1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/blkdev.h> 53 #include <linux/task_work.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 #include <linux/io_uring.h> 67 #include <linux/kprobes.h> 68 #include <linux/rethook.h> 69 70 #include <linux/uaccess.h> 71 #include <asm/unistd.h> 72 #include <asm/mmu_context.h> 73 74 static void __unhash_process(struct task_struct *p, bool group_dead) 75 { 76 nr_threads--; 77 detach_pid(p, PIDTYPE_PID); 78 if (group_dead) { 79 detach_pid(p, PIDTYPE_TGID); 80 detach_pid(p, PIDTYPE_PGID); 81 detach_pid(p, PIDTYPE_SID); 82 83 list_del_rcu(&p->tasks); 84 list_del_init(&p->sibling); 85 __this_cpu_dec(process_counts); 86 } 87 list_del_rcu(&p->thread_group); 88 list_del_rcu(&p->thread_node); 89 } 90 91 /* 92 * This function expects the tasklist_lock write-locked. 93 */ 94 static void __exit_signal(struct task_struct *tsk) 95 { 96 struct signal_struct *sig = tsk->signal; 97 bool group_dead = thread_group_leader(tsk); 98 struct sighand_struct *sighand; 99 struct tty_struct *tty; 100 u64 utime, stime; 101 102 sighand = rcu_dereference_check(tsk->sighand, 103 lockdep_tasklist_lock_is_held()); 104 spin_lock(&sighand->siglock); 105 106 #ifdef CONFIG_POSIX_TIMERS 107 posix_cpu_timers_exit(tsk); 108 if (group_dead) 109 posix_cpu_timers_exit_group(tsk); 110 #endif 111 112 if (group_dead) { 113 tty = sig->tty; 114 sig->tty = NULL; 115 } else { 116 /* 117 * If there is any task waiting for the group exit 118 * then notify it: 119 */ 120 if (sig->notify_count > 0 && !--sig->notify_count) 121 wake_up_process(sig->group_exec_task); 122 123 if (tsk == sig->curr_target) 124 sig->curr_target = next_thread(tsk); 125 } 126 127 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 128 sizeof(unsigned long long)); 129 130 /* 131 * Accumulate here the counters for all threads as they die. We could 132 * skip the group leader because it is the last user of signal_struct, 133 * but we want to avoid the race with thread_group_cputime() which can 134 * see the empty ->thread_head list. 135 */ 136 task_cputime(tsk, &utime, &stime); 137 write_seqlock(&sig->stats_lock); 138 sig->utime += utime; 139 sig->stime += stime; 140 sig->gtime += task_gtime(tsk); 141 sig->min_flt += tsk->min_flt; 142 sig->maj_flt += tsk->maj_flt; 143 sig->nvcsw += tsk->nvcsw; 144 sig->nivcsw += tsk->nivcsw; 145 sig->inblock += task_io_get_inblock(tsk); 146 sig->oublock += task_io_get_oublock(tsk); 147 task_io_accounting_add(&sig->ioac, &tsk->ioac); 148 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 149 sig->nr_threads--; 150 __unhash_process(tsk, group_dead); 151 write_sequnlock(&sig->stats_lock); 152 153 /* 154 * Do this under ->siglock, we can race with another thread 155 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 156 */ 157 flush_sigqueue(&tsk->pending); 158 tsk->sighand = NULL; 159 spin_unlock(&sighand->siglock); 160 161 __cleanup_sighand(sighand); 162 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 163 if (group_dead) { 164 flush_sigqueue(&sig->shared_pending); 165 tty_kref_put(tty); 166 } 167 } 168 169 static void delayed_put_task_struct(struct rcu_head *rhp) 170 { 171 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 172 173 kprobe_flush_task(tsk); 174 rethook_flush_task(tsk); 175 perf_event_delayed_put(tsk); 176 trace_sched_process_free(tsk); 177 put_task_struct(tsk); 178 } 179 180 void put_task_struct_rcu_user(struct task_struct *task) 181 { 182 if (refcount_dec_and_test(&task->rcu_users)) 183 call_rcu(&task->rcu, delayed_put_task_struct); 184 } 185 186 void release_task(struct task_struct *p) 187 { 188 struct task_struct *leader; 189 struct pid *thread_pid; 190 int zap_leader; 191 repeat: 192 /* don't need to get the RCU readlock here - the process is dead and 193 * can't be modifying its own credentials. But shut RCU-lockdep up */ 194 rcu_read_lock(); 195 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 196 rcu_read_unlock(); 197 198 cgroup_release(p); 199 200 write_lock_irq(&tasklist_lock); 201 ptrace_release_task(p); 202 thread_pid = get_pid(p->thread_pid); 203 __exit_signal(p); 204 205 /* 206 * If we are the last non-leader member of the thread 207 * group, and the leader is zombie, then notify the 208 * group leader's parent process. (if it wants notification.) 209 */ 210 zap_leader = 0; 211 leader = p->group_leader; 212 if (leader != p && thread_group_empty(leader) 213 && leader->exit_state == EXIT_ZOMBIE) { 214 /* 215 * If we were the last child thread and the leader has 216 * exited already, and the leader's parent ignores SIGCHLD, 217 * then we are the one who should release the leader. 218 */ 219 zap_leader = do_notify_parent(leader, leader->exit_signal); 220 if (zap_leader) 221 leader->exit_state = EXIT_DEAD; 222 } 223 224 write_unlock_irq(&tasklist_lock); 225 seccomp_filter_release(p); 226 proc_flush_pid(thread_pid); 227 put_pid(thread_pid); 228 release_thread(p); 229 put_task_struct_rcu_user(p); 230 231 p = leader; 232 if (unlikely(zap_leader)) 233 goto repeat; 234 } 235 236 int rcuwait_wake_up(struct rcuwait *w) 237 { 238 int ret = 0; 239 struct task_struct *task; 240 241 rcu_read_lock(); 242 243 /* 244 * Order condition vs @task, such that everything prior to the load 245 * of @task is visible. This is the condition as to why the user called 246 * rcuwait_wake() in the first place. Pairs with set_current_state() 247 * barrier (A) in rcuwait_wait_event(). 248 * 249 * WAIT WAKE 250 * [S] tsk = current [S] cond = true 251 * MB (A) MB (B) 252 * [L] cond [L] tsk 253 */ 254 smp_mb(); /* (B) */ 255 256 task = rcu_dereference(w->task); 257 if (task) 258 ret = wake_up_process(task); 259 rcu_read_unlock(); 260 261 return ret; 262 } 263 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 264 265 /* 266 * Determine if a process group is "orphaned", according to the POSIX 267 * definition in 2.2.2.52. Orphaned process groups are not to be affected 268 * by terminal-generated stop signals. Newly orphaned process groups are 269 * to receive a SIGHUP and a SIGCONT. 270 * 271 * "I ask you, have you ever known what it is to be an orphan?" 