278 /* 1279 * If it is traced by its real parent's group, just pretend 1280 * the caller is ptrace_do_wait() and reap this child if it 1281 * is zombie. 1282 * 1283 * This also hides group stop state from real parent; otherwise 1284 * a single stop can be reported twice as group and ptrace stop. 1285 * If a ptracer wants to distinguish these two events for its 1286 * own children it should create a separate process which takes 1287 * the role of real parent. 1288 */ 1289 if (!ptrace_reparented(p)) 1290 ptrace = 1; 1291 } 1292 1293 /* slay zombie? */ 1294 if (exit_state == EXIT_ZOMBIE) { 1295 /* we don't reap group leaders with subthreads */ 1296 if (!delay_group_leader(p)) { 1297 /* 1298 * A zombie ptracee is only visible to its ptracer. 1299 * Notification and reaping will be cascaded to the 1300 * real parent when the ptracer detaches. 1301 */ 1302 if (unlikely(ptrace) || likely(!p->ptrace)) 1303 return wait_task_zombie(wo, p); 1304 } 1305 1306 /* 1307 * Allow access to stopped/continued state via zombie by 1308 * falling through. Clearing of notask_error is complex. 1309 * 1310 * When !@ptrace: 1311 * 1312 * If WEXITED is set, notask_error should naturally be 1313 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1314 * so, if there are live subthreads, there are events to 1315 * wait for. If all subthreads are dead, it's still safe 1316 * to clear - this function will be called again in finite 1317 * amount time once all the subthreads are released and 1318 * will then return without clearing. 1319 * 1320 * When @ptrace: 1321 * 1322 * Stopped state is per-task and thus can't change once the 1323 * target task dies. Only continued and exited can happen. 1324 * Clear notask_error if WCONTINUED | WEXITED. 1325 */ 1326 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1327 wo->notask_error = 0; 1328 } else { 1329 /* 1330 * @p is alive and it's gonna stop, continue or exit, so 1331 * there always is something to wait for. 1332 */ 1333 wo->notask_error = 0; 1334 } 1335 1336 /* 1337 * Wait for stopped. Depending on @ptrace, different stopped state 1338 * is used and the two don't interact with each other. 1339 */ 1340 ret = wait_task_stopped(wo, ptrace, p); 1341 if (ret) 1342 return ret; 1343 1344 /* 1345 * Wait for continued. There's only one continued state and the 1346 * ptracer can consume it which can confuse the real parent. Don't 1347 * use WCONTINUED from ptracer. You don't need or want it. 1348 */ 1349 return wait_task_continued(wo, p); 1350 } 1351 1352 /* 1353 * Do the work of do_wait() for one thread in the group, @tsk. 1354 * 1355 * -ECHILD should be in ->notask_error before the first call. 1356 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1357 * Returns zero if the search for a child should continue; then 1358 * ->notask_error is 0 if there were any eligible children, 1359 * or still -ECHILD. 1360 */ 1361 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1362 { 1363 struct task_struct *p; 1364 1365 list_for_each_entry(p, &tsk->children, sibling) { 1366 int ret = wait_consider_task(wo, 0, p); 1367 1368 if (ret) 1369 return ret; 1370 } 1371 1372 return 0; 1373 } 1374 1375 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1376 { 1377 struct task_struct *p; 1378 1379 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1380 int ret = wait_consider_task(wo, 1, p); 1381 1382 if (ret) 1383 return ret; 1384 } 1385 1386 return 0; 1387 } 1388 1389 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1390 int sync, void *key) 1391 { 1392 struct wait_opts *wo = container_of(wait, struct wait_opts, 1393 child_wait); 1394 struct task_struct *p = key; 1395 1396 if (!eligible_pid(wo, p)) 1397 return 0; 1398 1399 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1400 return 0; 1401 1402 return default_wake_function(wait, mode, sync, key); 