1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/tracehook.h> 53 #include <linux/fs_struct.h> 54 #include <linux/init_task.h> 55 #include <linux/perf_event.h> 56 #include <trace/events/sched.h> 57 #include <linux/hw_breakpoint.h> 58 #include <linux/oom.h> 59 #include <linux/writeback.h> 60 #include <linux/shm.h> 61 #include <linux/kcov.h> 62 #include <linux/random.h> 63 #include <linux/rcuwait.h> 64 #include <linux/compat.h> 65 #include <linux/io_uring.h> 66 #include <linux/kprobes.h> 67 68 #include <linux/uaccess.h> 69 #include <asm/unistd.h> 70 #include <asm/mmu_context.h> 71 72 static void __unhash_process(struct task_struct *p, bool group_dead) 73 { 74 nr_threads--; 75 detach_pid(p, PIDTYPE_PID); 76 if (group_dead) { 77 detach_pid(p, PIDTYPE_TGID); 78 detach_pid(p, PIDTYPE_PGID); 79 detach_pid(p, PIDTYPE_SID); 80 81 list_del_rcu(&p->tasks); 82 list_del_init(&p->sibling); 83 __this_cpu_dec(process_counts); 84 } 85 list_del_rcu(&p->thread_group); 86 list_del_rcu(&p->thread_node); 87 } 88 89 /* 90 * This function expects the tasklist_lock write-locked. 91 */ 92 static void __exit_signal(struct task_struct *tsk) 93 { 94 struct signal_struct *sig = tsk->signal; 95 bool group_dead = thread_group_leader(tsk); 96 struct sighand_struct *sighand; 97 struct tty_struct *tty; 98 u64 utime, stime; 99 100 sighand = rcu_dereference_check(tsk->sighand, 101 lockdep_tasklist_lock_is_held()); 102 spin_lock(&sighand->siglock); 103 104 #ifdef CONFIG_POSIX_TIMERS 105 posix_cpu_timers_exit(tsk); 106 if (group_dead) 107 posix_cpu_timers_exit_group(tsk); 108 #endif 109 110 if (group_dead) { 111 tty = sig->tty; 112 sig->tty = NULL; 113 } else { 114 /* 115 * If there is any task waiting for the group exit 116 * then notify it: 117 */ 118 if (sig->notify_count > 0 && !--sig->notify_count) 119 wake_up_process(sig->group_exit_task); 120 121 if (tsk == sig->curr_target) 122 sig->curr_target = next_thread(tsk); 123 } 124 125 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 126 sizeof(unsigned long long)); 127 128 /* 129 * Accumulate here the counters for all threads as they die. We could 130 * skip the group leader because it is the last user of signal_struct, 131 * but we want to avoid the race with thread_group_cputime() which can 132 * see the empty ->thread_head list. 133 */ 134 task_cputime(tsk, &utime, &stime); 135 write_seqlock(&sig->stats_lock); 136 sig->utime += utime; 137 sig->stime += stime; 138 sig->gtime += task_gtime(tsk); 139 sig->min_flt += tsk->min_flt; 140 sig->maj_flt += tsk->maj_flt; 141 sig->nvcsw += tsk->nvcsw; 142 sig->nivcsw += tsk->nivcsw; 143 sig->inblock += task_io_get_inblock(tsk); 144 sig->oublock += task_io_get_oublock(tsk); 145 task_io_accounting_add(&sig->ioac, &tsk->ioac); 146 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 147 sig->nr_threads--; 148 __unhash_process(tsk, group_dead); 149 write_sequnlock(&sig->stats_lock); 150 151 /* 152 * Do this under ->siglock, we can race with another thread 153 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 154 */ 155 flush_sigqueue(&tsk->pending); 156 tsk->sighand = NULL; 157 spin_unlock(&sighand->siglock); 158 159 __cleanup_sighand(sighand); 160 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 161 if (group_dead) { 162 flush_sigqueue(&sig->shared_pending); 163 tty_kref_put(tty); 164 } 165 } 166 167 static void delayed_put_task_struct(struct rcu_head *rhp) 168 { 169 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 170 171 kprobe_flush_task(tsk); 172 perf_event_delayed_put(tsk); 173 trace_sched_process_free(tsk); 174 put_task_struct(tsk); 175 } 176 177 void put_task_struct_rcu_user(struct task_struct *task) 178 { 179 if (refcount_dec_and_test(&task->rcu_users)) 180 call_rcu(&task->rcu, delayed_put_task_struct); 181 } 182 183 void release_task(struct task_struct *p) 184 { 185 struct task_struct *leader; 186 struct pid *thread_pid; 187 int zap_leader; 188 repeat: 189 /* don't need to get the RCU readlock here - the process is dead and 190 * can't be modifying its own credentials. But shut RCU-lockdep up */ 191 rcu_read_lock(); 192 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 193 rcu_read_unlock(); 194 195 cgroup_release(p); 196 197 write_lock_irq(&tasklist_lock); 198 ptrace_release_task(p); 199 thread_pid = get_pid(p->thread_pid); 200 __exit_signal(p); 201 202 /* 203 * If we are the last non-leader member of the thread 204 * group, and the leader is zombie, then notify the 205 * group leader's parent process. (if it wants notification.) 206 */ 207 zap_leader = 0; 208 leader = p->group_leader; 209 if (leader != p && thread_group_empty(leader) 210 && leader->exit_state == EXIT_ZOMBIE) { 211 /* 212 * If we were the last child thread and the leader has 213 * exited already, and the leader's parent ignores SIGCHLD, 214 * then we are the one who should release the leader. 215 */ 216 zap_leader = do_notify_parent(leader, leader->exit_signal); 217 if (zap_leader) 218 leader->exit_state = EXIT_DEAD; 219 } 220 221 write_unlock_irq(&tasklist_lock); 222 seccomp_filter_release(p); 223 proc_flush_pid(thread_pid); 224 put_pid(thread_pid); 225 release_thread(p); 226 put_task_struct_rcu_user(p); 227 228 p = leader; 229 if (unlikely(zap_leader)) 230 goto repeat; 231 } 232 233 int rcuwait_wake_up(struct rcuwait *w) 234 { 235 int ret = 0; 236 struct task_struct *task; 237 238 rcu_read_lock(); 239 240 /* 241 * Order condition vs @task, such that everything prior to the load 242 * of @task is visible. This is the condition as to why the user called 243 * rcuwait_wake() in the first place. Pairs with set_current_state() 244 * barrier (A) in rcuwait_wait_event(). 245 * 246 * WAIT WAKE 247 * [S] tsk = current [S] cond = true 248 * MB (A) MB (B) 249 * [L] cond [L] tsk 250 */ 251 smp_mb(); /* (B) */ 252 253 task = rcu_dereference(w->task); 254 if (task) 255 ret = wake_up_process(task); 256 rcu_read_unlock(); 257 258 return ret; 259 } 260 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 261 262 /* 263 * Determine if a process group is "orphaned", according to the POSIX 264 * definition in 2.2.2.52. Orphaned process groups are not to be affected 265 * by terminal-generated stop signals. Newly orphaned process groups are 266 * to receive a SIGHUP and a SIGCONT. 