xref: /linux/kernel/exit.c (revision 83439a0f1ce6a592f95e41338320b5f01b98a356)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
68 #include <linux/rethook.h>
69 
70 #include <linux/uaccess.h>
71 #include <asm/unistd.h>
72 #include <asm/mmu_context.h>
73 
74 static void __unhash_process(struct task_struct *p, bool group_dead)
75 {
76 	nr_threads--;
77 	detach_pid(p, PIDTYPE_PID);
78 	if (group_dead) {
79 		detach_pid(p, PIDTYPE_TGID);
80 		detach_pid(p, PIDTYPE_PGID);
81 		detach_pid(p, PIDTYPE_SID);
82 
83 		list_del_rcu(&p->tasks);
84 		list_del_init(&p->sibling);
85 		__this_cpu_dec(process_counts);
86 	}
87 	list_del_rcu(&p->thread_group);
88 	list_del_rcu(&p->thread_node);
89 }
90 
91 /*
92  * This function expects the tasklist_lock write-locked.
93  */
94 static void __exit_signal(struct task_struct *tsk)
95 {
96 	struct signal_struct *sig = tsk->signal;
97 	bool group_dead = thread_group_leader(tsk);
98 	struct sighand_struct *sighand;
99 	struct tty_struct *tty;
100 	u64 utime, stime;
101 
102 	sighand = rcu_dereference_check(tsk->sighand,
103 					lockdep_tasklist_lock_is_held());
104 	spin_lock(&sighand->siglock);
105 
106 #ifdef CONFIG_POSIX_TIMERS
107 	posix_cpu_timers_exit(tsk);
108 	if (group_dead)
109 		posix_cpu_timers_exit_group(tsk);
110 #endif
111 
112 	if (group_dead) {
113 		tty = sig->tty;
114 		sig->tty = NULL;
115 	} else {
116 		/*
117 		 * If there is any task waiting for the group exit
118 		 * then notify it:
119 		 */
120 		if (sig->notify_count > 0 && !--sig->notify_count)
121 			wake_up_process(sig->group_exec_task);
122 
123 		if (tsk == sig->curr_target)
124 			sig->curr_target = next_thread(tsk);
125 	}
126 
127 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
128 			      sizeof(unsigned long long));
129 
130 	/*
131 	 * Accumulate here the counters for all threads as they die. We could
132 	 * skip the group leader because it is the last user of signal_struct,
133 	 * but we want to avoid the race with thread_group_cputime() which can
134 	 * see the empty ->thread_head list.
135 	 */
136 	task_cputime(tsk, &utime, &stime);
137 	write_seqlock(&sig->stats_lock);
138 	sig->utime += utime;
139 	sig->stime += stime;
140 	sig->gtime += task_gtime(tsk);
141 	sig->min_flt += tsk->min_flt;
142 	sig->maj_flt += tsk->maj_flt;
143 	sig->nvcsw += tsk->nvcsw;
144 	sig->nivcsw += tsk->nivcsw;
145 	sig->inblock += task_io_get_inblock(tsk);
146 	sig->oublock += task_io_get_oublock(tsk);
147 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
148 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
149 	sig->nr_threads--;
150 	__unhash_process(tsk, group_dead);
151 	write_sequnlock(&sig->stats_lock);
152 
153 	/*
154 	 * Do this under ->siglock, we can race with another thread
155 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
156 	 */
157 	flush_sigqueue(&tsk->pending);
158 	tsk->sighand = NULL;
159 	spin_unlock(&sighand->siglock);
160 
161 	__cleanup_sighand(sighand);
162 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
163 	if (group_dead) {
164 		flush_sigqueue(&sig->shared_pending);
165 		tty_kref_put(tty);
166 	}
167 }
168 
169 static void delayed_put_task_struct(struct rcu_head *rhp)
170 {
171 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
172 
173 	kprobe_flush_task(tsk);
174 	rethook_flush_task(tsk);
175 	perf_event_delayed_put(tsk);
176 	trace_sched_process_free(tsk);
177 	put_task_struct(tsk);
178 }
179 
180 void put_task_struct_rcu_user(struct task_struct *task)
181 {
182 	if (refcount_dec_and_test(&task->rcu_users))
183 		call_rcu(&task->rcu, delayed_put_task_struct);
184 }
185 
186 void release_task(struct task_struct *p)
187 {
188 	struct task_struct *leader;
189 	struct pid *thread_pid;
190 	int zap_leader;
191 repeat:
192 	/* don't need to get the RCU readlock here - the process is dead and
193 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
194 	rcu_read_lock();
195 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
196 	rcu_read_unlock();
197 
198 	cgroup_release(p);
199 
200 	write_lock_irq(&tasklist_lock);
201 	ptrace_release_task(p);
202 	thread_pid = get_pid(p->thread_pid);
203 	__exit_signal(p);
204 
205 	/*
206 	 * If we are the last non-leader member of the thread
207 	 * group, and the leader is zombie, then notify the
208 	 * group leader's parent process. (if it wants notification.)
209 	 */
210 	zap_leader = 0;
211 	leader = p->group_leader;
212 	if (leader != p && thread_group_empty(leader)
213 			&& leader->exit_state == EXIT_ZOMBIE) {
214 		/*
215 		 * If we were the last child thread and the leader has
216 		 * exited already, and the leader's parent ignores SIGCHLD,
217 		 * then we are the one who should release the leader.
218 		 */
219 		zap_leader = do_notify_parent(leader, leader->exit_signal);
220 		if (zap_leader)
221 			leader->exit_state = EXIT_DEAD;
222 	}
223 
224 	write_unlock_irq(&tasklist_lock);
225 	seccomp_filter_release(p);
226 	proc_flush_pid(thread_pid);
227 	put_pid(thread_pid);
228 	release_thread(p);
229 	put_task_struct_rcu_user(p);
230 
231 	p = leader;
232 	if (unlikely(zap_leader))
233 		goto repeat;
234 }
235 
236 int rcuwait_wake_up(struct rcuwait *w)
237 {
238 	int ret = 0;
239 	struct task_struct *task;
240 
241 	rcu_read_lock();
242 
243 	/*
244 	 * Order condition vs @task, such that everything prior to the load
245 	 * of @task is visible. This is the condition as to why the user called
246 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
247 	 * barrier (A) in rcuwait_wait_event().
248 	 *
249 	 *    WAIT                WAKE
250 	 *    [S] tsk = current	  [S] cond = true
251 	 *        MB (A)	      MB (B)
252 	 *    [L] cond		  [L] tsk
253 	 */
254 	smp_mb(); /* (B) */
255 
256 	task = rcu_dereference(w->task);
257 	if (task)
258 		ret = wake_up_process(task);
259 	rcu_read_unlock();
260 
261 	return ret;
262 }
263 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
264 
265 /*
266  * Determine if a process group is "orphaned", according to the POSIX
267  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
268  * by terminal-generated stop signals.  Newly orphaned process groups are
269  * to receive a SIGHUP and a SIGCONT.
270  *
271  * "I ask you, have you ever known what it is to be an orphan?"
