1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/freezer.h> 29 #include <linux/binfmts.h> 30 #include <linux/nsproxy.h> 31 #include <linux/pid_namespace.h> 32 #include <linux/ptrace.h> 33 #include <linux/profile.h> 34 #include <linux/mount.h> 35 #include <linux/proc_fs.h> 36 #include <linux/kthread.h> 37 #include <linux/mempolicy.h> 38 #include <linux/taskstats_kern.h> 39 #include <linux/delayacct.h> 40 #include <linux/cgroup.h> 41 #include <linux/syscalls.h> 42 #include <linux/signal.h> 43 #include <linux/posix-timers.h> 44 #include <linux/cn_proc.h> 45 #include <linux/mutex.h> 46 #include <linux/futex.h> 47 #include <linux/pipe_fs_i.h> 48 #include <linux/audit.h> /* for audit_free() */ 49 #include <linux/resource.h> 50 #include <linux/task_io_accounting_ops.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_work.h> 53 #include <linux/fs_struct.h> 54 #include <linux/init_task.h> 55 #include <linux/perf_event.h> 56 #include <trace/events/sched.h> 57 #include <linux/hw_breakpoint.h> 58 #include <linux/oom.h> 59 #include <linux/writeback.h> 60 #include <linux/shm.h> 61 #include <linux/kcov.h> 62 #include <linux/kmsan.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 #include <linux/io_uring.h> 67 #include <linux/kprobes.h> 68 #include <linux/rethook.h> 69 #include <linux/sysfs.h> 70 #include <linux/user_events.h> 71 #include <linux/uaccess.h> 72 #include <linux/pidfs.h> 73 74 #include <uapi/linux/wait.h> 75 76 #include <asm/unistd.h> 77 #include <asm/mmu_context.h> 78 79 #include "exit.h" 80 81 /* 82 * The default value should be high enough to not crash a system that randomly 83 * crashes its kernel from time to time, but low enough to at least not permit 84 * overflowing 32-bit refcounts or the ldsem writer count. 85 */ 86 static unsigned int oops_limit = 10000; 87 88 #ifdef CONFIG_SYSCTL 89 static const struct ctl_table kern_exit_table[] = { 90 { 91 .procname = "oops_limit", 92 .data = &oops_limit, 93 .maxlen = sizeof(oops_limit), 94 .mode = 0644, 95 .proc_handler = proc_douintvec, 96 }, 97 }; 98 99 static __init int kernel_exit_sysctls_init(void) 100 { 101 register_sysctl_init("kernel", kern_exit_table); 102 return 0; 103 } 104 late_initcall(kernel_exit_sysctls_init); 105 #endif 106 107 static atomic_t oops_count = ATOMIC_INIT(0); 108 109 #ifdef CONFIG_SYSFS 110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr, 111 char *page) 112 { 113 return sysfs_emit(page, "%d\n", atomic_read(&oops_count)); 114 } 115 116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count); 117 118 static __init int kernel_exit_sysfs_init(void) 119 { 120 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL); 121 return 0; 122 } 123 late_initcall(kernel_exit_sysfs_init); 124 #endif 125 126 static void __unhash_process(struct task_struct *p, bool group_dead) 127 { 128 nr_threads--; 129 detach_pid(p, PIDTYPE_PID); 130 if (group_dead) { 131 detach_pid(p, PIDTYPE_TGID); 132 detach_pid(p, PIDTYPE_PGID); 133 detach_pid(p, PIDTYPE_SID); 134 135 list_del_rcu(&p->tasks); 136 list_del_init(&p->sibling); 137 __this_cpu_dec(process_counts); 138 } 139 list_del_rcu(&p->thread_node); 140 } 141 142 /* 143 * This function expects the tasklist_lock write-locked. 144 */ 145 static void __exit_signal(struct task_struct *tsk) 146 { 147 struct signal_struct *sig = tsk->signal; 148 bool group_dead = thread_group_leader(tsk); 149 struct sighand_struct *sighand; 150 struct tty_struct *tty; 151 u64 utime, stime; 152 153 sighand = rcu_dereference_check(tsk->sighand, 154 lockdep_tasklist_lock_is_held()); 155 spin_lock(&sighand->siglock); 156 157 #ifdef CONFIG_POSIX_TIMERS 158 posix_cpu_timers_exit(tsk); 159 if (group_dead) 160 posix_cpu_timers_exit_group(tsk); 161 #endif 162 163 if (group_dead) { 164 tty = sig->tty; 165 sig->tty = NULL; 166 } else { 167 /* 168 * If there is any task waiting for the group exit 169 * then notify it: 170 */ 171 if (sig->notify_count > 0 && !--sig->notify_count) 172 wake_up_process(sig->group_exec_task); 173 174 if (tsk == sig->curr_target) 175 sig->curr_target = next_thread(tsk); 176 } 177 178 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 179 sizeof(unsigned long long)); 180 181 /* 182 * Accumulate here the counters for all threads as they die. We could 183 * skip the group leader because it is the last user of signal_struct, 184 * but we want to avoid the race with thread_group_cputime() which can 185 * see the empty ->thread_head list. 186 */ 187 task_cputime(tsk, &utime, &stime); 188 write_seqlock(&sig->stats_lock); 189 sig->utime += utime; 190 sig->stime += stime; 191 sig->gtime += task_gtime(tsk); 192 sig->min_flt += tsk->min_flt; 193 sig->maj_flt += tsk->maj_flt; 194 sig->nvcsw += tsk->nvcsw; 195 sig->nivcsw += tsk->nivcsw; 196 sig->inblock += task_io_get_inblock(tsk); 197 sig->oublock += task_io_get_oublock(tsk); 198 task_io_accounting_add(&sig->ioac, &tsk->ioac); 199 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 200 sig->nr_threads--; 201 __unhash_process(tsk, group_dead); 202 write_sequnlock(&sig->stats_lock); 203 204 /* 205 * Do this under ->siglock, we can race with another thread 206 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 207 */ 208 flush_sigqueue(&tsk->pending); 209 tsk->sighand = NULL; 210 spin_unlock(&sighand->siglock); 211 212 __cleanup_sighand(sighand); 213 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 214 if (group_dead) { 215 flush_sigqueue(&sig->shared_pending); 216 tty_kref_put(tty); 217 } 218 } 219 220 static void delayed_put_task_struct(struct rcu_head *rhp) 221 { 222 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 223 224 kprobe_flush_task(tsk); 225 rethook_flush_task(tsk); 226 perf_event_delayed_put(tsk); 227 trace_sched_process_free(tsk); 228 put_task_struct(tsk); 229 } 230 231 void put_task_struct_rcu_user(struct task_struct *task) 232 { 233 if (refcount_dec_and_test(&task->rcu_users)) 234 call_rcu(&task->rcu, delayed_put_task_struct); 235 } 236 237 void __weak release_thread(struct task_struct *dead_task) 238 { 239 } 240 241 void release_task(struct task_struct *p) 242 { 243 struct task_struct *leader; 244 struct pid *thread_pid; 245 int zap_leader; 246 repeat: 247 /* don't need to get the RCU readlock here - the process is dead and 248 * can't be modifying its own credentials. But shut RCU-lockdep up */ 249 rcu_read_lock(); 250 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 251 rcu_read_unlock(); 252 253 pidfs_exit(p); 254 cgroup_release(p); 255 256 write_lock_irq(&tasklist_lock); 257 ptrace_release_task(p); 258 thread_pid = get_pid(p->thread_pid); 259 __exit_signal(p); 260 261 /* 262 * If we are the last non-leader member of the thread 263 * group, and the leader is zombie, then notify the 264 * group leader's parent process. (if it wants notification.) 