xref: /linux/kernel/exit.c (revision 80b8d5d6bc0000c6e499260883cfc95e645f49d1)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/smp_lock.h>
11 #include <linux/module.h>
12 #include <linux/capability.h>
13 #include <linux/completion.h>
14 #include <linux/personality.h>
15 #include <linux/tty.h>
16 #include <linux/namespace.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/mempolicy.h>
30 #include <linux/taskstats_kern.h>
31 #include <linux/delayacct.h>
32 #include <linux/cpuset.h>
33 #include <linux/syscalls.h>
34 #include <linux/signal.h>
35 #include <linux/posix-timers.h>
36 #include <linux/cn_proc.h>
37 #include <linux/mutex.h>
38 #include <linux/futex.h>
39 #include <linux/compat.h>
40 #include <linux/pipe_fs_i.h>
41 #include <linux/audit.h> /* for audit_free() */
42 #include <linux/resource.h>
43 #include <linux/blkdev.h>
44 
45 #include <asm/uaccess.h>
46 #include <asm/unistd.h>
47 #include <asm/pgtable.h>
48 #include <asm/mmu_context.h>
49 
50 extern void sem_exit (void);
51 extern struct task_struct *child_reaper;
52 
53 static void exit_mm(struct task_struct * tsk);
54 
55 static void __unhash_process(struct task_struct *p)
56 {
57 	nr_threads--;
58 	detach_pid(p, PIDTYPE_PID);
59 	if (thread_group_leader(p)) {
60 		detach_pid(p, PIDTYPE_PGID);
61 		detach_pid(p, PIDTYPE_SID);
62 
63 		list_del_rcu(&p->tasks);
64 		__get_cpu_var(process_counts)--;
65 	}
66 	list_del_rcu(&p->thread_group);
67 	remove_parent(p);
68 }
69 
70 /*
71  * This function expects the tasklist_lock write-locked.
72  */
73 static void __exit_signal(struct task_struct *tsk)
74 {
75 	struct signal_struct *sig = tsk->signal;
76 	struct sighand_struct *sighand;
77 
78 	BUG_ON(!sig);
79 	BUG_ON(!atomic_read(&sig->count));
80 
81 	rcu_read_lock();
82 	sighand = rcu_dereference(tsk->sighand);
83 	spin_lock(&sighand->siglock);
84 
85 	posix_cpu_timers_exit(tsk);
86 	if (atomic_dec_and_test(&sig->count))
87 		posix_cpu_timers_exit_group(tsk);
88 	else {
89 		/*
90 		 * If there is any task waiting for the group exit
91 		 * then notify it:
92 		 */
93 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
94 			wake_up_process(sig->group_exit_task);
95 			sig->group_exit_task = NULL;
96 		}
97 		if (tsk == sig->curr_target)
98 			sig->curr_target = next_thread(tsk);
99 		/*
100 		 * Accumulate here the counters for all threads but the
101 		 * group leader as they die, so they can be added into
102 		 * the process-wide totals when those are taken.
103 		 * The group leader stays around as a zombie as long
104 		 * as there are other threads.  When it gets reaped,
105 		 * the exit.c code will add its counts into these totals.
106 		 * We won't ever get here for the group leader, since it
107 		 * will have been the last reference on the signal_struct.
108 		 */
109 		sig->utime = cputime_add(sig->utime, tsk->utime);
110 		sig->stime = cputime_add(sig->stime, tsk->stime);
111 		sig->min_flt += tsk->min_flt;
112 		sig->maj_flt += tsk->maj_flt;
113 		sig->nvcsw += tsk->nvcsw;
114 		sig->nivcsw += tsk->nivcsw;
115 		sig->sched_time += tsk->sched_time;
116 		sig = NULL; /* Marker for below. */
117 	}
118 
119 	__unhash_process(tsk);
120 
121 	tsk->signal = NULL;
122 	tsk->sighand = NULL;
123 	spin_unlock(&sighand->siglock);
124 	rcu_read_unlock();
125 
126 	__cleanup_sighand(sighand);
127 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
128 	flush_sigqueue(&tsk->pending);
129 	if (sig) {
130 		flush_sigqueue(&sig->shared_pending);
131 		taskstats_tgid_free(sig);
132 		__cleanup_signal(sig);
133 	}
134 }
135 
136 static void delayed_put_task_struct(struct rcu_head *rhp)
137 {
138 	put_task_struct(container_of(rhp, struct task_struct, rcu));
139 }
140 
141 void release_task(struct task_struct * p)
142 {
143 	struct task_struct *leader;
144 	int zap_leader;
145 repeat:
146 	atomic_dec(&p->user->processes);
147 	write_lock_irq(&tasklist_lock);
148 	ptrace_unlink(p);
149 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
150 	__exit_signal(p);
151 
152 	/*
153 	 * If we are the last non-leader member of the thread
154 	 * group, and the leader is zombie, then notify the
155 	 * group leader's parent process. (if it wants notification.)
156 	 */
157 	zap_leader = 0;
158 	leader = p->group_leader;
159 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
160 		BUG_ON(leader->exit_signal == -1);
161 		do_notify_parent(leader, leader->exit_signal);
162 		/*
163 		 * If we were the last child thread and the leader has
164 		 * exited already, and the leader's parent ignores SIGCHLD,
165 		 * then we are the one who should release the leader.
166 		 *
167 		 * do_notify_parent() will have marked it self-reaping in
168 		 * that case.
169 		 */
170 		zap_leader = (leader->exit_signal == -1);
171 	}
172 
173 	sched_exit(p);
174 	write_unlock_irq(&tasklist_lock);
175 	proc_flush_task(p);
176 	release_thread(p);
177 	call_rcu(&p->rcu, delayed_put_task_struct);
178 
179 	p = leader;
180 	if (unlikely(zap_leader))
181 		goto repeat;
182 }
183 
184 /*
185  * This checks not only the pgrp, but falls back on the pid if no
186  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
187  * without this...
188  */
189 int session_of_pgrp(int pgrp)
190 {
191 	struct task_struct *p;
192 	int sid = -1;
193 
194 	read_lock(&tasklist_lock);
195 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
196 		if (p->signal->session > 0) {
197 			sid = p->signal->session;
198 			goto out;
199 		}
200 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
201 	p = find_task_by_pid(pgrp);
202 	if (p)
203 		sid = p->signal->session;
204 out:
205 	read_unlock(&tasklist_lock);
206 
207 	return sid;
208 }
209 
210 /*
211  * Determine if a process group is "orphaned", according to the POSIX
212  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
213  * by terminal-generated stop signals.  Newly orphaned process groups are
214  * to receive a SIGHUP and a SIGCONT.
215  *
216  * "I ask you, have you ever known what it is to be an orphan?"
