xref: /linux/kernel/exit.c (revision 804382d59b81b331735d37a18149ea0d36d5936a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/task_io_accounting_ops.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_work.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/kmsan.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
68 #include <linux/rethook.h>
69 #include <linux/sysfs.h>
70 #include <linux/user_events.h>
71 #include <linux/uaccess.h>
72 #include <linux/pidfs.h>
73 
74 #include <uapi/linux/wait.h>
75 
76 #include <asm/unistd.h>
77 #include <asm/mmu_context.h>
78 
79 #include "exit.h"
80 
81 /*
82  * The default value should be high enough to not crash a system that randomly
83  * crashes its kernel from time to time, but low enough to at least not permit
84  * overflowing 32-bit refcounts or the ldsem writer count.
85  */
86 static unsigned int oops_limit = 10000;
87 
88 #ifdef CONFIG_SYSCTL
89 static const struct ctl_table kern_exit_table[] = {
90 	{
91 		.procname       = "oops_limit",
92 		.data           = &oops_limit,
93 		.maxlen         = sizeof(oops_limit),
94 		.mode           = 0644,
95 		.proc_handler   = proc_douintvec,
96 	},
97 };
98 
99 static __init int kernel_exit_sysctls_init(void)
100 {
101 	register_sysctl_init("kernel", kern_exit_table);
102 	return 0;
103 }
104 late_initcall(kernel_exit_sysctls_init);
105 #endif
106 
107 static atomic_t oops_count = ATOMIC_INIT(0);
108 
109 #ifdef CONFIG_SYSFS
110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
111 			       char *page)
112 {
113 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
114 }
115 
116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
117 
118 static __init int kernel_exit_sysfs_init(void)
119 {
120 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
121 	return 0;
122 }
123 late_initcall(kernel_exit_sysfs_init);
124 #endif
125 
126 static void __unhash_process(struct task_struct *p, bool group_dead)
127 {
128 	nr_threads--;
129 	detach_pid(p, PIDTYPE_PID);
130 	if (group_dead) {
131 		detach_pid(p, PIDTYPE_TGID);
132 		detach_pid(p, PIDTYPE_PGID);
133 		detach_pid(p, PIDTYPE_SID);
134 
135 		list_del_rcu(&p->tasks);
136 		list_del_init(&p->sibling);
137 		__this_cpu_dec(process_counts);
138 	}
139 	list_del_rcu(&p->thread_node);
140 }
141 
142 /*
143  * This function expects the tasklist_lock write-locked.
144  */
145 static void __exit_signal(struct task_struct *tsk)
146 {
147 	struct signal_struct *sig = tsk->signal;
148 	bool group_dead = thread_group_leader(tsk);
149 	struct sighand_struct *sighand;
150 	struct tty_struct *tty;
151 	u64 utime, stime;
152 
153 	sighand = rcu_dereference_check(tsk->sighand,
154 					lockdep_tasklist_lock_is_held());
155 	spin_lock(&sighand->siglock);
156 
157 #ifdef CONFIG_POSIX_TIMERS
158 	posix_cpu_timers_exit(tsk);
159 	if (group_dead)
160 		posix_cpu_timers_exit_group(tsk);
161 #endif
162 
163 	if (group_dead) {
164 		tty = sig->tty;
165 		sig->tty = NULL;
166 	} else {
167 		/*
168 		 * If there is any task waiting for the group exit
169 		 * then notify it:
170 		 */
171 		if (sig->notify_count > 0 && !--sig->notify_count)
172 			wake_up_process(sig->group_exec_task);
173 
174 		if (tsk == sig->curr_target)
175 			sig->curr_target = next_thread(tsk);
176 	}
177 
178 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
179 			      sizeof(unsigned long long));
180 
181 	/*
182 	 * Accumulate here the counters for all threads as they die. We could
183 	 * skip the group leader because it is the last user of signal_struct,
184 	 * but we want to avoid the race with thread_group_cputime() which can
185 	 * see the empty ->thread_head list.