265 */ 266 zap_leader = 0; 267 leader = p->group_leader; 268 if (leader != p && thread_group_empty(leader) 269 && leader->exit_state == EXIT_ZOMBIE) { 270 /* 271 * If we were the last child thread and the leader has 272 * exited already, and the leader's parent ignores SIGCHLD, 273 * then we are the one who should release the leader. 274 */ 275 zap_leader = do_notify_parent(leader, leader->exit_signal); 276 if (zap_leader) 277 leader->exit_state = EXIT_DEAD; 278 } 279 280 write_unlock_irq(&tasklist_lock); 281 proc_flush_pid(thread_pid); 282 put_pid(thread_pid); 283 release_thread(p); 284 put_task_struct_rcu_user(p); 285 286 p = leader; 287 if (unlikely(zap_leader)) 288 goto repeat; 289 } 290 291 int rcuwait_wake_up(struct rcuwait *w) 292 { 293 int ret = 0; 294 struct task_struct *task; 295 296 rcu_read_lock(); 297 298 /* 299 * Order condition vs @task, such that everything prior to the load 300 * of @task is visible. This is the condition as to why the user called 301 * rcuwait_wake() in the first place. Pairs with set_current_state() 302 * barrier (A) in rcuwait_wait_event(). 303 * 304 * WAIT WAKE 305 * [S] tsk = current [S] cond = true 306 * MB (A) MB (B) 307 * [L] cond [L] tsk 308 */ 309 smp_mb(); /* (B) */ 310 311 task = rcu_dereference(w->task); 312 if (task) 313 ret = wake_up_process(task); 314 rcu_read_unlock(); 315 316 return ret; 317 } 318 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 319 320 /* 321 * Determine if a process group is "orphaned", according to the POSIX 322 * definition in 2.2.2.52. Orphaned process groups are not to be affected 323 * by terminal-generated stop signals. Newly orphaned process groups are 324 * to receive a SIGHUP and a SIGCONT. 325 * 326 * "I ask you, have you ever known what it is to be an orphan?" 327 */ 328 static int will_become_orphaned_pgrp(struct pid *pgrp, 329 struct task_struct *ignored_task) 330 { 331 struct task_struct *p; 332 333 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 334 if ((p == ignored_task) || 335 (p->exit_state && thread_group_empty(p)) || 336 is_global_init(p->real_parent)) 337 continue; 338 339 if (task_pgrp(p->real_parent) != pgrp && 340 task_session(p->real_parent) == task_session(p)) 341 return 0; 342 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 343 344 return 1; 345 } 346 347 int is_current_pgrp_orphaned(void) 348 { 349 int retval; 350 351 read_lock(&tasklist_lock); 352 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 353 read_unlock(&tasklist_lock); 354 355 return retval; 356 } 357 358 static bool has_stopped_jobs(struct pid *pgrp) 359 { 360 struct task_struct *p; 361 362 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 363 if (p->signal->flags & SIGNAL_STOP_STOPPED) 364 return true; 365 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 366 367 return false; 368 } 369 370 /* 371 * Check to see if any process groups have become orphaned as 372 * a result of our exiting, and if they have any stopped jobs, 373 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 374 */ 375 static void 376 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 377 { 378 struct pid *pgrp = task_pgrp(tsk); 379 struct task_struct *ignored_task = tsk; 380 381 if (!parent) 382 /* exit: our father is in a different pgrp than 383 * we are and we were the only connection outside. 384 */ 385 parent = tsk->real_parent; 386 else 387 /* reparent: our child is in a different pgrp than 388 * we are, and it was the only connection outside. 389 */ 390 ignored_task = NULL; 391 392 if (task_pgrp(parent) != pgrp && 393 task_session(parent) == task_session(tsk) && 394 will_become_orphaned_pgrp(pgrp, ignored_task) && 395 has_stopped_jobs(pgrp)) { 396 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 397 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 398 } 399 } 400 401 static void coredump_task_exit(struct task_struct *tsk) 402 { 403 struct core_state *core_state; 404 405 /* 406 * Serialize with any possible pending coredump. 407 * We must hold siglock around checking core_state 408 * and setting PF_POSTCOREDUMP. The core-inducing thread 409 * will increment ->nr_threads for each thread in the 410 * group without PF_POSTCOREDUMP set. 411 */ 412 spin_lock_irq(&tsk->sighand->siglock); 413 tsk->flags |= PF_POSTCOREDUMP; 414 core_state = tsk->signal->core_state; 415 spin_unlock_irq(&tsk->sighand->siglock); 416 if (core_state) { 417 struct core_thread self; 418 419 self.task = current; 420 if (self.task->flags & PF_SIGNALED) 421 self.next = xchg(&core_state->dumper.next, &self); 422 else 423 self.task = NULL; 424 /* 425 * Implies mb(), the result of xchg() must be visible 426 * to core_state->dumper. 427 */ 428 if (atomic_dec_and_test(&core_state->nr_threads)) 429 complete(&core_state->startup); 430 431 for (;;) { 432 set_current_state(TASK_IDLE|TASK_FREEZABLE); 433 if (!self.task) /* see coredump_finish() */ 434 break; 435 schedule(); 436 } 437 __set_current_state(TASK_RUNNING); 438 } 439 } 440 441 #ifdef CONFIG_MEMCG 442 /* drops tasklist_lock if succeeds */ 443 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm) 444 { 445 bool ret = false; 446 447 task_lock(tsk); 448 if (likely(tsk->mm == mm)) { 449 /* tsk can't pass exit_mm/exec_mmap and exit */ 450 read_unlock(&tasklist_lock); 451 WRITE_ONCE(mm->owner, tsk); 452 lru_gen_migrate_mm(mm); 453 ret = true; 454 } 455 task_unlock(tsk); 456 return ret; 457 } 458 459 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm) 460 { 461 struct task_struct *t; 462 463 for_each_thread(g, t) { 464 struct mm_struct *t_mm = READ_ONCE(t->mm); 465 if (t_mm == mm) { 466 if (__try_to_set_owner(t, mm)) 467 return true; 468 } else if (t_mm) 469 break; 470 } 471 472 return false; 473 } 474 475 /* 476 * A task is exiting. If it owned this mm, find a new owner for the mm. 477 */ 478 void mm_update_next_owner(struct mm_struct *mm) 479 { 480 struct task_struct *g, *p = current; 481 482 /* 483 * If the exiting or execing task is not the owner, it's 484 * someone else's problem. 485 */ 486 if (mm->owner != p) 487 return; 488 /* 489 * The current owner is exiting/execing and there are no other 490 * candidates. Do not leave the mm pointing to a possibly 491 * freed task structure. 492 */ 493 if (atomic_read(&mm->mm_users) <= 1) { 494 WRITE_ONCE(mm->owner, NULL); 495 return; 496 } 497 498 read_lock(&tasklist_lock); 499 /* 500 * Search in the children 501 */ 502 list_for_each_entry(g, &p->children, sibling) { 503 if (try_to_set_owner(g, mm)) 504 goto ret; 505 } 506 /* 507 * Search in the siblings 508 */ 509 list_for_each_entry(g, &p->real_parent->children, sibling) { 510 if (try_to_set_owner(g, mm)) 511 goto ret; 512 } 513 /* 514 * Search through everything else, we should not get here often. 