1403 } 1404 1405 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1406 { 1407 __wake_up_sync_key(&parent->signal->wait_chldexit, 1408 TASK_INTERRUPTIBLE, p); 1409 } 1410 1411 static long do_wait(struct wait_opts *wo) 1412 { 1413 struct task_struct *tsk; 1414 int retval; 1415 1416 trace_sched_process_wait(wo->wo_pid); 1417 1418 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1419 wo->child_wait.private = current; 1420 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1421 repeat: 1422 /* 1423 * If there is nothing that can match our criteria, just get out. 1424 * We will clear ->notask_error to zero if we see any child that 1425 * might later match our criteria, even if we are not able to reap 1426 * it yet. 1427 */ 1428 wo->notask_error = -ECHILD; 1429 if ((wo->wo_type < PIDTYPE_MAX) && 1430 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1431 goto notask; 1432 1433 set_current_state(TASK_INTERRUPTIBLE); 1434 read_lock(&tasklist_lock); 1435 tsk = current; 1436 do { 1437 retval = do_wait_thread(wo, tsk); 1438 if (retval) 1439 goto end; 1440 1441 retval = ptrace_do_wait(wo, tsk); 1442 if (retval) 1443 goto end; 1444 1445 if (wo->wo_flags & __WNOTHREAD) 1446 break; 1447 } while_each_thread(current, tsk); 1448 read_unlock(&tasklist_lock); 1449 1450 notask: 1451 retval = wo->notask_error; 1452 if (!retval && !(wo->wo_flags & WNOHANG)) { 1453 retval = -ERESTARTSYS; 1454 if (!signal_pending(current)) { 1455 schedule(); 1456 goto repeat; 1457 } 1458 } 1459 end: 1460 __set_current_state(TASK_RUNNING); 1461 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1462 return retval; 1463 } 1464 1465 static struct pid *pidfd_get_pid(unsigned int fd) 1466 { 1467 struct fd f; 1468 struct pid *pid; 1469 1470 f = fdget(fd); 1471 if (!f.file) 1472 return ERR_PTR(-EBADF); 1473 1474 pid = pidfd_pid(f.file); 1475 if (!IS_ERR(pid)) 1476 get_pid(pid); 1477 1478 fdput(f); 1479 return pid; 1480 } 1481 1482 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1483 int options, struct rusage *ru) 1484 { 1485 struct wait_opts wo; 1486 struct pid *pid = NULL; 1487 enum pid_type type; 1488 long ret; 1489 1490 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1491 __WNOTHREAD|__WCLONE|__WALL)) 1492 return -EINVAL; 1493 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1494 return -EINVAL; 1495 1496 switch (which) { 1497 case P_ALL: 1498 type = PIDTYPE_MAX; 1499 break; 1500 case P_PID: 1501 type = PIDTYPE_PID; 1502 if (upid <= 0) 1503 return -EINVAL; 1504 1505 pid = find_get_pid(upid); 1506 break; 1507 case P_PGID: 1508 type = PIDTYPE_PGID; 1509 if (upid < 0) 1510 return -EINVAL; 1511 1512 if (upid) 1513 pid = find_get_pid(upid); 1514 else 1515 pid = get_task_pid(current, PIDTYPE_PGID); 1516 break; 1517 case P_PIDFD: 1518 type = PIDTYPE_PID; 1519 if (upid < 0) 1520 return -EINVAL; 1521 1522 pid = pidfd_get_pid(upid); 1523 if (IS_ERR(pid)) 1524 return PTR_ERR(pid); 1525 break; 1526 default: 1527 return -EINVAL; 1528 } 1529 1530 wo.wo_type = type; 1531 wo.wo_pid = pid; 1532 wo.wo_flags = options; 1533 wo.wo_info = infop; 1534 wo.wo_rusage = ru; 1535 ret = do_wait(&wo); 1536 1537 put_pid(pid); 1538 return ret; 1539 } 1540 1541 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1542 infop, int, options, struct rusage __user *, ru) 1543 { 1544 struct rusage r; 1545 struct waitid_info info = {.status = 0}; 1546 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1547 int signo = 0; 1548 1549 if (err > 0) { 1550 signo = SIGCHLD; 1551 err = 0; 1552 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1553 return -EFAULT; 1554 } 1555 if (!infop) 1556 return err; 1557 1558 if (!user_access_begin(infop, sizeof(*infop))) 1559 return -EFAULT; 1560 1561 unsafe_put_user(signo, &infop->si_signo, Efault); 1562 unsafe_put_user(0, &infop->si_errno, Efault); 1563 