267 * 268 * "I ask you, have you ever known what it is to be an orphan?" 269 */ 270 static int will_become_orphaned_pgrp(struct pid *pgrp, 271 struct task_struct *ignored_task) 272 { 273 struct task_struct *p; 274 275 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 276 if ((p == ignored_task) || 277 (p->exit_state && thread_group_empty(p)) || 278 is_global_init(p->real_parent)) 279 continue; 280 281 if (task_pgrp(p->real_parent) != pgrp && 282 task_session(p->real_parent) == task_session(p)) 283 return 0; 284 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 285 286 return 1; 287 } 288 289 int is_current_pgrp_orphaned(void) 290 { 291 int retval; 292 293 read_lock(&tasklist_lock); 294 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 295 read_unlock(&tasklist_lock); 296 297 return retval; 298 } 299 300 static bool has_stopped_jobs(struct pid *pgrp) 301 { 302 struct task_struct *p; 303 304 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 305 if (p->signal->flags & SIGNAL_STOP_STOPPED) 306 return true; 307 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 308 309 return false; 310 } 311 312 /* 313 * Check to see if any process groups have become orphaned as 314 * a result of our exiting, and if they have any stopped jobs, 315 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 316 */ 317 static void 318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 319 { 320 struct pid *pgrp = task_pgrp(tsk); 321 struct task_struct *ignored_task = tsk; 322 323 if (!parent) 324 /* exit: our father is in a different pgrp than 325 * we are and we were the only connection outside. 326 */ 327 parent = tsk->real_parent; 328 else 329 /* reparent: our child is in a different pgrp than 330 * we are, and it was the only connection outside. 331 */ 332 ignored_task = NULL; 333 334 if (task_pgrp(parent) != pgrp && 335 task_session(parent) == task_session(tsk) && 336 will_become_orphaned_pgrp(pgrp, ignored_task) && 337 has_stopped_jobs(pgrp)) { 338 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 339 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 340 } 341 } 342 343 static void coredump_task_exit(struct task_struct *tsk) 344 { 345 struct core_state *core_state; 346 347 /* 348 * Serialize with any possible pending coredump. 349 * We must hold siglock around checking core_state 350 * and setting PF_POSTCOREDUMP. The core-inducing thread 351 * will increment ->nr_threads for each thread in the 352 * group without PF_POSTCOREDUMP set. 353 */ 354 spin_lock_irq(&tsk->sighand->siglock); 355 tsk->flags |= PF_POSTCOREDUMP; 356 core_state = tsk->signal->core_state; 357 spin_unlock_irq(&tsk->sighand->siglock); 358 if (core_state) { 359 struct core_thread self; 360 361 self.task = current; 362 if (self.task->flags & PF_SIGNALED) 363 self.next = xchg(&core_state->dumper.next, &self); 364 else 365 self.task = NULL; 366 /* 367 * Implies mb(), the result of xchg() must be visible 368 * to core_state->dumper. 369 */ 370 if (atomic_dec_and_test(&core_state->nr_threads)) 371 complete(&core_state->startup); 372 373 for (;;) { 374 set_current_state(TASK_UNINTERRUPTIBLE); 375 if (!self.task) /* see coredump_finish() */ 376 break; 377 freezable_schedule(); 378 } 379 __set_current_state(TASK_RUNNING); 380 } 381 } 382 383 #ifdef CONFIG_MEMCG 384 /* 385 * A task is exiting. If it owned this mm, find a new owner for the mm. 386 */ 387 void mm_update_next_owner(struct mm_struct *mm) 388 { 389 struct task_struct *c, *g, *p = current; 390 391 retry: 392 /* 393 * If the exiting or execing task is not the owner, it's 394 * someone else's problem. 395 */ 396 if (mm->owner != p) 397 return; 398 /* 399 * The current owner is exiting/execing and there are no other 400 * candidates. Do not leave the mm pointing to a possibly 401 * freed task structure. 402 */ 403 if (atomic_read(&mm->mm_users) <= 1) { 404 WRITE_ONCE(mm->owner, NULL); 405 return; 406 } 407 408 read_lock(&tasklist_lock); 409 /* 410 * Search in the children 411 */ 412 list_for_each_entry(c, &p->children, sibling) { 413 if (c->mm == mm) 414 goto assign_new_owner; 415 } 416 417 /* 418 * Search in the siblings 419 */ 420 list_for_each_entry(c, &p->real_parent->children, sibling) { 421 if (c->mm == mm) 422 goto assign_new_owner; 423 } 424 425 /* 426 * Search through everything else, we should not get here often. 427 */ 428 for_each_process(g) { 429 if (g->flags & PF_KTHREAD) 430 continue; 431 for_each_thread(g, c) { 432 if (c->mm == mm) 433 goto assign_new_owner; 434 if (c->mm) 435 break; 436 } 437 } 438 read_unlock(&tasklist_lock); 439 /* 440 * We found no owner yet mm_users > 1: this implies that we are 441 * most likely racing with swapoff (try_to_unuse()) or /proc or 442 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 443 */ 444 WRITE_ONCE(mm->owner, NULL); 445 return; 446 447 assign_new_owner: 448 BUG_ON(c == p); 449 get_task_struct(c); 450 /* 451 * The task_lock protects c->mm from changing. 452 * We always want mm->owner->mm == mm 453 */ 454 task_lock(c); 455 /* 456 * Delay read_unlock() till we have the task_lock() 457 * to ensure that c does not slip away underneath us 458 */ 459 read_unlock(&tasklist_lock); 460 if (c->mm != mm) { 461 task_unlock(c); 462 put_task_struct(c); 463 goto retry; 464 } 465 WRITE_ONCE(mm->owner, c); 466 task_unlock(c); 467 put_task_struct(c); 468 } 469 #endif /* CONFIG_MEMCG */ 470 471 /* 472 * Turn us into a lazy TLB process if we 473 * aren't already.. 474 */ 475 static void exit_mm(void) 476 { 477 struct mm_struct *mm = current->mm; 478 479 exit_mm_release(current, mm); 480 if (!mm) 481 return; 482 sync_mm_rss(mm); 483 mmap_read_lock(mm); 484 mmgrab(mm); 485 BUG_ON(mm != current->active_mm); 486 /* more a memory barrier than a real lock */ 487 task_lock(current); 488 /* 489 * When a thread stops operating on an address space, the loop 490 * in membarrier_private_expedited() may not observe that 491 * tsk->mm, and the loop in membarrier_global_expedited() may 492 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 493 * rq->membarrier_state, so those would not issue an IPI. 494 * Membarrier requires a memory barrier after accessing 495 * user-space memory, before clearing tsk->mm or the 496 * rq->membarrier_state. 