515 */ 516 for_each_process(g) { 517 if (atomic_read(&mm->mm_users) <= 1) 518 break; 519 if (g->flags & PF_KTHREAD) 520 continue; 521 if (try_to_set_owner(g, mm)) 522 goto ret; 523 } 524 read_unlock(&tasklist_lock); 525 /* 526 * We found no owner yet mm_users > 1: this implies that we are 527 * most likely racing with swapoff (try_to_unuse()) or /proc or 528 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 529 */ 530 WRITE_ONCE(mm->owner, NULL); 531 ret: 532 return; 533 534 } 535 #endif /* CONFIG_MEMCG */ 536 537 /* 538 * Turn us into a lazy TLB process if we 539 * aren't already.. 540 */ 541 static void exit_mm(void) 542 { 543 struct mm_struct *mm = current->mm; 544 545 exit_mm_release(current, mm); 546 if (!mm) 547 return; 548 mmap_read_lock(mm); 549 mmgrab_lazy_tlb(mm); 550 BUG_ON(mm != current->active_mm); 551 /* more a memory barrier than a real lock */ 552 task_lock(current); 553 /* 554 * When a thread stops operating on an address space, the loop 555 * in membarrier_private_expedited() may not observe that 556 * tsk->mm, and the loop in membarrier_global_expedited() may 557 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 558 * rq->membarrier_state, so those would not issue an IPI. 559 * Membarrier requires a memory barrier after accessing 560 * user-space memory, before clearing tsk->mm or the 561 * rq->membarrier_state. 562 */ 563 smp_mb__after_spinlock(); 564 local_irq_disable(); 565 current->mm = NULL; 566 membarrier_update_current_mm(NULL); 567 enter_lazy_tlb(mm, current); 568 local_irq_enable(); 569 task_unlock(current); 570 mmap_read_unlock(mm); 571 mm_update_next_owner(mm); 572 mmput(mm); 573 if (test_thread_flag(TIF_MEMDIE)) 574 exit_oom_victim(); 575 } 576 577 static struct task_struct *find_alive_thread(struct task_struct *p) 578 { 579 struct task_struct *t; 580 581 for_each_thread(p, t) { 582 if (!(t->flags & PF_EXITING)) 583 return t; 584 } 585 return NULL; 586 } 587 588 static struct task_struct *find_child_reaper(struct task_struct *father, 589 struct list_head *dead) 590 __releases(&tasklist_lock) 591 __acquires(&tasklist_lock) 592 { 593 struct pid_namespace *pid_ns = task_active_pid_ns(father); 594 struct task_struct *reaper = pid_ns->child_reaper; 595 struct task_struct *p, *n; 596 597 if (likely(reaper != father)) 598 return reaper; 599 600 reaper = find_alive_thread(father); 601 if (reaper) { 602 pid_ns->child_reaper = reaper; 603 return reaper; 604 } 605 606 write_unlock_irq(&tasklist_lock); 607 608 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 609 list_del_init(&p->ptrace_entry); 610 release_task(p); 611 } 612 613 zap_pid_ns_processes(pid_ns); 614 write_lock_irq(&tasklist_lock); 615 616 return father; 617 } 618 619 /* 620 * When we die, we re-parent all our children, and try to: 621 * 1. give them to another thread in our thread group, if such a member exists 622 * 2. give it to the first ancestor process which prctl'd itself as a 623 * child_subreaper for its children (like a service manager) 624 * 3. give it to the init process (PID 1) in our pid namespace 625 */ 626 static struct task_struct *find_new_reaper(struct task_struct *father, 627 struct task_struct *child_reaper) 628 { 629 struct task_struct *thread, *reaper; 630 631 thread = find_alive_thread(father); 632 if (thread) 633 return thread; 634 635 if (father->signal->has_child_subreaper) { 636 unsigned int ns_level = task_pid(father)->level; 637 /* 638 * Find the first ->is_child_subreaper ancestor in our pid_ns. 639 * We can't check reaper != child_reaper to ensure we do not 640 * cross the namespaces, the exiting parent could be injected 641 * by setns() + fork(). 642 * We check pid->level, this is slightly more efficient than 643 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 644 */ 645 for (reaper = father->real_parent; 646 task_pid(reaper)->level == ns_level; 647 reaper = reaper->real_parent) { 648 if (reaper == &init_task) 649 break; 650 if (!reaper->signal->is_child_subreaper) 651 continue; 652 thread = find_alive_thread(reaper); 653 if (thread) 654 return thread; 655 } 656 } 657 658 return child_reaper; 659 } 660 661 /* 662 * Any that need to be release_task'd are put on the @dead list. 663 */ 664 static void reparent_leader(struct task_struct *father, struct task_struct *p, 665 struct list_head *dead) 666 { 667 if (unlikely(p->exit_state == EXIT_DEAD)) 668 return; 669 670 /* We don't want people slaying init. */ 671 p->exit_signal = SIGCHLD; 672 673 /* If it has exited notify the new parent about this child's death. */ 674 if (!p->ptrace && 675 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 676 if (do_notify_parent(p, p->exit_signal)) { 677 p->exit_state = EXIT_DEAD; 678 list_add(&p->ptrace_entry, dead); 679 } 680 } 681 682 kill_orphaned_pgrp(p, father); 683 } 684 685 /* 686 * This does two things: 687 * 688 * A. Make init inherit all the child processes 689 * B. Check to see if any process groups have become orphaned 690 * as a result of our exiting, and if they have any stopped 691 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 692 */ 693 static void forget_original_parent(struct task_struct *father, 694 struct list_head *dead) 695 { 696 struct task_struct *p, *t, *reaper; 697 698 if (unlikely(!list_empty(&father->ptraced))) 699 exit_ptrace(father, dead); 700 701 /* Can drop and reacquire tasklist_lock */ 702 reaper = find_child_reaper(father, dead); 703 if (list_empty(&father->children)) 704 return; 705 706 reaper = find_new_reaper(father, reaper); 707 list_for_each_entry(p, &father->children, sibling) { 708 for_each_thread(p, t) { 709 RCU_INIT_POINTER(t->real_parent, reaper); 710 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 711 if (likely(!t->ptrace)) 712 t->parent = t->real_parent; 713 if (t->pdeath_signal) 714 group_send_sig_info(t->pdeath_signal, 715 SEND_SIG_NOINFO, t, 716 PIDTYPE_TGID); 717 } 718 /* 719 * If this is a threaded reparent there is no need to 720 * notify anyone anything has happened. 721 */ 722 if (!same_thread_group(reaper, father)) 723 reparent_leader(father, p, dead); 724 } 725 list_splice_tail_init(&father->children, &reaper->children); 726 } 727 728 /* 729 * Send signals to all our closest relatives so that they know 730 * to properly mourn us.. 731 */ 732 static void exit_notify(struct task_struct *tsk, int group_dead) 733 { 734 bool autoreap; 735 struct task_struct *p, *n; 736 LIST_HEAD(dead); 737 738 write_lock_irq(&tasklist_lock); 739 forget_original_parent(tsk, &dead); 740 741 if (group_dead) 742 kill_orphaned_pgrp(tsk->group_leader, NULL); 743 744 tsk->exit_state = EXIT_ZOMBIE; 745 /* 746 * Ignore thread-group leaders that exited before all 747 * subthreads did. 748 */ 749 if (!delay_group_leader(tsk)) 750 do_notify_pidfd(tsk); 751 752 if (unlikely(tsk->ptrace)) { 753 int sig = thread_group_leader(tsk) && 754 thread_group_empty(tsk) && 755 !ptrace_reparented(tsk) ? 