unsafe_put_user(info.cause, &infop->si_code, Efault); 1564 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1565 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1566 unsafe_put_user(info.status, &infop->si_status, Efault); 1567 user_access_end(); 1568 return err; 1569 Efault: 1570 user_access_end(); 1571 return -EFAULT; 1572 } 1573 1574 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1575 struct rusage *ru) 1576 { 1577 struct wait_opts wo; 1578 struct pid *pid = NULL; 1579 enum pid_type type; 1580 long ret; 1581 1582 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1583 __WNOTHREAD|__WCLONE|__WALL)) 1584 return -EINVAL; 1585 1586 /* -INT_MIN is not defined */ 1587 if (upid == INT_MIN) 1588 return -ESRCH; 1589 1590 if (upid == -1) 1591 type = PIDTYPE_MAX; 1592 else if (upid < 0) { 1593 type = PIDTYPE_PGID; 1594 pid = find_get_pid(-upid); 1595 } else if (upid == 0) { 1596 type = PIDTYPE_PGID; 1597 pid = get_task_pid(current, PIDTYPE_PGID); 1598 } else /* upid > 0 */ { 1599 type = PIDTYPE_PID; 1600 pid = find_get_pid(upid); 1601 } 1602 1603 wo.wo_type = type; 1604 wo.wo_pid = pid; 1605 wo.wo_flags = options | WEXITED; 1606 wo.wo_info = NULL; 1607 wo.wo_stat = 0; 1608 wo.wo_rusage = ru; 1609 ret = do_wait(&wo); 1610 put_pid(pid); 1611 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1612 ret = -EFAULT; 1613 1614 return ret; 1615 } 1616 1617 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1618 int, options, struct rusage __user *, ru) 1619 { 1620 struct rusage r; 1621 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1622 1623 if (err > 0) { 1624 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1625 return -EFAULT; 1626 } 1627 return err; 1628 } 1629 1630 #ifdef __ARCH_WANT_SYS_WAITPID 1631 1632 /* 1633 * sys_waitpid() remains for compatibility. waitpid() should be 1634 * implemented by calling sys_wait4() from libc.a. 1635 */ 1636 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1637 { 1638 return kernel_wait4(pid, stat_addr, options, NULL); 1639 } 1640 1641 #endif 1642 1643 #ifdef CONFIG_COMPAT 1644 COMPAT_SYSCALL_DEFINE4(wait4, 1645 compat_pid_t, pid, 1646 compat_uint_t __user *, stat_addr, 1647 int, options, 1648 struct compat_rusage __user *, ru) 1649 { 1650 struct rusage r; 1651 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1652 if (err > 0) { 1653 if (ru && put_compat_rusage(&r, ru)) 1654 return -EFAULT; 1655 } 1656 return err; 1657 } 1658 1659 COMPAT_SYSCALL_DEFINE5(waitid, 1660 int, which, compat_pid_t, pid, 1661 struct compat_siginfo __user *, infop, int, options, 1662 struct compat_rusage __user *, uru) 1663 { 1664 struct rusage ru; 1665 struct waitid_info info = {.status = 0}; 1666 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1667 int signo = 0; 1668 if (err > 0) { 1669 signo = SIGCHLD; 1670 err = 0; 1671 if (uru) { 1672 /* kernel_waitid() overwrites everything in ru */ 1673 if (COMPAT_USE_64BIT_TIME) 1674 err = copy_to_user(uru, &ru, sizeof(ru)); 1675 else 1676 err = put_compat_rusage(&ru, uru); 1677 if (err) 1678 return -EFAULT; 1679 } 1680 } 1681 1682 if (!infop) 1683 return err; 1684 1685 if (!user_access_begin(infop, sizeof(*infop))) 1686 return -EFAULT; 1687 1688 unsafe_put_user(signo, &infop->si_signo, Efault); 1689 unsafe_put_user(0, &infop->si_errno, Efault); 1690 unsafe_put_user(info.cause, &infop->si_code, Efault); 1691 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1692 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1693 unsafe_put_user(info.status, &infop->si_status, Efault); 1694 user_access_end(); 1695 return err; 1696 Efault: 1697 user_access_end(); 1698 return -EFAULT; 1699 } 1700 #endif 1701 1702 __weak void abort(void) 1703 { 1704 BUG(); 1705 1706 /* if that doesn't kill us, halt */ 1707 panic("Oops failed to kill thread"); 1708 } 1709 EXPORT_SYMBOL(abort); 1710