272  */
273 static int will_become_orphaned_pgrp(struct pid *pgrp,
274 					struct task_struct *ignored_task)
275 {
276 	struct task_struct *p;
277 
278 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
279 		if ((p == ignored_task) ||
280 		    (p->exit_state && thread_group_empty(p)) ||
281 		    is_global_init(p->real_parent))
282 			continue;
283 
284 		if (task_pgrp(p->real_parent) != pgrp &&
285 		    task_session(p->real_parent) == task_session(p))
286 			return 0;
287 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
288 
289 	return 1;
290 }
291 
292 int is_current_pgrp_orphaned(void)
293 {
294 	int retval;
295 
296 	read_lock(&tasklist_lock);
297 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
298 	read_unlock(&tasklist_lock);
299 
300 	return retval;
301 }
302 
303 static bool has_stopped_jobs(struct pid *pgrp)
304 {
305 	struct task_struct *p;
306 
307 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
308 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
309 			return true;
310 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
311 
312 	return false;
313 }
314 
315 /*
316  * Check to see if any process groups have become orphaned as
317  * a result of our exiting, and if they have any stopped jobs,
318  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
319  */
320 static void
321 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
322 {
323 	struct pid *pgrp = task_pgrp(tsk);
324 	struct task_struct *ignored_task = tsk;
325 
326 	if (!parent)
327 		/* exit: our father is in a different pgrp than
328 		 * we are and we were the only connection outside.
329 		 */
330 		parent = tsk->real_parent;
331 	else
332 		/* reparent: our child is in a different pgrp than
333 		 * we are, and it was the only connection outside.
334 		 */
335 		ignored_task = NULL;
336 
337 	if (task_pgrp(parent) != pgrp &&
338 	    task_session(parent) == task_session(tsk) &&
339 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
340 	    has_stopped_jobs(pgrp)) {
341 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
342 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
343 	}
344 }
345 
346 static void coredump_task_exit(struct task_struct *tsk)
347 {
348 	struct core_state *core_state;
349 
350 	/*
351 	 * Serialize with any possible pending coredump.
352 	 * We must hold siglock around checking core_state
353 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
354 	 * will increment ->nr_threads for each thread in the
355 	 * group without PF_POSTCOREDUMP set.
356 	 */
357 	spin_lock_irq(&tsk->sighand->siglock);
358 	tsk->flags |= PF_POSTCOREDUMP;
359 	core_state = tsk->signal->core_state;
360 	spin_unlock_irq(&tsk->sighand->siglock);
361 	if (core_state) {
362 		struct core_thread self;
363 
364 		self.task = current;
365 		if (self.task->flags & PF_SIGNALED)
366 			self.next = xchg(&core_state->dumper.next, &self);
367 		else
368 			self.task = NULL;
369 		/*
370 		 * Implies mb(), the result of xchg() must be visible
371 		 * to core_state->dumper.
372 		 */
373 		if (atomic_dec_and_test(&core_state->nr_threads))
374 			complete(&core_state->startup);
375 
376 		for (;;) {
377 			set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
378 			if (!self.task) /* see coredump_finish() */
379 				break;
380 			schedule();
381 		}
382 		__set_current_state(TASK_RUNNING);
383 	}
384 }
385 
386 #ifdef CONFIG_MEMCG
387 /*
388  * A task is exiting.   If it owned this mm, find a new owner for the mm.
389  */
390 void mm_update_next_owner(struct mm_struct *mm)
391 {
392 	struct task_struct *c, *g, *p = current;
393 
394 retry:
395 	/*
396 	 * If the exiting or execing task is not the owner, it's
397 	 * someone else's problem.
398 	 */
399 	if (mm->owner != p)
400 		return;
401 	/*
402 	 * The current owner is exiting/execing and there are no other
403 	 * candidates.  Do not leave the mm pointing to a possibly
404 	 * freed task structure.
405 	 */
406 	if (atomic_read(&mm->mm_users) <= 1) {
407 		WRITE_ONCE(mm->owner, NULL);
408 		return;
409 	}
410 
411 	read_lock(&tasklist_lock);
412 	/*
413 	 * Search in the children
414 	 */
415 	list_for_each_entry(c, &p->children, sibling) {
416 		if (c->mm == mm)
417 			goto assign_new_owner;
418 	}
419 
420 	/*
421 	 * Search in the siblings
422 	 */
423 	list_for_each_entry(c, &p->real_parent->children, sibling) {
424 		if (c->mm == mm)
425 			goto assign_new_owner;
426 	}
427 
428 	/*
429 	 * Search through everything else, we should not get here often.
430 	 */
431 	for_each_process(g) {
432 		if (g->flags & PF_KTHREAD)
433 			continue;
434 		for_each_thread(g, c) {
435 			if (c->mm == mm)
436 				goto assign_new_owner;
437 			if (c->mm)
438 				break;
439 		}
440 	}
441 	read_unlock(&tasklist_lock);
442 	/*
443 	 * We found no owner yet mm_users > 1: this implies that we are
444 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
445 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
446 	 */
447 	WRITE_ONCE(mm->owner, NULL);
448 	return;
449 
450 assign_new_owner:
451 	BUG_ON(c == p);
452 	get_task_struct(c);
453 	/*
454 	 * The task_lock protects c->mm from changing.
455 	 * We always want mm->owner->mm == mm
456 	 */
457 	task_lock(c);
458 	/*
459 	 * Delay read_unlock() till we have the task_lock()
460 	 * to ensure that c does not slip away underneath us
461 	 */
462 	read_unlock(&tasklist_lock);
463 	if (c->mm != mm) {
464 		task_unlock(c);
465 		put_task_struct(c);
466 		goto retry;
467 	}
468 	WRITE_ONCE(mm->owner, c);
469 	task_unlock(c);
470 	put_task_struct(c);
471 }
472 #endif /* CONFIG_MEMCG */
473 
474 /*
475  * Turn us into a lazy TLB process if we
476  * aren't already..
477  */
478 static void exit_mm(void)
479 {
480 	struct mm_struct *mm = current->mm;
481 
482 	exit_mm_release(current, mm);
483 	if (!mm)
484 		return;
485 	sync_mm_rss(mm);
486 	mmap_read_lock(mm);
487 	mmgrab(mm);
488 	BUG_ON(mm != current->active_mm);
489 	/* more a memory barrier than a real lock */
490 	task_lock(current);
491 	/*
492 	 * When a thread stops operating on an address space, the loop
493 	 * in membarrier_private_expedited() may not observe that
494 	 * tsk->mm, and the loop in membarrier_global_expedited() may
495 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
496 	 * rq->membarrier_state, so those would not issue an IPI.
497 	 * Membarrier requires a memory barrier after accessing
498 	 * user-space memory, before clearing tsk->mm or the
499 	 * rq->membarrier_state.