272 */ 273 static int will_become_orphaned_pgrp(struct pid *pgrp, 274 struct task_struct *ignored_task) 275 { 276 struct task_struct *p; 277 278 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 279 if ((p == ignored_task) || 280 (p->exit_state && thread_group_empty(p)) || 281 is_global_init(p->real_parent)) 282 continue; 283 284 if (task_pgrp(p->real_parent) != pgrp && 285 task_session(p->real_parent) == task_session(p)) 286 return 0; 287 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 288 289 return 1; 290 } 291 292 int is_current_pgrp_orphaned(void) 293 { 294 int retval; 295 296 read_lock(&tasklist_lock); 297 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 298 read_unlock(&tasklist_lock); 299 300 return retval; 301 } 302 303 static bool has_stopped_jobs(struct pid *pgrp) 304 { 305 struct task_struct *p; 306 307 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 308 if (p->signal->flags & SIGNAL_STOP_STOPPED) 309 return true; 310 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 311 312 return false; 313 } 314 315 /* 316 * Check to see if any process groups have become orphaned as 317 * a result of our exiting, and if they have any stopped jobs, 318 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 319 */ 320 static void 321 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 322 { 323 struct pid *pgrp = task_pgrp(tsk); 324 struct task_struct *ignored_task = tsk; 325 326 if (!parent) 327 /* exit: our father is in a different pgrp than 328 * we are and we were the only connection outside. 329 */ 330 parent = tsk->real_parent; 331 else 332 /* reparent: our child is in a different pgrp than 333 * we are, and it was the only connection outside. 334 */ 335 ignored_task = NULL; 336 337 if (task_pgrp(parent) != pgrp && 338 task_session(parent) == task_session(tsk) && 339 will_become_orphaned_pgrp(pgrp, ignored_task) && 340 has_stopped_jobs(pgrp)) { 341 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 342 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 343 } 344 } 345 346 static void coredump_task_exit(struct task_struct *tsk) 347 { 348 struct core_state *core_state; 349 350 /* 351 * Serialize with any possible pending coredump. 352 * We must hold siglock around checking core_state 353 * and setting PF_POSTCOREDUMP. The core-inducing thread 354 * will increment ->nr_threads for each thread in the 355 * group without PF_POSTCOREDUMP set. 356 */ 357 spin_lock_irq(&tsk->sighand->siglock); 358 tsk->flags |= PF_POSTCOREDUMP; 359 core_state = tsk->signal->core_state; 360 spin_unlock_irq(&tsk->sighand->siglock); 361 if (core_state) { 362 struct core_thread self; 363 364 self.task = current; 365 if (self.task->flags & PF_SIGNALED) 366 self.next = xchg(&core_state->dumper.next, &self); 367 else 368 self.task = NULL; 369 /* 370 * Implies mb(), the result of xchg() must be visible 371 * to core_state->dumper. 372 */ 373 if (atomic_dec_and_test(&core_state->nr_threads)) 374 complete(&core_state->startup); 375 376 for (;;) { 377 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE); 378 if (!self.task) /* see coredump_finish() */ 379 break; 380 schedule(); 381 } 382 __set_current_state(TASK_RUNNING); 383 } 384 } 385 386 #ifdef CONFIG_MEMCG 387 /* 388 * A task is exiting. If it owned this mm, find a new owner for the mm. 389 */ 390 void mm_update_next_owner(struct mm_struct *mm) 391 { 392 struct task_struct *c, *g, *p = current; 393 394 retry: 395 /* 396 * If the exiting or execing task is not the owner, it's 397 * someone else's problem. 398 */ 399 if (mm->owner != p) 400 return; 401 /* 402 * The current owner is exiting/execing and there are no other 403 * candidates. Do not leave the mm pointing to a possibly 404 * freed task structure. 405 */ 406 if (atomic_read(&mm->mm_users) <= 1) { 407 WRITE_ONCE(mm->owner, NULL); 408 return; 409 } 410 411 read_lock(&tasklist_lock); 412 /* 413 * Search in the children 414 */ 415 list_for_each_entry(c, &p->children, sibling) { 416 if (c->mm == mm) 417 goto assign_new_owner; 418 } 419 420 /* 421 * Search in the siblings 422 */ 423 list_for_each_entry(c, &p->real_parent->children, sibling) { 424 if (c->mm == mm) 425 goto assign_new_owner; 426 } 427 428 /* 429 * Search through everything else, we should not get here often. 430 */ 431 for_each_process(g) { 432 if (g->flags & PF_KTHREAD) 433 continue; 434 for_each_thread(g, c) { 435 if (c->mm == mm) 436 goto assign_new_owner; 437 if (c->mm) 438 break; 439 } 440 } 441 read_unlock(&tasklist_lock); 442 /* 443 * We found no owner yet mm_users > 1: this implies that we are 444 * most likely racing with swapoff (try_to_unuse()) or /proc or 445 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 446 */ 447 WRITE_ONCE(mm->owner, NULL); 448 return; 449 450 assign_new_owner: 451 BUG_ON(c == p); 452 get_task_struct(c); 453 /* 454 * The task_lock protects c->mm from changing. 455 * We always want mm->owner->mm == mm 456 */ 457 task_lock(c); 458 /* 459 * Delay read_unlock() till we have the task_lock() 460 * to ensure that c does not slip away underneath us 461 */ 462 read_unlock(&tasklist_lock); 463 if (c->mm != mm) { 464 task_unlock(c); 465 put_task_struct(c); 466 goto retry; 467 } 468 WRITE_ONCE(mm->owner, c); 469 task_unlock(c); 470 put_task_struct(c); 471 } 472 #endif /* CONFIG_MEMCG */ 473 474 /* 475 * Turn us into a lazy TLB process if we 476 * aren't already.. 477 */ 478 static void exit_mm(void) 479 { 480 struct mm_struct *mm = current->mm; 481 482 exit_mm_release(current, mm); 483 if (!mm) 484 return; 485 sync_mm_rss(mm); 486 mmap_read_lock(mm); 487 mmgrab(mm); 488 BUG_ON(mm != current->active_mm); 489 /* more a memory barrier than a real lock */ 490 task_lock(current); 491 /* 492 * When a thread stops operating on an address space, the loop 493 * in membarrier_private_expedited() may not observe that 494 * tsk->mm, and the loop in membarrier_global_expedited() may 495 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 496 * rq->membarrier_state, so those would not issue an IPI. 497 * Membarrier requires a memory barrier after accessing 498 * user-space memory, before clearing tsk->mm or the 499 * rq->membarrier_state. 