186 	 */
187 	task_cputime(tsk, &utime, &stime);
188 	write_seqlock(&sig->stats_lock);
189 	sig->utime += utime;
190 	sig->stime += stime;
191 	sig->gtime += task_gtime(tsk);
192 	sig->min_flt += tsk->min_flt;
193 	sig->maj_flt += tsk->maj_flt;
194 	sig->nvcsw += tsk->nvcsw;
195 	sig->nivcsw += tsk->nivcsw;
196 	sig->inblock += task_io_get_inblock(tsk);
197 	sig->oublock += task_io_get_oublock(tsk);
198 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
199 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
200 	sig->nr_threads--;
201 	__unhash_process(tsk, group_dead);
202 	write_sequnlock(&sig->stats_lock);
203 
204 	/*
205 	 * Do this under ->siglock, we can race with another thread
206 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
207 	 */
208 	flush_sigqueue(&tsk->pending);
209 	tsk->sighand = NULL;
210 	spin_unlock(&sighand->siglock);
211 
212 	__cleanup_sighand(sighand);
213 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
214 	if (group_dead) {
215 		flush_sigqueue(&sig->shared_pending);
216 		tty_kref_put(tty);
217 	}
218 }
219 
220 static void delayed_put_task_struct(struct rcu_head *rhp)
221 {
222 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
223 
224 	kprobe_flush_task(tsk);
225 	rethook_flush_task(tsk);
226 	perf_event_delayed_put(tsk);
227 	trace_sched_process_free(tsk);
228 	put_task_struct(tsk);
229 }
230 
231 void put_task_struct_rcu_user(struct task_struct *task)
232 {
233 	if (refcount_dec_and_test(&task->rcu_users))
234 		call_rcu(&task->rcu, delayed_put_task_struct);
235 }
236 
237 void __weak release_thread(struct task_struct *dead_task)
238 {
239 }
240 
241 void release_task(struct task_struct *p)
242 {
243 	struct task_struct *leader;
244 	struct pid *thread_pid;
245 	int zap_leader;
246 repeat:
247 	/* don't need to get the RCU readlock here - the process is dead and
248 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
249 	rcu_read_lock();
250 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
251 	rcu_read_unlock();
252 
253 	pidfs_exit(p);
254 	cgroup_release(p);
255 
256 	write_lock_irq(&tasklist_lock);
257 	ptrace_release_task(p);
258 	thread_pid = get_pid(p->thread_pid);
259 	__exit_signal(p);
260 
261 	/*
262 	 * If we are the last non-leader member of the thread
263 	 * group, and the leader is zombie, then notify the
264 	 * group leader's parent process. (if it wants notification.)
265 	 */
266 	zap_leader = 0;
267 	leader = p->group_leader;
268 	if (leader != p && thread_group_empty(leader)
269 			&& leader->exit_state == EXIT_ZOMBIE) {
270 		/*
271 		 * If we were the last child thread and the leader has
272 		 * exited already, and the leader's parent ignores SIGCHLD,
273 		 * then we are the one who should release the leader.
274 		 */
275 		zap_leader = do_notify_parent(leader, leader->exit_signal);
276 		if (zap_leader)
277 			leader->exit_state = EXIT_DEAD;
278 	}
279 
280 	write_unlock_irq(&tasklist_lock);
281 	proc_flush_pid(thread_pid);
282 	put_pid(thread_pid);
283 	release_thread(p);
284 	put_task_struct_rcu_user(p);
285 
286 	p = leader;
287 	if (unlikely(zap_leader))
288 		goto repeat;
289 }
290 
291 int rcuwait_wake_up(struct rcuwait *w)
292 {
293 	int ret = 0;
294 	struct task_struct *task;
295 
296 	rcu_read_lock();
297 
298 	/*
299 	 * Order condition vs @task, such that everything prior to the load
300 	 * of @task is visible. This is the condition as to why the user called
301 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
302 	 * barrier (A) in rcuwait_wait_event().
303 	 *
304 	 *    WAIT                WAKE
305 	 *    [S] tsk = current	  [S] cond = true
306 	 *        MB (A)	      MB (B)
307 	 *    [L] cond		  [L] tsk
308 	 */
309 	smp_mb(); /* (B) */
310 
311 	task = rcu_dereference(w->task);
312 	if (task)
313 		ret = wake_up_process(task);
314 	rcu_read_unlock();
315 
316 	return ret;
317 }
318 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
319 
320 /*
321  * Determine if a process group is "orphaned", according to the POSIX
322  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
323  * by terminal-generated stop signals.  Newly orphaned process groups are
324  * to receive a SIGHUP and a SIGCONT.
