1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/freezer.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 #include <linux/writeback.h> 55 #include <linux/shm.h> 56 57 #include <asm/uaccess.h> 58 #include <asm/unistd.h> 59 #include <asm/pgtable.h> 60 #include <asm/mmu_context.h> 61 62 static void exit_mm(struct task_struct *tsk); 63 64 static void __unhash_process(struct task_struct *p, bool group_dead) 65 { 66 nr_threads--; 67 detach_pid(p, PIDTYPE_PID); 68 if (group_dead) { 69 detach_pid(p, PIDTYPE_PGID); 70 detach_pid(p, PIDTYPE_SID); 71 72 list_del_rcu(&p->tasks); 73 list_del_init(&p->sibling); 74 __this_cpu_dec(process_counts); 75 } 76 list_del_rcu(&p->thread_group); 77 list_del_rcu(&p->thread_node); 78 } 79 80 /* 81 * This function expects the tasklist_lock write-locked. 82 */ 83 static void __exit_signal(struct task_struct *tsk) 84 { 85 struct signal_struct *sig = tsk->signal; 86 bool group_dead = thread_group_leader(tsk); 87 struct sighand_struct *sighand; 88 struct tty_struct *uninitialized_var(tty); 89 cputime_t utime, stime; 90 91 sighand = rcu_dereference_check(tsk->sighand, 92 lockdep_tasklist_lock_is_held()); 93 spin_lock(&sighand->siglock); 94 95 posix_cpu_timers_exit(tsk); 96 if (group_dead) { 97 posix_cpu_timers_exit_group(tsk); 98 tty = sig->tty; 99 sig->tty = NULL; 100 } else { 101 /* 102 * This can only happen if the caller is de_thread(). 103 * FIXME: this is the temporary hack, we should teach 104 * posix-cpu-timers to handle this case correctly. 105 */ 106 if (unlikely(has_group_leader_pid(tsk))) 107 posix_cpu_timers_exit_group(tsk); 108 109 /* 110 * If there is any task waiting for the group exit 111 * then notify it: 112 */ 113 if (sig->notify_count > 0 && !--sig->notify_count) 114 wake_up_process(sig->group_exit_task); 115 116 if (tsk == sig->curr_target) 117 sig->curr_target = next_thread(tsk); 118 } 119 120 /* 121 * Accumulate here the counters for all threads as they die. We could 122 * skip the group leader because it is the last user of signal_struct, 123 * but we want to avoid the race with thread_group_cputime() which can 124 * see the empty ->thread_head list. 125 */ 126 task_cputime(tsk, &utime, &stime); 127 write_seqlock(&sig->stats_lock); 128 sig->utime += utime; 129 sig->stime += stime; 130 sig->gtime += task_gtime(tsk); 131 sig->min_flt += tsk->min_flt; 132 sig->maj_flt += tsk->maj_flt; 133 sig->nvcsw += tsk->nvcsw; 134 sig->nivcsw += tsk->nivcsw; 135 sig->inblock += task_io_get_inblock(tsk); 136 sig->oublock += task_io_get_oublock(tsk); 137 task_io_accounting_add(&sig->ioac, &tsk->ioac); 138 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 139 sig->nr_threads--; 140 __unhash_process(tsk, group_dead); 141 write_sequnlock(&sig->stats_lock); 142 143 /* 144 * Do this under ->siglock, we can race with another thread 145 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 146 */ 147 flush_sigqueue(&tsk->pending); 148 tsk->sighand = NULL; 149 spin_unlock(&sighand->siglock); 150 151 __cleanup_sighand(sighand); 152 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 153 if (group_dead) { 154 flush_sigqueue(&sig->shared_pending); 155 tty_kref_put(tty); 156 } 157 } 158 159 static void delayed_put_task_struct(struct rcu_head *rhp) 160 { 161 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 162 163 perf_event_delayed_put(tsk); 164 trace_sched_process_free(tsk); 165 put_task_struct(tsk); 166 } 167 168 169 void release_task(struct task_struct *p) 170 { 171 struct task_struct *leader; 172 int zap_leader; 173 repeat: 174 /* don't need to get the RCU readlock here - the process is dead and 175 * can't be modifying its own credentials. But shut RCU-lockdep up */ 176 rcu_read_lock(); 177 atomic_dec(&__task_cred(p)->user->processes); 178 rcu_read_unlock(); 179 180 proc_flush_task(p); 181 182 write_lock_irq(&tasklist_lock); 183 ptrace_release_task(p); 184 __exit_signal(p); 185 186 /* 187 * If we are the last non-leader member of the thread 188 * group, and the leader is zombie, then notify the 189 * group leader's parent process. (if it wants notification.) 190 */ 191 zap_leader = 0; 192 leader = p->group_leader; 193 if (leader != p && thread_group_empty(leader) 194 && leader->exit_state == EXIT_ZOMBIE) { 195 /* 196 * If we were the last child thread and the leader has 197 * exited already, and the leader's parent ignores SIGCHLD, 198 * then we are the one who should release the leader. 199 */ 200 zap_leader = do_notify_parent(leader, leader->exit_signal); 201 if (zap_leader) 202 leader->exit_state = EXIT_DEAD; 203 } 204 205 write_unlock_irq(&tasklist_lock); 206 release_thread(p); 207 call_rcu(&p->rcu, delayed_put_task_struct); 208 209 p = leader; 210 if (unlikely(zap_leader)) 211 goto repeat; 212 } 213 214 /* 215 * Determine if a process group is "orphaned", according to the POSIX 216 * definition in 2.2.2.52. Orphaned process groups are not to be affected 217 * by terminal-generated stop signals. Newly orphaned process groups are 218 * to receive a SIGHUP and a SIGCONT. 219 * 220 * "I ask you, have you ever known what it is to be an orphan?" 