217  */
218 static int will_become_orphaned_pgrp(int pgrp, struct task_struct *ignored_task)
219 {
220 	struct task_struct *p;
221 	int ret = 1;
222 
223 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
224 		if (p == ignored_task
225 				|| p->exit_state
226 				|| is_init(p->real_parent))
227 			continue;
228 		if (process_group(p->real_parent) != pgrp
229 			    && p->real_parent->signal->session == p->signal->session) {
230 			ret = 0;
231 			break;
232 		}
233 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
234 	return ret;	/* (sighing) "Often!" */
235 }
236 
237 int is_orphaned_pgrp(int pgrp)
238 {
239 	int retval;
240 
241 	read_lock(&tasklist_lock);
242 	retval = will_become_orphaned_pgrp(pgrp, NULL);
243 	read_unlock(&tasklist_lock);
244 
245 	return retval;
246 }
247 
248 static int has_stopped_jobs(int pgrp)
249 {
250 	int retval = 0;
251 	struct task_struct *p;
252 
253 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
254 		if (p->state != TASK_STOPPED)
255 			continue;
256 		retval = 1;
257 		break;
258 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
259 	return retval;
260 }
261 
262 /**
263  * reparent_to_init - Reparent the calling kernel thread to the init task.
264  *
265  * If a kernel thread is launched as a result of a system call, or if
266  * it ever exits, it should generally reparent itself to init so that
267  * it is correctly cleaned up on exit.
268  *
269  * The various task state such as scheduling policy and priority may have
270  * been inherited from a user process, so we reset them to sane values here.
271  *
272  * NOTE that reparent_to_init() gives the caller full capabilities.
273  */
274 static void reparent_to_init(void)
275 {
276 	write_lock_irq(&tasklist_lock);
277 
278 	ptrace_unlink(current);
279 	/* Reparent to init */
280 	remove_parent(current);
281 	current->parent = child_reaper;
282 	current->real_parent = child_reaper;
283 	add_parent(current);
284 
285 	/* Set the exit signal to SIGCHLD so we signal init on exit */
286 	current->exit_signal = SIGCHLD;
287 
288 	if (!has_rt_policy(current) && (task_nice(current) < 0))
289 		set_user_nice(current, 0);
290 	/* cpus_allowed? */
291 	/* rt_priority? */
292 	/* signals? */
293 	security_task_reparent_to_init(current);
294 	memcpy(current->signal->rlim, init_task.signal->rlim,
295 	       sizeof(current->signal->rlim));
296 	atomic_inc(&(INIT_USER->__count));
297 	write_unlock_irq(&tasklist_lock);
298 	switch_uid(INIT_USER);
299 }
300 
301 void __set_special_pids(pid_t session, pid_t pgrp)
302 {
303 	struct task_struct *curr = current->group_leader;
304 
305 	if (curr->signal->session != session) {
306 		detach_pid(curr, PIDTYPE_SID);
307 		curr->signal->session = session;
308 		attach_pid(curr, PIDTYPE_SID, session);
309 	}
310 	if (process_group(curr) != pgrp) {
311 		detach_pid(curr, PIDTYPE_PGID);
312 		curr->signal->pgrp = pgrp;
313 		attach_pid(curr, PIDTYPE_PGID, pgrp);
314 	}
315 }
316 
317 void set_special_pids(pid_t session, pid_t pgrp)
318 {
319 	write_lock_irq(&tasklist_lock);
320 	__set_special_pids(session, pgrp);
321 	write_unlock_irq(&tasklist_lock);
322 }
323 
324 /*
325  * Let kernel threads use this to say that they
326  * allow a certain signal (since daemonize() will
327  * have disabled all of them by default).
328  */
329 int allow_signal(int sig)
330 {
331 	if (!valid_signal(sig) || sig < 1)
332 		return -EINVAL;
333 
334 	spin_lock_irq(&current->sighand->siglock);
335 	sigdelset(&current->blocked, sig);
336 	if (!current->mm) {
337 		/* Kernel threads handle their own signals.
338 		   Let the signal code know it'll be handled, so
339 		   that they don't get converted to SIGKILL or
340 		   just silently dropped */
341 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
342 	}
343 	recalc_sigpending();
344 	spin_unlock_irq(&current->sighand->siglock);
345 	return 0;
346 }
347 
348 EXPORT_SYMBOL(allow_signal);
349 
350 int disallow_signal(int sig)
351 {
352 	if (!valid_signal(sig) || sig < 1)
353 		return -EINVAL;
354 
355 	spin_lock_irq(&current->sighand->siglock);
356 	sigaddset(&current->blocked, sig);
357 	recalc_sigpending();
358 	spin_unlock_irq(&current->sighand->siglock);
359 	return 0;
360 }
361 
362 EXPORT_SYMBOL(disallow_signal);
363 
364 /*
365  *	Put all the gunge required to become a kernel thread without
366  *	attached user resources in one place where it belongs.
367  */
368 
369 void daemonize(const char *name, ...)
370 {
371 	va_list args;
372 	struct fs_struct *fs;
373 	sigset_t blocked;
374 
375 	va_start(args, name);
376 	vsnprintf(current->comm, sizeof(current->comm), name, args);
377 	va_end(args);
378 
379 	/*
380 	 * If we were started as result of loading a module, close all of the
381 	 * user space pages.  We don't need them, and if we didn't close them
382 	 * they would be locked into memory.
383 	 */
384 	exit_mm(current);
385 
386 	set_special_pids(1, 1);
387 	mutex_lock(&tty_mutex);
388 	current->signal->tty = NULL;
389 	mutex_unlock(&tty_mutex);
390 
391 	/* Block and flush all signals */
392 	sigfillset(&blocked);
393 	sigprocmask(SIG_BLOCK, &blocked, NULL);
394 	flush_signals(current);
395 
396 	/* Become as one with the init task */
397 
398 	exit_fs(current);	/* current->fs->count--; */
399 	fs = init_task.fs;
400 	current->fs = fs;
401 	atomic_inc(&fs->count);
402 
403 	exit_task_namespaces(current);
404 	current->nsproxy = init_task.nsproxy;
405 	get_task_namespaces(current);
406 
407  	exit_files(current);
408 	current->files = init_task.files;
409 	atomic_inc(&current->files->count);
410 
411 	reparent_to_init();
412 }
413 
414 EXPORT_SYMBOL(daemonize);
415 
416 static void close_files(struct files_struct * files)
417 {
418 	int i, j;
419 	struct fdtable *fdt;
420 
421 	j = 0;
422 
423 	/*
424 	 * It is safe to dereference the fd table without RCU or
425 	 * ->file_lock because this is the last reference to the
426 	 * files structure.