500 */ 501 smp_mb__after_spinlock(); 502 local_irq_disable(); 503 current->mm = NULL; 504 membarrier_update_current_mm(NULL); 505 enter_lazy_tlb(mm, current); 506 local_irq_enable(); 507 task_unlock(current); 508 mmap_read_unlock(mm); 509 mm_update_next_owner(mm); 510 mmput(mm); 511 if (test_thread_flag(TIF_MEMDIE)) 512 exit_oom_victim(); 513 } 514 515 static struct task_struct *find_alive_thread(struct task_struct *p) 516 { 517 struct task_struct *t; 518 519 for_each_thread(p, t) { 520 if (!(t->flags & PF_EXITING)) 521 return t; 522 } 523 return NULL; 524 } 525 526 static struct task_struct *find_child_reaper(struct task_struct *father, 527 struct list_head *dead) 528 __releases(&tasklist_lock) 529 __acquires(&tasklist_lock) 530 { 531 struct pid_namespace *pid_ns = task_active_pid_ns(father); 532 struct task_struct *reaper = pid_ns->child_reaper; 533 struct task_struct *p, *n; 534 535 if (likely(reaper != father)) 536 return reaper; 537 538 reaper = find_alive_thread(father); 539 if (reaper) { 540 pid_ns->child_reaper = reaper; 541 return reaper; 542 } 543 544 write_unlock_irq(&tasklist_lock); 545 546 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 547 list_del_init(&p->ptrace_entry); 548 release_task(p); 549 } 550 551 zap_pid_ns_processes(pid_ns); 552 write_lock_irq(&tasklist_lock); 553 554 return father; 555 } 556 557 /* 558 * When we die, we re-parent all our children, and try to: 559 * 1. give them to another thread in our thread group, if such a member exists 560 * 2. give it to the first ancestor process which prctl'd itself as a 561 * child_subreaper for its children (like a service manager) 562 * 3. give it to the init process (PID 1) in our pid namespace 563 */ 564 static struct task_struct *find_new_reaper(struct task_struct *father, 565 struct task_struct *child_reaper) 566 { 567 struct task_struct *thread, *reaper; 568 569 thread = find_alive_thread(father); 570 if (thread) 571 return thread; 572 573 if (father->signal->has_child_subreaper) { 574 unsigned int ns_level = task_pid(father)->level; 575 /* 576 * Find the first ->is_child_subreaper ancestor in our pid_ns. 577 * We can't check reaper != child_reaper to ensure we do not 578 * cross the namespaces, the exiting parent could be injected 579 * by setns() + fork(). 580 * We check pid->level, this is slightly more efficient than 581 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 582 */ 583 for (reaper = father->real_parent; 584 task_pid(reaper)->level == ns_level; 585 reaper = reaper->real_parent) { 586 if (reaper == &init_task) 587 break; 588 if (!reaper->signal->is_child_subreaper) 589 continue; 590 thread = find_alive_thread(reaper); 591 if (thread) 592 return thread; 593 } 594 } 595 596 return child_reaper; 597 } 598 599 /* 600 * Any that need to be release_task'd are put on the @dead list. 601 */ 602 static void reparent_leader(struct task_struct *father, struct task_struct *p, 603 struct list_head *dead) 604 { 605 if (unlikely(p->exit_state == EXIT_DEAD)) 606 return; 607 608 /* We don't want people slaying init. */ 609 p->exit_signal = SIGCHLD; 610 611 /* If it has exited notify the new parent about this child's death. */ 612 if (!p->ptrace && 613 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 614 if (do_notify_parent(p, p->exit_signal)) { 615 p->exit_state = EXIT_DEAD; 616 list_add(&p->ptrace_entry, dead); 617 } 618 } 619 620 kill_orphaned_pgrp(p, father); 621 } 622 623 /* 624 * This does two things: 625 * 626 * A. Make init inherit all the child processes 627 * B. Check to see if any process groups have become orphaned 628 * as a result of our exiting, and if they have any stopped 629 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 630 */ 631 static void forget_original_parent(struct task_struct *father, 632 struct list_head *dead) 633 { 634 struct task_struct *p, *t, *reaper; 635 636 if (unlikely(!list_empty(&father->ptraced))) 637 exit_ptrace(father, dead); 638 639 /* Can drop and reacquire tasklist_lock */ 640 reaper = find_child_reaper(father, dead); 641 if (list_empty(&father->children)) 642 return; 643 644 reaper = find_new_reaper(father, reaper); 645 list_for_each_entry(p, &father->children, sibling) { 646 for_each_thread(p, t) { 647 RCU_INIT_POINTER(t->real_parent, reaper); 648 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 649 if (likely(!t->ptrace)) 650 t->parent = t->real_parent; 651 if (t->pdeath_signal) 652 group_send_sig_info(t->pdeath_signal, 653 SEND_SIG_NOINFO, t, 654 PIDTYPE_TGID); 655 } 656 /* 657 * If this is a threaded reparent there is no need to 658 * notify anyone anything has happened. 659 */ 660 if (!same_thread_group(reaper, father)) 661 reparent_leader(father, p, dead); 662 } 663 list_splice_tail_init(&father->children, &reaper->children); 664 } 665 666 /* 667 * Send signals to all our closest relatives so that they know 668 * to properly mourn us.. 669 */ 670 static void exit_notify(struct task_struct *tsk, int group_dead) 671 { 672 bool autoreap; 673 struct task_struct *p, *n; 674 LIST_HEAD(dead); 675 676 write_lock_irq(&tasklist_lock); 677 forget_original_parent(tsk, &dead); 678 679 if (group_dead) 680 kill_orphaned_pgrp(tsk->group_leader, NULL); 681 682 tsk->exit_state = EXIT_ZOMBIE; 683 if (unlikely(tsk->ptrace)) { 684 int sig = thread_group_leader(tsk) && 685 thread_group_empty(tsk) && 686 !ptrace_reparented(tsk) ? 687 tsk->exit_signal : SIGCHLD; 688 autoreap = do_notify_parent(tsk, sig); 689 } else if (thread_group_leader(tsk)) { 690 autoreap = thread_group_empty(tsk) && 691 do_notify_parent(tsk, tsk->exit_signal); 692 } else { 693 autoreap = true; 694 } 695 696 if (autoreap) { 697 tsk->exit_state = EXIT_DEAD; 698 list_add(&tsk->ptrace_entry, &dead); 699 } 700 701 /* mt-exec, de_thread() is waiting for group leader */ 702 if (unlikely(tsk->signal->notify_count < 0)) 703 wake_up_process(tsk->signal->group_exec_task); 704 write_unlock_irq(&tasklist_lock); 705 706 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 707 list_del_init(&p->ptrace_entry); 708 release_task(p); 709 } 710 } 711 712 #ifdef CONFIG_DEBUG_STACK_USAGE 713 static void check_stack_usage(void) 714 { 715 static DEFINE_SPINLOCK(low_water_lock); 716 static int lowest_to_date = THREAD_SIZE; 717 unsigned long free; 718 719 free = stack_not_used(current); 720 721 if (free >= lowest_to_date) 722 return; 723 724 spin_lock(&low_water_lock); 725 if (free < lowest_to_date) { 726 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 727 current->comm, task_pid_nr(current), free); 728 lowest_to_date = free; 729 } 730 spin_unlock(&low_water_lock); 731 } 732 #else 733 static inline void check_stack_usage(void) {} 734 #endif 735 736 static void synchronize_group_exit(struct task_struct *tsk, long code) 737 { 738 struct sighand_struct *sighand = tsk->sighand; 739 struct signal_struct *signal = tsk->signal; 740 741 spin_lock_irq(&sighand->siglock); 742 signal->quick_threads--; 743 if ((signal->quick_threads == 0) && 744 !