221 */ 222 static int will_become_orphaned_pgrp(struct pid *pgrp, 223 struct task_struct *ignored_task) 224 { 225 struct task_struct *p; 226 227 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 228 if ((p == ignored_task) || 229 (p->exit_state && thread_group_empty(p)) || 230 is_global_init(p->real_parent)) 231 continue; 232 233 if (task_pgrp(p->real_parent) != pgrp && 234 task_session(p->real_parent) == task_session(p)) 235 return 0; 236 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 237 238 return 1; 239 } 240 241 int is_current_pgrp_orphaned(void) 242 { 243 int retval; 244 245 read_lock(&tasklist_lock); 246 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 247 read_unlock(&tasklist_lock); 248 249 return retval; 250 } 251 252 static bool has_stopped_jobs(struct pid *pgrp) 253 { 254 struct task_struct *p; 255 256 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 257 if (p->signal->flags & SIGNAL_STOP_STOPPED) 258 return true; 259 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 260 261 return false; 262 } 263 264 /* 265 * Check to see if any process groups have become orphaned as 266 * a result of our exiting, and if they have any stopped jobs, 267 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 268 */ 269 static void 270 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 271 { 272 struct pid *pgrp = task_pgrp(tsk); 273 struct task_struct *ignored_task = tsk; 274 275 if (!parent) 276 /* exit: our father is in a different pgrp than 277 * we are and we were the only connection outside. 278 */ 279 parent = tsk->real_parent; 280 else 281 /* reparent: our child is in a different pgrp than 282 * we are, and it was the only connection outside. 283 */ 284 ignored_task = NULL; 285 286 if (task_pgrp(parent) != pgrp && 287 task_session(parent) == task_session(tsk) && 288 will_become_orphaned_pgrp(pgrp, ignored_task) && 289 has_stopped_jobs(pgrp)) { 290 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 291 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 292 } 293 } 294 295 #ifdef CONFIG_MEMCG 296 /* 297 * A task is exiting. If it owned this mm, find a new owner for the mm. 298 */ 299 void mm_update_next_owner(struct mm_struct *mm) 300 { 301 struct task_struct *c, *g, *p = current; 302 303 retry: 304 /* 305 * If the exiting or execing task is not the owner, it's 306 * someone else's problem. 307 */ 308 if (mm->owner != p) 309 return; 310 /* 311 * The current owner is exiting/execing and there are no other 312 * candidates. Do not leave the mm pointing to a possibly 313 * freed task structure. 314 */ 315 if (atomic_read(&mm->mm_users) <= 1) { 316 mm->owner = NULL; 317 return; 318 } 319 320 read_lock(&tasklist_lock); 321 /* 322 * Search in the children 323 */ 324 list_for_each_entry(c, &p->children, sibling) { 325 if (c->mm == mm) 326 goto assign_new_owner; 327 } 328 329 /* 330 * Search in the siblings 331 */ 332 list_for_each_entry(c, &p->real_parent->children, sibling) { 333 if (c->mm == mm) 334 goto assign_new_owner; 335 } 336 337 /* 338 * Search through everything else, we should not get here often. 339 */ 340 for_each_process(g) { 341 if (g->flags & PF_KTHREAD) 342 continue; 343 for_each_thread(g, c) { 344 if (c->mm == mm) 345 goto assign_new_owner; 346 if (c->mm) 347 break; 348 } 349 } 350 read_unlock(&tasklist_lock); 351 /* 352 * We found no owner yet mm_users > 1: this implies that we are 353 * most likely racing with swapoff (try_to_unuse()) or /proc or 354 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 355 */ 356 mm->owner = NULL; 357 return; 358 359 assign_new_owner: 360 BUG_ON(c == p); 361 get_task_struct(c); 362 /* 363 * The task_lock protects c->mm from changing. 364 * We always want mm->owner->mm == mm 365 */ 366 task_lock(c); 367 /* 368 * Delay read_unlock() till we have the task_lock() 369 * to ensure that c does not slip away underneath us 370 */ 371 read_unlock(&tasklist_lock); 372 if (c->mm != mm) { 373 task_unlock(c); 374 put_task_struct(c); 375 goto retry; 376 } 377 mm->owner = c; 378 task_unlock(c); 379 put_task_struct(c); 380 } 381 #endif /* CONFIG_MEMCG */ 382 383 /* 384 * Turn us into a lazy TLB process if we 385 * aren't already.. 386 */ 387 static void exit_mm(struct task_struct *tsk) 388 { 389 struct mm_struct *mm = tsk->mm; 390 struct core_state *core_state; 391 392 mm_release(tsk, mm); 393 if (!mm) 394 return; 395 sync_mm_rss(mm); 396 /* 397 * Serialize with any possible pending coredump. 398 * We must hold mmap_sem around checking core_state 399 * and clearing tsk->mm. The core-inducing thread 400 * will increment ->nr_threads for each thread in the 401 * group with ->mm != NULL. 402 */ 403 down_read(&mm->mmap_sem); 404 core_state = mm->core_state; 405 if (core_state) { 406 struct core_thread self; 407 408 up_read(&mm->mmap_sem); 409 410 self.task = tsk; 411 self.next = xchg(&core_state->dumper.next, &self); 412 /* 413 * Implies mb(), the result of xchg() must be visible 414 * to core_state->dumper. 415 */ 416 if (atomic_dec_and_test(&core_state->nr_threads)) 417 complete(&core_state->startup); 418 419 for (;;) { 420 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 421 if (!self.task) /* see coredump_finish() */ 422 break; 423 freezable_schedule(); 424 } 425 __set_task_state(tsk, TASK_RUNNING); 426 down_read(&mm->mmap_sem); 427 } 428 atomic_inc(&mm->mm_count); 429 BUG_ON(mm != tsk->active_mm); 430 /* more a memory barrier than a real lock */ 431 task_lock(tsk); 432 tsk->mm = NULL; 433 up_read(&mm->mmap_sem); 434 enter_lazy_tlb(mm, current); 435 task_unlock(tsk); 436 mm_update_next_owner(mm); 437 mmput(mm); 438 if (test_thread_flag(TIF_MEMDIE)) 439 unmark_oom_victim(); 440 } 441 442 static struct task_struct *find_alive_thread(struct task_struct *p) 443 { 444 struct task_struct *t; 445 446 for_each_thread(p, t) { 447 if (!