756 tsk->exit_signal : SIGCHLD; 757 autoreap = do_notify_parent(tsk, sig); 758 } else if (thread_group_leader(tsk)) { 759 autoreap = thread_group_empty(tsk) && 760 do_notify_parent(tsk, tsk->exit_signal); 761 } else { 762 autoreap = true; 763 } 764 765 if (autoreap) { 766 tsk->exit_state = EXIT_DEAD; 767 list_add(&tsk->ptrace_entry, &dead); 768 } 769 770 /* mt-exec, de_thread() is waiting for group leader */ 771 if (unlikely(tsk->signal->notify_count < 0)) 772 wake_up_process(tsk->signal->group_exec_task); 773 write_unlock_irq(&tasklist_lock); 774 775 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 776 list_del_init(&p->ptrace_entry); 777 release_task(p); 778 } 779 } 780 781 #ifdef CONFIG_DEBUG_STACK_USAGE 782 unsigned long stack_not_used(struct task_struct *p) 783 { 784 unsigned long *n = end_of_stack(p); 785 786 do { /* Skip over canary */ 787 # ifdef CONFIG_STACK_GROWSUP 788 n--; 789 # else 790 n++; 791 # endif 792 } while (!*n); 793 794 # ifdef CONFIG_STACK_GROWSUP 795 return (unsigned long)end_of_stack(p) - (unsigned long)n; 796 # else 797 return (unsigned long)n - (unsigned long)end_of_stack(p); 798 # endif 799 } 800 801 /* Count the maximum pages reached in kernel stacks */ 802 static inline void kstack_histogram(unsigned long used_stack) 803 { 804 #ifdef CONFIG_VM_EVENT_COUNTERS 805 if (used_stack <= 1024) 806 count_vm_event(KSTACK_1K); 807 #if THREAD_SIZE > 1024 808 else if (used_stack <= 2048) 809 count_vm_event(KSTACK_2K); 810 #endif 811 #if THREAD_SIZE > 2048 812 else if (used_stack <= 4096) 813 count_vm_event(KSTACK_4K); 814 #endif 815 #if THREAD_SIZE > 4096 816 else if (used_stack <= 8192) 817 count_vm_event(KSTACK_8K); 818 #endif 819 #if THREAD_SIZE > 8192 820 else if (used_stack <= 16384) 821 count_vm_event(KSTACK_16K); 822 #endif 823 #if THREAD_SIZE > 16384 824 else if (used_stack <= 32768) 825 count_vm_event(KSTACK_32K); 826 #endif 827 #if THREAD_SIZE > 32768 828 else if (used_stack <= 65536) 829 count_vm_event(KSTACK_64K); 830 #endif 831 #if THREAD_SIZE > 65536 832 else 833 count_vm_event(KSTACK_REST); 834 #endif 835 #endif /* CONFIG_VM_EVENT_COUNTERS */ 836 } 837 838 static void check_stack_usage(void) 839 { 840 static DEFINE_SPINLOCK(low_water_lock); 841 static int lowest_to_date = THREAD_SIZE; 842 unsigned long free; 843 844 free = stack_not_used(current); 845 kstack_histogram(THREAD_SIZE - free); 846 847 if (free >= lowest_to_date) 848 return; 849 850 spin_lock(&low_water_lock); 851 if (free < lowest_to_date) { 852 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 853 current->comm, task_pid_nr(current), free); 854 lowest_to_date = free; 855 } 856 spin_unlock(&low_water_lock); 857 } 858 #else 859 static inline void check_stack_usage(void) {} 860 #endif 861 862 static void synchronize_group_exit(struct task_struct *tsk, long code) 863 { 864 struct sighand_struct *sighand = tsk->sighand; 865 struct signal_struct *signal = tsk->signal; 866 867 spin_lock_irq(&sighand->siglock); 868 signal->quick_threads--; 869 if ((signal->quick_threads == 0) && 870 !(signal->flags & SIGNAL_GROUP_EXIT)) { 871 signal->flags = SIGNAL_GROUP_EXIT; 872 signal->group_exit_code = code; 873 signal->group_stop_count = 0; 874 } 875 spin_unlock_irq(&sighand->siglock); 876 } 877 878 void __noreturn do_exit(long code) 879 { 880 struct task_struct *tsk = current; 881 int group_dead; 882 883 WARN_ON(irqs_disabled()); 884 885 synchronize_group_exit(tsk, code); 886 887 WARN_ON(tsk->plug); 888 889 kcov_task_exit(tsk); 890 kmsan_task_exit(tsk); 891 892 coredump_task_exit(tsk); 893 ptrace_event(PTRACE_EVENT_EXIT, code); 894 user_events_exit(tsk); 895 896 io_uring_files_cancel(); 897 exit_signals(tsk); /* sets PF_EXITING */ 898 899 seccomp_filter_release(tsk); 900 901 acct_update_integrals(tsk); 902 group_dead = atomic_dec_and_test(&tsk->signal->live); 903 if (group_dead) { 904 /* 905 * If the last thread of global init has exited, panic 906 * immediately to get a useable coredump. 907 */ 908 if (unlikely(is_global_init(tsk))) 909 panic("Attempted to kill init! exitcode=0x%08x\n", 910 tsk->signal->group_exit_code ?: (int)code); 911 912 #ifdef CONFIG_POSIX_TIMERS 913 hrtimer_cancel(&tsk->signal->real_timer); 914 exit_itimers(tsk); 915 #endif 916 if (tsk->mm) 917 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 918 } 919 acct_collect(code, group_dead); 920 if (group_dead) 921 tty_audit_exit(); 922 audit_free(tsk); 923 924 tsk->exit_code = code; 925 taskstats_exit(tsk, group_dead); 926 927 exit_mm(); 928 929 if (group_dead) 930 acct_process(); 931 trace_sched_process_exit(tsk); 932 933 exit_sem(tsk); 934 exit_shm(tsk); 935 exit_files(tsk); 936 exit_fs(tsk); 937 if (group_dead) 938 disassociate_ctty(1); 939 exit_task_namespaces(tsk); 940 exit_task_work(tsk); 941 exit_thread(tsk); 942 943 /* 944 * Flush inherited counters to the parent - before the parent 945 * gets woken up by child-exit notifications. 946 * 947 * because of cgroup mode, must be called before cgroup_exit() 948 */ 949 perf_event_exit_task(tsk); 950 951 sched_autogroup_exit_task(tsk); 952 cgroup_exit(tsk); 953 954 /* 955 * FIXME: do that only when needed, using sched_exit tracepoint 956 */ 957 flush_ptrace_hw_breakpoint(tsk); 958 959 exit_tasks_rcu_start(); 960 exit_notify(tsk, group_dead); 961 proc_exit_connector(tsk); 962 mpol_put_task_policy(tsk); 963 #ifdef CONFIG_FUTEX 964 if (unlikely(current->pi_state_cache)) 965 kfree(current->pi_state_cache); 966 #endif 967 /* 968 * Make sure we are holding no locks: 969 */ 970 debug_check_no_locks_held(); 971 972 if (tsk->io_context) 973 exit_io_context(tsk); 974 975 if (tsk->splice_pipe) 976 free_pipe_info(tsk->splice_pipe); 977 978 if (tsk->task_frag.page) 979 put_page(tsk->task_frag.page); 980 981 exit_task_stack_account(tsk); 982 983 check_stack_usage(); 984 preempt_disable(); 985 if (tsk->nr_dirtied) 986 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 987 exit_rcu(); 988 exit_tasks_rcu_finish(); 989 990 lockdep_free_task(tsk); 991 do_task_dead(); 992 } 993 994 void __noreturn make_task_dead(int signr) 995 { 996 /* 997 * Take the task off the cpu after something catastrophic has 998 * happened. 999 * 1000 * We can get here from a kernel oops, sometimes with preemption off. 1001 * Start by checking for critical errors. 1002 * Then fix up important state like USER_DS and preemption. 1003 * Then do everything else. 1004 */ 1005 struct task_struct *tsk = current; 1006 unsigned int limit; 1007 1008 if (unlikely(in_interrupt())) 1009 panic("Aiee, killing interrupt handler!"); 1010 if (unlikely(!tsk->pid)) 1011 panic("Attempted to kill the idle task!"); 1012 1013 if (unlikely(irqs_disabled())) { 1014 pr_info("note: %s[%d] exited with irqs disabled\n", 1015 current->comm, task_pid_nr(current)); 1016 local_irq_enable(); 1017 } 1018 if (unlikely(in_atomic())) { 1019 pr_info("note: %s[%d] exited with preempt_count %d\n", 1020 current->comm, task_pid_nr(current), 1021 preempt_count()); 1022 preempt_count_set(PREEMPT_ENABLED); 1023 } 1024 1025 /* 1026 * Every time the system oopses, if the oops happens while a reference 1027 * to an object was held, the reference leaks. 