497 */ 498 smp_mb__after_spinlock(); 499 local_irq_disable(); 500 current->mm = NULL; 501 membarrier_update_current_mm(NULL); 502 enter_lazy_tlb(mm, current); 503 local_irq_enable(); 504 task_unlock(current); 505 mmap_read_unlock(mm); 506 mm_update_next_owner(mm); 507 mmput(mm); 508 if (test_thread_flag(TIF_MEMDIE)) 509 exit_oom_victim(); 510 } 511 512 static struct task_struct *find_alive_thread(struct task_struct *p) 513 { 514 struct task_struct *t; 515 516 for_each_thread(p, t) { 517 if (!(t->flags & PF_EXITING)) 518 return t; 519 } 520 return NULL; 521 } 522 523 static struct task_struct *find_child_reaper(struct task_struct *father, 524 struct list_head *dead) 525 __releases(&tasklist_lock) 526 __acquires(&tasklist_lock) 527 { 528 struct pid_namespace *pid_ns = task_active_pid_ns(father); 529 struct task_struct *reaper = pid_ns->child_reaper; 530 struct task_struct *p, *n; 531 532 if (likely(reaper != father)) 533 return reaper; 534 535 reaper = find_alive_thread(father); 536 if (reaper) { 537 pid_ns->child_reaper = reaper; 538 return reaper; 539 } 540 541 write_unlock_irq(&tasklist_lock); 542 543 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 544 list_del_init(&p->ptrace_entry); 545 release_task(p); 546 } 547 548 zap_pid_ns_processes(pid_ns); 549 write_lock_irq(&tasklist_lock); 550 551 return father; 552 } 553 554 /* 555 * When we die, we re-parent all our children, and try to: 556 * 1. give them to another thread in our thread group, if such a member exists 557 * 2. give it to the first ancestor process which prctl'd itself as a 558 * child_subreaper for its children (like a service manager) 559 * 3. give it to the init process (PID 1) in our pid namespace 560 */ 561 static struct task_struct *find_new_reaper(struct task_struct *father, 562 struct task_struct *child_reaper) 563 { 564 struct task_struct *thread, *reaper; 565 566 thread = find_alive_thread(father); 567 if (thread) 568 return thread; 569 570 if (father->signal->has_child_subreaper) { 571 unsigned int ns_level = task_pid(father)->level; 572 /* 573 * Find the first ->is_child_subreaper ancestor in our pid_ns. 574 * We can't check reaper != child_reaper to ensure we do not 575 * cross the namespaces, the exiting parent could be injected 576 * by setns() + fork(). 577 * We check pid->level, this is slightly more efficient than 578 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 579 */ 580 for (reaper = father->real_parent; 581 task_pid(reaper)->level == ns_level; 582 reaper = reaper->real_parent) { 583 if (reaper == &init_task) 584 break; 585 if (!reaper->signal->is_child_subreaper) 586 continue; 587 thread = find_alive_thread(reaper); 588 if (thread) 589 return thread; 590 } 591 } 592 593 return child_reaper; 594 } 595 596 /* 597 * Any that need to be release_task'd are put on the @dead list. 598 */ 599 static void reparent_leader(struct task_struct *father, struct task_struct *p, 600 struct list_head *dead) 601 { 602 if (unlikely(p->exit_state == EXIT_DEAD)) 603 return; 604 605 /* We don't want people slaying init. */ 606 p->exit_signal = SIGCHLD; 607 608 /* If it has exited notify the new parent about this child's death. */ 609 if (!p->ptrace && 610 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 611 if (do_notify_parent(p, p->exit_signal)) { 612 p->exit_state = EXIT_DEAD; 613 list_add(&p->ptrace_entry, dead); 614 } 615 } 616 617 kill_orphaned_pgrp(p, father); 618 } 619 620 /* 621 * This does two things: 622 * 623 * A. Make init inherit all the child processes 624 * B. Check to see if any process groups have become orphaned 625 * as a result of our exiting, and if they have any stopped 626 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 627 */ 628 static void forget_original_parent(struct task_struct *father, 629 struct list_head *dead) 630 { 631 struct task_struct *p, *t, *reaper; 632 633 if (unlikely(!list_empty(&father->ptraced))) 634 exit_ptrace(father, dead); 635 636 /* Can drop and reacquire tasklist_lock */ 637 reaper = find_child_reaper(father, dead); 638 if (list_empty(&father->children)) 639 return; 640 641 reaper = find_new_reaper(father, reaper); 642 list_for_each_entry(p, &father->children, sibling) { 643 for_each_thread(p, t) { 644 RCU_INIT_POINTER(t->real_parent, reaper); 645 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 646 if (likely(!t->ptrace)) 647 t->parent = t->real_parent; 648 if (t->pdeath_signal) 649 group_send_sig_info(t->pdeath_signal, 650 SEND_SIG_NOINFO, t, 651 PIDTYPE_TGID); 652 } 653 /* 654 * If this is a threaded reparent there is no need to 655 * notify anyone anything has happened. 656 */ 657 if (!same_thread_group(reaper, father)) 658 reparent_leader(father, p, dead); 659 } 660 list_splice_tail_init(&father->children, &reaper->children); 661 } 662 663 /* 664 * Send signals to all our closest relatives so that they know 665 * to properly mourn us.. 666 */ 667 static void exit_notify(struct task_struct *tsk, int group_dead) 668 { 669 bool autoreap; 670 struct task_struct *p, *n; 671 LIST_HEAD(dead); 672 673 write_lock_irq(&tasklist_lock); 674 forget_original_parent(tsk, &dead); 675 676 if (group_dead) 677 kill_orphaned_pgrp(tsk->group_leader, NULL); 678 679 tsk->exit_state = EXIT_ZOMBIE; 680 if (unlikely(tsk->ptrace)) { 681 int sig = thread_group_leader(tsk) && 682 thread_group_empty(tsk) && 683 !ptrace_reparented(tsk) ? 