427 	 */
428 	fdt = files_fdtable(files);
429 	for (;;) {
430 		unsigned long set;
431 		i = j * __NFDBITS;
432 		if (i >= fdt->max_fdset || i >= fdt->max_fds)
433 			break;
434 		set = fdt->open_fds->fds_bits[j++];
435 		while (set) {
436 			if (set & 1) {
437 				struct file * file = xchg(&fdt->fd[i], NULL);
438 				if (file)
439 					filp_close(file, files);
440 			}
441 			i++;
442 			set >>= 1;
443 		}
444 	}
445 }
446 
447 struct files_struct *get_files_struct(struct task_struct *task)
448 {
449 	struct files_struct *files;
450 
451 	task_lock(task);
452 	files = task->files;
453 	if (files)
454 		atomic_inc(&files->count);
455 	task_unlock(task);
456 
457 	return files;
458 }
459 
460 void fastcall put_files_struct(struct files_struct *files)
461 {
462 	struct fdtable *fdt;
463 
464 	if (atomic_dec_and_test(&files->count)) {
465 		close_files(files);
466 		/*
467 		 * Free the fd and fdset arrays if we expanded them.
468 		 * If the fdtable was embedded, pass files for freeing
469 		 * at the end of the RCU grace period. Otherwise,
470 		 * you can free files immediately.
471 		 */
472 		fdt = files_fdtable(files);
473 		if (fdt == &files->fdtab)
474 			fdt->free_files = files;
475 		else
476 			kmem_cache_free(files_cachep, files);
477 		free_fdtable(fdt);
478 	}
479 }
480 
481 EXPORT_SYMBOL(put_files_struct);
482 
483 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
484 {
485 	struct files_struct *old;
486 
487 	old = tsk->files;
488 	task_lock(tsk);
489 	tsk->files = files;
490 	task_unlock(tsk);
491 	put_files_struct(old);
492 }
493 EXPORT_SYMBOL(reset_files_struct);
494 
495 static inline void __exit_files(struct task_struct *tsk)
496 {
497 	struct files_struct * files = tsk->files;
498 
499 	if (files) {
500 		task_lock(tsk);
501 		tsk->files = NULL;
502 		task_unlock(tsk);
503 		put_files_struct(files);
504 	}
505 }
506 
507 void exit_files(struct task_struct *tsk)
508 {
509 	__exit_files(tsk);
510 }
511 
512 static inline void __put_fs_struct(struct fs_struct *fs)
513 {
514 	/* No need to hold fs->lock if we are killing it */
515 	if (atomic_dec_and_test(&fs->count)) {
516 		dput(fs->root);
517 		mntput(fs->rootmnt);
518 		dput(fs->pwd);
519 		mntput(fs->pwdmnt);
520 		if (fs->altroot) {
521 			dput(fs->altroot);
522 			mntput(fs->altrootmnt);
523 		}
524 		kmem_cache_free(fs_cachep, fs);
525 	}
526 }
527 
528 void put_fs_struct(struct fs_struct *fs)
529 {
530 	__put_fs_struct(fs);
531 }
532 
533 static inline void __exit_fs(struct task_struct *tsk)
534 {
535 	struct fs_struct * fs = tsk->fs;
536 
537 	if (fs) {
538 		task_lock(tsk);
539 		tsk->fs = NULL;
540 		task_unlock(tsk);
541 		__put_fs_struct(fs);
542 	}
543 }
544 
545 void exit_fs(struct task_struct *tsk)
546 {
547 	__exit_fs(tsk);
548 }
549 
550 EXPORT_SYMBOL_GPL(exit_fs);
551 
552 /*
553  * Turn us into a lazy TLB process if we
554  * aren't already..
555  */
556 static void exit_mm(struct task_struct * tsk)
557 {
558 	struct mm_struct *mm = tsk->mm;
559 
560 	mm_release(tsk, mm);
561 	if (!mm)
562 		return;
563 	/*
564 	 * Serialize with any possible pending coredump.
565 	 * We must hold mmap_sem around checking core_waiters
566 	 * and clearing tsk->mm.  The core-inducing thread
567 	 * will increment core_waiters for each thread in the
568 	 * group with ->mm != NULL.
569 	 */
570 	down_read(&mm->mmap_sem);
571 	if (mm->core_waiters) {
572 		up_read(&mm->mmap_sem);
573 		down_write(&mm->mmap_sem);
574 		if (!--mm->core_waiters)
575 			complete(mm->core_startup_done);
576 		up_write(&mm->mmap_sem);
577 
578 		wait_for_completion(&mm->core_done);
579 		down_read(&mm->mmap_sem);
580 	}
581 	atomic_inc(&mm->mm_count);
582 	BUG_ON(mm != tsk->active_mm);
583 	/* more a memory barrier than a real lock */
584 	task_lock(tsk);
585 	tsk->mm = NULL;
586 	up_read(&mm->mmap_sem);
587 	enter_lazy_tlb(mm, current);
588 	task_unlock(tsk);
589 	mmput(mm);
590 }
591 
592 static inline void
593 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
594 {
595 	/*
596 	 * Make sure we're not reparenting to ourselves and that
597 	 * the parent is not a zombie.
598 	 */
599 	BUG_ON(p == reaper || reaper->exit_state);
600 	p->real_parent = reaper;
601 }
602 
603 static void
604 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
605 {
606 	/* We don't want people slaying init.  */
607 	if (p->exit_signal != -1)
608 		p->exit_signal = SIGCHLD;
609 
610 	if (p->pdeath_signal)
611 		/* We already hold the tasklist_lock here.  */
612 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
613 
614 	/* Move the child from its dying parent to the new one.  */
615 	if (unlikely(traced)) {
616 		/* Preserve ptrace links if someone else is tracing this child.  */
617 		list_del_init(&p->ptrace_list);
618 		if (p->parent != p->real_parent)
619 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
620 	} else {
621 		/* If this child is being traced, then we're the one tracing it
622 		 * anyway, so let go of it.
623 		 */
624 		p->ptrace = 0;
625 		remove_parent(p);
626 		p->parent = p->real_parent;
627 		add_parent(p);
628 
629 		/* If we'd notified the old parent about this child's death,
630 		 * also notify the new parent.
631 		 */
632 		if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
633 		    thread_group_empty(p))
634 			do_notify_parent(p, p->exit_signal);
635 		else if (p->state == TASK_TRACED) {
636 			/*
637 			 * If it was at a trace stop, turn it into
638 			 * a normal stop since it's no longer being
639 			 * traced.
640 			 */
641 			ptrace_untrace(p);
642 		}
643 	}
644 
645 	/*
646 	 * process group orphan check
647 	 * Case ii: Our child is in a different pgrp
648 	 * than we are, and it was the only connection
649 	 * outside, so the child pgrp is now orphaned.