1028 * If the oops doesn't also leak memory, repeated oopsing can cause 1029 * reference counters to wrap around (if they're not using refcount_t). 1030 * This means that repeated oopsing can make unexploitable-looking bugs 1031 * exploitable through repeated oopsing. 1032 * To make sure this can't happen, place an upper bound on how often the 1033 * kernel may oops without panic(). 1034 */ 1035 limit = READ_ONCE(oops_limit); 1036 if (atomic_inc_return(&oops_count) >= limit && limit) 1037 panic("Oopsed too often (kernel.oops_limit is %d)", limit); 1038 1039 /* 1040 * We're taking recursive faults here in make_task_dead. Safest is to just 1041 * leave this task alone and wait for reboot. 1042 */ 1043 if (unlikely(tsk->flags & PF_EXITING)) { 1044 pr_alert("Fixing recursive fault but reboot is needed!\n"); 1045 futex_exit_recursive(tsk); 1046 tsk->exit_state = EXIT_DEAD; 1047 refcount_inc(&tsk->rcu_users); 1048 do_task_dead(); 1049 } 1050 1051 do_exit(signr); 1052 } 1053 1054 SYSCALL_DEFINE1(exit, int, error_code) 1055 { 1056 do_exit((error_code&0xff)<<8); 1057 } 1058 1059 /* 1060 * Take down every thread in the group. This is called by fatal signals 1061 * as well as by sys_exit_group (below). 1062 */ 1063 void __noreturn 1064 do_group_exit(int exit_code) 1065 { 1066 struct signal_struct *sig = current->signal; 1067 1068 if (sig->flags & SIGNAL_GROUP_EXIT) 1069 exit_code = sig->group_exit_code; 1070 else if (sig->group_exec_task) 1071 exit_code = 0; 1072 else { 1073 struct sighand_struct *const sighand = current->sighand; 1074 1075 spin_lock_irq(&sighand->siglock); 1076 if (sig->flags & SIGNAL_GROUP_EXIT) 1077 /* Another thread got here before we took the lock. */ 1078 exit_code = sig->group_exit_code; 1079 else if (sig->group_exec_task) 1080 exit_code = 0; 1081 else { 1082 sig->group_exit_code = exit_code; 1083 sig->flags = SIGNAL_GROUP_EXIT; 1084 zap_other_threads(current); 1085 } 1086 spin_unlock_irq(&sighand->siglock); 1087 } 1088 1089 do_exit(exit_code); 1090 /* NOTREACHED */ 1091 } 1092 1093 /* 1094 * this kills every thread in the thread group. Note that any externally 1095 * wait4()-ing process will get the correct exit code - even if this 1096 * thread is not the thread group leader. 1097 */ 1098 SYSCALL_DEFINE1(exit_group, int, error_code) 1099 { 1100 do_group_exit((error_code & 0xff) << 8); 1101 /* NOTREACHED */ 1102 return 0; 1103 } 1104 1105 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1106 { 1107 return wo->wo_type == PIDTYPE_MAX || 1108 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1109 } 1110 1111 static int 1112 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1113 { 1114 if (!eligible_pid(wo, p)) 1115 return 0; 1116 1117 /* 1118 * Wait for all children (clone and not) if __WALL is set or 1119 * if it is traced by us. 1120 */ 1121 if (ptrace || (wo->wo_flags & __WALL)) 1122 return 1; 1123 1124 /* 1125 * Otherwise, wait for clone children *only* if __WCLONE is set; 1126 * otherwise, wait for non-clone children *only*. 1127 * 1128 * Note: a "clone" child here is one that reports to its parent 1129 * using a signal other than SIGCHLD, or a non-leader thread which 1130 * we can only see if it is traced by us. 1131 */ 1132 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1133 return 0; 1134 1135 return 1; 1136 } 1137 1138 /* 1139 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1140 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1141 * the lock and this task is uninteresting. If we return nonzero, we have 1142 * released the lock and the system call should return. 1143 */ 1144 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1145 { 1146 int state, status; 1147 pid_t pid = task_pid_vnr(p); 1148 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1149 struct waitid_info *infop; 1150 1151 if (!likely(wo->wo_flags & WEXITED)) 1152 return 0; 1153 1154 if (unlikely(wo->wo_flags & WNOWAIT)) { 1155 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1156 ? p->signal->group_exit_code : p->exit_code; 1157 get_task_struct(p); 1158 read_unlock(&tasklist_lock); 1159 sched_annotate_sleep(); 1160 if (wo->wo_rusage) 1161 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1162 put_task_struct(p); 1163 goto out_info; 1164 } 1165 /* 1166 * Move the task's state to DEAD/TRACE, only one thread can do this. 1167 */ 1168 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1169 EXIT_TRACE : EXIT_DEAD; 1170 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1171 return 0; 1172 /* 1173 * We own this thread, nobody else can reap it. 1174 */ 1175 read_unlock(&tasklist_lock); 1176 sched_annotate_sleep(); 1177 1178 /* 1179 * Check thread_group_leader() to exclude the traced sub-threads. 1180 */ 1181 if (state == EXIT_DEAD && thread_group_leader(p)) { 1182 struct signal_struct *sig = p->signal; 1183 struct signal_struct *psig = current->signal; 1184 unsigned long maxrss; 1185 u64 tgutime, tgstime; 1186 1187 /* 1188 * The resource counters for the group leader are in its 1189 * own task_struct. Those for dead threads in the group 1190 * are in its signal_struct, as are those for the child 1191 * processes it has previously reaped. All these 1192 * accumulate in the parent's signal_struct c* fields. 1193 * 1194 * We don't bother to take a lock here to protect these 1195 * p->signal fields because the whole thread group is dead 1196 * and nobody can change them. 1197 * 1198 * psig->stats_lock also protects us from our sub-threads 1199 * which can reap other children at the same time. 1200 * 1201 * We use thread_group_cputime_adjusted() to get times for 1202 * the thread group, which consolidates times for all threads 1203 * in the group including the group leader. 