325  *
326  * "I ask you, have you ever known what it is to be an orphan?"
327  */
328 static int will_become_orphaned_pgrp(struct pid *pgrp,
329 					struct task_struct *ignored_task)
330 {
331 	struct task_struct *p;
332 
333 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
334 		if ((p == ignored_task) ||
335 		    (p->exit_state && thread_group_empty(p)) ||
336 		    is_global_init(p->real_parent))
337 			continue;
338 
339 		if (task_pgrp(p->real_parent) != pgrp &&
340 		    task_session(p->real_parent) == task_session(p))
341 			return 0;
342 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
343 
344 	return 1;
345 }
346 
347 int is_current_pgrp_orphaned(void)
348 {
349 	int retval;
350 
351 	read_lock(&tasklist_lock);
352 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
353 	read_unlock(&tasklist_lock);
354 
355 	return retval;
356 }
357 
358 static bool has_stopped_jobs(struct pid *pgrp)
359 {
360 	struct task_struct *p;
361 
362 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
363 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
364 			return true;
365 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
366 
367 	return false;
368 }
369 
370 /*
371  * Check to see if any process groups have become orphaned as
372  * a result of our exiting, and if they have any stopped jobs,
373  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
374  */
375 static void
376 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
377 {
378 	struct pid *pgrp = task_pgrp(tsk);
379 	struct task_struct *ignored_task = tsk;
380 
381 	if (!parent)
382 		/* exit: our father is in a different pgrp than
383 		 * we are and we were the only connection outside.
384 		 */
385 		parent = tsk->real_parent;
386 	else
387 		/* reparent: our child is in a different pgrp than
388 		 * we are, and it was the only connection outside.
389 		 */
390 		ignored_task = NULL;
391 
392 	if (task_pgrp(parent) != pgrp &&
393 	    task_session(parent) == task_session(tsk) &&
394 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
395 	    has_stopped_jobs(pgrp)) {
396 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
397 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
398 	}
399 }
400 
401 static void coredump_task_exit(struct task_struct *tsk)
402 {
403 	struct core_state *core_state;
404 
405 	/*
406 	 * Serialize with any possible pending coredump.
407 	 * We must hold siglock around checking core_state
408 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
409 	 * will increment ->nr_threads for each thread in the
410 	 * group without PF_POSTCOREDUMP set.
411 	 */
412 	spin_lock_irq(&tsk->sighand->siglock);
413 	tsk->flags |= PF_POSTCOREDUMP;
414 	core_state = tsk->signal->core_state;
415 	spin_unlock_irq(&tsk->sighand->siglock);
416 	if (core_state) {
417 		struct core_thread self;
418 
419 		self.task = current;
420 		if (self.task->flags & PF_SIGNALED)
421 			self.next = xchg(&core_state->dumper.next, &self);
422 		else
423 			self.task = NULL;
424 		/*
425 		 * Implies mb(), the result of xchg() must be visible
426 		 * to core_state->dumper.
427 		 */
428 		if (atomic_dec_and_test(&core_state->nr_threads))
429 			complete(&core_state->startup);
430 
431 		for (;;) {
432 			set_current_state(TASK_IDLE|TASK_FREEZABLE);
433 			if (!self.task) /* see coredump_finish() */
434 				break;
435 			schedule();
436 		}
437 		__set_current_state(TASK_RUNNING);
438 	}
439 }
440 
441 #ifdef CONFIG_MEMCG
442 /* drops tasklist_lock if succeeds */
443 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
444 {
445 	bool ret = false;
446 
447 	task_lock(tsk);
448 	if (likely(tsk->mm == mm)) {
449 		/* tsk can't pass exit_mm/exec_mmap and exit */
450 		read_unlock(&tasklist_lock);
451 		WRITE_ONCE(mm->owner, tsk);
452 		lru_gen_migrate_mm(mm);
453 		ret = true;
454 	}
455 	task_unlock(tsk);
456 	return ret;
457 }
458 
459 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
460 {
461 	struct task_struct *t;
462 
463 	for_each_thread(g, t) {
464 		struct mm_struct *t_mm = READ_ONCE(t->mm);
465 		if (t_mm == mm) {
466 			if (__try_to_set_owner(t, mm))
467 				return true;
468 		} else if (t_mm)
469 			break;
470 	}
471 
472 	return false;
473 }
474 
475 /*
476  * A task is exiting.   If it owned this mm, find a new owner for the mm.