650 	 */
651 	if ((process_group(p) != process_group(father)) &&
652 	    (p->signal->session == father->signal->session)) {
653 		int pgrp = process_group(p);
654 
655 		if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
656 			__kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
657 			__kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
658 		}
659 	}
660 }
661 
662 /*
663  * When we die, we re-parent all our children.
664  * Try to give them to another thread in our thread
665  * group, and if no such member exists, give it to
666  * the global child reaper process (ie "init")
667  */
668 static void
669 forget_original_parent(struct task_struct *father, struct list_head *to_release)
670 {
671 	struct task_struct *p, *reaper = father;
672 	struct list_head *_p, *_n;
673 
674 	do {
675 		reaper = next_thread(reaper);
676 		if (reaper == father) {
677 			reaper = child_reaper;
678 			break;
679 		}
680 	} while (reaper->exit_state);
681 
682 	/*
683 	 * There are only two places where our children can be:
684 	 *
685 	 * - in our child list
686 	 * - in our ptraced child list
687 	 *
688 	 * Search them and reparent children.
689 	 */
690 	list_for_each_safe(_p, _n, &father->children) {
691 		int ptrace;
692 		p = list_entry(_p, struct task_struct, sibling);
693 
694 		ptrace = p->ptrace;
695 
696 		/* if father isn't the real parent, then ptrace must be enabled */
697 		BUG_ON(father != p->real_parent && !ptrace);
698 
699 		if (father == p->real_parent) {
700 			/* reparent with a reaper, real father it's us */
701 			choose_new_parent(p, reaper);
702 			reparent_thread(p, father, 0);
703 		} else {
704 			/* reparent ptraced task to its real parent */
705 			__ptrace_unlink (p);
706 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
707 			    thread_group_empty(p))
708 				do_notify_parent(p, p->exit_signal);
709 		}
710 
711 		/*
712 		 * if the ptraced child is a zombie with exit_signal == -1
713 		 * we must collect it before we exit, or it will remain
714 		 * zombie forever since we prevented it from self-reap itself
715 		 * while it was being traced by us, to be able to see it in wait4.
716 		 */
717 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
718 			list_add(&p->ptrace_list, to_release);
719 	}
720 	list_for_each_safe(_p, _n, &father->ptrace_children) {
721 		p = list_entry(_p, struct task_struct, ptrace_list);
722 		choose_new_parent(p, reaper);
723 		reparent_thread(p, father, 1);
724 	}
725 }
726 
727 /*
728  * Send signals to all our closest relatives so that they know
729  * to properly mourn us..
730  */
731 static void exit_notify(struct task_struct *tsk)
732 {
733 	int state;
734 	struct task_struct *t;
735 	struct list_head ptrace_dead, *_p, *_n;
736 
737 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
738 	    && !thread_group_empty(tsk)) {
739 		/*
740 		 * This occurs when there was a race between our exit
741 		 * syscall and a group signal choosing us as the one to
742 		 * wake up.  It could be that we are the only thread
743 		 * alerted to check for pending signals, but another thread
744 		 * should be woken now to take the signal since we will not.
745 		 * Now we'll wake all the threads in the group just to make
746 		 * sure someone gets all the pending signals.
747 		 */
748 		read_lock(&tasklist_lock);
749 		spin_lock_irq(&tsk->sighand->siglock);
750 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
751 			if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
752 				recalc_sigpending_tsk(t);
753 				if (signal_pending(t))
754 					signal_wake_up(t, 0);
755 			}
756 		spin_unlock_irq(&tsk->sighand->siglock);
757 		read_unlock(&tasklist_lock);
758 	}
759 
760 	write_lock_irq(&tasklist_lock);
761 
762 	/*
763 	 * This does two things:
764 	 *
765   	 * A.  Make init inherit all the child processes
766 	 * B.  Check to see if any process groups have become orphaned
767 	 *	as a result of our exiting, and if they have any stopped
768 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
769 	 */
770 
771 	INIT_LIST_HEAD(&ptrace_dead);
772 	forget_original_parent(tsk, &ptrace_dead);
773 	BUG_ON(!list_empty(&tsk->children));
774 	BUG_ON(!list_empty(&tsk->ptrace_children));
775 
776 	/*
777 	 * Check to see if any process groups have become orphaned
778 	 * as a result of our exiting, and if they have any stopped
779 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
780 	 *
781 	 * Case i: Our father is in a different pgrp than we are
782 	 * and we were the only connection outside, so our pgrp
783 	 * is about to become orphaned.
784 	 */
785 
786 	t = tsk->real_parent;
787 
788 	if ((process_group(t) != process_group(tsk)) &&
789 	    (t->signal->session == tsk->signal->session) &&
790 	    will_become_orphaned_pgrp(process_group(tsk), tsk) &&
791 	    has_stopped_jobs(process_group(tsk))) {
792 		__kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
793 		__kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
794 	}
795 
796 	/* Let father know we died
797 	 *
798 	 * Thread signals are configurable, but you aren't going to use
799 	 * that to send signals to arbitary processes.
800 	 * That stops right now.
801 	 *
802 	 * If the parent exec id doesn't match the exec id we saved
803 	 * when we started then we know the parent has changed security
804 	 * domain.
805 	 *
806 	 * If our self_exec id doesn't match our parent_exec_id then
807 	 * we have changed execution domain as these two values started
808 	 * the same after a fork.
809 	 *
810 	 */
811 
812 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
813 	    ( tsk->parent_exec_id != t->self_exec_id  ||
814 	      tsk->self_exec_id != tsk->parent_exec_id)
815 	    && !capable(CAP_KILL))
816 		tsk->exit_signal = SIGCHLD;
817 
818 
819 	/* If something other than our normal parent is ptracing us, then
820 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
821 	 * only has special meaning to our real parent.
822 	 */
823 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
824 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
825 		do_notify_parent(tsk, signal);
826 	} else if (tsk->ptrace) {
827 		do_notify_parent(tsk, SIGCHLD);
828 	}
829 
830 	state = EXIT_ZOMBIE;
831 	if (tsk->exit_signal == -1 &&
832 	    (likely(tsk->ptrace == 0) ||
833 	     unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
834 		state = EXIT_DEAD;
835 	tsk->exit_state = state;
836 
837 	write_unlock_irq(&tasklist_lock);
838 
839 	list_for_each_safe(_p, _n, &ptrace_dead) {
840 		list_del_init(_p);
841 		t = list_entry(_p, struct task_struct, ptrace_list);
842 		release_task(t);
843 	}
844 
845 	/* If the process is dead, release it - nobody will wait for it */
846 	if (state == EXIT_DEAD)
847 		release_task(tsk);
848 }
849 
850 fastcall NORET_TYPE void do_exit(long code)
851 {
852 	struct task_struct *tsk = current;
853 	struct taskstats *tidstats;
854 	int group_dead;
855 	unsigned int mycpu;
856 
857 	profile_task_exit(tsk);
858 
859 	WARN_ON(atomic_read(&tsk->fs_excl));
860 
861 	if (unlikely(in_interrupt()))
862 		panic("Aiee, killing interrupt handler!");
863 	if (unlikely(!tsk->pid))
864 		panic("Attempted to kill the idle task!");
865 	if (unlikely(tsk == child_reaper))
866 		panic("Attempted to kill init!");
867 
868 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
869 		current->ptrace_message = code;
870 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
871 	}
872 
873 	/*
874 	 * We're taking recursive faults here in do_exit. Safest is to just
875 	 * leave this task alone and wait for reboot.