(t->flags & PF_EXITING)) 448 return t; 449 } 450 return NULL; 451 } 452 453 static struct task_struct *find_child_reaper(struct task_struct *father) 454 __releases(&tasklist_lock) 455 __acquires(&tasklist_lock) 456 { 457 struct pid_namespace *pid_ns = task_active_pid_ns(father); 458 struct task_struct *reaper = pid_ns->child_reaper; 459 460 if (likely(reaper != father)) 461 return reaper; 462 463 reaper = find_alive_thread(father); 464 if (reaper) { 465 pid_ns->child_reaper = reaper; 466 return reaper; 467 } 468 469 write_unlock_irq(&tasklist_lock); 470 if (unlikely(pid_ns == &init_pid_ns)) { 471 panic("Attempted to kill init! exitcode=0x%08x\n", 472 father->signal->group_exit_code ?: father->exit_code); 473 } 474 zap_pid_ns_processes(pid_ns); 475 write_lock_irq(&tasklist_lock); 476 477 return father; 478 } 479 480 /* 481 * When we die, we re-parent all our children, and try to: 482 * 1. give them to another thread in our thread group, if such a member exists 483 * 2. give it to the first ancestor process which prctl'd itself as a 484 * child_subreaper for its children (like a service manager) 485 * 3. give it to the init process (PID 1) in our pid namespace 486 */ 487 static struct task_struct *find_new_reaper(struct task_struct *father, 488 struct task_struct *child_reaper) 489 { 490 struct task_struct *thread, *reaper; 491 492 thread = find_alive_thread(father); 493 if (thread) 494 return thread; 495 496 if (father->signal->has_child_subreaper) { 497 /* 498 * Find the first ->is_child_subreaper ancestor in our pid_ns. 499 * We start from father to ensure we can not look into another 500 * namespace, this is safe because all its threads are dead. 501 */ 502 for (reaper = father; 503 !same_thread_group(reaper, child_reaper); 504 reaper = reaper->real_parent) { 505 /* call_usermodehelper() descendants need this check */ 506 if (reaper == &init_task) 507 break; 508 if (!reaper->signal->is_child_subreaper) 509 continue; 510 thread = find_alive_thread(reaper); 511 if (thread) 512 return thread; 513 } 514 } 515 516 return child_reaper; 517 } 518 519 /* 520 * Any that need to be release_task'd are put on the @dead list. 521 */ 522 static void reparent_leader(struct task_struct *father, struct task_struct *p, 523 struct list_head *dead) 524 { 525 if (unlikely(p->exit_state == EXIT_DEAD)) 526 return; 527 528 /* We don't want people slaying init. */ 529 p->exit_signal = SIGCHLD; 530 531 /* If it has exited notify the new parent about this child's death. */ 532 if (!p->ptrace && 533 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 534 if (do_notify_parent(p, p->exit_signal)) { 535 p->exit_state = EXIT_DEAD; 536 list_add(&p->ptrace_entry, dead); 537 } 538 } 539 540 kill_orphaned_pgrp(p, father); 541 } 542 543 /* 544 * This does two things: 545 * 546 * A. Make init inherit all the child processes 547 * B. Check to see if any process groups have become orphaned 548 * as a result of our exiting, and if they have any stopped 549 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 550 */ 551 static void forget_original_parent(struct task_struct *father, 552 struct list_head *dead) 553 { 554 struct task_struct *p, *t, *reaper; 555 556 if (unlikely(!list_empty(&father->ptraced))) 557 exit_ptrace(father, dead); 558 559 /* Can drop and reacquire tasklist_lock */ 560 reaper = find_child_reaper(father); 561 if (list_empty(&father->children)) 562 return; 563 564 reaper = find_new_reaper(father, reaper); 565 list_for_each_entry(p, &father->children, sibling) { 566 for_each_thread(p, t) { 567 t->real_parent = reaper; 568 BUG_ON((!t->ptrace) != (t->parent == father)); 569 if (likely(!t->ptrace)) 570 t->parent = t->real_parent; 571 if (t->pdeath_signal) 572 group_send_sig_info(t->pdeath_signal, 573 SEND_SIG_NOINFO, t); 574 } 575 /* 576 * If this is a threaded reparent there is no need to 577 * notify anyone anything has happened. 578 */ 579 if (!same_thread_group(reaper, father)) 580 reparent_leader(father, p, dead); 581 } 582 list_splice_tail_init(&father->children, &reaper->children); 583 } 584 585 /* 586 * Send signals to all our closest relatives so that they know 587 * to properly mourn us.. 588 */ 589 static void exit_notify(struct task_struct *tsk, int group_dead) 590 { 591 bool autoreap; 592 struct task_struct *p, *n; 593 LIST_HEAD(dead); 594 595 write_lock_irq(&tasklist_lock); 596 forget_original_parent(tsk, &dead); 597 598 if (group_dead) 599 kill_orphaned_pgrp(tsk->group_leader, NULL); 600 601 if (unlikely(tsk->ptrace)) { 602 int sig = thread_group_leader(tsk) && 603 thread_group_empty(tsk) && 604 !ptrace_reparented(tsk) ? 605 tsk->exit_signal : SIGCHLD; 606 autoreap = do_notify_parent(tsk, sig); 607 } else if (thread_group_leader(tsk)) { 608 autoreap = thread_group_empty(tsk) && 609 do_notify_parent(tsk, tsk->exit_signal); 610 } else { 611 autoreap = true; 612 } 613 614 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 615 if (tsk->exit_state == EXIT_DEAD) 616 list_add(&tsk->ptrace_entry, &dead); 617 618 /* mt-exec, de_thread() is waiting for group leader */ 619 if (unlikely(tsk->signal->notify_count < 0)) 620 wake_up_process(tsk->signal->group_exit_task); 621 write_unlock_irq(&tasklist_lock); 622 623 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 624 list_del_init(&p->ptrace_entry); 625 release_task(p); 626 } 627 } 628 629 #ifdef CONFIG_DEBUG_STACK_USAGE 630 static void check_stack_usage(void) 631 { 632 static DEFINE_SPINLOCK(low_water_lock); 633 static int lowest_to_date = THREAD_SIZE; 634 unsigned long free; 635 636 free = stack_not_used(current); 637 638 if (free >= lowest_to_date) 639 return; 640 641 spin_lock(&low_water_lock); 642 if (free < lowest_to_date) { 643 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n", 644 current->comm, task_pid_nr(current), free); 645 lowest_to_date = free; 646 } 647 spin_unlock(&low_water_lock); 648 } 649 #else 650 static inline void check_stack_usage(void) {} 651 #endif 652 653 void do_exit(long code) 654 { 655 struct task_struct *tsk = current; 656 int group_dead; 657 TASKS_RCU(int tasks_rcu_i); 658 659 profile_task_exit(tsk); 660 661 WARN_ON(blk_needs_flush_plug(tsk)); 662 663 if (unlikely(in_interrupt())) 664 panic("Aiee, killing interrupt handler!"); 665 if (unlikely(!tsk->pid)) 666 panic("Attempted to kill the idle task!"); 667 668 /* 669 * If do_exit is called because this processes oopsed, it's possible 670 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 671 * continuing. Amongst other possible reasons, this is to prevent 672 * mm_release()->clear_child_tid() from writing to a user-controlled 673 * kernel address. 