(signal->flags & SIGNAL_GROUP_EXIT)) { 745 signal->flags = SIGNAL_GROUP_EXIT; 746 signal->group_exit_code = code; 747 signal->group_stop_count = 0; 748 } 749 spin_unlock_irq(&sighand->siglock); 750 } 751 752 void __noreturn do_exit(long code) 753 { 754 struct task_struct *tsk = current; 755 int group_dead; 756 757 synchronize_group_exit(tsk, code); 758 759 WARN_ON(tsk->plug); 760 761 kcov_task_exit(tsk); 762 763 coredump_task_exit(tsk); 764 ptrace_event(PTRACE_EVENT_EXIT, code); 765 766 validate_creds_for_do_exit(tsk); 767 768 io_uring_files_cancel(); 769 exit_signals(tsk); /* sets PF_EXITING */ 770 771 /* sync mm's RSS info before statistics gathering */ 772 if (tsk->mm) 773 sync_mm_rss(tsk->mm); 774 acct_update_integrals(tsk); 775 group_dead = atomic_dec_and_test(&tsk->signal->live); 776 if (group_dead) { 777 /* 778 * If the last thread of global init has exited, panic 779 * immediately to get a useable coredump. 780 */ 781 if (unlikely(is_global_init(tsk))) 782 panic("Attempted to kill init! exitcode=0x%08x\n", 783 tsk->signal->group_exit_code ?: (int)code); 784 785 #ifdef CONFIG_POSIX_TIMERS 786 hrtimer_cancel(&tsk->signal->real_timer); 787 exit_itimers(tsk); 788 #endif 789 if (tsk->mm) 790 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 791 } 792 acct_collect(code, group_dead); 793 if (group_dead) 794 tty_audit_exit(); 795 audit_free(tsk); 796 797 tsk->exit_code = code; 798 taskstats_exit(tsk, group_dead); 799 800 exit_mm(); 801 802 if (group_dead) 803 acct_process(); 804 trace_sched_process_exit(tsk); 805 806 exit_sem(tsk); 807 exit_shm(tsk); 808 exit_files(tsk); 809 exit_fs(tsk); 810 if (group_dead) 811 disassociate_ctty(1); 812 exit_task_namespaces(tsk); 813 exit_task_work(tsk); 814 exit_thread(tsk); 815 816 /* 817 * Flush inherited counters to the parent - before the parent 818 * gets woken up by child-exit notifications. 819 * 820 * because of cgroup mode, must be called before cgroup_exit() 821 */ 822 perf_event_exit_task(tsk); 823 824 sched_autogroup_exit_task(tsk); 825 cgroup_exit(tsk); 826 827 /* 828 * FIXME: do that only when needed, using sched_exit tracepoint 829 */ 830 flush_ptrace_hw_breakpoint(tsk); 831 832 exit_tasks_rcu_start(); 833 exit_notify(tsk, group_dead); 834 proc_exit_connector(tsk); 835 mpol_put_task_policy(tsk); 836 #ifdef CONFIG_FUTEX 837 if (unlikely(current->pi_state_cache)) 838 kfree(current->pi_state_cache); 839 #endif 840 /* 841 * Make sure we are holding no locks: 842 */ 843 debug_check_no_locks_held(); 844 845 if (tsk->io_context) 846 exit_io_context(tsk); 847 848 if (tsk->splice_pipe) 849 free_pipe_info(tsk->splice_pipe); 850 851 if (tsk->task_frag.page) 852 put_page(tsk->task_frag.page); 853 854 validate_creds_for_do_exit(tsk); 855 exit_task_stack_account(tsk); 856 857 check_stack_usage(); 858 preempt_disable(); 859 if (tsk->nr_dirtied) 860 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 861 exit_rcu(); 862 exit_tasks_rcu_finish(); 863 864 lockdep_free_task(tsk); 865 do_task_dead(); 866 } 867 868 void __noreturn make_task_dead(int signr) 869 { 870 /* 871 * Take the task off the cpu after something catastrophic has 872 * happened. 873 * 874 * We can get here from a kernel oops, sometimes with preemption off. 875 * Start by checking for critical errors. 876 * Then fix up important state like USER_DS and preemption. 877 * Then do everything else. 878 */ 879 struct task_struct *tsk = current; 880 881 if (unlikely(in_interrupt())) 882 panic("Aiee, killing interrupt handler!"); 883 if (unlikely(!tsk->pid)) 884 panic("Attempted to kill the idle task!"); 885 886 if (unlikely(in_atomic())) { 887 pr_info("note: %s[%d] exited with preempt_count %d\n", 888 current->comm, task_pid_nr(current), 889 preempt_count()); 890 preempt_count_set(PREEMPT_ENABLED); 891 } 892 893 /* 894 * We're taking recursive faults here in make_task_dead. Safest is to just 895 * leave this task alone and wait for reboot. 896 */ 897 if (unlikely(tsk->flags & PF_EXITING)) { 898 pr_alert("Fixing recursive fault but reboot is needed!\n"); 899 futex_exit_recursive(tsk); 900 tsk->exit_state = EXIT_DEAD; 901 refcount_inc(&tsk->rcu_users); 902 do_task_dead(); 903 } 904 905 do_exit(signr); 906 } 907 908 SYSCALL_DEFINE1(exit, int, error_code) 909 { 910 do_exit((error_code&0xff)<<8); 911 } 912 913 /* 914 * Take down every thread in the group. This is called by fatal signals 915 * as well as by sys_exit_group (below). 916 */ 917 void __noreturn 918 do_group_exit(int exit_code) 919 { 920 struct signal_struct *sig = current->signal; 921 922 if (sig->flags & SIGNAL_GROUP_EXIT) 923 exit_code = sig->group_exit_code; 924 else if (sig->group_exec_task) 925 exit_code = 0; 926 else { 927 struct sighand_struct *const sighand = current->sighand; 928 929 spin_lock_irq(&sighand->siglock); 930 if (sig->flags & SIGNAL_GROUP_EXIT) 931 /* Another thread got here before we took the lock. */ 932 exit_code = sig->group_exit_code; 933 else if (sig->group_exec_task) 934 exit_code = 0; 935 else { 936 sig->group_exit_code = exit_code; 937 sig->flags = SIGNAL_GROUP_EXIT; 938 zap_other_threads(current); 939 } 940 spin_unlock_irq(&sighand->siglock); 941 } 942 943 do_exit(exit_code); 944 /* NOTREACHED */ 945 } 946 947 /* 948 * this kills every thread in the thread group. Note that any externally 949 * wait4()-ing process will get the correct exit code - even if this 950 * thread is not the thread group leader. 