684 tsk->exit_signal : SIGCHLD; 685 autoreap = do_notify_parent(tsk, sig); 686 } else if (thread_group_leader(tsk)) { 687 autoreap = thread_group_empty(tsk) && 688 do_notify_parent(tsk, tsk->exit_signal); 689 } else { 690 autoreap = true; 691 } 692 693 if (autoreap) { 694 tsk->exit_state = EXIT_DEAD; 695 list_add(&tsk->ptrace_entry, &dead); 696 } 697 698 /* mt-exec, de_thread() is waiting for group leader */ 699 if (unlikely(tsk->signal->notify_count < 0)) 700 wake_up_process(tsk->signal->group_exit_task); 701 write_unlock_irq(&tasklist_lock); 702 703 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 704 list_del_init(&p->ptrace_entry); 705 release_task(p); 706 } 707 } 708 709 #ifdef CONFIG_DEBUG_STACK_USAGE 710 static void check_stack_usage(void) 711 { 712 static DEFINE_SPINLOCK(low_water_lock); 713 static int lowest_to_date = THREAD_SIZE; 714 unsigned long free; 715 716 free = stack_not_used(current); 717 718 if (free >= lowest_to_date) 719 return; 720 721 spin_lock(&low_water_lock); 722 if (free < lowest_to_date) { 723 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 724 current->comm, task_pid_nr(current), free); 725 lowest_to_date = free; 726 } 727 spin_unlock(&low_water_lock); 728 } 729 #else 730 static inline void check_stack_usage(void) {} 731 #endif 732 733 void __noreturn do_exit(long code) 734 { 735 struct task_struct *tsk = current; 736 int group_dead; 737 738 /* 739 * We can get here from a kernel oops, sometimes with preemption off. 740 * Start by checking for critical errors. 741 * Then fix up important state like USER_DS and preemption. 742 * Then do everything else. 743 */ 744 745 WARN_ON(blk_needs_flush_plug(tsk)); 746 747 if (unlikely(in_interrupt())) 748 panic("Aiee, killing interrupt handler!"); 749 if (unlikely(!tsk->pid)) 750 panic("Attempted to kill the idle task!"); 751 752 /* 753 * If do_exit is called because this processes oopsed, it's possible 754 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 755 * continuing. Amongst other possible reasons, this is to prevent 756 * mm_release()->clear_child_tid() from writing to a user-controlled 757 * kernel address. 758 */ 759 force_uaccess_begin(); 760 761 if (unlikely(in_atomic())) { 762 pr_info("note: %s[%d] exited with preempt_count %d\n", 763 current->comm, task_pid_nr(current), 764 preempt_count()); 765 preempt_count_set(PREEMPT_ENABLED); 766 } 767 768 profile_task_exit(tsk); 769 kcov_task_exit(tsk); 770 771 coredump_task_exit(tsk); 772 ptrace_event(PTRACE_EVENT_EXIT, code); 773 774 validate_creds_for_do_exit(tsk); 775 776 /* 777 * We're taking recursive faults here in do_exit. Safest is to just 778 * leave this task alone and wait for reboot. 779 */ 780 if (unlikely(tsk->flags & PF_EXITING)) { 781 pr_alert("Fixing recursive fault but reboot is needed!\n"); 782 futex_exit_recursive(tsk); 783 set_current_state(TASK_UNINTERRUPTIBLE); 784 schedule(); 785 } 786 787 io_uring_files_cancel(); 788 exit_signals(tsk); /* sets PF_EXITING */ 789 790 /* sync mm's RSS info before statistics gathering */ 791 if (tsk->mm) 792 sync_mm_rss(tsk->mm); 793 acct_update_integrals(tsk); 794 group_dead = atomic_dec_and_test(&tsk->signal->live); 795 if (group_dead) { 796 /* 797 * If the last thread of global init has exited, panic 798 * immediately to get a useable coredump. 799 */ 800 if (unlikely(is_global_init(tsk))) 801 panic("Attempted to kill init! exitcode=0x%08x\n", 802 tsk->signal->group_exit_code ?: (int)code); 803 804 #ifdef CONFIG_POSIX_TIMERS 805 hrtimer_cancel(&tsk->signal->real_timer); 806 exit_itimers(tsk->signal); 807 #endif 808 if (tsk->mm) 809 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 810 } 811 acct_collect(code, group_dead); 812 if (group_dead) 813 tty_audit_exit(); 814 audit_free(tsk); 815 816 tsk->exit_code = code; 817 taskstats_exit(tsk, group_dead); 818 819 exit_mm(); 820 821 if (group_dead) 822 acct_process(); 823 trace_sched_process_exit(tsk); 824 825 exit_sem(tsk); 826 exit_shm(tsk); 827 exit_files(tsk); 828 exit_fs(tsk); 829 if (group_dead) 830 disassociate_ctty(1); 831 exit_task_namespaces(tsk); 832 exit_task_work(tsk); 833 exit_thread(tsk); 834 835 /* 836 * Flush inherited counters to the parent - before the parent 837 * gets woken up by child-exit notifications. 838 * 839 * because of cgroup mode, must be called before cgroup_exit() 840 */ 841 perf_event_exit_task(tsk); 842 843 sched_autogroup_exit_task(tsk); 844 cgroup_exit(tsk); 845 846 /* 847 * FIXME: do that only when needed, using sched_exit tracepoint 848 */ 849 flush_ptrace_hw_breakpoint(tsk); 850 851 exit_tasks_rcu_start(); 852 exit_notify(tsk, group_dead); 853 proc_exit_connector(tsk); 854 mpol_put_task_policy(tsk); 855 #ifdef CONFIG_FUTEX 856 if (unlikely(current->pi_state_cache)) 857 kfree(current->pi_state_cache); 858 #endif 859 /* 860 * Make sure we are holding no locks: 861 */ 862 debug_check_no_locks_held(); 863 864 if (tsk->io_context) 865 exit_io_context(tsk); 866 867 if (tsk->splice_pipe) 868 free_pipe_info(tsk->splice_pipe); 869 870 if (tsk->task_frag.page) 871 put_page(tsk->task_frag.page); 872 873 validate_creds_for_do_exit(tsk); 874 875 check_stack_usage(); 876 preempt_disable(); 877 if (tsk->nr_dirtied) 878 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 879 exit_rcu(); 880 exit_tasks_rcu_finish(); 881 882 lockdep_free_task(tsk); 883 do_task_dead(); 884 } 885 EXPORT_SYMBOL_GPL(do_exit); 886 887 void complete_and_exit(struct completion *comp, long code) 888 { 889 if (comp) 890 complete(comp); 891 892 do_exit(code); 893 } 894 EXPORT_SYMBOL(complete_and_exit); 895 896 SYSCALL_DEFINE1(exit, int, error_code) 897 { 898 do_exit((error_code&0xff)<<8); 899 } 900 901 /* 902 * Take down every thread in the group. This is called by fatal signals 903 * as well as by sys_exit_group (below). 904 */ 905 void 906 do_group_exit(int exit_code) 907 { 908 struct signal_struct *sig = current->signal; 909 910 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 911 912 if (signal_group_exit(sig)) 913 exit_code = sig->group_exit_code; 914 else if (!thread_group_empty(current)) { 915 struct sighand_struct *const sighand = current->sighand; 916 917 spin_lock_irq(&sighand->siglock); 918 if (signal_group_exit(sig)) 919 /* Another thread got here before we took the lock. */ 920 exit_code = sig->group_exit_code; 921 else { 922 sig->group_exit_code = exit_code; 923 sig->flags = SIGNAL_GROUP_EXIT; 924 zap_other_threads(current); 925 } 926 spin_unlock_irq(&sighand->siglock); 927 } 928 929 do_exit(exit_code); 930 /* NOTREACHED */ 931 } 932 933 /* 934 * this kills every thread in the thread group. Note that any externally 935 * wait4()-ing process will get the correct exit code - even if this 936 * thread is not the thread group leader. 