674 */ 675 set_fs(USER_DS); 676 677 ptrace_event(PTRACE_EVENT_EXIT, code); 678 679 validate_creds_for_do_exit(tsk); 680 681 /* 682 * We're taking recursive faults here in do_exit. Safest is to just 683 * leave this task alone and wait for reboot. 684 */ 685 if (unlikely(tsk->flags & PF_EXITING)) { 686 pr_alert("Fixing recursive fault but reboot is needed!\n"); 687 /* 688 * We can do this unlocked here. The futex code uses 689 * this flag just to verify whether the pi state 690 * cleanup has been done or not. In the worst case it 691 * loops once more. We pretend that the cleanup was 692 * done as there is no way to return. Either the 693 * OWNER_DIED bit is set by now or we push the blocked 694 * task into the wait for ever nirwana as well. 695 */ 696 tsk->flags |= PF_EXITPIDONE; 697 set_current_state(TASK_UNINTERRUPTIBLE); 698 schedule(); 699 } 700 701 exit_signals(tsk); /* sets PF_EXITING */ 702 /* 703 * tsk->flags are checked in the futex code to protect against 704 * an exiting task cleaning up the robust pi futexes. 705 */ 706 smp_mb(); 707 raw_spin_unlock_wait(&tsk->pi_lock); 708 709 if (unlikely(in_atomic())) 710 pr_info("note: %s[%d] exited with preempt_count %d\n", 711 current->comm, task_pid_nr(current), 712 preempt_count()); 713 714 acct_update_integrals(tsk); 715 /* sync mm's RSS info before statistics gathering */ 716 if (tsk->mm) 717 sync_mm_rss(tsk->mm); 718 group_dead = atomic_dec_and_test(&tsk->signal->live); 719 if (group_dead) { 720 hrtimer_cancel(&tsk->signal->real_timer); 721 exit_itimers(tsk->signal); 722 if (tsk->mm) 723 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 724 } 725 acct_collect(code, group_dead); 726 if (group_dead) 727 tty_audit_exit(); 728 audit_free(tsk); 729 730 tsk->exit_code = code; 731 taskstats_exit(tsk, group_dead); 732 733 exit_mm(tsk); 734 735 if (group_dead) 736 acct_process(); 737 trace_sched_process_exit(tsk); 738 739 exit_sem(tsk); 740 exit_shm(tsk); 741 exit_files(tsk); 742 exit_fs(tsk); 743 if (group_dead) 744 disassociate_ctty(1); 745 exit_task_namespaces(tsk); 746 exit_task_work(tsk); 747 exit_thread(); 748 749 /* 750 * Flush inherited counters to the parent - before the parent 751 * gets woken up by child-exit notifications. 752 * 753 * because of cgroup mode, must be called before cgroup_exit() 754 */ 755 perf_event_exit_task(tsk); 756 757 cgroup_exit(tsk); 758 759 /* 760 * FIXME: do that only when needed, using sched_exit tracepoint 761 */ 762 flush_ptrace_hw_breakpoint(tsk); 763 764 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu)); 765 exit_notify(tsk, group_dead); 766 proc_exit_connector(tsk); 767 #ifdef CONFIG_NUMA 768 task_lock(tsk); 769 mpol_put(tsk->mempolicy); 770 tsk->mempolicy = NULL; 771 task_unlock(tsk); 772 #endif 773 #ifdef CONFIG_FUTEX 774 if (unlikely(current->pi_state_cache)) 775 kfree(current->pi_state_cache); 776 #endif 777 /* 778 * Make sure we are holding no locks: 779 */ 780 debug_check_no_locks_held(); 781 /* 782 * We can do this unlocked here. The futex code uses this flag 783 * just to verify whether the pi state cleanup has been done 784 * or not. In the worst case it loops once more. 785 */ 786 tsk->flags |= PF_EXITPIDONE; 787 788 if (tsk->io_context) 789 exit_io_context(tsk); 790 791 if (tsk->splice_pipe) 792 free_pipe_info(tsk->splice_pipe); 793 794 if (tsk->task_frag.page) 795 put_page(tsk->task_frag.page); 796 797 validate_creds_for_do_exit(tsk); 798 799 check_stack_usage(); 800 preempt_disable(); 801 if (tsk->nr_dirtied) 802 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 803 exit_rcu(); 804 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i)); 805 806 /* 807 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 808 * when the following two conditions become true. 809 * - There is race condition of mmap_sem (It is acquired by 810 * exit_mm()), and 811 * - SMI occurs before setting TASK_RUNINNG. 812 * (or hypervisor of virtual machine switches to other guest) 813 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 814 * 815 * To avoid it, we have to wait for releasing tsk->pi_lock which 816 * is held by try_to_wake_up() 817 */ 818 smp_mb(); 819 raw_spin_unlock_wait(&tsk->pi_lock); 820 821 /* causes final put_task_struct in finish_task_switch(). */ 822 tsk->state = TASK_DEAD; 823 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 824 schedule(); 825 BUG(); 826 /* Avoid "noreturn function does return". */ 827 for (;;) 828 cpu_relax(); /* For when BUG is null */ 829 } 830 EXPORT_SYMBOL_GPL(do_exit); 831 832 void complete_and_exit(struct completion *comp, long code) 833 { 834 if (comp) 835 complete(comp); 836 837 do_exit(code); 838 } 839 EXPORT_SYMBOL(complete_and_exit); 840 841 SYSCALL_DEFINE1(exit, int, error_code) 842 { 843 do_exit((error_code&0xff)<<8); 844 } 845 846 /* 847 * Take down every thread in the group. This is called by fatal signals 848 * as well as by sys_exit_group (below). 