1204 */ 1205 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1206 write_seqlock_irq(&psig->stats_lock); 1207 psig->cutime += tgutime + sig->cutime; 1208 psig->cstime += tgstime + sig->cstime; 1209 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1210 psig->cmin_flt += 1211 p->min_flt + sig->min_flt + sig->cmin_flt; 1212 psig->cmaj_flt += 1213 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1214 psig->cnvcsw += 1215 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1216 psig->cnivcsw += 1217 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1218 psig->cinblock += 1219 task_io_get_inblock(p) + 1220 sig->inblock + sig->cinblock; 1221 psig->coublock += 1222 task_io_get_oublock(p) + 1223 sig->oublock + sig->coublock; 1224 maxrss = max(sig->maxrss, sig->cmaxrss); 1225 if (psig->cmaxrss < maxrss) 1226 psig->cmaxrss = maxrss; 1227 task_io_accounting_add(&psig->ioac, &p->ioac); 1228 task_io_accounting_add(&psig->ioac, &sig->ioac); 1229 write_sequnlock_irq(&psig->stats_lock); 1230 } 1231 1232 if (wo->wo_rusage) 1233 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1234 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1235 ? p->signal->group_exit_code : p->exit_code; 1236 wo->wo_stat = status; 1237 1238 if (state == EXIT_TRACE) { 1239 write_lock_irq(&tasklist_lock); 1240 /* We dropped tasklist, ptracer could die and untrace */ 1241 ptrace_unlink(p); 1242 1243 /* If parent wants a zombie, don't release it now */ 1244 state = EXIT_ZOMBIE; 1245 if (do_notify_parent(p, p->exit_signal)) 1246 state = EXIT_DEAD; 1247 p->exit_state = state; 1248 write_unlock_irq(&tasklist_lock); 1249 } 1250 if (state == EXIT_DEAD) 1251 release_task(p); 1252 1253 out_info: 1254 infop = wo->wo_info; 1255 if (infop) { 1256 if ((status & 0x7f) == 0) { 1257 infop->cause = CLD_EXITED; 1258 infop->status = status >> 8; 1259 } else { 1260 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1261 infop->status = status & 0x7f; 1262 } 1263 infop->pid = pid; 1264 infop->uid = uid; 1265 } 1266 1267 return pid; 1268 } 1269 1270 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1271 { 1272 if (ptrace) { 1273 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1274 return &p->exit_code; 1275 } else { 1276 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1277 return &p->signal->group_exit_code; 1278 } 1279 return NULL; 1280 } 1281 1282 /** 1283 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1284 * @wo: wait options 1285 * @ptrace: is the wait for ptrace 1286 * @p: task to wait for 1287 * 1288 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1289 * 1290 * CONTEXT: 1291 * read_lock(&tasklist_lock), which is released if return value is 1292 * non-zero. Also, grabs and releases @p->sighand->siglock. 1293 * 1294 * RETURNS: 1295 * 0 if wait condition didn't exist and search for other wait conditions 1296 * should continue. Non-zero return, -errno on failure and @p's pid on 1297 * success, implies that tasklist_lock is released and wait condition 1298 * search should terminate. 1299 */ 1300 static int wait_task_stopped(struct wait_opts *wo, 1301 int ptrace, struct task_struct *p) 1302 { 1303 struct waitid_info *infop; 1304 int exit_code, *p_code, why; 1305 uid_t uid = 0; /* unneeded, required by compiler */ 1306 pid_t pid; 1307 1308 /* 1309 * Traditionally we see ptrace'd stopped tasks regardless of options. 1310 */ 1311 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1312 return 0; 1313 1314 if (!task_stopped_code(p, ptrace)) 1315 return 0; 1316 1317 exit_code = 0; 1318 spin_lock_irq(&p->sighand->siglock); 1319 1320 p_code = task_stopped_code(p, ptrace); 1321 if (unlikely(!p_code)) 1322 goto unlock_sig; 1323 1324 exit_code = *p_code; 1325 if (!exit_code) 1326 goto unlock_sig; 1327 1328 if (!unlikely(wo->wo_flags & WNOWAIT)) 1329 *p_code = 0; 1330 1331 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1332 unlock_sig: 1333 spin_unlock_irq(&p->sighand->siglock); 1334 if (!exit_code) 1335 return 0; 1336 1337 /* 1338 * Now we are pretty sure this task is interesting. 1339 * Make sure it doesn't get reaped out from under us while we 1340 * give up the lock and then examine it below. We don't want to 1341 * keep holding onto the tasklist_lock while we call getrusage and 1342 * possibly take page faults for user memory. 1343 */ 1344 get_task_struct(p); 1345 pid = task_pid_vnr(p); 1346 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1347 read_unlock(&tasklist_lock); 1348 sched_annotate_sleep(); 1349 if (wo->wo_rusage) 1350 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1351 put_task_struct(p); 1352 1353 if (likely(!(wo->wo_flags & WNOWAIT))) 1354 wo->wo_stat = (exit_code << 8) | 0x7f; 1355 1356 infop = wo->wo_info; 1357 if (infop) { 1358 infop->cause = why; 1359 infop->status = exit_code; 1360 infop->pid = pid; 1361 infop->uid = uid; 1362 } 1363 return pid; 1364 } 1365 1366 /* 1367 * Handle do_wait work for one task in a live, non-stopped state. 1368 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1369 * the lock and this task is uninteresting. If we return nonzero, we have 1370 * released the lock and the system call should return. 1371 */ 1372 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1373 { 1374 struct waitid_info *infop; 1375 pid_t pid; 1376 uid_t uid; 1377 1378 if (!unlikely(wo->wo_flags & WCONTINUED)) 1379 return 0; 1380 1381 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1382 return 0; 1383 1384 spin_lock_irq(&p->sighand->siglock); 1385 /* Re-check with the lock held. */ 1386 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1387 spin_unlock_irq(&p->sighand->siglock); 1388 return 0; 1389 } 1390 if (!unlikely(wo->wo_flags & WNOWAIT)) 1391 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1392 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1393 spin_unlock_irq(&p->sighand->siglock); 1394 1395 pid = task_pid_vnr(p); 1396 get_task_struct(p); 1397 read_unlock(&tasklist_lock); 1398 sched_annotate_sleep(); 1399 if (wo->wo_rusage) 1400 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1401 put_task_struct(p); 1402 1403 infop = wo->wo_info; 1404 if (!infop) { 1405 wo->wo_stat = 0xffff; 1406 } else { 1407 infop->cause = CLD_CONTINUED; 1408 infop->pid = pid; 1409 infop->uid = uid; 1410 infop->status = SIGCONT; 1411 } 1412 return pid; 1413 } 1414 1415 /* 1416 * Consider @p for a wait by @parent. 1417 * 1418 * -ECHILD should be in ->notask_error before the first call. 1419 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1420 * Returns zero if the search for a child should continue; 1421 * then ->notask_error is 0 if @p is an eligible child, 1422 * or still -ECHILD. 1423 */ 1424 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1425 struct task_struct *p) 1426 { 1427 /* 1428 * We can race with wait_task_zombie() from another thread. 1429 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1430 * can't confuse the checks below. 1431 */ 1432 int exit_state = READ_ONCE(p->exit_state); 1433 int ret; 1434 1435 if (unlikely(exit_state == EXIT_DEAD)) 1436 return 0; 1437 1438 ret = eligible_child(wo, ptrace, p); 1439 if (!ret) 1440 return ret; 1441 1442 if (unlikely(exit_state == EXIT_TRACE)) { 1443 /* 1444 * ptrace == 0 means we are the natural parent. In this case 1445 * we should clear notask_error, debugger will notify us. 1446 */ 1447 if (likely(!ptrace)) 1448 wo->notask_error = 0; 1449 return 0; 1450 } 1451 1452 if (likely(!ptrace) && unlikely(p->ptrace)) { 1453 /* 1454 * If it is traced by its real parent's group, just pretend 1455 * the caller is ptrace_do_wait() and reap this child if it 1456 * is zombie. 