500 	 */
501 	smp_mb__after_spinlock();
502 	local_irq_disable();
503 	current->mm = NULL;
504 	membarrier_update_current_mm(NULL);
505 	enter_lazy_tlb(mm, current);
506 	local_irq_enable();
507 	task_unlock(current);
508 	mmap_read_unlock(mm);
509 	mm_update_next_owner(mm);
510 	mmput(mm);
511 	if (test_thread_flag(TIF_MEMDIE))
512 		exit_oom_victim();
513 }
514 
515 static struct task_struct *find_alive_thread(struct task_struct *p)
516 {
517 	struct task_struct *t;
518 
519 	for_each_thread(p, t) {
520 		if (!(t->flags & PF_EXITING))
521 			return t;
522 	}
523 	return NULL;
524 }
525 
526 static struct task_struct *find_child_reaper(struct task_struct *father,
527 						struct list_head *dead)
528 	__releases(&tasklist_lock)
529 	__acquires(&tasklist_lock)
530 {
531 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
532 	struct task_struct *reaper = pid_ns->child_reaper;
533 	struct task_struct *p, *n;
534 
535 	if (likely(reaper != father))
536 		return reaper;
537 
538 	reaper = find_alive_thread(father);
539 	if (reaper) {
540 		pid_ns->child_reaper = reaper;
541 		return reaper;
542 	}
543 
544 	write_unlock_irq(&tasklist_lock);
545 
546 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
547 		list_del_init(&p->ptrace_entry);
548 		release_task(p);
549 	}
550 
551 	zap_pid_ns_processes(pid_ns);
552 	write_lock_irq(&tasklist_lock);
553 
554 	return father;
555 }
556 
557 /*
558  * When we die, we re-parent all our children, and try to:
559  * 1. give them to another thread in our thread group, if such a member exists
560  * 2. give it to the first ancestor process which prctl'd itself as a
561  *    child_subreaper for its children (like a service manager)
562  * 3. give it to the init process (PID 1) in our pid namespace
563  */
564 static struct task_struct *find_new_reaper(struct task_struct *father,
565 					   struct task_struct *child_reaper)
566 {
567 	struct task_struct *thread, *reaper;
568 
569 	thread = find_alive_thread(father);
570 	if (thread)
571 		return thread;
572 
573 	if (father->signal->has_child_subreaper) {
574 		unsigned int ns_level = task_pid(father)->level;
575 		/*
576 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
577 		 * We can't check reaper != child_reaper to ensure we do not
578 		 * cross the namespaces, the exiting parent could be injected
579 		 * by setns() + fork().
580 		 * We check pid->level, this is slightly more efficient than
581 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
582 		 */
583 		for (reaper = father->real_parent;
584 		     task_pid(reaper)->level == ns_level;
585 		     reaper = reaper->real_parent) {
586 			if (reaper == &init_task)
587 				break;
588 			if (!reaper->signal->is_child_subreaper)
589 				continue;
590 			thread = find_alive_thread(reaper);
591 			if (thread)
592 				return thread;
593 		}
594 	}
595 
596 	return child_reaper;
597 }
598 
599 /*
600 * Any that need to be release_task'd are put on the @dead list.
601  */
602 static void reparent_leader(struct task_struct *father, struct task_struct *p,
603 				struct list_head *dead)
604 {
605 	if (unlikely(p->exit_state == EXIT_DEAD))
606 		return;
607 
608 	/* We don't want people slaying init. */
609 	p->exit_signal = SIGCHLD;
610 
611 	/* If it has exited notify the new parent about this child's death. */
612 	if (!p->ptrace &&
613 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
614 		if (do_notify_parent(p, p->exit_signal)) {
615 			p->exit_state = EXIT_DEAD;
616 			list_add(&p->ptrace_entry, dead);
617 		}
618 	}
619 
620 	kill_orphaned_pgrp(p, father);
621 }
622 
623 /*
624  * This does two things:
625  *
626  * A.  Make init inherit all the child processes
627  * B.  Check to see if any process groups have become orphaned
628  *	as a result of our exiting, and if they have any stopped
629  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
630  */
631 static void forget_original_parent(struct task_struct *father,
632 					struct list_head *dead)
633 {
634 	struct task_struct *p, *t, *reaper;
635 
636 	if (unlikely(!list_empty(&father->ptraced)))
637 		exit_ptrace(father, dead);
638 
639 	/* Can drop and reacquire tasklist_lock */
640 	reaper = find_child_reaper(father, dead);
641 	if (list_empty(&father->children))
642 		return;
643 
644 	reaper = find_new_reaper(father, reaper);
645 	list_for_each_entry(p, &father->children, sibling) {
646 		for_each_thread(p, t) {
647 			RCU_INIT_POINTER(t->real_parent, reaper);
648 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
649 			if (likely(!t->ptrace))
650 				t->parent = t->real_parent;
651 			if (t->pdeath_signal)
652 				group_send_sig_info(t->pdeath_signal,
653 						    SEND_SIG_NOINFO, t,
654 						    PIDTYPE_TGID);
655 		}
656 		/*
657 		 * If this is a threaded reparent there is no need to
658 		 * notify anyone anything has happened.
659 		 */
660 		if (!same_thread_group(reaper, father))
661 			reparent_leader(father, p, dead);
662 	}
663 	list_splice_tail_init(&father->children, &reaper->children);
664 }
665 
666 /*
667  * Send signals to all our closest relatives so that they know
668  * to properly mourn us..
669  */
670 static void exit_notify(struct task_struct *tsk, int group_dead)
671 {
672 	bool autoreap;
673 	struct task_struct *p, *n;
674 	LIST_HEAD(dead);
675 
676 	write_lock_irq(&tasklist_lock);
677 	forget_original_parent(tsk, &dead);
678 
679 	if (group_dead)
680 		kill_orphaned_pgrp(tsk->group_leader, NULL);
681 
682 	tsk->exit_state = EXIT_ZOMBIE;
683 	if (unlikely(tsk->ptrace)) {
684 		int sig = thread_group_leader(tsk) &&
685 				thread_group_empty(tsk) &&
686 				!ptrace_reparented(tsk) ?