876 	 */
877 	if (unlikely(tsk->flags & PF_EXITING)) {
878 		printk(KERN_ALERT
879 			"Fixing recursive fault but reboot is needed!\n");
880 		if (tsk->io_context)
881 			exit_io_context();
882 		set_current_state(TASK_UNINTERRUPTIBLE);
883 		schedule();
884 	}
885 
886 	tsk->flags |= PF_EXITING;
887 
888 	if (unlikely(in_atomic()))
889 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
890 				current->comm, current->pid,
891 				preempt_count());
892 
893 	taskstats_exit_alloc(&tidstats, &mycpu);
894 
895 	acct_update_integrals(tsk);
896 	if (tsk->mm) {
897 		update_hiwater_rss(tsk->mm);
898 		update_hiwater_vm(tsk->mm);
899 	}
900 	group_dead = atomic_dec_and_test(&tsk->signal->live);
901 	if (group_dead) {
902  		hrtimer_cancel(&tsk->signal->real_timer);
903 		exit_itimers(tsk->signal);
904 	}
905 	acct_collect(code, group_dead);
906 	if (unlikely(tsk->robust_list))
907 		exit_robust_list(tsk);
908 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
909 	if (unlikely(tsk->compat_robust_list))
910 		compat_exit_robust_list(tsk);
911 #endif
912 	if (unlikely(tsk->audit_context))
913 		audit_free(tsk);
914 	taskstats_exit_send(tsk, tidstats, group_dead, mycpu);
915 	taskstats_exit_free(tidstats);
916 
917 	exit_mm(tsk);
918 
919 	if (group_dead)
920 		acct_process();
921 	exit_sem(tsk);
922 	__exit_files(tsk);
923 	__exit_fs(tsk);
924 	exit_thread();
925 	cpuset_exit(tsk);
926 	exit_keys(tsk);
927 
928 	if (group_dead && tsk->signal->leader)
929 		disassociate_ctty(1);
930 
931 	module_put(task_thread_info(tsk)->exec_domain->module);
932 	if (tsk->binfmt)
933 		module_put(tsk->binfmt->module);
934 
935 	tsk->exit_code = code;
936 	proc_exit_connector(tsk);
937 	exit_notify(tsk);
938 	exit_task_namespaces(tsk);
939 #ifdef CONFIG_NUMA
940 	mpol_free(tsk->mempolicy);
941 	tsk->mempolicy = NULL;
942 #endif
943 	/*
944 	 * This must happen late, after the PID is not
945 	 * hashed anymore:
946 	 */
947 	if (unlikely(!list_empty(&tsk->pi_state_list)))
948 		exit_pi_state_list(tsk);
949 	if (unlikely(current->pi_state_cache))
950 		kfree(current->pi_state_cache);
951 	/*
952 	 * Make sure we are holding no locks:
953 	 */
954 	debug_check_no_locks_held(tsk);
955 
956 	if (tsk->io_context)
957 		exit_io_context();
958 
959 	if (tsk->splice_pipe)
960 		__free_pipe_info(tsk->splice_pipe);
961 
962 	preempt_disable();
963 	/* causes final put_task_struct in finish_task_switch(). */
964 	tsk->state = TASK_DEAD;
965 
966 	schedule();
967 	BUG();
968 	/* Avoid "noreturn function does return".  */
969 	for (;;)
970 		cpu_relax();	/* For when BUG is null */
971 }
972 
973 EXPORT_SYMBOL_GPL(do_exit);
974 
975 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
976 {
977 	if (comp)
978 		complete(comp);
979 
980 	do_exit(code);
981 }
982 
983 EXPORT_SYMBOL(complete_and_exit);
984 
985 asmlinkage long sys_exit(int error_code)
986 {
987 	do_exit((error_code&0xff)<<8);
988 }
989 
990 /*
991  * Take down every thread in the group.  This is called by fatal signals
992  * as well as by sys_exit_group (below).
993  */
994 NORET_TYPE void
995 do_group_exit(int exit_code)
996 {
997 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
998 
999 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1000 		exit_code = current->signal->group_exit_code;
1001 	else if (!thread_group_empty(current)) {
1002 		struct signal_struct *const sig = current->signal;
1003 		struct sighand_struct *const sighand = current->sighand;
1004 		spin_lock_irq(&sighand->siglock);
1005 		if (sig->flags & SIGNAL_GROUP_EXIT)
1006 			/* Another thread got here before we took the lock.  */
1007 			exit_code = sig->group_exit_code;
1008 		else {
1009 			sig->group_exit_code = exit_code;
1010 			zap_other_threads(current);
1011 		}
1012 		spin_unlock_irq(&sighand->siglock);
1013 	}
1014 
1015 	do_exit(exit_code);
1016 	/* NOTREACHED */
1017 }
1018 
1019 /*
1020  * this kills every thread in the thread group. Note that any externally
1021  * wait4()-ing process will get the correct exit code - even if this
1022  * thread is not the thread group leader.