1457 * 1458 * This also hides group stop state from real parent; otherwise 1459 * a single stop can be reported twice as group and ptrace stop. 1460 * If a ptracer wants to distinguish these two events for its 1461 * own children it should create a separate process which takes 1462 * the role of real parent. 1463 */ 1464 if (!ptrace_reparented(p)) 1465 ptrace = 1; 1466 } 1467 1468 /* slay zombie? */ 1469 if (exit_state == EXIT_ZOMBIE) { 1470 /* we don't reap group leaders with subthreads */ 1471 if (!delay_group_leader(p)) { 1472 /* 1473 * A zombie ptracee is only visible to its ptracer. 1474 * Notification and reaping will be cascaded to the 1475 * real parent when the ptracer detaches. 1476 */ 1477 if (unlikely(ptrace) || likely(!p->ptrace)) 1478 return wait_task_zombie(wo, p); 1479 } 1480 1481 /* 1482 * Allow access to stopped/continued state via zombie by 1483 * falling through. Clearing of notask_error is complex. 1484 * 1485 * When !@ptrace: 1486 * 1487 * If WEXITED is set, notask_error should naturally be 1488 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1489 * so, if there are live subthreads, there are events to 1490 * wait for. If all subthreads are dead, it's still safe 1491 * to clear - this function will be called again in finite 1492 * amount time once all the subthreads are released and 1493 * will then return without clearing. 1494 * 1495 * When @ptrace: 1496 * 1497 * Stopped state is per-task and thus can't change once the 1498 * target task dies. Only continued and exited can happen. 1499 * Clear notask_error if WCONTINUED | WEXITED. 1500 */ 1501 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1502 wo->notask_error = 0; 1503 } else { 1504 /* 1505 * @p is alive and it's gonna stop, continue or exit, so 1506 * there always is something to wait for. 1507 */ 1508 wo->notask_error = 0; 1509 } 1510 1511 /* 1512 * Wait for stopped. Depending on @ptrace, different stopped state 1513 * is used and the two don't interact with each other. 1514 */ 1515 ret = wait_task_stopped(wo, ptrace, p); 1516 if (ret) 1517 return ret; 1518 1519 /* 1520 * Wait for continued. There's only one continued state and the 1521 * ptracer can consume it which can confuse the real parent. Don't 1522 * use WCONTINUED from ptracer. You don't need or want it. 1523 */ 1524 return wait_task_continued(wo, p); 1525 } 1526 1527 /* 1528 * Do the work of do_wait() for one thread in the group, @tsk. 1529 * 1530 * -ECHILD should be in ->notask_error before the first call. 1531 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1532 * Returns zero if the search for a child should continue; then 1533 * ->notask_error is 0 if there were any eligible children, 1534 * or still -ECHILD. 1535 */ 1536 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1537 { 1538 struct task_struct *p; 1539 1540 list_for_each_entry(p, &tsk->children, sibling) { 1541 int ret = wait_consider_task(wo, 0, p); 1542 1543 if (ret) 1544 return ret; 1545 } 1546 1547 return 0; 1548 } 1549 1550 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1551 { 1552 struct task_struct *p; 1553 1554 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1555 int ret = wait_consider_task(wo, 1, p); 1556 1557 if (ret) 1558 return ret; 1559 } 1560 1561 return 0; 1562 } 1563 1564 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p) 1565 { 1566 if (!eligible_pid(wo, p)) 1567 return false; 1568 1569 if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent) 1570 return false; 1571 1572 return true; 1573 } 1574 1575 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1576 int sync, void *key) 1577 { 1578 struct wait_opts *wo = container_of(wait, struct wait_opts, 1579 child_wait); 1580 struct task_struct *p = key; 1581 1582 if (pid_child_should_wake(wo, p)) 1583 return default_wake_function(wait, mode, sync, key); 1584 1585 return 0; 1586 } 1587 1588 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1589 { 1590 __wake_up_sync_key(&parent->signal->wait_chldexit, 1591 TASK_INTERRUPTIBLE, p); 1592 } 1593 1594 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1595 struct task_struct *target) 1596 { 1597 struct task_struct *parent = 1598 !ptrace ? target->real_parent : target->parent; 1599 1600 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1601 same_thread_group(current, parent)); 1602 } 1603 1604 /* 1605 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1606 * and tracee lists to find the target task. 1607 */ 1608 static int do_wait_pid(struct wait_opts *wo) 1609 { 1610 bool ptrace; 1611 struct task_struct *target; 1612 int retval; 1613 1614 ptrace = false; 1615 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1616 if (target && is_effectively_child(wo, ptrace, target)) { 1617 retval = wait_consider_task(wo, ptrace, target); 1618 if (retval) 1619 return retval; 1620 } 1621 1622 ptrace = true; 1623 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1624 if (target && target->ptrace && 1625 is_effectively_child(wo, ptrace, target)) { 1626 retval = wait_consider_task(wo, ptrace, target); 1627 if (retval) 1628 return retval; 1629 } 1630 1631 return 0; 1632 } 1633 1634 long __do_wait(struct wait_opts *wo) 1635 { 1636 long retval; 1637 1638 /* 1639 * If there is nothing that can match our criteria, just get out. 1640 * We will clear ->notask_error to zero if we see any child that 1641 * might later match our criteria, even if we are not able to reap 1642 * it yet. 1643 */ 1644 wo->notask_error = -ECHILD; 1645 if ((wo->wo_type < PIDTYPE_MAX) && 1646 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1647 goto notask; 1648 1649 read_lock(&tasklist_lock); 1650 1651 if (wo->wo_type == PIDTYPE_PID) { 1652 retval = do_wait_pid(wo); 1653 if (retval) 1654 return retval; 1655 } else { 1656 struct task_struct *tsk = current; 1657 1658 do { 1659 retval = do_wait_thread(wo, tsk); 1660 if (retval) 1661 return retval; 1662 1663 retval = ptrace_do_wait(wo, tsk); 1664 if (retval) 1665 return retval; 1666 1667 if (wo->wo_flags & __WNOTHREAD) 1668 break; 1669 } while_each_thread(current, tsk); 1670 } 1671 read_unlock(&tasklist_lock); 1672 1673 notask: 1674 retval = wo->notask_error; 1675 if (!retval && !