687 			tsk->exit_signal : SIGCHLD;
688 		autoreap = do_notify_parent(tsk, sig);
689 	} else if (thread_group_leader(tsk)) {
690 		autoreap = thread_group_empty(tsk) &&
691 			do_notify_parent(tsk, tsk->exit_signal);
692 	} else {
693 		autoreap = true;
694 	}
695 
696 	if (autoreap) {
697 		tsk->exit_state = EXIT_DEAD;
698 		list_add(&tsk->ptrace_entry, &dead);
699 	}
700 
701 	/* mt-exec, de_thread() is waiting for group leader */
702 	if (unlikely(tsk->signal->notify_count < 0))
703 		wake_up_process(tsk->signal->group_exec_task);
704 	write_unlock_irq(&tasklist_lock);
705 
706 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
707 		list_del_init(&p->ptrace_entry);
708 		release_task(p);
709 	}
710 }
711 
712 #ifdef CONFIG_DEBUG_STACK_USAGE
713 static void check_stack_usage(void)
714 {
715 	static DEFINE_SPINLOCK(low_water_lock);
716 	static int lowest_to_date = THREAD_SIZE;
717 	unsigned long free;
718 
719 	free = stack_not_used(current);
720 
721 	if (free >= lowest_to_date)
722 		return;
723 
724 	spin_lock(&low_water_lock);
725 	if (free < lowest_to_date) {
726 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
727 			current->comm, task_pid_nr(current), free);
728 		lowest_to_date = free;
729 	}
730 	spin_unlock(&low_water_lock);
731 }
732 #else
733 static inline void check_stack_usage(void) {}
734 #endif
735 
736 static void synchronize_group_exit(struct task_struct *tsk, long code)
737 {
738 	struct sighand_struct *sighand = tsk->sighand;
739 	struct signal_struct *signal = tsk->signal;
740 
741 	spin_lock_irq(&sighand->siglock);
742 	signal->quick_threads--;
743 	if ((signal->quick_threads == 0) &&
744 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
745 		signal->flags = SIGNAL_GROUP_EXIT;
746 		signal->group_exit_code = code;
747 		signal->group_stop_count = 0;
748 	}
749 	spin_unlock_irq(&sighand->siglock);
750 }
751 
752 void __noreturn do_exit(long code)
753 {
754 	struct task_struct *tsk = current;
755 	int group_dead;
756 
757 	synchronize_group_exit(tsk, code);
758 
759 	WARN_ON(tsk->plug);
760 
761 	kcov_task_exit(tsk);
762 
763 	coredump_task_exit(tsk);
764 	ptrace_event(PTRACE_EVENT_EXIT, code);
765 
766 	validate_creds_for_do_exit(tsk);
767 
768 	io_uring_files_cancel();
769 	exit_signals(tsk);  /* sets PF_EXITING */
770 
771 	/* sync mm's RSS info before statistics gathering */
772 	if (tsk->mm)
773 		sync_mm_rss(tsk->mm);
774 	acct_update_integrals(tsk);
775 	group_dead = atomic_dec_and_test(&tsk->signal->live);
776 	if (group_dead) {
777 		/*
778 		 * If the last thread of global init has exited, panic
779 		 * immediately to get a useable coredump.
780 		 */
781 		if (unlikely(is_global_init(tsk)))
782 			panic("Attempted to kill init! exitcode=0x%08x\n",
783 				tsk->signal->group_exit_code ?: (int)code);
784 
785 #ifdef CONFIG_POSIX_TIMERS
786 		hrtimer_cancel(&tsk->signal->real_timer);
787 		exit_itimers(tsk);
788 #endif
789 		if (tsk->mm)
790 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
791 	}
792 	acct_collect(code, group_dead);
793 	if (group_dead)
794 		tty_audit_exit();
795 	audit_free(tsk);
796 
797 	tsk->exit_code = code;
798 	taskstats_exit(tsk, group_dead);
799 
800 	exit_mm();
801 
802 	if (group_dead)
803 		acct_process();
804 	trace_sched_process_exit(tsk);
805 
806 	exit_sem(tsk);
807 	exit_shm(tsk);
808 	exit_files(tsk);
809 	exit_fs(tsk);
810 	if (group_dead)
811 		disassociate_ctty(1);
812 	exit_task_namespaces(tsk);
813 	exit_task_work(tsk);
814 	exit_thread(tsk);
815 
816 	/*
817 	 * Flush inherited counters to the parent - before the parent
818 	 * gets woken up by child-exit notifications.
819 	 *
820 	 * because of cgroup mode, must be called before cgroup_exit()
821 	 */
822 	perf_event_exit_task(tsk);
823 
824 	sched_autogroup_exit_task(tsk);
825 	cgroup_exit(tsk);
826 
827 	/*
828 	 * FIXME: do that only when needed, using sched_exit tracepoint
829 	 */
830 	flush_ptrace_hw_breakpoint(tsk);
831 
832 	exit_tasks_rcu_start();
833 	exit_notify(tsk, group_dead);
834 	proc_exit_connector(tsk);
835 	mpol_put_task_policy(tsk);
836 #ifdef CONFIG_FUTEX
837 	if (unlikely(current->pi_state_cache))
838 		kfree(current->pi_state_cache);
839 #endif
840 	/*
841 	 * Make sure we are holding no locks:
842 	 */
843 	debug_check_no_locks_held();
844 
845 	if (tsk->io_context)
846 		exit_io_context(tsk);
847 
848 	if (tsk->splice_pipe)
849 		free_pipe_info(tsk->splice_pipe);
850 
851 	if (tsk->task_frag.page)
852 		put_page(tsk->task_frag.page);
853 
854 	validate_creds_for_do_exit(tsk);
855 	exit_task_stack_account(tsk);
856 
857 	check_stack_usage();
858 	preempt_disable();
859 	if (tsk->nr_dirtied)
860 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
861 	exit_rcu();
862 	exit_tasks_rcu_finish();
863 
864 	lockdep_free_task(tsk);
865 	do_task_dead();
866 }
867 
868 void __noreturn make_task_dead(int signr)
869 {
870 	/*
871 	 * Take the task off the cpu after something catastrophic has
872 	 * happened.
873 	 *
874 	 * We can get here from a kernel oops, sometimes with preemption off.
875 	 * Start by checking for critical errors.
876 	 * Then fix up important state like USER_DS and preemption.
877 	 * Then do everything else.
878 	 */
879 	struct task_struct *tsk = current;
880 
881 	if (unlikely(in_interrupt()))
882 		panic("Aiee, killing interrupt handler!");
883 	if (unlikely(!tsk->pid))
884 		panic("Attempted to kill the idle task!");
885 
886 	if (unlikely(in_atomic())) {
887 		pr_info("note: %s[%d] exited with preempt_count %d\n",
888 			current->comm, task_pid_nr(current),
889 			preempt_count());
890 		preempt_count_set(PREEMPT_ENABLED);
891 	}
892 
893 	/*
894 	 * We're taking recursive faults here in make_task_dead. Safest is to just
895 	 * leave this task alone and wait for reboot.
896 	 */
897 	if (unlikely(tsk->flags & PF_EXITING)) {
898 		pr_alert("Fixing recursive fault but reboot is needed!\n");
899 		futex_exit_recursive(tsk);
900 		tsk->exit_state = EXIT_DEAD;
901 		refcount_inc(&tsk->rcu_users);
902 		do_task_dead();
903 	}
904 
905 	do_exit(signr);
906 }
907 
908 SYSCALL_DEFINE1(exit, int, error_code)
909 {
910 	do_exit((error_code&0xff)<<8);
911 }
912 
913 /*
914  * Take down every thread in the group.  This is called by fatal signals
915  * as well as by sys_exit_group (below).