937 */ 938 SYSCALL_DEFINE1(exit_group, int, error_code) 939 { 940 do_group_exit((error_code & 0xff) << 8); 941 /* NOTREACHED */ 942 return 0; 943 } 944 945 struct waitid_info { 946 pid_t pid; 947 uid_t uid; 948 int status; 949 int cause; 950 }; 951 952 struct wait_opts { 953 enum pid_type wo_type; 954 int wo_flags; 955 struct pid *wo_pid; 956 957 struct waitid_info *wo_info; 958 int wo_stat; 959 struct rusage *wo_rusage; 960 961 wait_queue_entry_t child_wait; 962 int notask_error; 963 }; 964 965 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 966 { 967 return wo->wo_type == PIDTYPE_MAX || 968 task_pid_type(p, wo->wo_type) == wo->wo_pid; 969 } 970 971 static int 972 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 973 { 974 if (!eligible_pid(wo, p)) 975 return 0; 976 977 /* 978 * Wait for all children (clone and not) if __WALL is set or 979 * if it is traced by us. 980 */ 981 if (ptrace || (wo->wo_flags & __WALL)) 982 return 1; 983 984 /* 985 * Otherwise, wait for clone children *only* if __WCLONE is set; 986 * otherwise, wait for non-clone children *only*. 987 * 988 * Note: a "clone" child here is one that reports to its parent 989 * using a signal other than SIGCHLD, or a non-leader thread which 990 * we can only see if it is traced by us. 991 */ 992 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 993 return 0; 994 995 return 1; 996 } 997 998 /* 999 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1000 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1001 * the lock and this task is uninteresting. If we return nonzero, we have 1002 * released the lock and the system call should return. 1003 */ 1004 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1005 { 1006 int state, status; 1007 pid_t pid = task_pid_vnr(p); 1008 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1009 struct waitid_info *infop; 1010 1011 if (!likely(wo->wo_flags & WEXITED)) 1012 return 0; 1013 1014 if (unlikely(wo->wo_flags & WNOWAIT)) { 1015 status = p->exit_code; 1016 get_task_struct(p); 1017 read_unlock(&tasklist_lock); 1018 sched_annotate_sleep(); 1019 if (wo->wo_rusage) 1020 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1021 put_task_struct(p); 1022 goto out_info; 1023 } 1024 /* 1025 * Move the task's state to DEAD/TRACE, only one thread can do this. 1026 */ 1027 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1028 EXIT_TRACE : EXIT_DEAD; 1029 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1030 return 0; 1031 /* 1032 * We own this thread, nobody else can reap it. 1033 */ 1034 read_unlock(&tasklist_lock); 1035 sched_annotate_sleep(); 1036 1037 /* 1038 * Check thread_group_leader() to exclude the traced sub-threads. 1039 */ 1040 if (state == EXIT_DEAD && thread_group_leader(p)) { 1041 struct signal_struct *sig = p->signal; 1042 struct signal_struct *psig = current->signal; 1043 unsigned long maxrss; 1044 u64 tgutime, tgstime; 1045 1046 /* 1047 * The resource counters for the group leader are in its 1048 * own task_struct. Those for dead threads in the group 1049 * are in its signal_struct, as are those for the child 1050 * processes it has previously reaped. All these 1051 * accumulate in the parent's signal_struct c* fields. 1052 * 1053 * We don't bother to take a lock here to protect these 1054 * p->signal fields because the whole thread group is dead 1055 * and nobody can change them. 1056 * 1057 * psig->stats_lock also protects us from our sub-theads 1058 * which can reap other children at the same time. Until 1059 * we change k_getrusage()-like users to rely on this lock 1060 * we have to take ->siglock as well. 1061 * 1062 * We use thread_group_cputime_adjusted() to get times for 1063 * the thread group, which consolidates times for all threads 1064 * in the group including the group leader. 1065 */ 1066 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1067 spin_lock_irq(¤t->sighand->siglock); 1068 write_seqlock(&psig->stats_lock); 1069 psig->cutime += tgutime + sig->cutime; 1070 psig->cstime += tgstime + sig->cstime; 1071 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1072 psig->cmin_flt += 1073 p->min_flt + sig->min_flt + sig->cmin_flt; 1074 psig->cmaj_flt += 1075 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1076 psig->cnvcsw += 1077 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1078 psig->cnivcsw += 1079 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1080 psig->cinblock += 1081 task_io_get_inblock(p) + 1082 sig->inblock + sig->cinblock; 1083 psig->coublock += 1084 task_io_get_oublock(p) + 1085 sig->oublock + sig->coublock; 1086 maxrss = max(sig->maxrss, sig->cmaxrss); 1087 if (psig->cmaxrss < maxrss) 1088 psig->cmaxrss = maxrss; 1089 task_io_accounting_add(&psig->ioac, &p->ioac); 1090 task_io_accounting_add(&psig->ioac, &sig->ioac); 1091 write_sequnlock(&psig->stats_lock); 1092 spin_unlock_irq(¤t->sighand->siglock); 1093 } 1094 1095 if (wo->wo_rusage) 1096 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1097 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1098 ? p->signal->group_exit_code : p->exit_code; 1099 wo->wo_stat = status; 1100 1101 if (state == EXIT_TRACE) { 1102 write_lock_irq(&tasklist_lock); 1103 /* We dropped tasklist, ptracer could die and untrace */ 1104 ptrace_unlink(p); 1105 1106 /* If parent wants a zombie, don't release it now */ 1107 state = EXIT_ZOMBIE; 1108 if (do_notify_parent(p, p->exit_signal)) 1109 state = EXIT_DEAD; 1110 p->exit_state = state; 1111 write_unlock_irq(&tasklist_lock); 1112 } 1113 if (state == EXIT_DEAD) 1114 release_task(p); 1115 1116 out_info: 1117 infop = wo->wo_info; 1118 if (infop) { 1119 if ((status & 0x7f) == 0) { 1120 infop->cause = CLD_EXITED; 1121 infop->status = status >> 8; 1122 } else { 1123 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1124 infop->status = status & 0x7f; 1125 } 1126 infop->pid = pid; 1127 infop->uid = uid; 1128 } 1129 1130 return pid; 1131 } 1132 1133 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1134 { 1135 if (ptrace) { 1136 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1137 return &p->exit_code; 1138 } else { 1139 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1140 return &p->signal->group_exit_code; 1141 } 1142 return NULL; 1143 } 1144 1145 /** 1146 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1147 * @wo: wait options 1148 * @ptrace: is the wait for ptrace 1149 * @p: task to wait for 1150 * 1151 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1152 * 1153 * CONTEXT: 1154 * read_lock(&tasklist_lock), which is released if return value is 1155 * non-zero. Also, grabs and releases @p->sighand->siglock. 