849 */ 850 void 851 do_group_exit(int exit_code) 852 { 853 struct signal_struct *sig = current->signal; 854 855 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 856 857 if (signal_group_exit(sig)) 858 exit_code = sig->group_exit_code; 859 else if (!thread_group_empty(current)) { 860 struct sighand_struct *const sighand = current->sighand; 861 862 spin_lock_irq(&sighand->siglock); 863 if (signal_group_exit(sig)) 864 /* Another thread got here before we took the lock. */ 865 exit_code = sig->group_exit_code; 866 else { 867 sig->group_exit_code = exit_code; 868 sig->flags = SIGNAL_GROUP_EXIT; 869 zap_other_threads(current); 870 } 871 spin_unlock_irq(&sighand->siglock); 872 } 873 874 do_exit(exit_code); 875 /* NOTREACHED */ 876 } 877 878 /* 879 * this kills every thread in the thread group. Note that any externally 880 * wait4()-ing process will get the correct exit code - even if this 881 * thread is not the thread group leader. 882 */ 883 SYSCALL_DEFINE1(exit_group, int, error_code) 884 { 885 do_group_exit((error_code & 0xff) << 8); 886 /* NOTREACHED */ 887 return 0; 888 } 889 890 struct wait_opts { 891 enum pid_type wo_type; 892 int wo_flags; 893 struct pid *wo_pid; 894 895 struct siginfo __user *wo_info; 896 int __user *wo_stat; 897 struct rusage __user *wo_rusage; 898 899 wait_queue_t child_wait; 900 int notask_error; 901 }; 902 903 static inline 904 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 905 { 906 if (type != PIDTYPE_PID) 907 task = task->group_leader; 908 return task->pids[type].pid; 909 } 910 911 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 912 { 913 return wo->wo_type == PIDTYPE_MAX || 914 task_pid_type(p, wo->wo_type) == wo->wo_pid; 915 } 916 917 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 918 { 919 if (!eligible_pid(wo, p)) 920 return 0; 921 /* Wait for all children (clone and not) if __WALL is set; 922 * otherwise, wait for clone children *only* if __WCLONE is 923 * set; otherwise, wait for non-clone children *only*. (Note: 924 * A "clone" child here is one that reports to its parent 925 * using a signal other than SIGCHLD.) */ 926 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 927 && !(wo->wo_flags & __WALL)) 928 return 0; 929 930 return 1; 931 } 932 933 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 934 pid_t pid, uid_t uid, int why, int status) 935 { 936 struct siginfo __user *infop; 937 int retval = wo->wo_rusage 938 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 939 940 put_task_struct(p); 941 infop = wo->wo_info; 942 if (infop) { 943 if (!retval) 944 retval = put_user(SIGCHLD, &infop->si_signo); 945 if (!retval) 946 retval = put_user(0, &infop->si_errno); 947 if (!retval) 948 retval = put_user((short)why, &infop->si_code); 949 if (!retval) 950 retval = put_user(pid, &infop->si_pid); 951 if (!retval) 952 retval = put_user(uid, &infop->si_uid); 953 if (!retval) 954 retval = put_user(status, &infop->si_status); 955 } 956 if (!retval) 957 retval = pid; 958 return retval; 959 } 960 961 /* 962 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 963 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 964 * the lock and this task is uninteresting. If we return nonzero, we have 965 * released the lock and the system call should return. 966 */ 967 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 968 { 969 int state, retval, status; 970 pid_t pid = task_pid_vnr(p); 971 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 972 struct siginfo __user *infop; 973 974 if (!likely(wo->wo_flags & WEXITED)) 975 return 0; 976 977 if (unlikely(wo->wo_flags & WNOWAIT)) { 978 int exit_code = p->exit_code; 979 int why; 980 981 get_task_struct(p); 982 read_unlock(&tasklist_lock); 983 sched_annotate_sleep(); 984 985 if ((exit_code & 0x7f) == 0) { 986 why = CLD_EXITED; 987 status = exit_code >> 8; 988 } else { 989 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 990 status = exit_code & 0x7f; 991 } 992 return wait_noreap_copyout(wo, p, pid, uid, why, status); 993 } 994 /* 995 * Move the task's state to DEAD/TRACE, only one thread can do this. 996 */ 997 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 998 EXIT_TRACE : EXIT_DEAD; 999 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1000 return 0; 1001 /* 1002 * We own this thread, nobody else can reap it. 1003 */ 1004 read_unlock(&tasklist_lock); 1005 sched_annotate_sleep(); 1006 1007 /* 1008 * Check thread_group_leader() to exclude the traced sub-threads. 1009 */ 1010 if (state == EXIT_DEAD && thread_group_leader(p)) { 1011 struct signal_struct *sig = p->signal; 1012 struct signal_struct *psig = current->signal; 1013 unsigned long maxrss; 1014 cputime_t tgutime, tgstime; 1015 1016 /* 1017 * The resource counters for the group leader are in its 1018 * own task_struct. Those for dead threads in the group 1019 * are in its signal_struct, as are those for the child 1020 * processes it has previously reaped. All these 1021 * accumulate in the parent's signal_struct c* fields. 1022 * 1023 * We don't bother to take a lock here to protect these 1024 * p->signal fields because the whole thread group is dead 1025 * and nobody can change them. 1026 * 1027 * psig->stats_lock also protects us from our sub-theads 1028 * which can reap other children at the same time. Until 1029 * we change k_getrusage()-like users to rely on this lock 1030 * we have to take ->siglock as well. 1031 * 1032 * We use thread_group_cputime_adjusted() to get times for 1033 * the thread group, which consolidates times for all threads 1034 * in the group including the group leader. 