1023  */
1024 asmlinkage void sys_exit_group(int error_code)
1025 {
1026 	do_group_exit((error_code & 0xff) << 8);
1027 }
1028 
1029 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1030 {
1031 	if (pid > 0) {
1032 		if (p->pid != pid)
1033 			return 0;
1034 	} else if (!pid) {
1035 		if (process_group(p) != process_group(current))
1036 			return 0;
1037 	} else if (pid != -1) {
1038 		if (process_group(p) != -pid)
1039 			return 0;
1040 	}
1041 
1042 	/*
1043 	 * Do not consider detached threads that are
1044 	 * not ptraced:
1045 	 */
1046 	if (p->exit_signal == -1 && !p->ptrace)
1047 		return 0;
1048 
1049 	/* Wait for all children (clone and not) if __WALL is set;
1050 	 * otherwise, wait for clone children *only* if __WCLONE is
1051 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1052 	 * A "clone" child here is one that reports to its parent
1053 	 * using a signal other than SIGCHLD.) */
1054 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1055 	    && !(options & __WALL))
1056 		return 0;
1057 	/*
1058 	 * Do not consider thread group leaders that are
1059 	 * in a non-empty thread group:
1060 	 */
1061 	if (delay_group_leader(p))
1062 		return 2;
1063 
1064 	if (security_task_wait(p))
1065 		return 0;
1066 
1067 	return 1;
1068 }
1069 
1070 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1071 			       int why, int status,
1072 			       struct siginfo __user *infop,
1073 			       struct rusage __user *rusagep)
1074 {
1075 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1076 
1077 	put_task_struct(p);
1078 	if (!retval)
1079 		retval = put_user(SIGCHLD, &infop->si_signo);
1080 	if (!retval)
1081 		retval = put_user(0, &infop->si_errno);
1082 	if (!retval)
1083 		retval = put_user((short)why, &infop->si_code);
1084 	if (!retval)
1085 		retval = put_user(pid, &infop->si_pid);
1086 	if (!retval)
1087 		retval = put_user(uid, &infop->si_uid);
1088 	if (!retval)
1089 		retval = put_user(status, &infop->si_status);
1090 	if (!retval)
1091 		retval = pid;
1092 	return retval;
1093 }
1094 
1095 /*
1096  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1097  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1098  * the lock and this task is uninteresting.  If we return nonzero, we have
1099  * released the lock and the system call should return.
1100  */
1101 static int wait_task_zombie(struct task_struct *p, int noreap,
1102 			    struct siginfo __user *infop,
1103 			    int __user *stat_addr, struct rusage __user *ru)
1104 {
1105 	unsigned long state;
1106 	int retval;
1107 	int status;
1108 
1109 	if (unlikely(noreap)) {
1110 		pid_t pid = p->pid;
1111 		uid_t uid = p->uid;
1112 		int exit_code = p->exit_code;
1113 		int why, status;
1114 
1115 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1116 			return 0;
1117 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1118 			return 0;
1119 		get_task_struct(p);
1120 		read_unlock(&tasklist_lock);
1121 		if ((exit_code & 0x7f) == 0) {
1122 			why = CLD_EXITED;
1123 			status = exit_code >> 8;
1124 		} else {
1125 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1126 			status = exit_code & 0x7f;
1127 		}
1128 		return wait_noreap_copyout(p, pid, uid, why,
1129 					   status, infop, ru);
1130 	}
1131 
1132 	/*
1133 	 * Try to move the task's state to DEAD
1134 	 * only one thread is allowed to do this:
1135 	 */
1136 	state = xchg(&p->exit_state, EXIT_DEAD);
1137 	if (state != EXIT_ZOMBIE) {
1138 		BUG_ON(state != EXIT_DEAD);
1139 		return 0;
1140 	}
1141 	if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1142 		/*
1143 		 * This can only happen in a race with a ptraced thread
1144 		 * dying on another processor.
1145 		 */
1146 		return 0;
1147 	}
1148 
1149 	if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1150 		struct signal_struct *psig;
1151 		struct signal_struct *sig;
1152 
1153 		/*
1154 		 * The resource counters for the group leader are in its
1155 		 * own task_struct.  Those for dead threads in the group
1156 		 * are in its signal_struct, as are those for the child
1157 		 * processes it has previously reaped.  All these
1158 		 * accumulate in the parent's signal_struct c* fields.
1159 		 *
1160 		 * We don't bother to take a lock here to protect these
1161 		 * p->signal fields, because they are only touched by
1162 		 * __exit_signal, which runs with tasklist_lock
1163 		 * write-locked anyway, and so is excluded here.  We do
1164 		 * need to protect the access to p->parent->signal fields,
1165 		 * as other threads in the parent group can be right
1166 		 * here reaping other children at the same time.
1167 		 */
1168 		spin_lock_irq(&p->parent->sighand->siglock);
1169 		psig = p->parent->signal;
1170 		sig = p->signal;
1171 		psig->cutime =
1172 			cputime_add(psig->cutime,
1173 			cputime_add(p->utime,
1174 			cputime_add(sig->utime,
1175 				    sig->cutime)));
1176 		psig->cstime =
1177 			cputime_add(psig->cstime,
1178 			cputime_add(p->stime,
1179 			cputime_add(sig->stime,
1180 				    sig->cstime)));
1181 		psig->cmin_flt +=
1182 			p->min_flt + sig->min_flt + sig->cmin_flt;
1183 		psig->cmaj_flt +=
1184 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1185 		psig->cnvcsw +=
1186 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1187 		psig->cnivcsw +=
1188 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1189 		spin_unlock_irq(&p->parent->sighand->siglock);
1190 	}
1191 
1192 	/*
1193 	 * Now we are sure this task is interesting, and no other
1194 	 * thread can reap it because we set its state to EXIT_DEAD.
1195 	 */
1196 	read_unlock(&tasklist_lock);
1197 
1198 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1199 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1200 		? p->signal->group_exit_code : p->exit_code;
1201 	if (!retval && stat_addr)
1202 		retval = put_user(status, stat_addr);
1203 	if (!retval && infop)
1204 		retval = put_user(SIGCHLD, &infop->si_signo);
1205 	if (!retval && infop)
1206 		retval = put_user(0, &infop->si_errno);
1207 	if (!retval && infop) {
1208 		int why;
1209 
1210 		if ((status & 0x7f) == 0) {
1211 			why = CLD_EXITED;
1212 			status >>= 8;
1213 		} else {
1214 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1215 			status &= 0x7f;
1216 		}
1217 		retval = put_user((short)why, &infop->si_code);
1218 		if (!retval)
1219 			retval = put_user(status, &infop->si_status);
1220 	}
1221 	if (!retval && infop)
1222 		retval = put_user(p->pid, &infop->si_pid);
1223 	if (!retval && infop)
1224 		retval = put_user(p->uid, &infop->si_uid);
1225 	if (retval) {
1226 		// TODO: is this safe?
1227 		p->exit_state = EXIT_ZOMBIE;
1228 		return retval;
1229 	}
1230 	retval = p->pid;
1231 	if (p->real_parent != p->parent) {
1232 		write_lock_irq(&tasklist_lock);
1233 		/* Double-check with lock held.  */
1234 		if (p->real_parent != p->parent) {
1235 			__ptrace_unlink(p);
1236 			// TODO: is this safe?
1237 			p->exit_state = EXIT_ZOMBIE;
1238 			/*
1239 			 * If this is not a detached task, notify the parent.
1240 			 * If it's still not detached after that, don't release
1241 			 * it now.