1156 * 1157 * RETURNS: 1158 * 0 if wait condition didn't exist and search for other wait conditions 1159 * should continue. Non-zero return, -errno on failure and @p's pid on 1160 * success, implies that tasklist_lock is released and wait condition 1161 * search should terminate. 1162 */ 1163 static int wait_task_stopped(struct wait_opts *wo, 1164 int ptrace, struct task_struct *p) 1165 { 1166 struct waitid_info *infop; 1167 int exit_code, *p_code, why; 1168 uid_t uid = 0; /* unneeded, required by compiler */ 1169 pid_t pid; 1170 1171 /* 1172 * Traditionally we see ptrace'd stopped tasks regardless of options. 1173 */ 1174 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1175 return 0; 1176 1177 if (!task_stopped_code(p, ptrace)) 1178 return 0; 1179 1180 exit_code = 0; 1181 spin_lock_irq(&p->sighand->siglock); 1182 1183 p_code = task_stopped_code(p, ptrace); 1184 if (unlikely(!p_code)) 1185 goto unlock_sig; 1186 1187 exit_code = *p_code; 1188 if (!exit_code) 1189 goto unlock_sig; 1190 1191 if (!unlikely(wo->wo_flags & WNOWAIT)) 1192 *p_code = 0; 1193 1194 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1195 unlock_sig: 1196 spin_unlock_irq(&p->sighand->siglock); 1197 if (!exit_code) 1198 return 0; 1199 1200 /* 1201 * Now we are pretty sure this task is interesting. 1202 * Make sure it doesn't get reaped out from under us while we 1203 * give up the lock and then examine it below. We don't want to 1204 * keep holding onto the tasklist_lock while we call getrusage and 1205 * possibly take page faults for user memory. 1206 */ 1207 get_task_struct(p); 1208 pid = task_pid_vnr(p); 1209 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1210 read_unlock(&tasklist_lock); 1211 sched_annotate_sleep(); 1212 if (wo->wo_rusage) 1213 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1214 put_task_struct(p); 1215 1216 if (likely(!(wo->wo_flags & WNOWAIT))) 1217 wo->wo_stat = (exit_code << 8) | 0x7f; 1218 1219 infop = wo->wo_info; 1220 if (infop) { 1221 infop->cause = why; 1222 infop->status = exit_code; 1223 infop->pid = pid; 1224 infop->uid = uid; 1225 } 1226 return pid; 1227 } 1228 1229 /* 1230 * Handle do_wait work for one task in a live, non-stopped state. 1231 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1232 * the lock and this task is uninteresting. If we return nonzero, we have 1233 * released the lock and the system call should return. 1234 */ 1235 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1236 { 1237 struct waitid_info *infop; 1238 pid_t pid; 1239 uid_t uid; 1240 1241 if (!unlikely(wo->wo_flags & WCONTINUED)) 1242 return 0; 1243 1244 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1245 return 0; 1246 1247 spin_lock_irq(&p->sighand->siglock); 1248 /* Re-check with the lock held. */ 1249 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1250 spin_unlock_irq(&p->sighand->siglock); 1251 return 0; 1252 } 1253 if (!unlikely(wo->wo_flags & WNOWAIT)) 1254 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1255 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1256 spin_unlock_irq(&p->sighand->siglock); 1257 1258 pid = task_pid_vnr(p); 1259 get_task_struct(p); 1260 read_unlock(&tasklist_lock); 1261 sched_annotate_sleep(); 1262 if (wo->wo_rusage) 1263 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1264 put_task_struct(p); 1265 1266 infop = wo->wo_info; 1267 if (!infop) { 1268 wo->wo_stat = 0xffff; 1269 } else { 1270 infop->cause = CLD_CONTINUED; 1271 infop->pid = pid; 1272 infop->uid = uid; 1273 infop->status = SIGCONT; 1274 } 1275 return pid; 1276 } 1277 1278 /* 1279 * Consider @p for a wait by @parent. 1280 * 1281 * -ECHILD should be in ->notask_error before the first call. 1282 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1283 * Returns zero if the search for a child should continue; 1284 * then ->notask_error is 0 if @p is an eligible child, 1285 * or still -ECHILD. 1286 */ 1287 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1288 struct task_struct *p) 1289 { 1290 /* 1291 * We can race with wait_task_zombie() from another thread. 1292 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1293 * can't confuse the checks below. 1294 */ 1295 int exit_state = READ_ONCE(p->exit_state); 1296 int ret; 1297 1298 if (unlikely(exit_state == EXIT_DEAD)) 1299 return 0; 1300 1301 ret = eligible_child(wo, ptrace, p); 1302 if (!ret) 1303 return ret; 1304 1305 if (unlikely(exit_state == EXIT_TRACE)) { 1306 /* 1307 * ptrace == 0 means we are the natural parent. In this case 1308 * we should clear notask_error, debugger will notify us. 1309 */ 1310 if (likely(!ptrace)) 1311 wo->notask_error = 0; 1312 return 0; 1313 } 1314 1315 if (likely(!ptrace) && unlikely(p->ptrace)) { 1316 /* 1317 * If it is traced by its real parent's group, just pretend 1318 * the caller is ptrace_do_wait() and reap this child if it 1319 * is zombie. 1320 * 1321 * This also hides group stop state from real parent; otherwise 1322 * a single stop can be reported twice as group and ptrace stop. 1323 * If a ptracer wants to distinguish these two events for its 1324 * own children it should create a separate process which takes 1325 * the role of real parent. 1326 */ 1327 if (!ptrace_reparented(p)) 1328 ptrace = 1; 1329 } 1330 1331 /* slay zombie? */ 1332 if (exit_state == EXIT_ZOMBIE) { 1333 /* we don't reap group leaders with subthreads */ 1334 if (!delay_group_leader(p)) { 1335 /* 1336 * A zombie ptracee is only visible to its ptracer. 1337 * Notification and reaping will be cascaded to the 1338 * real parent when the ptracer detaches. 1339 */ 1340 if (unlikely(ptrace) || likely(!p->ptrace)) 1341 return wait_task_zombie(wo, p); 1342 } 1343 1344 /* 1345 * Allow access to stopped/continued state via zombie by 1346 * falling through. Clearing of notask_error is complex. 1347 * 1348 * When !