1035 */ 1036 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1037 spin_lock_irq(¤t->sighand->siglock); 1038 write_seqlock(&psig->stats_lock); 1039 psig->cutime += tgutime + sig->cutime; 1040 psig->cstime += tgstime + sig->cstime; 1041 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1042 psig->cmin_flt += 1043 p->min_flt + sig->min_flt + sig->cmin_flt; 1044 psig->cmaj_flt += 1045 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1046 psig->cnvcsw += 1047 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1048 psig->cnivcsw += 1049 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1050 psig->cinblock += 1051 task_io_get_inblock(p) + 1052 sig->inblock + sig->cinblock; 1053 psig->coublock += 1054 task_io_get_oublock(p) + 1055 sig->oublock + sig->coublock; 1056 maxrss = max(sig->maxrss, sig->cmaxrss); 1057 if (psig->cmaxrss < maxrss) 1058 psig->cmaxrss = maxrss; 1059 task_io_accounting_add(&psig->ioac, &p->ioac); 1060 task_io_accounting_add(&psig->ioac, &sig->ioac); 1061 write_sequnlock(&psig->stats_lock); 1062 spin_unlock_irq(¤t->sighand->siglock); 1063 } 1064 1065 retval = wo->wo_rusage 1066 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1067 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1068 ? p->signal->group_exit_code : p->exit_code; 1069 if (!retval && wo->wo_stat) 1070 retval = put_user(status, wo->wo_stat); 1071 1072 infop = wo->wo_info; 1073 if (!retval && infop) 1074 retval = put_user(SIGCHLD, &infop->si_signo); 1075 if (!retval && infop) 1076 retval = put_user(0, &infop->si_errno); 1077 if (!retval && infop) { 1078 int why; 1079 1080 if ((status & 0x7f) == 0) { 1081 why = CLD_EXITED; 1082 status >>= 8; 1083 } else { 1084 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1085 status &= 0x7f; 1086 } 1087 retval = put_user((short)why, &infop->si_code); 1088 if (!retval) 1089 retval = put_user(status, &infop->si_status); 1090 } 1091 if (!retval && infop) 1092 retval = put_user(pid, &infop->si_pid); 1093 if (!retval && infop) 1094 retval = put_user(uid, &infop->si_uid); 1095 if (!retval) 1096 retval = pid; 1097 1098 if (state == EXIT_TRACE) { 1099 write_lock_irq(&tasklist_lock); 1100 /* We dropped tasklist, ptracer could die and untrace */ 1101 ptrace_unlink(p); 1102 1103 /* If parent wants a zombie, don't release it now */ 1104 state = EXIT_ZOMBIE; 1105 if (do_notify_parent(p, p->exit_signal)) 1106 state = EXIT_DEAD; 1107 p->exit_state = state; 1108 write_unlock_irq(&tasklist_lock); 1109 } 1110 if (state == EXIT_DEAD) 1111 release_task(p); 1112 1113 return retval; 1114 } 1115 1116 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1117 { 1118 if (ptrace) { 1119 if (task_is_stopped_or_traced(p) && 1120 !(p->jobctl & JOBCTL_LISTENING)) 1121 return &p->exit_code; 1122 } else { 1123 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1124 return &p->signal->group_exit_code; 1125 } 1126 return NULL; 1127 } 1128 1129 /** 1130 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1131 * @wo: wait options 1132 * @ptrace: is the wait for ptrace 1133 * @p: task to wait for 1134 * 1135 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1136 * 1137 * CONTEXT: 1138 * read_lock(&tasklist_lock), which is released if return value is 1139 * non-zero. Also, grabs and releases @p->sighand->siglock. 1140 * 1141 * RETURNS: 1142 * 0 if wait condition didn't exist and search for other wait conditions 1143 * should continue. Non-zero return, -errno on failure and @p's pid on 1144 * success, implies that tasklist_lock is released and wait condition 1145 * search should terminate. 1146 */ 1147 static int wait_task_stopped(struct wait_opts *wo, 1148 int ptrace, struct task_struct *p) 1149 { 1150 struct siginfo __user *infop; 1151 int retval, exit_code, *p_code, why; 1152 uid_t uid = 0; /* unneeded, required by compiler */ 1153 pid_t pid; 1154 1155 /* 1156 * Traditionally we see ptrace'd stopped tasks regardless of options. 1157 */ 1158 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1159 return 0; 1160 1161 if (!task_stopped_code(p, ptrace)) 1162 return 0; 1163 1164 exit_code = 0; 1165 spin_lock_irq(&p->sighand->siglock); 1166 1167 p_code = task_stopped_code(p, ptrace); 1168 if (unlikely(!p_code)) 1169 goto unlock_sig; 1170 1171 exit_code = *p_code; 1172 if (!exit_code) 1173 goto unlock_sig; 1174 1175 if (!unlikely(wo->wo_flags & WNOWAIT)) 1176 *p_code = 0; 1177 1178 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1179 unlock_sig: 1180 spin_unlock_irq(&p->sighand->siglock); 1181 if (!exit_code) 1182 return 0; 1183 1184 /* 1185 * Now we are pretty sure this task is interesting. 1186 * Make sure it doesn't get reaped out from under us while we 1187 * give up the lock and then examine it below. We don't want to 1188 * keep holding onto the tasklist_lock while we call getrusage and 1189 * possibly take page faults for user memory. 1190 */ 1191 get_task_struct(p); 1192 pid = task_pid_vnr(p); 1193 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1194 read_unlock(&tasklist_lock); 1195 sched_annotate_sleep(); 1196 1197 if (unlikely(wo->wo_flags & WNOWAIT)) 1198 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1199 1200 retval = wo->wo_rusage 1201 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1202 if (!retval && wo->wo_stat) 1203 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1204 1205 infop = wo->wo_info; 1206 if (!retval && infop) 1207 retval = put_user(SIGCHLD, &infop->si_signo); 1208 if (!retval && infop) 1209 retval = put_user(0, &infop->si_errno); 1210 if (!retval && infop) 1211 retval = put_user((short)why, &infop->si_code); 1212 if (!retval && infop) 1213 retval = put_user(exit_code, &infop->si_status); 1214 if (!retval && infop) 1215 retval = put_user(pid, &infop->si_pid); 1216 if (!retval && infop) 1217 retval = put_user(uid, &infop->si_uid); 1218 if (!retval) 1219 retval = pid; 1220 put_task_struct(p); 1221 1222 BUG_ON(!retval); 1223 return retval; 1224 } 1225 1226 /* 1227 * Handle do_wait work for one task in a live, non-stopped state. 