(wo->wo_flags & WNOHANG)) 1676 return -ERESTARTSYS; 1677 1678 return retval; 1679 } 1680 1681 static long do_wait(struct wait_opts *wo) 1682 { 1683 int retval; 1684 1685 trace_sched_process_wait(wo->wo_pid); 1686 1687 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1688 wo->child_wait.private = current; 1689 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1690 1691 do { 1692 set_current_state(TASK_INTERRUPTIBLE); 1693 retval = __do_wait(wo); 1694 if (retval != -ERESTARTSYS) 1695 break; 1696 if (signal_pending(current)) 1697 break; 1698 schedule(); 1699 } while (1); 1700 1701 __set_current_state(TASK_RUNNING); 1702 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1703 return retval; 1704 } 1705 1706 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid, 1707 struct waitid_info *infop, int options, 1708 struct rusage *ru) 1709 { 1710 unsigned int f_flags = 0; 1711 struct pid *pid = NULL; 1712 enum pid_type type; 1713 1714 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1715 __WNOTHREAD|__WCLONE|__WALL)) 1716 return -EINVAL; 1717 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1718 return -EINVAL; 1719 1720 switch (which) { 1721 case P_ALL: 1722 type = PIDTYPE_MAX; 1723 break; 1724 case P_PID: 1725 type = PIDTYPE_PID; 1726 if (upid <= 0) 1727 return -EINVAL; 1728 1729 pid = find_get_pid(upid); 1730 break; 1731 case P_PGID: 1732 type = PIDTYPE_PGID; 1733 if (upid < 0) 1734 return -EINVAL; 1735 1736 if (upid) 1737 pid = find_get_pid(upid); 1738 else 1739 pid = get_task_pid(current, PIDTYPE_PGID); 1740 break; 1741 case P_PIDFD: 1742 type = PIDTYPE_PID; 1743 if (upid < 0) 1744 return -EINVAL; 1745 1746 pid = pidfd_get_pid(upid, &f_flags); 1747 if (IS_ERR(pid)) 1748 return PTR_ERR(pid); 1749 1750 break; 1751 default: 1752 return -EINVAL; 1753 } 1754 1755 wo->wo_type = type; 1756 wo->wo_pid = pid; 1757 wo->wo_flags = options; 1758 wo->wo_info = infop; 1759 wo->wo_rusage = ru; 1760 if (f_flags & O_NONBLOCK) 1761 wo->wo_flags |= WNOHANG; 1762 1763 return 0; 1764 } 1765 1766 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1767 int options, struct rusage *ru) 1768 { 1769 struct wait_opts wo; 1770 long ret; 1771 1772 ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru); 1773 if (ret) 1774 return ret; 1775 1776 ret = do_wait(&wo); 1777 if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG)) 1778 ret = -EAGAIN; 1779 1780 put_pid(wo.wo_pid); 1781 return ret; 1782 } 1783 1784 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1785 infop, int, options, struct rusage __user *, ru) 1786 { 1787 struct rusage r; 1788 struct waitid_info info = {.status = 0}; 1789 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1790 int signo = 0; 1791 1792 if (err > 0) { 1793 signo = SIGCHLD; 1794 err = 0; 1795 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1796 return -EFAULT; 1797 } 1798 if (!infop) 1799 return err; 1800 1801 if (!user_write_access_begin(infop, sizeof(*infop))) 1802 return -EFAULT; 1803 1804 unsafe_put_user(signo, &infop->si_signo, Efault); 1805 unsafe_put_user(0, &infop->si_errno, Efault); 1806 unsafe_put_user(info.cause, &infop->si_code, Efault); 1807 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1808 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1809 unsafe_put_user(info.status, &infop->si_status, Efault); 1810 user_write_access_end(); 1811 return err; 1812 Efault: 1813 user_write_access_end(); 1814 return -EFAULT; 1815 } 1816 1817 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1818 struct rusage *ru) 1819 { 1820 struct wait_opts wo; 1821 struct pid *pid = NULL; 1822 enum pid_type type; 1823 long ret; 1824 1825 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1826 __WNOTHREAD|__WCLONE|__WALL)) 1827 return -EINVAL; 1828 1829 /* -INT_MIN is not defined */ 1830 if (upid == INT_MIN) 1831 return -ESRCH; 1832 1833 if (upid == -1) 1834 type = PIDTYPE_MAX; 1835 else if (upid < 0) { 1836 type = PIDTYPE_PGID; 1837 pid = find_get_pid(-upid); 1838 } else if (upid == 0) { 1839 type = PIDTYPE_PGID; 1840 pid = get_task_pid(current, PIDTYPE_PGID); 1841 } else /* upid > 0 */ { 1842 type = PIDTYPE_PID; 1843 pid = find_get_pid(upid); 1844 } 1845 1846 wo.wo_type = type; 1847 wo.wo_pid = pid; 1848 wo.wo_flags = options | WEXITED; 1849 wo.wo_info = NULL; 1850 wo.wo_stat = 0; 1851 wo.wo_rusage = ru; 1852 ret = do_wait(&wo); 1853 put_pid(pid); 1854 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1855 ret = -EFAULT; 1856 1857 return ret; 1858 } 1859 1860 int kernel_wait(pid_t pid, int *stat) 1861 { 1862 struct wait_opts wo = { 1863 .wo_type = PIDTYPE_PID, 1864 .wo_pid = find_get_pid(pid), 1865 .wo_flags = WEXITED, 1866 }; 1867 int ret; 1868 1869 ret = do_wait(&wo); 1870 if (ret > 0 && wo.wo_stat) 1871 *stat = wo.wo_stat; 1872 put_pid(wo.wo_pid); 1873 return ret; 1874 } 1875 1876 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1877 int, options, struct rusage __user *, ru) 1878 { 1879 struct rusage r; 1880 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1881 1882 if (err > 0) { 1883 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1884 return -EFAULT; 1885 } 1886 return err; 1887 } 1888 1889 #ifdef __ARCH_WANT_SYS_WAITPID 1890 1891 /* 1892 * sys_waitpid() remains for compatibility. waitpid() should be 1893 * implemented by calling sys_wait4() from libc.a. 1894 */ 1895 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1896 { 1897 return kernel_wait4(pid, stat_addr, options, NULL); 1898 } 1899 1900 #endif 1901 1902 #ifdef CONFIG_COMPAT 1903 COMPAT_SYSCALL_DEFINE4(wait4, 1904 compat_pid_t, pid, 1905 compat_uint_t __user *, stat_addr, 1906 int, options, 1907 struct compat_rusage __user *, ru) 1908 { 1909 struct rusage r; 1910 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1911 if (err > 0) { 1912 if (ru && put_compat_rusage(&r, ru)) 1913 return -EFAULT; 1914 } 1915 return err; 1916 } 1917 1918 COMPAT_SYSCALL_DEFINE5(waitid, 1919 int, which, compat_pid_t, pid, 1920 struct compat_siginfo __user *, infop, int, options, 1921 struct compat_rusage __user *, uru) 1922 { 1923 struct rusage ru; 1924 struct waitid_info info = {.status = 0}; 1925 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1926 int signo = 0; 1927 if (err > 0) { 1928 signo = SIGCHLD; 1929 err = 0; 1930 if (uru) { 1931 /* kernel_waitid() overwrites everything in ru */ 1932 if (COMPAT_USE_64BIT_TIME) 1933 err = copy_to_user(uru, &ru, sizeof(ru)); 1934 else 1935 err = put_compat_rusage(&ru, uru); 1936 if (err) 1937 return -EFAULT; 1938 } 1939 } 1940 1941 if (!infop) 1942 return err; 1943 1944 if (!user_write_access_begin(infop, sizeof(*infop))) 1945 return -EFAULT; 1946 1947 unsafe_put_user(signo, &infop->si_signo, Efault); 1948 unsafe_put_user(0, &infop->si_errno, Efault); 1949 unsafe_put_user(info.cause, &infop->si_code, Efault); 1950 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1951 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1952 unsafe_put_user(info.status, &infop->si_status, Efault); 1953 user_write_access_end(); 1954 return err; 1955 Efault: 1956 user_write_access_end(); 1957 return -EFAULT; 1958 } 1959 #endif 1960 1961 /* 1962 * This needs to be __function_aligned as GCC implicitly makes any 1963 * implementation of abort() cold and drops alignment specified by 1964 * -falign-functions=N. 1965 * 1966 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11 1967 */ 1968 __weak __function_aligned void abort(void) 1969 { 1970 BUG(); 1971 1972 /* if that doesn't kill us, halt */ 1973 panic("Oops failed to kill thread"); 1974 } 1975 EXPORT_SYMBOL(abort); 1976