916  */
917 void __noreturn
918 do_group_exit(int exit_code)
919 {
920 	struct signal_struct *sig = current->signal;
921 
922 	if (sig->flags & SIGNAL_GROUP_EXIT)
923 		exit_code = sig->group_exit_code;
924 	else if (sig->group_exec_task)
925 		exit_code = 0;
926 	else {
927 		struct sighand_struct *const sighand = current->sighand;
928 
929 		spin_lock_irq(&sighand->siglock);
930 		if (sig->flags & SIGNAL_GROUP_EXIT)
931 			/* Another thread got here before we took the lock.  */
932 			exit_code = sig->group_exit_code;
933 		else if (sig->group_exec_task)
934 			exit_code = 0;
935 		else {
936 			sig->group_exit_code = exit_code;
937 			sig->flags = SIGNAL_GROUP_EXIT;
938 			zap_other_threads(current);
939 		}
940 		spin_unlock_irq(&sighand->siglock);
941 	}
942 
943 	do_exit(exit_code);
944 	/* NOTREACHED */
945 }
946 
947 /*
948  * this kills every thread in the thread group. Note that any externally
949  * wait4()-ing process will get the correct exit code - even if this
950  * thread is not the thread group leader.
951  */
952 SYSCALL_DEFINE1(exit_group, int, error_code)
953 {
954 	do_group_exit((error_code & 0xff) << 8);
955 	/* NOTREACHED */
956 	return 0;
957 }
958 
959 struct waitid_info {
960 	pid_t pid;
961 	uid_t uid;
962 	int status;
963 	int cause;
964 };
965 
966 struct wait_opts {
967 	enum pid_type		wo_type;
968 	int			wo_flags;
969 	struct pid		*wo_pid;
970 
971 	struct waitid_info	*wo_info;
972 	int			wo_stat;
973 	struct rusage		*wo_rusage;
974 
975 	wait_queue_entry_t		child_wait;
976 	int			notask_error;
977 };
978 
979 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
980 {
981 	return	wo->wo_type == PIDTYPE_MAX ||
982 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
983 }
984 
985 static int
986 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
987 {
988 	if (!eligible_pid(wo, p))
989 		return 0;
990 
991 	/*
992 	 * Wait for all children (clone and not) if __WALL is set or
993 	 * if it is traced by us.
994 	 */
995 	if (ptrace || (wo->wo_flags & __WALL))
996 		return 1;
997 
998 	/*
999 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1000 	 * otherwise, wait for non-clone children *only*.
1001 	 *
1002 	 * Note: a "clone" child here is one that reports to its parent
1003 	 * using a signal other than SIGCHLD, or a non-leader thread which
1004 	 * we can only see if it is traced by us.
1005 	 */
1006 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1007 		return 0;
1008 
1009 	return 1;
1010 }
1011 
1012 /*
1013  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1014  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1015  * the lock and this task is uninteresting.  If we return nonzero, we have
1016  * released the lock and the system call should return.
1017  */
1018 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1019 {
1020 	int state, status;
1021 	pid_t pid = task_pid_vnr(p);
1022 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1023 	struct waitid_info *infop;
1024 
1025 	if (!likely(wo->wo_flags & WEXITED))
1026 		return 0;
1027 
1028 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1029 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1030 			? p->signal->group_exit_code : p->exit_code;
1031 		get_task_struct(p);
1032 		read_unlock(&tasklist_lock);
1033 		sched_annotate_sleep();
1034 		if (wo->wo_rusage)
1035 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1036 		put_task_struct(p);
1037 		goto out_info;
1038 	}
1039 	/*
1040 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1041 	 */
1042 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1043 		EXIT_TRACE : EXIT_DEAD;
1044 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1045 		return 0;
1046 	/*
1047 	 * We own this thread, nobody else can reap it.
1048 	 */
1049 	read_unlock(&tasklist_lock);
1050 	sched_annotate_sleep();
1051 
1052 	/*
1053 	 * Check thread_group_leader() to exclude the traced sub-threads.
1054 	 */
1055 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1056 		struct signal_struct *sig = p->signal;
1057 		struct signal_struct *psig = current->signal;
1058 		unsigned long maxrss;
1059 		u64 tgutime, tgstime;
1060 
1061 		/*
1062 		 * The resource counters for the group leader are in its
1063 		 * own task_struct.  Those for dead threads in the group
1064 		 * are in its signal_struct, as are those for the child
1065 		 * processes it has previously reaped.  All these
1066 		 * accumulate in the parent's signal_struct c* fields.
1067 		 *
1068 		 * We don't bother to take a lock here to protect these
1069 		 * p->signal fields because the whole thread group is dead
1070 		 * and nobody can change them.
1071 		 *
1072 		 * psig->stats_lock also protects us from our sub-threads
1073 		 * which can reap other children at the same time. Until
1074 		 * we change k_getrusage()-like users to rely on this lock
1075 		 * we have to take ->siglock as well.
1076 		 *
1077 		 * We use thread_group_cputime_adjusted() to get times for
1078 		 * the thread group, which consolidates times for all threads
1079 		 * in the group including the group leader.
1080 		 */
1081 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1082 		spin_lock_irq(&current->sighand->siglock);
1083 		write_seqlock(&psig->stats_lock);
1084 		psig->cutime += tgutime + sig->cutime;
1085 		psig->cstime += tgstime + sig->cstime;
1086 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1087 		psig->cmin_flt +=
1088 			p->min_flt + sig->min_flt + sig->cmin_flt;
1089 		psig->cmaj_flt +=
1090 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1091 		psig->cnvcsw +=
1092 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1093 		psig->cnivcsw +=
1094 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1095 		psig->cinblock +=
1096 			task_io_get_inblock(p) +
1097 			sig->inblock + sig->cinblock;
1098 		psig->coublock +=
1099 			task_io_get_oublock(p) +
1100 			sig->oublock + sig->coublock;
1101 		maxrss = max(sig->maxrss, sig->cmaxrss);
1102 		if (psig->cmaxrss < maxrss)
1103 			psig->cmaxrss = maxrss;
1104 		task_io_accounting_add(&psig->ioac, &p->ioac);
1105 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1106 		write_sequnlock(&psig->stats_lock);
1107 		spin_unlock_irq(&current->sighand->siglock);
1108 	}
1109 
1110 	if (wo->wo_rusage)
1111 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1112 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1113 		? p->signal->group_exit_code : p->exit_code;
1114 	wo->wo_stat = status;
1115 
1116 	if (state == EXIT_TRACE) {
1117 		write_lock_irq(&tasklist_lock);
1118 		/* We dropped tasklist, ptracer could die and untrace */
1119 		ptrace_unlink(p);
1120 
1121 		/* If parent wants a zombie, don't release it now */
1122 		state = EXIT_ZOMBIE;
1123 		if (do_notify_parent(p, p->exit_signal))
1124 			state = EXIT_DEAD;
1125 		p->exit_state = state;
1126 		write_unlock_irq(&tasklist_lock);
1127 	}
1128 	if (state == EXIT_DEAD)
1129 		release_task(p);
1130 
1131 out_info:
1132 	infop = wo->wo_info;
1133 	if (infop) {
1134 		if ((status & 0x7f) == 0) {
1135 			infop->cause = CLD_EXITED;
1136 			infop->status = status >> 8;
1137 		} else {
1138 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1139 			infop->status = status & 0x7f;
1140 		}
1141 		infop->pid = pid;
1142 		infop->uid = uid;
1143 	}
1144 
1145 	return pid;
1146 }
1147 
1148 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1149 {
1150 	if (ptrace) {
1151 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1152 			return &p->exit_code;
1153 	} else {
1154 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1155 			return &p->signal->group_exit_code;
1156 	}
1157 	return NULL;
1158 }
1159 
1160 /**
1161  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1162  * @wo: wait options
1163  * @ptrace: is the wait for ptrace
1164  * @p: task to wait for
1165  *
1166  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1167  *
1168  * CONTEXT:
1169  * read_lock(&tasklist_lock), which is released if return value is
1170  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1171  *
1172  * RETURNS:
1173  * 0 if wait condition didn't exist and search for other wait conditions
1174  * should continue.  Non-zero return, -errno on failure and @p's pid on
1175  * success, implies that tasklist_lock is released and wait condition
1176  * search should terminate.