951 */ 952 SYSCALL_DEFINE1(exit_group, int, error_code) 953 { 954 do_group_exit((error_code & 0xff) << 8); 955 /* NOTREACHED */ 956 return 0; 957 } 958 959 struct waitid_info { 960 pid_t pid; 961 uid_t uid; 962 int status; 963 int cause; 964 }; 965 966 struct wait_opts { 967 enum pid_type wo_type; 968 int wo_flags; 969 struct pid *wo_pid; 970 971 struct waitid_info *wo_info; 972 int wo_stat; 973 struct rusage *wo_rusage; 974 975 wait_queue_entry_t child_wait; 976 int notask_error; 977 }; 978 979 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 980 { 981 return wo->wo_type == PIDTYPE_MAX || 982 task_pid_type(p, wo->wo_type) == wo->wo_pid; 983 } 984 985 static int 986 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 987 { 988 if (!eligible_pid(wo, p)) 989 return 0; 990 991 /* 992 * Wait for all children (clone and not) if __WALL is set or 993 * if it is traced by us. 994 */ 995 if (ptrace || (wo->wo_flags & __WALL)) 996 return 1; 997 998 /* 999 * Otherwise, wait for clone children *only* if __WCLONE is set; 1000 * otherwise, wait for non-clone children *only*. 1001 * 1002 * Note: a "clone" child here is one that reports to its parent 1003 * using a signal other than SIGCHLD, or a non-leader thread which 1004 * we can only see if it is traced by us. 1005 */ 1006 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1007 return 0; 1008 1009 return 1; 1010 } 1011 1012 /* 1013 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1014 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1015 * the lock and this task is uninteresting. If we return nonzero, we have 1016 * released the lock and the system call should return. 1017 */ 1018 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1019 { 1020 int state, status; 1021 pid_t pid = task_pid_vnr(p); 1022 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1023 struct waitid_info *infop; 1024 1025 if (!likely(wo->wo_flags & WEXITED)) 1026 return 0; 1027 1028 if (unlikely(wo->wo_flags & WNOWAIT)) { 1029 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1030 ? p->signal->group_exit_code : p->exit_code; 1031 get_task_struct(p); 1032 read_unlock(&tasklist_lock); 1033 sched_annotate_sleep(); 1034 if (wo->wo_rusage) 1035 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1036 put_task_struct(p); 1037 goto out_info; 1038 } 1039 /* 1040 * Move the task's state to DEAD/TRACE, only one thread can do this. 1041 */ 1042 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1043 EXIT_TRACE : EXIT_DEAD; 1044 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1045 return 0; 1046 /* 1047 * We own this thread, nobody else can reap it. 1048 */ 1049 read_unlock(&tasklist_lock); 1050 sched_annotate_sleep(); 1051 1052 /* 1053 * Check thread_group_leader() to exclude the traced sub-threads. 1054 */ 1055 if (state == EXIT_DEAD && thread_group_leader(p)) { 1056 struct signal_struct *sig = p->signal; 1057 struct signal_struct *psig = current->signal; 1058 unsigned long maxrss; 1059 u64 tgutime, tgstime; 1060 1061 /* 1062 * The resource counters for the group leader are in its 1063 * own task_struct. Those for dead threads in the group 1064 * are in its signal_struct, as are those for the child 1065 * processes it has previously reaped. All these 1066 * accumulate in the parent's signal_struct c* fields. 1067 * 1068 * We don't bother to take a lock here to protect these 1069 * p->signal fields because the whole thread group is dead 1070 * and nobody can change them. 1071 * 1072 * psig->stats_lock also protects us from our sub-threads 1073 * which can reap other children at the same time. Until 1074 * we change k_getrusage()-like users to rely on this lock 1075 * we have to take ->siglock as well. 1076 * 1077 * We use thread_group_cputime_adjusted() to get times for 1078 * the thread group, which consolidates times for all threads 1079 * in the group including the group leader. 1080 */ 1081 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1082 spin_lock_irq(¤t->sighand->siglock); 1083 write_seqlock(&psig->stats_lock); 1084 psig->cutime += tgutime + sig->cutime; 1085 psig->cstime += tgstime + sig->cstime; 1086 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1087 psig->cmin_flt += 1088 p->min_flt + sig->min_flt + sig->cmin_flt; 1089 psig->cmaj_flt += 1090 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1091 psig->cnvcsw += 1092 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1093 psig->cnivcsw += 1094 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1095 psig->cinblock += 1096 task_io_get_inblock(p) + 1097 sig->inblock + sig->cinblock; 1098 psig->coublock += 1099 task_io_get_oublock(p) + 1100 sig->oublock + sig->coublock; 1101 maxrss = max(sig->maxrss, sig->cmaxrss); 1102 if (psig->cmaxrss < maxrss) 1103 psig->cmaxrss = maxrss; 1104 task_io_accounting_add(&psig->ioac, &p->ioac); 1105 task_io_accounting_add(&psig->ioac, &sig->ioac); 1106 write_sequnlock(&psig->stats_lock); 1107 spin_unlock_irq(¤t->sighand->siglock); 1108 } 1109 1110 if (wo->wo_rusage) 1111 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1112 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1113 ? p->signal->group_exit_code : p->exit_code; 1114 wo->wo_stat = status; 1115 1116 if (state == EXIT_TRACE) { 1117 write_lock_irq(&tasklist_lock); 1118 /* We dropped tasklist, ptracer could die and untrace */ 1119 ptrace_unlink(p); 1120 1121 /* If parent wants a zombie, don't release it now */ 1122 state = EXIT_ZOMBIE; 1123 if (do_notify_parent(p, p->exit_signal)) 1124 state = EXIT_DEAD; 1125 p->exit_state = state; 1126 write_unlock_irq(&tasklist_lock); 1127 } 1128 if (state == EXIT_DEAD) 1129 release_task(p); 1130 1131 out_info: 1132 infop = wo->wo_info; 1133 if (infop) { 1134 if ((status & 0x7f) == 0) { 1135 infop->cause = CLD_EXITED; 1136 infop->status = status >> 8; 1137 } else { 1138 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1139 infop->status = status & 0x7f; 1140 } 1141 infop->pid = pid; 1142 infop->uid = uid; 1143 } 1144 1145 return pid; 1146 } 1147 1148 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1149 { 1150 if (ptrace) { 1151 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1152 return &p->exit_code; 1153 } else { 1154 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1155 return &p->signal->group_exit_code; 1156 } 1157 return NULL; 1158 } 1159 1160 /** 1161 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1162 * @wo: wait options 1163 * @ptrace: is the wait for ptrace 1164 * @p: task to wait for 1165 * 1166 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1167 * 1168 * CONTEXT: 1169 * read_lock(&tasklist_lock), which is released if return value is 1170 * non-zero. Also, grabs and releases @p->sighand->siglock. 