@ptrace: 1349 * 1350 * If WEXITED is set, notask_error should naturally be 1351 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1352 * so, if there are live subthreads, there are events to 1353 * wait for. If all subthreads are dead, it's still safe 1354 * to clear - this function will be called again in finite 1355 * amount time once all the subthreads are released and 1356 * will then return without clearing. 1357 * 1358 * When @ptrace: 1359 * 1360 * Stopped state is per-task and thus can't change once the 1361 * target task dies. Only continued and exited can happen. 1362 * Clear notask_error if WCONTINUED | WEXITED. 1363 */ 1364 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1365 wo->notask_error = 0; 1366 } else { 1367 /* 1368 * @p is alive and it's gonna stop, continue or exit, so 1369 * there always is something to wait for. 1370 */ 1371 wo->notask_error = 0; 1372 } 1373 1374 /* 1375 * Wait for stopped. Depending on @ptrace, different stopped state 1376 * is used and the two don't interact with each other. 1377 */ 1378 ret = wait_task_stopped(wo, ptrace, p); 1379 if (ret) 1380 return ret; 1381 1382 /* 1383 * Wait for continued. There's only one continued state and the 1384 * ptracer can consume it which can confuse the real parent. Don't 1385 * use WCONTINUED from ptracer. You don't need or want it. 1386 */ 1387 return wait_task_continued(wo, p); 1388 } 1389 1390 /* 1391 * Do the work of do_wait() for one thread in the group, @tsk. 1392 * 1393 * -ECHILD should be in ->notask_error before the first call. 1394 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1395 * Returns zero if the search for a child should continue; then 1396 * ->notask_error is 0 if there were any eligible children, 1397 * or still -ECHILD. 1398 */ 1399 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1400 { 1401 struct task_struct *p; 1402 1403 list_for_each_entry(p, &tsk->children, sibling) { 1404 int ret = wait_consider_task(wo, 0, p); 1405 1406 if (ret) 1407 return ret; 1408 } 1409 1410 return 0; 1411 } 1412 1413 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1414 { 1415 struct task_struct *p; 1416 1417 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1418 int ret = wait_consider_task(wo, 1, p); 1419 1420 if (ret) 1421 return ret; 1422 } 1423 1424 return 0; 1425 } 1426 1427 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1428 int sync, void *key) 1429 { 1430 struct wait_opts *wo = container_of(wait, struct wait_opts, 1431 child_wait); 1432 struct task_struct *p = key; 1433 1434 if (!eligible_pid(wo, p)) 1435 return 0; 1436 1437 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1438 return 0; 1439 1440 return default_wake_function(wait, mode, sync, key); 1441 } 1442 1443 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1444 { 1445 __wake_up_sync_key(&parent->signal->wait_chldexit, 1446 TASK_INTERRUPTIBLE, p); 1447 } 1448 1449 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1450 struct task_struct *target) 1451 { 1452 struct task_struct *parent = 1453 !ptrace ? target->real_parent : target->parent; 1454 1455 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1456 same_thread_group(current, parent)); 1457 } 1458 1459 /* 1460 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1461 * and tracee lists to find the target task. 1462 */ 1463 static int do_wait_pid(struct wait_opts *wo) 1464 { 1465 bool ptrace; 1466 struct task_struct *target; 1467 int retval; 1468 1469 ptrace = false; 1470 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1471 if (target && is_effectively_child(wo, ptrace, target)) { 1472 retval = wait_consider_task(wo, ptrace, target); 1473 if (retval) 1474 return retval; 1475 } 1476 1477 ptrace = true; 1478 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1479 if (target && target->ptrace && 1480 is_effectively_child(wo, ptrace, target)) { 1481 retval = wait_consider_task(wo, ptrace, target); 1482 if (retval) 1483 return retval; 1484 } 1485 1486 return 0; 1487 } 1488 1489 static long do_wait(struct wait_opts *wo) 1490 { 1491 int retval; 1492 1493 trace_sched_process_wait(wo->wo_pid); 1494 1495 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1496 wo->child_wait.private = current; 1497 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1498 repeat: 1499 /* 1500 * If there is nothing that can match our criteria, just get out. 1501 * We will clear ->notask_error to zero if we see any child that 1502 * might later match our criteria, even if we are not able to reap 1503 * it yet. 1504 */ 1505 wo->notask_error = -ECHILD; 1506 if ((wo->wo_type < PIDTYPE_MAX) && 1507 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1508 goto notask; 1509 1510 set_current_state(TASK_INTERRUPTIBLE); 1511 read_lock(&tasklist_lock); 1512 1513 if (wo->wo_type == PIDTYPE_PID) { 1514 retval = do_wait_pid(wo); 1515 if (retval) 1516 goto end; 1517 } else { 1518 struct task_struct *tsk = current; 1519 1520 do { 1521 retval = do_wait_thread(wo, tsk); 1522 if (retval) 1523 goto end; 1524 1525 retval = ptrace_do_wait(wo, tsk); 1526 if (retval) 1527 goto end; 1528 1529 if (wo->wo_flags & __WNOTHREAD) 1530 break; 1531 } while_each_thread(current, tsk); 1532 } 1533 read_unlock(&tasklist_lock); 1534 1535 notask: 1536 retval = wo->notask_error; 1537 if (!retval && !(wo->wo_flags & WNOHANG)) { 1538 retval = -ERESTARTSYS; 1539 if (!signal_pending(current)) { 1540 schedule(); 1541 goto repeat; 1542 } 1543 } 1544 end: 1545 __set_current_state(TASK_RUNNING); 1546 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1547 return retval; 1548 } 1549 1550 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1551 int options, struct rusage *ru) 1552 { 1553 struct wait_opts wo; 1554 struct pid *pid = NULL; 1555 enum pid_type type; 1556 long ret; 1557 unsigned int f_flags = 0; 1558 1559 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1560 __WNOTHREAD|__WCLONE|__WALL)) 1561 return -EINVAL; 1562 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1563 return -EINVAL; 1564 1565 switch (which) { 1566 case P_ALL: 1567 type = PIDTYPE_MAX; 1568 break; 1569 case P_PID: 1570 type = PIDTYPE_PID; 1571 if (upid <= 0) 1572 return -EINVAL; 1573 1574 pid = find_get_pid(upid); 1575 break; 1576 case P_PGID: 1577 type = PIDTYPE_PGID; 1578 if (upid < 0) 1579 return -EINVAL; 1580 1581 if (upid) 1582 pid = find_get_pid(upid); 1583 