1177  */
1178 static int wait_task_stopped(struct wait_opts *wo,
1179 				int ptrace, struct task_struct *p)
1180 {
1181 	struct waitid_info *infop;
1182 	int exit_code, *p_code, why;
1183 	uid_t uid = 0; /* unneeded, required by compiler */
1184 	pid_t pid;
1185 
1186 	/*
1187 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1188 	 */
1189 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1190 		return 0;
1191 
1192 	if (!task_stopped_code(p, ptrace))
1193 		return 0;
1194 
1195 	exit_code = 0;
1196 	spin_lock_irq(&p->sighand->siglock);
1197 
1198 	p_code = task_stopped_code(p, ptrace);
1199 	if (unlikely(!p_code))
1200 		goto unlock_sig;
1201 
1202 	exit_code = *p_code;
1203 	if (!exit_code)
1204 		goto unlock_sig;
1205 
1206 	if (!unlikely(wo->wo_flags & WNOWAIT))
1207 		*p_code = 0;
1208 
1209 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1210 unlock_sig:
1211 	spin_unlock_irq(&p->sighand->siglock);
1212 	if (!exit_code)
1213 		return 0;
1214 
1215 	/*
1216 	 * Now we are pretty sure this task is interesting.
1217 	 * Make sure it doesn't get reaped out from under us while we
1218 	 * give up the lock and then examine it below.  We don't want to
1219 	 * keep holding onto the tasklist_lock while we call getrusage and
1220 	 * possibly take page faults for user memory.
1221 	 */
1222 	get_task_struct(p);
1223 	pid = task_pid_vnr(p);
1224 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1225 	read_unlock(&tasklist_lock);
1226 	sched_annotate_sleep();
1227 	if (wo->wo_rusage)
1228 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1229 	put_task_struct(p);
1230 
1231 	if (likely(!(wo->wo_flags & WNOWAIT)))
1232 		wo->wo_stat = (exit_code << 8) | 0x7f;
1233 
1234 	infop = wo->wo_info;
1235 	if (infop) {
1236 		infop->cause = why;
1237 		infop->status = exit_code;
1238 		infop->pid = pid;
1239 		infop->uid = uid;
1240 	}
1241 	return pid;
1242 }
1243 
1244 /*
1245  * Handle do_wait work for one task in a live, non-stopped state.
1246  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1247  * the lock and this task is uninteresting.  If we return nonzero, we have
1248  * released the lock and the system call should return.
1249  */
1250 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1251 {
1252 	struct waitid_info *infop;
1253 	pid_t pid;
1254 	uid_t uid;
1255 
1256 	if (!unlikely(wo->wo_flags & WCONTINUED))
1257 		return 0;
1258 
1259 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1260 		return 0;
1261 
1262 	spin_lock_irq(&p->sighand->siglock);
1263 	/* Re-check with the lock held.  */
1264 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1265 		spin_unlock_irq(&p->sighand->siglock);
1266 		return 0;
1267 	}
1268 	if (!unlikely(wo->wo_flags & WNOWAIT))
1269 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1270 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1271 	spin_unlock_irq(&p->sighand->siglock);
1272 
1273 	pid = task_pid_vnr(p);
1274 	get_task_struct(p);
1275 	read_unlock(&tasklist_lock);
1276 	sched_annotate_sleep();
1277 	if (wo->wo_rusage)
1278 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1279 	put_task_struct(p);
1280 
1281 	infop = wo->wo_info;
1282 	if (!infop) {
1283 		wo->wo_stat = 0xffff;
1284 	} else {
1285 		infop->cause = CLD_CONTINUED;
1286 		infop->pid = pid;
1287 		infop->uid = uid;
1288 		infop->status = SIGCONT;
1289 	}
1290 	return pid;
1291 }
1292 
1293 /*
1294  * Consider @p for a wait by @parent.
1295  *
1296  * -ECHILD should be in ->notask_error before the first call.
1297  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1298  * Returns zero if the search for a child should continue;
1299  * then ->notask_error is 0 if @p is an eligible child,
1300  * or still -ECHILD.
1301  */
1302 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1303 				struct task_struct *p)
1304 {
1305 	/*
1306 	 * We can race with wait_task_zombie() from another thread.
1307 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1308 	 * can't confuse the checks below.
1309 	 */
1310 	int exit_state = READ_ONCE(p->exit_state);
1311 	int ret;
1312 
1313 	if (unlikely(exit_state == EXIT_DEAD))
1314 		return 0;
1315 
1316 	ret = eligible_child(wo, ptrace, p);
1317 	if (!ret)
1318 		return ret;
1319 
1320 	if (unlikely(exit_state == EXIT_TRACE)) {
1321 		/*
1322 		 * ptrace == 0 means we are the natural parent. In this case
1323 		 * we should clear notask_error, debugger will notify us.
1324 		 */
1325 		if (likely(!ptrace))
1326 			wo->notask_error = 0;
1327 		return 0;
1328 	}
1329 
1330 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1331 		/*
1332 		 * If it is traced by its real parent's group, just pretend
1333 		 * the caller is ptrace_do_wait() and reap this child if it
1334 		 * is zombie.
1335 		 *
1336 		 * This also hides group stop state from real parent; otherwise
1337 		 * a single stop can be reported twice as group and ptrace stop.
1338 		 * If a ptracer wants to distinguish these two events for its
1339 		 * own children it should create a separate process which takes
1340 		 * the role of real parent.
1341 		 */
1342 		if (!ptrace_reparented(p))
1343 			ptrace = 1;
1344 	}
1345 
1346 	/* slay zombie? */
1347 	if (exit_state == EXIT_ZOMBIE) {
1348 		/* we don't reap group leaders with subthreads */
1349 		if (!delay_group_leader(p)) {
1350 			/*
1351 			 * A zombie ptracee is only visible to its ptracer.
1352 			 * Notification and reaping will be cascaded to the
1353 			 * real parent when the ptracer detaches.
1354 			 */
1355 			if (unlikely(ptrace) || likely(!p->ptrace))
1356 				return wait_task_zombie(wo, p);
1357 		}
1358 
1359 		/*
1360 		 * Allow access to stopped/continued state via zombie by
1361 		 * falling through.  Clearing of notask_error is complex.