1242 			 */
1243 			if (p->exit_signal != -1) {
1244 				do_notify_parent(p, p->exit_signal);
1245 				if (p->exit_signal != -1)
1246 					p = NULL;
1247 			}
1248 		}
1249 		write_unlock_irq(&tasklist_lock);
1250 	}
1251 	if (p != NULL)
1252 		release_task(p);
1253 	BUG_ON(!retval);
1254 	return retval;
1255 }
1256 
1257 /*
1258  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1259  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1260  * the lock and this task is uninteresting.  If we return nonzero, we have
1261  * released the lock and the system call should return.
1262  */
1263 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1264 			     int noreap, struct siginfo __user *infop,
1265 			     int __user *stat_addr, struct rusage __user *ru)
1266 {
1267 	int retval, exit_code;
1268 
1269 	if (!p->exit_code)
1270 		return 0;
1271 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1272 	    p->signal && p->signal->group_stop_count > 0)
1273 		/*
1274 		 * A group stop is in progress and this is the group leader.
1275 		 * We won't report until all threads have stopped.
1276 		 */
1277 		return 0;
1278 
1279 	/*
1280 	 * Now we are pretty sure this task is interesting.
1281 	 * Make sure it doesn't get reaped out from under us while we
1282 	 * give up the lock and then examine it below.  We don't want to
1283 	 * keep holding onto the tasklist_lock while we call getrusage and
1284 	 * possibly take page faults for user memory.
1285 	 */
1286 	get_task_struct(p);
1287 	read_unlock(&tasklist_lock);
1288 
1289 	if (unlikely(noreap)) {
1290 		pid_t pid = p->pid;
1291 		uid_t uid = p->uid;
1292 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1293 
1294 		exit_code = p->exit_code;
1295 		if (unlikely(!exit_code) ||
1296 		    unlikely(p->state & TASK_TRACED))
1297 			goto bail_ref;
1298 		return wait_noreap_copyout(p, pid, uid,
1299 					   why, (exit_code << 8) | 0x7f,
1300 					   infop, ru);
1301 	}
1302 
1303 	write_lock_irq(&tasklist_lock);
1304 
1305 	/*
1306 	 * This uses xchg to be atomic with the thread resuming and setting
1307 	 * it.  It must also be done with the write lock held to prevent a
1308 	 * race with the EXIT_ZOMBIE case.
1309 	 */
1310 	exit_code = xchg(&p->exit_code, 0);
1311 	if (unlikely(p->exit_state)) {
1312 		/*
1313 		 * The task resumed and then died.  Let the next iteration
1314 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1315 		 * already be zero here if it resumed and did _exit(0).
1316 		 * The task itself is dead and won't touch exit_code again;
1317 		 * other processors in this function are locked out.
1318 		 */
1319 		p->exit_code = exit_code;
1320 		exit_code = 0;
1321 	}
1322 	if (unlikely(exit_code == 0)) {
1323 		/*
1324 		 * Another thread in this function got to it first, or it
1325 		 * resumed, or it resumed and then died.
1326 		 */
1327 		write_unlock_irq(&tasklist_lock);
1328 bail_ref:
1329 		put_task_struct(p);
1330 		/*
1331 		 * We are returning to the wait loop without having successfully
1332 		 * removed the process and having released the lock. We cannot
1333 		 * continue, since the "p" task pointer is potentially stale.
1334 		 *
1335 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1336 		 * beginning. Do _not_ re-acquire the lock.
1337 		 */
1338 		return -EAGAIN;
1339 	}
1340 
1341 	/* move to end of parent's list to avoid starvation */
1342 	remove_parent(p);
1343 	add_parent(p);
1344 
1345 	write_unlock_irq(&tasklist_lock);
1346 
1347 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1348 	if (!retval && stat_addr)
1349 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1350 	if (!retval && infop)
1351 		retval = put_user(SIGCHLD, &infop->si_signo);
1352 	if (!retval && infop)
1353 		retval = put_user(0, &infop->si_errno);
1354 	if (!retval && infop)
1355 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1356 					  ? CLD_TRAPPED : CLD_STOPPED),
1357 				  &infop->si_code);
1358 	if (!retval && infop)
1359 		retval = put_user(exit_code, &infop->si_status);
1360 	if (!retval && infop)
1361 		retval = put_user(p->pid, &infop->si_pid);
1362 	if (!retval && infop)
1363 		retval = put_user(p->uid, &infop->si_uid);
1364 	if (!retval)
1365 		retval = p->pid;
1366 	put_task_struct(p);
1367 
1368 	BUG_ON(!retval);
1369 	return retval;
1370 }
1371 
1372 /*
1373  * Handle do_wait work for one task in a live, non-stopped state.
1374  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1375  * the lock and this task is uninteresting.  If we return nonzero, we have
1376  * released the lock and the system call should return.
1377  */
1378 static int wait_task_continued(struct task_struct *p, int noreap,
1379 			       struct siginfo __user *infop,
1380 			       int __user *stat_addr, struct rusage __user *ru)
1381 {
1382 	int retval;
1383 	pid_t pid;
1384 	uid_t uid;
1385 
1386 	if (unlikely(!p->signal))
1387 		return 0;
1388 
1389 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1390 		return 0;
1391 
1392 	spin_lock_irq(&p->sighand->siglock);
1393 	/* Re-check with the lock held.  */
1394 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1395 		spin_unlock_irq(&p->sighand->siglock);
1396 		return 0;
1397 	}
1398 	if (!noreap)
1399 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1400 	spin_unlock_irq(&p->sighand->siglock);
1401 
1402 	pid = p->pid;
1403 	uid = p->uid;
1404 	get_task_struct(p);
1405 	read_unlock(&tasklist_lock);
1406 
1407 	if (!infop) {
1408 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1409 		put_task_struct(p);
1410 		if (!retval && stat_addr)
1411 			retval = put_user(0xffff, stat_addr);
1412 		if (!retval)
1413 			retval = p->pid;
1414 	} else {
1415 		retval = wait_noreap_copyout(p, pid, uid,
1416 					     CLD_CONTINUED, SIGCONT,
1417 					     infop, ru);
1418 		BUG_ON(retval == 0);
1419 	}
1420 
1421 	return retval;
1422 }
1423 
1424 
1425 static inline int my_ptrace_child(struct task_struct *p)
1426 {
1427 	if (!(p->ptrace & PT_PTRACED))
1428 		return 0;
1429 	if (!(p->ptrace & PT_ATTACHED))
1430 		return 1;
1431 	/*
1432 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1433 	 * we are the attacher.  If we are the real parent, this is a race
1434 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1435 	 * which we have to switch the parent links, but has already set
1436 	 * the flags in p->ptrace.
1437 	 */
1438 	return (p->parent != p->real_parent);
1439 }
1440 
1441 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1442 		    int __user *stat_addr, struct rusage __user *ru)
1443 {
1444 	DECLARE_WAITQUEUE(wait, current);
1445 	struct task_struct *tsk;
1446 	int flag, retval;
1447 
1448 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1449 repeat:
1450 	/*
1451 	 * We will set this flag if we see any child that might later
1452 	 * match our criteria, even if we are not able to reap it yet.