1171 * 1172 * RETURNS: 1173 * 0 if wait condition didn't exist and search for other wait conditions 1174 * should continue. Non-zero return, -errno on failure and @p's pid on 1175 * success, implies that tasklist_lock is released and wait condition 1176 * search should terminate. 1177 */ 1178 static int wait_task_stopped(struct wait_opts *wo, 1179 int ptrace, struct task_struct *p) 1180 { 1181 struct waitid_info *infop; 1182 int exit_code, *p_code, why; 1183 uid_t uid = 0; /* unneeded, required by compiler */ 1184 pid_t pid; 1185 1186 /* 1187 * Traditionally we see ptrace'd stopped tasks regardless of options. 1188 */ 1189 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1190 return 0; 1191 1192 if (!task_stopped_code(p, ptrace)) 1193 return 0; 1194 1195 exit_code = 0; 1196 spin_lock_irq(&p->sighand->siglock); 1197 1198 p_code = task_stopped_code(p, ptrace); 1199 if (unlikely(!p_code)) 1200 goto unlock_sig; 1201 1202 exit_code = *p_code; 1203 if (!exit_code) 1204 goto unlock_sig; 1205 1206 if (!unlikely(wo->wo_flags & WNOWAIT)) 1207 *p_code = 0; 1208 1209 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1210 unlock_sig: 1211 spin_unlock_irq(&p->sighand->siglock); 1212 if (!exit_code) 1213 return 0; 1214 1215 /* 1216 * Now we are pretty sure this task is interesting. 1217 * Make sure it doesn't get reaped out from under us while we 1218 * give up the lock and then examine it below. We don't want to 1219 * keep holding onto the tasklist_lock while we call getrusage and 1220 * possibly take page faults for user memory. 1221 */ 1222 get_task_struct(p); 1223 pid = task_pid_vnr(p); 1224 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1225 read_unlock(&tasklist_lock); 1226 sched_annotate_sleep(); 1227 if (wo->wo_rusage) 1228 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1229 put_task_struct(p); 1230 1231 if (likely(!(wo->wo_flags & WNOWAIT))) 1232 wo->wo_stat = (exit_code << 8) | 0x7f; 1233 1234 infop = wo->wo_info; 1235 if (infop) { 1236 infop->cause = why; 1237 infop->status = exit_code; 1238 infop->pid = pid; 1239 infop->uid = uid; 1240 } 1241 return pid; 1242 } 1243 1244 /* 1245 * Handle do_wait work for one task in a live, non-stopped state. 1246 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1247 * the lock and this task is uninteresting. If we return nonzero, we have 1248 * released the lock and the system call should return. 1249 */ 1250 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1251 { 1252 struct waitid_info *infop; 1253 pid_t pid; 1254 uid_t uid; 1255 1256 if (!unlikely(wo->wo_flags & WCONTINUED)) 1257 return 0; 1258 1259 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1260 return 0; 1261 1262 spin_lock_irq(&p->sighand->siglock); 1263 /* Re-check with the lock held. */ 1264 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1265 spin_unlock_irq(&p->sighand->siglock); 1266 return 0; 1267 } 1268 if (!unlikely(wo->wo_flags & WNOWAIT)) 1269 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1270 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1271 spin_unlock_irq(&p->sighand->siglock); 1272 1273 pid = task_pid_vnr(p); 1274 get_task_struct(p); 1275 read_unlock(&tasklist_lock); 1276 sched_annotate_sleep(); 1277 if (wo->wo_rusage) 1278 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1279 put_task_struct(p); 1280 1281 infop = wo->wo_info; 1282 if (!infop) { 1283 wo->wo_stat = 0xffff; 1284 } else { 1285 infop->cause = CLD_CONTINUED; 1286 infop->pid = pid; 1287 infop->uid = uid; 1288 infop->status = SIGCONT; 1289 } 1290 return pid; 1291 } 1292 1293 /* 1294 * Consider @p for a wait by @parent. 1295 * 1296 * -ECHILD should be in ->notask_error before the first call. 1297 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1298 * Returns zero if the search for a child should continue; 1299 * then ->notask_error is 0 if @p is an eligible child, 1300 * or still -ECHILD. 1301 */ 1302 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1303 struct task_struct *p) 1304 { 1305 /* 1306 * We can race with wait_task_zombie() from another thread. 1307 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1308 * can't confuse the checks below. 1309 */ 1310 int exit_state = READ_ONCE(p->exit_state); 1311 int ret; 1312 1313 if (unlikely(exit_state == EXIT_DEAD)) 1314 return 0; 1315 1316 ret = eligible_child(wo, ptrace, p); 1317 if (!ret) 1318 return ret; 1319 1320 if (unlikely(exit_state == EXIT_TRACE)) { 1321 /* 1322 * ptrace == 0 means we are the natural parent. In this case 1323 * we should clear notask_error, debugger will notify us. 1324 */ 1325 if (likely(!ptrace)) 1326 wo->notask_error = 0; 1327 return 0; 1328 } 1329 1330 if (likely(!ptrace) && unlikely(p->ptrace)) { 1331 /* 1332 * If it is traced by its real parent's group, just pretend 1333 * the caller is ptrace_do_wait() and reap this child if it 1334 * is zombie. 1335 * 1336 * This also hides group stop state from real parent; otherwise 1337 * a single stop can be reported twice as group and ptrace stop. 1338 * If a ptracer wants to distinguish these two events for its 1339 * own children it should create a separate process which takes 1340 * the role of real parent. 1341 */ 1342 if (!ptrace_reparented(p)) 1343 ptrace = 1; 1344 } 1345 1346 /* slay zombie? */ 1347 if (exit_state == EXIT_ZOMBIE) { 1348 /* we don't reap group leaders with subthreads */ 1349 if (!delay_group_leader(p)) { 1350 /* 1351 * A zombie ptracee is only visible to its ptracer. 1352 * Notification and reaping will be cascaded to the 1353 * real parent when the ptracer detaches. 1354 */ 1355 if (unlikely(ptrace) || likely(!p->ptrace)) 1356 return wait_task_zombie(wo, p); 1357 } 1358 1359 /* 1360 * Allow access to stopped/continued state via zombie by 1361 * falling through. Clearing of notask_error is complex. 1362 * 1363 * When !