1362 		 *
1363 		 * When !@ptrace:
1364 		 *
1365 		 * If WEXITED is set, notask_error should naturally be
1366 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1367 		 * so, if there are live subthreads, there are events to
1368 		 * wait for.  If all subthreads are dead, it's still safe
1369 		 * to clear - this function will be called again in finite
1370 		 * amount time once all the subthreads are released and
1371 		 * will then return without clearing.
1372 		 *
1373 		 * When @ptrace:
1374 		 *
1375 		 * Stopped state is per-task and thus can't change once the
1376 		 * target task dies.  Only continued and exited can happen.
1377 		 * Clear notask_error if WCONTINUED | WEXITED.
1378 		 */
1379 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1380 			wo->notask_error = 0;
1381 	} else {
1382 		/*
1383 		 * @p is alive and it's gonna stop, continue or exit, so
1384 		 * there always is something to wait for.
1385 		 */
1386 		wo->notask_error = 0;
1387 	}
1388 
1389 	/*
1390 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1391 	 * is used and the two don't interact with each other.
1392 	 */
1393 	ret = wait_task_stopped(wo, ptrace, p);
1394 	if (ret)
1395 		return ret;
1396 
1397 	/*
1398 	 * Wait for continued.  There's only one continued state and the
1399 	 * ptracer can consume it which can confuse the real parent.  Don't
1400 	 * use WCONTINUED from ptracer.  You don't need or want it.
1401 	 */
1402 	return wait_task_continued(wo, p);
1403 }
1404 
1405 /*
1406  * Do the work of do_wait() for one thread in the group, @tsk.
1407  *
1408  * -ECHILD should be in ->notask_error before the first call.
1409  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1410  * Returns zero if the search for a child should continue; then
1411  * ->notask_error is 0 if there were any eligible children,
1412  * or still -ECHILD.
1413  */
1414 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1415 {
1416 	struct task_struct *p;
1417 
1418 	list_for_each_entry(p, &tsk->children, sibling) {
1419 		int ret = wait_consider_task(wo, 0, p);
1420 
1421 		if (ret)
1422 			return ret;
1423 	}
1424 
1425 	return 0;
1426 }
1427 
1428 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1429 {
1430 	struct task_struct *p;
1431 
1432 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1433 		int ret = wait_consider_task(wo, 1, p);
1434 
1435 		if (ret)
1436 			return ret;
1437 	}
1438 
1439 	return 0;
1440 }
1441 
1442 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1443 				int sync, void *key)
1444 {
1445 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1446 						child_wait);
1447 	struct task_struct *p = key;
1448 
1449 	if (!eligible_pid(wo, p))
1450 		return 0;
1451 
1452 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1453 		return 0;
1454 
1455 	return default_wake_function(wait, mode, sync, key);
1456 }
1457 
1458 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1459 {
1460 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1461 			   TASK_INTERRUPTIBLE, p);
1462 }
1463 
1464 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1465 				 struct task_struct *target)
1466 {
1467 	struct task_struct *parent =
1468 		!ptrace ? target->real_parent : target->parent;
1469 
1470 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1471 				     same_thread_group(current, parent));
1472 }
1473 
1474 /*
1475  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1476  * and tracee lists to find the target task.
1477  */
1478 static int do_wait_pid(struct wait_opts *wo)
1479 {
1480 	bool ptrace;
1481 	struct task_struct *target;
1482 	int retval;
1483 
1484 	ptrace = false;
1485 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1486 	if (target && is_effectively_child(wo, ptrace, target)) {
1487 		retval = wait_consider_task(wo, ptrace, target);
1488 		if (retval)
1489 			return retval;
1490 	}
1491 
1492 	ptrace = true;
1493 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1494 	if (target && target->ptrace &&
1495 	    is_effectively_child(wo, ptrace, target)) {
1496 		retval = wait_consider_task(wo, ptrace, target);
1497 		if (retval)
1498 			return retval;
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 static long do_wait(struct wait_opts *wo)
1505 {
1506 	int retval;
1507 
1508 	trace_sched_process_wait(wo->wo_pid);
1509 
1510 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1511 	wo->child_wait.private = current;
1512 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1513 repeat:
1514 	/*
1515 	 * If there is nothing that can match our criteria, just get out.
1516 	 * We will clear ->notask_error to zero if we see any child that
1517 	 * might later match our criteria, even if we are not able to reap
1518 	 * it yet.
1519 	 */
1520 	wo->notask_error = -ECHILD;
1521 	if ((wo->wo_type < PIDTYPE_MAX) &&
1522 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1523 		goto notask;
1524 
1525 	set_current_state(TASK_INTERRUPTIBLE);
1526 	read_lock(&tasklist_lock);
1527 
1528 	if (wo->wo_type == PIDTYPE_PID) {
1529 		retval = do_wait_pid(wo);
1530 		if (retval)
1531 			goto end;
1532 	} else {
1533 		struct task_struct *tsk = current;
1534 
1535 		do {
1536 			retval = do_wait_thread(wo, tsk);
1537 			if (retval)
1538 				goto end;
1539 
1540 			retval = ptrace_do_wait(wo, tsk);
1541 			if (retval)
1542 				goto end;
1543 
1544 			if (wo->wo_flags & __WNOTHREAD)
1545 				break;
1546 		} while_each_thread(current, tsk);
1547 	}
1548 	read_unlock(&tasklist_lock);
1549 
1550 notask:
1551 	retval = wo->notask_error;
1552 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1553 		retval = -ERESTARTSYS;
1554 		if (!signal_pending(current)) {
1555 			schedule();
1556 			goto repeat;
1557 		}
1558 	}
1559 end:
1560 	__set_current_state(TASK_RUNNING);
1561 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1562 	return retval;
1563 }
1564 
1565 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1566 			  int options, struct rusage *ru)
1567 {
1568 	struct wait_opts wo;
1569 	struct pid *pid = NULL;
1570 	enum pid_type type;
1571 	long ret;
1572 	unsigned int f_flags = 0;
1573 
1574 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1575 			__WNOTHREAD|__WCLONE|__WALL))
1576 		return -EINVAL;
1577 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1578 		return -EINVAL;
1579 
1580 	switch (which) {
1581 	case P_ALL:
1582 		type = PIDTYPE_MAX;
1583 		break;
1584 	case P_PID:
1585 		type = PIDTYPE_PID;
1586 		if (upid <= 0)
1587 			return -EINVAL;
1588 
1589 		pid = find_get_pid(upid);
1590 		break;
1591 	case P_PGID:
1592 		type = PIDTYPE_PGID;
1593 		if (upid < 0)
1594 			return -EINVAL;
1595 
1596 		if (upid)
1597 			pid = find_get_pid(upid);
1598 		else
1599 			pid = get_task_pid(current, PIDTYPE_PGID);
1600 		break;
1601 	case P_PIDFD:
1602 		type = PIDTYPE_PID;
1603 		if (upid < 0)
1604 			return -EINVAL;
1605 
1606 		pid = pidfd_get_pid(upid, &f_flags);
1607 		if (IS_ERR(pid))
1608 			return PTR_ERR(pid);
1609 
1610 		break;
1611 	default:
1612 		return -EINVAL;
1613 	}
1614 
1615 	wo.wo_type	= type;
1616 	wo.wo_pid	= pid;
1617 	wo.wo_flags	= options;
1618 	wo.wo_info	= infop;
1619 	wo.wo_rusage	= ru;
1620 	if (f_flags & O_NONBLOCK)
1621 		wo.wo_flags |= WNOHANG;
1622 
1623 	ret = do_wait(&wo);
1624 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1625 		ret = -EAGAIN;
1626 
1627 	put_pid(pid);
1628 	return ret;
1629 }
1630 
1631 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1632 		infop, int, options, struct rusage __user *, ru)
1633 {
1634 	struct rusage r;
1635 	struct waitid_info info = {.status = 0};
1636 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1637 	int signo = 0;
1638 
1639 	if (err > 0) {
1640 		signo = SIGCHLD;
1641 		err = 0;
1642 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1643 			return -EFAULT;
1644 	}
1645 	if (!infop)
1646 		return err;
1647 
1648 	if (!user_write_access_begin(infop, sizeof(*infop)))
1649 		return -EFAULT;
1650 
1651 	unsafe_put_user(signo, &infop->si_signo, Efault);
1652 	unsafe_put_user(0, &infop->si_errno, Efault);
1653 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1654 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1655 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1656 	unsafe_put_user(info.status, &infop->si_status, Efault);
1657 	user_write_access_end();
1658 	return err;
1659 Efault:
1660 	user_write_access_end();
1661 	return -EFAULT;
1662 }
1663 
1664 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1665 		  struct rusage *ru)
1666 {
1667 	struct wait_opts wo;
1668 	struct pid *pid = NULL;
1669 	enum pid_type type;
1670 	long ret;
1671 
1672 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1673 			__WNOTHREAD|__WCLONE|__WALL))
1674 		return -EINVAL;
1675 
1676 	/* -INT_MIN is not defined */
1677 	if (upid == INT_MIN)
1678 		return -ESRCH;
1679 
1680 	if (upid == -1)
1681 		type = PIDTYPE_MAX;
1682 	else if (upid < 0) {
1683 		type = PIDTYPE_PGID;
1684 		pid = find_get_pid(-upid);
1685 	} else if (upid == 0) {
1686 		type = PIDTYPE_PGID;
1687 		pid = get_task_pid(current, PIDTYPE_PGID);
1688 	} else /* upid > 0 */ {
1689 		type = PIDTYPE_PID;
1690 		pid = find_get_pid(upid);
1691 	}
1692 
1693 	wo.wo_type	= type;
1694 	wo.wo_pid	= pid;
1695 	wo.wo_flags	= options | WEXITED;
1696 	wo.wo_info	= NULL;
1697 	wo.wo_stat	= 0;
1698 	wo.wo_rusage	= ru;
1699 	ret = do_wait(&wo);
1700 	put_pid(pid);
1701 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1702 		ret = -EFAULT;
1703 
1704 	return ret;
1705 }
1706 
1707 int kernel_wait(pid_t pid, int *stat)
1708 {
1709 	struct wait_opts wo = {
1710 		.wo_type	= PIDTYPE_PID,
1711 		.wo_pid		= find_get_pid(pid),
1712 		.wo_flags	= WEXITED,
1713 	};
1714 	int ret;
1715 
1716 	ret = do_wait(&wo);
1717 	if (ret > 0 && wo.wo_stat)
1718 		*stat = wo.wo_stat;
1719 	put_pid(wo.wo_pid);
1720 	return ret;
1721 }
1722 
1723 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1724 		int, options, struct rusage __user *, ru)
1725 {
1726 	struct rusage r;
1727 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1728 
1729 	if (err > 0) {
1730 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1731 			return -EFAULT;
1732 	}
1733 	return err;
1734 }
1735 
1736 #ifdef __ARCH_WANT_SYS_WAITPID
1737 
1738 /*
1739  * sys_waitpid() remains for compatibility. waitpid() should be
1740  * implemented by calling sys_wait4() from libc.a.
1741  */
1742 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1743 {
1744 	return kernel_wait4(pid, stat_addr, options, NULL);
1745 }
1746 
1747 #endif
1748 
1749 #ifdef CONFIG_COMPAT
1750 COMPAT_SYSCALL_DEFINE4(wait4,
1751 	compat_pid_t, pid,
1752 	compat_uint_t __user *, stat_addr,
1753 	int, options,
1754 	struct compat_rusage __user *, ru)
1755 {
1756 	struct rusage r;
1757 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1758 	if (err > 0) {
1759 		if (ru && put_compat_rusage(&r, ru))
1760 			return -EFAULT;
1761 	}
1762 	return err;
1763 }
1764 
1765 COMPAT_SYSCALL_DEFINE5(waitid,
1766 		int, which, compat_pid_t, pid,
1767 		struct compat_siginfo __user *, infop, int, options,
1768 		struct compat_rusage __user *, uru)
1769 {
1770 	struct rusage ru;
1771 	struct waitid_info info = {.status = 0};
1772 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1773 	int signo = 0;
1774 	if (err > 0) {
1775 		signo = SIGCHLD;
1776 		err = 0;
1777 		if (uru) {
1778 			/* kernel_waitid() overwrites everything in ru */
1779 			if (COMPAT_USE_64BIT_TIME)
1780 				err = copy_to_user(uru, &ru, sizeof(ru));
1781 			else
1782 				err = put_compat_rusage(&ru, uru);
1783 			if (err)
1784 				return -EFAULT;
1785 		}
1786 	}
1787 
1788 	if (!infop)
1789 		return err;
1790 
1791 	if (!user_write_access_begin(infop, sizeof(*infop)))
1792 		return -EFAULT;
1793 
1794 	unsafe_put_user(signo, &infop->si_signo, Efault);
1795 	unsafe_put_user(0, &infop->si_errno, Efault);
1796 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1797 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1798 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1799 	unsafe_put_user(info.status, &infop->si_status, Efault);
1800 	user_write_access_end();
1801 	return err;
1802 Efault:
1803 	user_write_access_end();
1804 	return -EFAULT;
1805 }
1806 #endif
1807 
1808 /**
1809  * thread_group_exited - check that a thread group has exited
1810  * @pid: tgid of thread group to be checked.
1811  *
1812  * Test if the thread group represented by tgid has exited (all
1813  * threads are zombies, dead or completely gone).
1814  *
1815  * Return: true if the thread group has exited. false otherwise.
1816  */
1817 bool thread_group_exited(struct pid *pid)
1818 {
1819 	struct task_struct *task;
1820 	bool exited;
1821 
1822 	rcu_read_lock();
1823 	task = pid_task(pid, PIDTYPE_PID);
1824 	exited = !task ||
1825 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1826 	rcu_read_unlock();
1827 
1828 	return exited;
1829 }
1830 EXPORT_SYMBOL(thread_group_exited);
1831 
1832 __weak void abort(void)
1833 {
1834 	BUG();
1835 
1836 	/* if that doesn't kill us, halt */
1837 	panic("Oops failed to kill thread");
1838 }
1839 EXPORT_SYMBOL(abort);
1840