1228 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1229 * the lock and this task is uninteresting. If we return nonzero, we have 1230 * released the lock and the system call should return. 1231 */ 1232 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1233 { 1234 int retval; 1235 pid_t pid; 1236 uid_t uid; 1237 1238 if (!unlikely(wo->wo_flags & WCONTINUED)) 1239 return 0; 1240 1241 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1242 return 0; 1243 1244 spin_lock_irq(&p->sighand->siglock); 1245 /* Re-check with the lock held. */ 1246 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1247 spin_unlock_irq(&p->sighand->siglock); 1248 return 0; 1249 } 1250 if (!unlikely(wo->wo_flags & WNOWAIT)) 1251 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1252 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1253 spin_unlock_irq(&p->sighand->siglock); 1254 1255 pid = task_pid_vnr(p); 1256 get_task_struct(p); 1257 read_unlock(&tasklist_lock); 1258 sched_annotate_sleep(); 1259 1260 if (!wo->wo_info) { 1261 retval = wo->wo_rusage 1262 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1263 put_task_struct(p); 1264 if (!retval && wo->wo_stat) 1265 retval = put_user(0xffff, wo->wo_stat); 1266 if (!retval) 1267 retval = pid; 1268 } else { 1269 retval = wait_noreap_copyout(wo, p, pid, uid, 1270 CLD_CONTINUED, SIGCONT); 1271 BUG_ON(retval == 0); 1272 } 1273 1274 return retval; 1275 } 1276 1277 /* 1278 * Consider @p for a wait by @parent. 1279 * 1280 * -ECHILD should be in ->notask_error before the first call. 1281 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1282 * Returns zero if the search for a child should continue; 1283 * then ->notask_error is 0 if @p is an eligible child, 1284 * or another error from security_task_wait(), or still -ECHILD. 1285 */ 1286 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1287 struct task_struct *p) 1288 { 1289 /* 1290 * We can race with wait_task_zombie() from another thread. 1291 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1292 * can't confuse the checks below. 1293 */ 1294 int exit_state = ACCESS_ONCE(p->exit_state); 1295 int ret; 1296 1297 if (unlikely(exit_state == EXIT_DEAD)) 1298 return 0; 1299 1300 ret = eligible_child(wo, p); 1301 if (!ret) 1302 return ret; 1303 1304 ret = security_task_wait(p); 1305 if (unlikely(ret < 0)) { 1306 /* 1307 * If we have not yet seen any eligible child, 1308 * then let this error code replace -ECHILD. 1309 * A permission error will give the user a clue 1310 * to look for security policy problems, rather 1311 * than for mysterious wait bugs. 1312 */ 1313 if (wo->notask_error) 1314 wo->notask_error = ret; 1315 return 0; 1316 } 1317 1318 if (unlikely(exit_state == EXIT_TRACE)) { 1319 /* 1320 * ptrace == 0 means we are the natural parent. In this case 1321 * we should clear notask_error, debugger will notify us. 1322 */ 1323 if (likely(!ptrace)) 1324 wo->notask_error = 0; 1325 return 0; 1326 } 1327 1328 if (likely(!ptrace) && unlikely(p->ptrace)) { 1329 /* 1330 * If it is traced by its real parent's group, just pretend 1331 * the caller is ptrace_do_wait() and reap this child if it 1332 * is zombie. 1333 * 1334 * This also hides group stop state from real parent; otherwise 1335 * a single stop can be reported twice as group and ptrace stop. 1336 * If a ptracer wants to distinguish these two events for its 1337 * own children it should create a separate process which takes 1338 * the role of real parent. 1339 */ 1340 if (!ptrace_reparented(p)) 1341 ptrace = 1; 1342 } 1343 1344 /* slay zombie? */ 1345 if (exit_state == EXIT_ZOMBIE) { 1346 /* we don't reap group leaders with subthreads */ 1347 if (!delay_group_leader(p)) { 1348 /* 1349 * A zombie ptracee is only visible to its ptracer. 1350 * Notification and reaping will be cascaded to the 1351 * real parent when the ptracer detaches. 1352 */ 1353 if (unlikely(ptrace) || likely(!p->ptrace)) 1354 return wait_task_zombie(wo, p); 1355 } 1356 1357 /* 1358 * Allow access to stopped/continued state via zombie by 1359 * falling through. Clearing of notask_error is complex. 1360 * 1361 * When !@ptrace: 1362 * 1363 * If WEXITED is set, notask_error should naturally be 1364 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1365 * so, if there are live subthreads, there are events to 1366 * wait for. If all subthreads are dead, it's still safe 1367 * to clear - this function will be called again in finite 1368 * amount time once all the subthreads are released and 1369 * will then return without clearing. 1370 * 1371 * When @ptrace: 1372 * 1373 * Stopped state is per-task and thus can't change once the 1374 * target task dies. Only continued and exited can happen. 1375 * Clear notask_error if WCONTINUED | WEXITED. 1376 */ 1377 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1378 wo->notask_error = 0; 1379 } else { 1380 /* 1381 * @p is alive and it's gonna stop, continue or exit, so 1382 * there always is something to wait for. 1383 */ 1384 wo->notask_error = 0; 1385 } 1386 1387 /* 1388 * Wait for stopped. Depending on @ptrace, different stopped state 1389 * is used and the two don't interact with each other. 1390 */ 1391 ret = wait_task_stopped(wo, ptrace, p); 1392 if (ret) 1393 return ret; 1394 1395 /* 1396 * Wait for continued. There's only one continued state and the 1397 * ptracer can consume it which can confuse the real parent. Don't 1398 * use WCONTINUED from ptracer. You don't need or want it. 1399 */ 1400 return wait_task_continued(wo, p); 1401 } 1402 1403 /* 1404 * Do the work of do_wait() for one thread in the group, @tsk. 1405 * 1406 * -ECHILD should be in ->notask_error before the first call. 1407 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1408 * Returns zero if the search for a child should continue; then 1409 * ->notask_error is 0 if there were any eligible children, 1410 * or another error from security_task_wait(), or still -ECHILD. 