@ptrace: 1364 * 1365 * If WEXITED is set, notask_error should naturally be 1366 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1367 * so, if there are live subthreads, there are events to 1368 * wait for. If all subthreads are dead, it's still safe 1369 * to clear - this function will be called again in finite 1370 * amount time once all the subthreads are released and 1371 * will then return without clearing. 1372 * 1373 * When @ptrace: 1374 * 1375 * Stopped state is per-task and thus can't change once the 1376 * target task dies. Only continued and exited can happen. 1377 * Clear notask_error if WCONTINUED | WEXITED. 1378 */ 1379 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1380 wo->notask_error = 0; 1381 } else { 1382 /* 1383 * @p is alive and it's gonna stop, continue or exit, so 1384 * there always is something to wait for. 1385 */ 1386 wo->notask_error = 0; 1387 } 1388 1389 /* 1390 * Wait for stopped. Depending on @ptrace, different stopped state 1391 * is used and the two don't interact with each other. 1392 */ 1393 ret = wait_task_stopped(wo, ptrace, p); 1394 if (ret) 1395 return ret; 1396 1397 /* 1398 * Wait for continued. There's only one continued state and the 1399 * ptracer can consume it which can confuse the real parent. Don't 1400 * use WCONTINUED from ptracer. You don't need or want it. 1401 */ 1402 return wait_task_continued(wo, p); 1403 } 1404 1405 /* 1406 * Do the work of do_wait() for one thread in the group, @tsk. 1407 * 1408 * -ECHILD should be in ->notask_error before the first call. 1409 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1410 * Returns zero if the search for a child should continue; then 1411 * ->notask_error is 0 if there were any eligible children, 1412 * or still -ECHILD. 1413 */ 1414 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1415 { 1416 struct task_struct *p; 1417 1418 list_for_each_entry(p, &tsk->children, sibling) { 1419 int ret = wait_consider_task(wo, 0, p); 1420 1421 if (ret) 1422 return ret; 1423 } 1424 1425 return 0; 1426 } 1427 1428 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1429 { 1430 struct task_struct *p; 1431 1432 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1433 int ret = wait_consider_task(wo, 1, p); 1434 1435 if (ret) 1436 return ret; 1437 } 1438 1439 return 0; 1440 } 1441 1442 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1443 int sync, void *key) 1444 { 1445 struct wait_opts *wo = container_of(wait, struct wait_opts, 1446 child_wait); 1447 struct task_struct *p = key; 1448 1449 if (!eligible_pid(wo, p)) 1450 return 0; 1451 1452 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1453 return 0; 1454 1455 return default_wake_function(wait, mode, sync, key); 1456 } 1457 1458 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1459 { 1460 __wake_up_sync_key(&parent->signal->wait_chldexit, 1461 TASK_INTERRUPTIBLE, p); 1462 } 1463 1464 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1465 struct task_struct *target) 1466 { 1467 struct task_struct *parent = 1468 !ptrace ? target->real_parent : target->parent; 1469 1470 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1471 same_thread_group(current, parent)); 1472 } 1473 1474 /* 1475 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1476 * and tracee lists to find the target task. 1477 */ 1478 static int do_wait_pid(struct wait_opts *wo) 1479 { 1480 bool ptrace; 1481 struct task_struct *target; 1482 int retval; 1483 1484 ptrace = false; 1485 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1486 if (target && is_effectively_child(wo, ptrace, target)) { 1487 retval = wait_consider_task(wo, ptrace, target); 1488 if (retval) 1489 return retval; 1490 } 1491 1492 ptrace = true; 1493 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1494 if (target && target->ptrace && 1495 is_effectively_child(wo, ptrace, target)) { 1496 retval = wait_consider_task(wo, ptrace, target); 1497 if (retval) 1498 return retval; 1499 } 1500 1501 return 0; 1502 } 1503 1504 static long do_wait(struct wait_opts *wo) 1505 { 1506 int retval; 1507 1508 trace_sched_process_wait(wo->wo_pid); 1509 1510 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1511 wo->child_wait.private = current; 1512 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1513 repeat: 1514 /* 1515 * If there is nothing that can match our criteria, just get out. 1516 * We will clear ->notask_error to zero if we see any child that 1517 * might later match our criteria, even if we are not able to reap 1518 * it yet. 1519 */ 1520 wo->notask_error = -ECHILD; 1521 if ((wo->wo_type < PIDTYPE_MAX) && 1522 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1523 goto notask; 1524 1525 set_current_state(TASK_INTERRUPTIBLE); 1526 read_lock(&tasklist_lock); 1527 1528 if (wo->wo_type == PIDTYPE_PID) { 1529 retval = do_wait_pid(wo); 1530 if (retval) 1531 goto end; 1532 } else { 1533 struct task_struct *tsk = current; 1534 1535 do { 1536 retval = do_wait_thread(wo, tsk); 1537 if (retval) 1538 goto end; 1539 1540 retval = ptrace_do_wait(wo, tsk); 1541 if (retval) 1542 goto end; 1543 1544 if (wo->wo_flags & __WNOTHREAD) 1545 break; 1546 } while_each_thread(current, tsk); 1547 } 1548 read_unlock(&tasklist_lock); 1549 1550 notask: 1551 retval = wo->notask_error; 1552 if (!retval && !(wo->wo_flags & WNOHANG)) { 1553 retval = -ERESTARTSYS; 1554 if (!signal_pending(current)) { 1555 schedule(); 1556 goto repeat; 1557 } 1558 } 1559 end: 1560 __set_current_state(TASK_RUNNING); 1561 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1562 return retval; 1563 } 1564 1565 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1566 int options, struct rusage *ru) 1567 { 1568 struct wait_opts wo; 1569 struct pid *pid = NULL; 1570 enum pid_type type; 1571 long ret; 1572 unsigned int f_flags = 0; 1573 1574 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1575 __WNOTHREAD|__WCLONE|__WALL)) 1576 return -EINVAL; 1577 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1578 return -EINVAL; 1579 1580 switch (which) { 1581 case P_ALL: 1582 type = PIDTYPE_MAX; 1583 break; 1584 case P_PID: 1585 type = PIDTYPE_PID; 1586 if (upid <= 0) 1587 return -EINVAL; 1588 1589 pid = find_get_pid(upid); 1590 break; 1591 case P_PGID: 1592 type = PIDTYPE_PGID; 1593 if (upid < 0) 1594 return -EINVAL; 1595 1596 if (upid) 1597 pid = find_get_pid(upid); 1598 else 1599 pid = get_task_pid(current, PIDTYPE_PGID); 1600 break; 1601 case P_PIDFD: 1602 type = PIDTYPE_PID; 1603 if (upid < 0) 1604 return -EINVAL; 1605 1606 pid = pidfd_get_pid(upid, &f_flags); 1607 if (IS_ERR(pid)) 1608 return PTR_ERR(pid); 1609 1610 break; 1611 default: 1612 return -EINVAL; 1613 } 1614 1615 wo.wo_type = type; 1616 wo.wo_pid = pid; 1617 wo.wo_flags = options; 1618 wo.wo_info = infop; 1619 wo.wo_rusage = ru; 1620 if (f_flags & O_NONBLOCK) 1621 wo.wo_flags |= WNOHANG; 1622 1623 ret = do_wait(&wo); 1624 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK)) 1625 ret = -EAGAIN; 1626 1627 put_pid(pid); 1628 return ret; 1629 } 1630 1631 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1632 infop, int, options, struct rusage __user *, ru) 1633 { 1634 struct rusage r; 1635 struct waitid_info info = {.status = 0}; 1636 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1637 int signo = 0; 1638 1639 if (err > 0) { 1640 signo = SIGCHLD; 1641 err = 0; 1642 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1643 return -EFAULT; 1644 } 1645 if (!infop) 1646 return err; 1647 1648 if (!user_write_access_begin(infop, sizeof(*infop))) 1649 return -EFAULT; 1650 1651 unsafe_put_user(signo, &infop->si_signo, Efault); 1652 unsafe_put_user(0, &infop->si_errno, Efault); 1653 unsafe_put_user(info.cause, &infop->si_code, Efault); 1654 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1655 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1656 unsafe_put_user(info.status, &infop->si_status, Efault); 1657 user_write_access_end(); 1658 return err; 1659 Efault: 1660 user_write_access_end(); 1661 return -EFAULT; 1662 } 1663 1664 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1665 struct rusage *ru) 1666 { 1667 struct wait_opts wo; 1668 struct pid *pid = NULL; 1669 enum pid_type type; 1670 long ret; 1671 1672 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1673 __WNOTHREAD|__WCLONE|__WALL)) 1674 return -EINVAL; 1675 1676 /* -INT_MIN is not defined */ 1677 if (upid == INT_MIN) 1678 return -ESRCH; 1679 1680 if (upid == -1) 1681 type = PIDTYPE_MAX; 1682 else if (upid < 0) { 1683 type = PIDTYPE_PGID; 1684 pid = find_get_pid(-upid); 1685 } else if (upid == 0) { 1686 type = PIDTYPE_PGID; 1687 pid = get_task_pid(current, PIDTYPE_PGID); 1688 } else /* upid > 0 */ { 1689 type = PIDTYPE_PID; 1690 pid = find_get_pid(upid); 1691 } 1692 1693 wo.wo_type = type; 1694 wo.wo_pid = pid; 1695 wo.wo_flags = options | WEXITED; 1696 wo.wo_info = NULL; 1697 wo.wo_stat = 0; 1698 wo.wo_rusage = ru; 1699 ret = do_wait(&wo); 1700 put_pid(pid); 1701 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1702 ret = -EFAULT; 1703 1704 return ret; 1705 } 1706 1707 int kernel_wait(pid_t pid, int *stat) 1708 { 1709 struct wait_opts wo = { 1710 .wo_type = PIDTYPE_PID, 1711 .wo_pid = find_get_pid(pid), 1712 .wo_flags = WEXITED, 1713 }; 1714 int ret; 1715 1716 ret = do_wait(&wo); 1717 if (ret > 0 && wo.wo_stat) 1718 *stat = wo.wo_stat; 1719 put_pid(wo.wo_pid); 1720 return ret; 1721 } 1722 1723 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1724 int, options, struct rusage __user *, ru) 1725 { 1726 struct rusage r; 1727 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1728 1729 if (err > 0) { 1730 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1731 return -EFAULT; 1732 } 1733 return err; 1734 } 1735 1736 #ifdef __ARCH_WANT_SYS_WAITPID 1737 1738 /* 1739 * sys_waitpid() remains for compatibility. waitpid() should be 1740 * implemented by calling sys_wait4() from libc.a. 1741 */ 1742 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1743 { 1744 return kernel_wait4(pid, stat_addr, options, NULL); 1745 } 1746 1747 #endif 1748 1749 #ifdef CONFIG_COMPAT 1750 COMPAT_SYSCALL_DEFINE4(wait4, 1751 compat_pid_t, pid, 1752 compat_uint_t __user *, stat_addr, 1753 int, options, 1754 struct compat_rusage __user *, ru) 1755 { 1756 struct rusage r; 1757 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1758 if (err > 0) { 1759 if (ru && put_compat_rusage(&r, ru)) 1760 return -EFAULT; 1761 } 1762 return err; 1763 } 1764 1765 COMPAT_SYSCALL_DEFINE5(waitid, 1766 int, which, compat_pid_t, pid, 1767 struct compat_siginfo __user *, infop, int, options, 1768 struct compat_rusage __user *, uru) 1769 { 1770 struct rusage ru; 1771 struct waitid_info info = {.status = 0}; 1772 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1773 int signo = 0; 1774 if (err > 0) { 1775 signo = SIGCHLD; 1776 err = 0; 1777 if (uru) { 1778 /* kernel_waitid() overwrites everything in ru */ 1779 if (COMPAT_USE_64BIT_TIME) 1780 err = copy_to_user(uru, &ru, sizeof(ru)); 1781 else 1782 err = put_compat_rusage(&ru, uru); 1783 if (err) 1784 return -EFAULT; 1785 } 1786 } 1787 1788 if (!infop) 1789 return err; 1790 1791 if (!user_write_access_begin(infop, sizeof(*infop))) 1792 return -EFAULT; 1793 1794 unsafe_put_user(signo, &infop->si_signo, Efault); 1795 unsafe_put_user(0, &infop->si_errno, Efault); 1796 unsafe_put_user(info.cause, &infop->si_code, Efault); 1797 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1798 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1799 unsafe_put_user(info.status, &infop->si_status, Efault); 1800 user_write_access_end(); 1801 return err; 1802 Efault: 1803 user_write_access_end(); 1804 return -EFAULT; 1805 } 1806 #endif 1807 1808 /** 1809 * thread_group_exited - check that a thread group has exited 1810 * @pid: tgid of thread group to be checked. 1811 * 1812 * Test if the thread group represented by tgid has exited (all 1813 * threads are zombies, dead or completely gone). 1814 * 1815 * Return: true if the thread group has exited. false otherwise. 1816 */ 1817 bool thread_group_exited(struct pid *pid) 1818 { 1819 struct task_struct *task; 1820 bool exited; 1821 1822 rcu_read_lock(); 1823 task = pid_task(pid, PIDTYPE_PID); 1824 exited = !task || 1825 (READ_ONCE(task->exit_state) && thread_group_empty(task)); 1826 rcu_read_unlock(); 1827 1828 return exited; 1829 } 1830 EXPORT_SYMBOL(thread_group_exited); 1831 1832 __weak void abort(void) 1833 { 1834 BUG(); 1835 1836 /* if that doesn't kill us, halt */ 1837 panic("Oops failed to kill thread"); 1838 } 1839 EXPORT_SYMBOL(abort); 1840