else 1584 pid = get_task_pid(current, PIDTYPE_PGID); 1585 break; 1586 case P_PIDFD: 1587 type = PIDTYPE_PID; 1588 if (upid < 0) 1589 return -EINVAL; 1590 1591 pid = pidfd_get_pid(upid, &f_flags); 1592 if (IS_ERR(pid)) 1593 return PTR_ERR(pid); 1594 1595 break; 1596 default: 1597 return -EINVAL; 1598 } 1599 1600 wo.wo_type = type; 1601 wo.wo_pid = pid; 1602 wo.wo_flags = options; 1603 wo.wo_info = infop; 1604 wo.wo_rusage = ru; 1605 if (f_flags & O_NONBLOCK) 1606 wo.wo_flags |= WNOHANG; 1607 1608 ret = do_wait(&wo); 1609 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK)) 1610 ret = -EAGAIN; 1611 1612 put_pid(pid); 1613 return ret; 1614 } 1615 1616 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1617 infop, int, options, struct rusage __user *, ru) 1618 { 1619 struct rusage r; 1620 struct waitid_info info = {.status = 0}; 1621 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1622 int signo = 0; 1623 1624 if (err > 0) { 1625 signo = SIGCHLD; 1626 err = 0; 1627 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1628 return -EFAULT; 1629 } 1630 if (!infop) 1631 return err; 1632 1633 if (!user_write_access_begin(infop, sizeof(*infop))) 1634 return -EFAULT; 1635 1636 unsafe_put_user(signo, &infop->si_signo, Efault); 1637 unsafe_put_user(0, &infop->si_errno, Efault); 1638 unsafe_put_user(info.cause, &infop->si_code, Efault); 1639 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1640 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1641 unsafe_put_user(info.status, &infop->si_status, Efault); 1642 user_write_access_end(); 1643 return err; 1644 Efault: 1645 user_write_access_end(); 1646 return -EFAULT; 1647 } 1648 1649 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1650 struct rusage *ru) 1651 { 1652 struct wait_opts wo; 1653 struct pid *pid = NULL; 1654 enum pid_type type; 1655 long ret; 1656 1657 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1658 __WNOTHREAD|__WCLONE|__WALL)) 1659 return -EINVAL; 1660 1661 /* -INT_MIN is not defined */ 1662 if (upid == INT_MIN) 1663 return -ESRCH; 1664 1665 if (upid == -1) 1666 type = PIDTYPE_MAX; 1667 else if (upid < 0) { 1668 type = PIDTYPE_PGID; 1669 pid = find_get_pid(-upid); 1670 } else if (upid == 0) { 1671 type = PIDTYPE_PGID; 1672 pid = get_task_pid(current, PIDTYPE_PGID); 1673 } else /* upid > 0 */ { 1674 type = PIDTYPE_PID; 1675 pid = find_get_pid(upid); 1676 } 1677 1678 wo.wo_type = type; 1679 wo.wo_pid = pid; 1680 wo.wo_flags = options | WEXITED; 1681 wo.wo_info = NULL; 1682 wo.wo_stat = 0; 1683 wo.wo_rusage = ru; 1684 ret = do_wait(&wo); 1685 put_pid(pid); 1686 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1687 ret = -EFAULT; 1688 1689 return ret; 1690 } 1691 1692 int kernel_wait(pid_t pid, int *stat) 1693 { 1694 struct wait_opts wo = { 1695 .wo_type = PIDTYPE_PID, 1696 .wo_pid = find_get_pid(pid), 1697 .wo_flags = WEXITED, 1698 }; 1699 int ret; 1700 1701 ret = do_wait(&wo); 1702 if (ret > 0 && wo.wo_stat) 1703 *stat = wo.wo_stat; 1704 put_pid(wo.wo_pid); 1705 return ret; 1706 } 1707 1708 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1709 int, options, struct rusage __user *, ru) 1710 { 1711 struct rusage r; 1712 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1713 1714 if (err > 0) { 1715 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1716 return -EFAULT; 1717 } 1718 return err; 1719 } 1720 1721 #ifdef __ARCH_WANT_SYS_WAITPID 1722 1723 /* 1724 * sys_waitpid() remains for compatibility. waitpid() should be 1725 * implemented by calling sys_wait4() from libc.a. 1726 */ 1727 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1728 { 1729 return kernel_wait4(pid, stat_addr, options, NULL); 1730 } 1731 1732 #endif 1733 1734 #ifdef CONFIG_COMPAT 1735 COMPAT_SYSCALL_DEFINE4(wait4, 1736 compat_pid_t, pid, 1737 compat_uint_t __user *, stat_addr, 1738 int, options, 1739 struct compat_rusage __user *, ru) 1740 { 1741 struct rusage r; 1742 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1743 if (err > 0) { 1744 if (ru && put_compat_rusage(&r, ru)) 1745 return -EFAULT; 1746 } 1747 return err; 1748 } 1749 1750 COMPAT_SYSCALL_DEFINE5(waitid, 1751 int, which, compat_pid_t, pid, 1752 struct compat_siginfo __user *, infop, int, options, 1753 struct compat_rusage __user *, uru) 1754 { 1755 struct rusage ru; 1756 struct waitid_info info = {.status = 0}; 1757 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1758 int signo = 0; 1759 if (err > 0) { 1760 signo = SIGCHLD; 1761 err = 0; 1762 if (uru) { 1763 /* kernel_waitid() overwrites everything in ru */ 1764 if (COMPAT_USE_64BIT_TIME) 1765 err = copy_to_user(uru, &ru, sizeof(ru)); 1766 else 1767 err = put_compat_rusage(&ru, uru); 1768 if (err) 1769 return -EFAULT; 1770 } 1771 } 1772 1773 if (!infop) 1774 return err; 1775 1776 if (!user_write_access_begin(infop, sizeof(*infop))) 1777 return -EFAULT; 1778 1779 unsafe_put_user(signo, &infop->si_signo, Efault); 1780 unsafe_put_user(0, &infop->si_errno, Efault); 1781 unsafe_put_user(info.cause, &infop->si_code, Efault); 1782 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1783 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1784 unsafe_put_user(info.status, &infop->si_status, Efault); 1785 user_write_access_end(); 1786 return err; 1787 Efault: 1788 user_write_access_end(); 1789 return -EFAULT; 1790 } 1791 #endif 1792 1793 /** 1794 * thread_group_exited - check that a thread group has exited 1795 * @pid: tgid of thread group to be checked. 1796 * 1797 * Test if the thread group represented by tgid has exited (all 1798 * threads are zombies, dead or completely gone). 1799 * 1800 * Return: true if the thread group has exited. false otherwise. 1801 */ 1802 bool thread_group_exited(struct pid *pid) 1803 { 1804 struct task_struct *task; 1805 bool exited; 1806 1807 rcu_read_lock(); 1808 task = pid_task(pid, PIDTYPE_PID); 1809 exited = !task || 1810 (READ_ONCE(task->exit_state) && thread_group_empty(task)); 1811 rcu_read_unlock(); 1812 1813 return exited; 1814 } 1815 EXPORT_SYMBOL(thread_group_exited); 1816 1817 __weak void abort(void) 1818 { 1819 BUG(); 1820 1821 /* if that doesn't kill us, halt */ 1822 panic("Oops failed to kill thread"); 1823 } 1824 EXPORT_SYMBOL(abort); 1825