1453 	 */
1454 	flag = 0;
1455 	current->state = TASK_INTERRUPTIBLE;
1456 	read_lock(&tasklist_lock);
1457 	tsk = current;
1458 	do {
1459 		struct task_struct *p;
1460 		struct list_head *_p;
1461 		int ret;
1462 
1463 		list_for_each(_p,&tsk->children) {
1464 			p = list_entry(_p, struct task_struct, sibling);
1465 
1466 			ret = eligible_child(pid, options, p);
1467 			if (!ret)
1468 				continue;
1469 
1470 			switch (p->state) {
1471 			case TASK_TRACED:
1472 				/*
1473 				 * When we hit the race with PTRACE_ATTACH,
1474 				 * we will not report this child.  But the
1475 				 * race means it has not yet been moved to
1476 				 * our ptrace_children list, so we need to
1477 				 * set the flag here to avoid a spurious ECHILD
1478 				 * when the race happens with the only child.
1479 				 */
1480 				flag = 1;
1481 				if (!my_ptrace_child(p))
1482 					continue;
1483 				/*FALLTHROUGH*/
1484 			case TASK_STOPPED:
1485 				/*
1486 				 * It's stopped now, so it might later
1487 				 * continue, exit, or stop again.
1488 				 */
1489 				flag = 1;
1490 				if (!(options & WUNTRACED) &&
1491 				    !my_ptrace_child(p))
1492 					continue;
1493 				retval = wait_task_stopped(p, ret == 2,
1494 							   (options & WNOWAIT),
1495 							   infop,
1496 							   stat_addr, ru);
1497 				if (retval == -EAGAIN)
1498 					goto repeat;
1499 				if (retval != 0) /* He released the lock.  */
1500 					goto end;
1501 				break;
1502 			default:
1503 			// case EXIT_DEAD:
1504 				if (p->exit_state == EXIT_DEAD)
1505 					continue;
1506 			// case EXIT_ZOMBIE:
1507 				if (p->exit_state == EXIT_ZOMBIE) {
1508 					/*
1509 					 * Eligible but we cannot release
1510 					 * it yet:
1511 					 */
1512 					if (ret == 2)
1513 						goto check_continued;
1514 					if (!likely(options & WEXITED))
1515 						continue;
1516 					retval = wait_task_zombie(
1517 						p, (options & WNOWAIT),
1518 						infop, stat_addr, ru);
1519 					/* He released the lock.  */
1520 					if (retval != 0)
1521 						goto end;
1522 					break;
1523 				}
1524 check_continued:
1525 				/*
1526 				 * It's running now, so it might later
1527 				 * exit, stop, or stop and then continue.
1528 				 */
1529 				flag = 1;
1530 				if (!unlikely(options & WCONTINUED))
1531 					continue;
1532 				retval = wait_task_continued(
1533 					p, (options & WNOWAIT),
1534 					infop, stat_addr, ru);
1535 				if (retval != 0) /* He released the lock.  */
1536 					goto end;
1537 				break;
1538 			}
1539 		}
1540 		if (!flag) {
1541 			list_for_each(_p, &tsk->ptrace_children) {
1542 				p = list_entry(_p, struct task_struct,
1543 						ptrace_list);
1544 				if (!eligible_child(pid, options, p))
1545 					continue;
1546 				flag = 1;
1547 				break;
1548 			}
1549 		}
1550 		if (options & __WNOTHREAD)
1551 			break;
1552 		tsk = next_thread(tsk);
1553 		BUG_ON(tsk->signal != current->signal);
1554 	} while (tsk != current);
1555 
1556 	read_unlock(&tasklist_lock);
1557 	if (flag) {
1558 		retval = 0;
1559 		if (options & WNOHANG)
1560 			goto end;
1561 		retval = -ERESTARTSYS;
1562 		if (signal_pending(current))
1563 			goto end;
1564 		schedule();
1565 		goto repeat;
1566 	}
1567 	retval = -ECHILD;
1568 end:
1569 	current->state = TASK_RUNNING;
1570 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1571 	if (infop) {
1572 		if (retval > 0)
1573 		retval = 0;
1574 		else {
1575 			/*
1576 			 * For a WNOHANG return, clear out all the fields
1577 			 * we would set so the user can easily tell the
1578 			 * difference.
1579 			 */
1580 			if (!retval)
1581 				retval = put_user(0, &infop->si_signo);
1582 			if (!retval)
1583 				retval = put_user(0, &infop->si_errno);
1584 			if (!retval)
1585 				retval = put_user(0, &infop->si_code);
1586 			if (!retval)
1587 				retval = put_user(0, &infop->si_pid);
1588 			if (!retval)
1589 				retval = put_user(0, &infop->si_uid);
1590 			if (!retval)
1591 				retval = put_user(0, &infop->si_status);
1592 		}
1593 	}
1594 	return retval;
1595 }
1596 
1597 asmlinkage long sys_waitid(int which, pid_t pid,
1598 			   struct siginfo __user *infop, int options,
1599 			   struct rusage __user *ru)
1600 {
1601 	long ret;
1602 
1603 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1604 		return -EINVAL;
1605 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1606 		return -EINVAL;
1607 
1608 	switch (which) {
1609 	case P_ALL:
1610 		pid = -1;
1611 		break;
1612 	case P_PID:
1613 		if (pid <= 0)
1614 			return -EINVAL;
1615 		break;
1616 	case P_PGID:
1617 		if (pid <= 0)
1618 			return -EINVAL;
1619 		pid = -pid;
1620 		break;
1621 	default:
1622 		return -EINVAL;
1623 	}
1624 
1625 	ret = do_wait(pid, options, infop, NULL, ru);
1626 
1627 	/* avoid REGPARM breakage on x86: */
1628 	prevent_tail_call(ret);
1629 	return ret;
1630 }
1631 
1632 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1633 			  int options, struct rusage __user *ru)
1634 {
1635 	long ret;
1636 
1637 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1638 			__WNOTHREAD|__WCLONE|__WALL))
1639 		return -EINVAL;
1640 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1641 
1642 	/* avoid REGPARM breakage on x86: */
1643 	prevent_tail_call(ret);
1644 	return ret;
1645 }
1646 
1647 #ifdef __ARCH_WANT_SYS_WAITPID
1648 
1649 /*
1650  * sys_waitpid() remains for compatibility. waitpid() should be
1651  * implemented by calling sys_wait4() from libc.a.
1652  */
1653 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1654 {
1655 	return sys_wait4(pid, stat_addr, options, NULL);
1656 }
1657 
1658 #endif
1659