477  */
478 void mm_update_next_owner(struct mm_struct *mm)
479 {
480 	struct task_struct *g, *p = current;
481 
482 	/*
483 	 * If the exiting or execing task is not the owner, it's
484 	 * someone else's problem.
485 	 */
486 	if (mm->owner != p)
487 		return;
488 	/*
489 	 * The current owner is exiting/execing and there are no other
490 	 * candidates.  Do not leave the mm pointing to a possibly
491 	 * freed task structure.
492 	 */
493 	if (atomic_read(&mm->mm_users) <= 1) {
494 		WRITE_ONCE(mm->owner, NULL);
495 		return;
496 	}
497 
498 	read_lock(&tasklist_lock);
499 	/*
500 	 * Search in the children
501 	 */
502 	list_for_each_entry(g, &p->children, sibling) {
503 		if (try_to_set_owner(g, mm))
504 			goto ret;
505 	}
506 	/*
507 	 * Search in the siblings
508 	 */
509 	list_for_each_entry(g, &p->real_parent->children, sibling) {
510 		if (try_to_set_owner(g, mm))
511 			goto ret;
512 	}
513 	/*
514 	 * Search through everything else, we should not get here often.
515 	 */
516 	for_each_process(g) {
517 		if (atomic_read(&mm->mm_users) <= 1)
518 			break;
519 		if (g->flags & PF_KTHREAD)
520 			continue;
521 		if (try_to_set_owner(g, mm))
522 			goto ret;
523 	}
524 	read_unlock(&tasklist_lock);
525 	/*
526 	 * We found no owner yet mm_users > 1: this implies that we are
527 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
528 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
529 	 */
530 	WRITE_ONCE(mm->owner, NULL);
531  ret:
532 	return;
533 
534 }
535 #endif /* CONFIG_MEMCG */
536 
537 /*
538  * Turn us into a lazy TLB process if we
539  * aren't already..
540  */
541 static void exit_mm(void)
542 {
543 	struct mm_struct *mm = current->mm;
544 
545 	exit_mm_release(current, mm);
546 	if (!mm)
547 		return;
548 	mmap_read_lock(mm);
549 	mmgrab_lazy_tlb(mm);
550 	BUG_ON(mm != current->active_mm);
551 	/* more a memory barrier than a real lock */
552 	task_lock(current);
553 	/*
554 	 * When a thread stops operating on an address space, the loop
555 	 * in membarrier_private_expedited() may not observe that
556 	 * tsk->mm, and the loop in membarrier_global_expedited() may
557 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
558 	 * rq->membarrier_state, so those would not issue an IPI.
559 	 * Membarrier requires a memory barrier after accessing
560 	 * user-space memory, before clearing tsk->mm or the
561 	 * rq->membarrier_state.
562 	 */
563 	smp_mb__after_spinlock();
564 	local_irq_disable();
565 	current->mm = NULL;
566 	membarrier_update_current_mm(NULL);
567 	enter_lazy_tlb(mm, current);
568 	local_irq_enable();
569 	task_unlock(current);
570 	mmap_read_unlock(mm);
571 	mm_update_next_owner(mm);
572 	mmput(mm);
573 	if (test_thread_flag(TIF_MEMDIE))
574 		exit_oom_victim();
575 }
576 
577 static struct task_struct *find_alive_thread(struct task_struct *p)
578 {
579 	struct task_struct *t;
580 
581 	for_each_thread(p, t) {
582 		if (!(t->flags & PF_EXITING))
583 			return t;
584 	}
585 	return NULL;
586 }
587 
588 static struct task_struct *find_child_reaper(struct task_struct *father,
589 						struct list_head *dead)
590 	__releases(&tasklist_lock)
591 	__acquires(&tasklist_lock)
592 {
593 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
594 	struct task_struct *reaper = pid_ns->child_reaper;
595 	struct task_struct *p, *n;
596 
597 	if (likely(reaper != father))
598 		return reaper;
599 
600 	reaper = find_alive_thread(father);
601 	if (reaper) {
602 		pid_ns->child_reaper = reaper;
603 		return reaper;
604 	}
605 
606 	write_unlock_irq(&tasklist_lock);
607 
608 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
609 		list_del_init(&p->ptrace_entry);
610 		release_task(p);
611 	}
612 
613 	zap_pid_ns_processes(pid_ns);
614 	write_lock_irq(&tasklist_lock);
615 
616 	return father;
617 }
618 
619 /*
620  * When we die, we re-parent all our children, and try to:
621  * 1. give them to another thread in our thread group, if such a member exists
622  * 2. give it to the first ancestor process which prctl'd itself as a
623  *    child_subreaper for its children (like a service manager)
624  * 3. give it to the init process (PID 1) in our pid namespace
625  */
626 static struct task_struct *find_new_reaper(struct task_struct *father,
627 					   struct task_struct *child_reaper)
628 {
629 	struct task_struct *thread, *reaper;
630 
631 	thread = find_alive_thread(father);
632 	if (thread)
633 		return thread;
634 
635 	if (father->signal->has_child_subreaper) {
636 		unsigned int ns_level = task_pid(father)->level;
637 		/*
638 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
639 		 * We can't check reaper != child_reaper to ensure we do not
640 		 * cross the namespaces, the exiting parent could be injected
641 		 * by setns() + fork().