1411 */ 1412 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1413 { 1414 struct task_struct *p; 1415 1416 list_for_each_entry(p, &tsk->children, sibling) { 1417 int ret = wait_consider_task(wo, 0, p); 1418 1419 if (ret) 1420 return ret; 1421 } 1422 1423 return 0; 1424 } 1425 1426 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1427 { 1428 struct task_struct *p; 1429 1430 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1431 int ret = wait_consider_task(wo, 1, p); 1432 1433 if (ret) 1434 return ret; 1435 } 1436 1437 return 0; 1438 } 1439 1440 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1441 int sync, void *key) 1442 { 1443 struct wait_opts *wo = container_of(wait, struct wait_opts, 1444 child_wait); 1445 struct task_struct *p = key; 1446 1447 if (!eligible_pid(wo, p)) 1448 return 0; 1449 1450 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1451 return 0; 1452 1453 return default_wake_function(wait, mode, sync, key); 1454 } 1455 1456 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1457 { 1458 __wake_up_sync_key(&parent->signal->wait_chldexit, 1459 TASK_INTERRUPTIBLE, 1, p); 1460 } 1461 1462 static long do_wait(struct wait_opts *wo) 1463 { 1464 struct task_struct *tsk; 1465 int retval; 1466 1467 trace_sched_process_wait(wo->wo_pid); 1468 1469 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1470 wo->child_wait.private = current; 1471 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1472 repeat: 1473 /* 1474 * If there is nothing that can match our critiera just get out. 1475 * We will clear ->notask_error to zero if we see any child that 1476 * might later match our criteria, even if we are not able to reap 1477 * it yet. 1478 */ 1479 wo->notask_error = -ECHILD; 1480 if ((wo->wo_type < PIDTYPE_MAX) && 1481 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1482 goto notask; 1483 1484 set_current_state(TASK_INTERRUPTIBLE); 1485 read_lock(&tasklist_lock); 1486 tsk = current; 1487 do { 1488 retval = do_wait_thread(wo, tsk); 1489 if (retval) 1490 goto end; 1491 1492 retval = ptrace_do_wait(wo, tsk); 1493 if (retval) 1494 goto end; 1495 1496 if (wo->wo_flags & __WNOTHREAD) 1497 break; 1498 } while_each_thread(current, tsk); 1499 read_unlock(&tasklist_lock); 1500 1501 notask: 1502 retval = wo->notask_error; 1503 if (!retval && !(wo->wo_flags & WNOHANG)) { 1504 retval = -ERESTARTSYS; 1505 if (!signal_pending(current)) { 1506 schedule(); 1507 goto repeat; 1508 } 1509 } 1510 end: 1511 __set_current_state(TASK_RUNNING); 1512 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1513 return retval; 1514 } 1515 1516 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1517 infop, int, options, struct rusage __user *, ru) 1518 { 1519 struct wait_opts wo; 1520 struct pid *pid = NULL; 1521 enum pid_type type; 1522 long ret; 1523 1524 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1525 return -EINVAL; 1526 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1527 return -EINVAL; 1528 1529 switch (which) { 1530 case P_ALL: 1531 type = PIDTYPE_MAX; 1532 break; 1533 case P_PID: 1534 type = PIDTYPE_PID; 1535 if (upid <= 0) 1536 return -EINVAL; 1537 break; 1538 case P_PGID: 1539 type = PIDTYPE_PGID; 1540 if (upid <= 0) 1541 return -EINVAL; 1542 break; 1543 default: 1544 return -EINVAL; 1545 } 1546 1547 if (type < PIDTYPE_MAX) 1548 pid = find_get_pid(upid); 1549 1550 wo.wo_type = type; 1551 wo.wo_pid = pid; 1552 wo.wo_flags = options; 1553 wo.wo_info = infop; 1554 wo.wo_stat = NULL; 1555 wo.wo_rusage = ru; 1556 ret = do_wait(&wo); 1557 1558 if (ret > 0) { 1559 ret = 0; 1560 } else if (infop) { 1561 /* 1562 * For a WNOHANG return, clear out all the fields 1563 * we would set so the user can easily tell the 1564 * difference. 1565 */ 1566 if (!ret) 1567 ret = put_user(0, &infop->si_signo); 1568 if (!ret) 1569 ret = put_user(0, &infop->si_errno); 1570 if (!ret) 1571 ret = put_user(0, &infop->si_code); 1572 if (!ret) 1573 ret = put_user(0, &infop->si_pid); 1574 if (!ret) 1575 ret = put_user(0, &infop->si_uid); 1576 if (!ret) 1577 ret = put_user(0, &infop->si_status); 1578 } 1579 1580 put_pid(pid); 1581 return ret; 1582 } 1583 1584 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1585 int, options, struct rusage __user *, ru) 1586 { 1587 struct wait_opts wo; 1588 struct pid *pid = NULL; 1589 enum pid_type type; 1590 long ret; 1591 1592 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1593 __WNOTHREAD|__WCLONE|__WALL)) 1594 return -EINVAL; 1595 1596 if (upid == -1) 1597 type = PIDTYPE_MAX; 1598 else if (upid < 0) { 1599 type = PIDTYPE_PGID; 1600 pid = find_get_pid(-upid); 1601 } else if (upid == 0) { 1602 type = PIDTYPE_PGID; 1603 pid = get_task_pid(current, PIDTYPE_PGID); 1604 } else /* upid > 0 */ { 1605 type = PIDTYPE_PID; 1606 pid = find_get_pid(upid); 1607 } 1608 1609 wo.wo_type = type; 1610 wo.wo_pid = pid; 1611 wo.wo_flags = options | WEXITED; 1612 wo.wo_info = NULL; 1613 wo.wo_stat = stat_addr; 1614 wo.wo_rusage = ru; 1615 ret = do_wait(&wo); 1616 put_pid(pid); 1617 1618 return ret; 1619 } 1620 1621 #ifdef __ARCH_WANT_SYS_WAITPID 1622 1623 /* 1624 * sys_waitpid() remains for compatibility. waitpid() should be 1625 * implemented by calling sys_wait4() from libc.a. 1626 */ 1627 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1628 { 1629 return sys_wait4(pid, stat_addr, options, NULL); 1630 } 1631 1632 #endif 1633