642 		 * We check pid->level, this is slightly more efficient than
643 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
644 		 */
645 		for (reaper = father->real_parent;
646 		     task_pid(reaper)->level == ns_level;
647 		     reaper = reaper->real_parent) {
648 			if (reaper == &init_task)
649 				break;
650 			if (!reaper->signal->is_child_subreaper)
651 				continue;
652 			thread = find_alive_thread(reaper);
653 			if (thread)
654 				return thread;
655 		}
656 	}
657 
658 	return child_reaper;
659 }
660 
661 /*
662 * Any that need to be release_task'd are put on the @dead list.
663  */
664 static void reparent_leader(struct task_struct *father, struct task_struct *p,
665 				struct list_head *dead)
666 {
667 	if (unlikely(p->exit_state == EXIT_DEAD))
668 		return;
669 
670 	/* We don't want people slaying init. */
671 	p->exit_signal = SIGCHLD;
672 
673 	/* If it has exited notify the new parent about this child's death. */
674 	if (!p->ptrace &&
675 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
676 		if (do_notify_parent(p, p->exit_signal)) {
677 			p->exit_state = EXIT_DEAD;
678 			list_add(&p->ptrace_entry, dead);
679 		}
680 	}
681 
682 	kill_orphaned_pgrp(p, father);
683 }
684 
685 /*
686  * This does two things:
687  *
688  * A.  Make init inherit all the child processes
689  * B.  Check to see if any process groups have become orphaned
690  *	as a result of our exiting, and if they have any stopped
691  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
692  */
693 static void forget_original_parent(struct task_struct *father,
694 					struct list_head *dead)
695 {
696 	struct task_struct *p, *t, *reaper;
697 
698 	if (unlikely(!list_empty(&father->ptraced)))
699 		exit_ptrace(father, dead);
700 
701 	/* Can drop and reacquire tasklist_lock */
702 	reaper = find_child_reaper(father, dead);
703 	if (list_empty(&father->children))
704 		return;
705 
706 	reaper = find_new_reaper(father, reaper);
707 	list_for_each_entry(p, &father->children, sibling) {
708 		for_each_thread(p, t) {
709 			RCU_INIT_POINTER(t->real_parent, reaper);
710 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
711 			if (likely(!t->ptrace))
712 				t->parent = t->real_parent;
713 			if (t->pdeath_signal)
714 				group_send_sig_info(t->pdeath_signal,
715 						    SEND_SIG_NOINFO, t,
716 						    PIDTYPE_TGID);
717 		}
718 		/*
719 		 * If this is a threaded reparent there is no need to
720 		 * notify anyone anything has happened.
721 		 */
722 		if (!same_thread_group(reaper, father))
723 			reparent_leader(father, p, dead);
724 	}
725 	list_splice_tail_init(&father->children, &reaper->children);
726 }
727 
728 /*
729  * Send signals to all our closest relatives so that they know
730  * to properly mourn us..
731  */
732 static void exit_notify(struct task_struct *tsk, int group_dead)
733 {
734 	bool autoreap;
735 	struct task_struct *p, *n;
736 	LIST_HEAD(dead);
737 
738 	write_lock_irq(&tasklist_lock);
739 	forget_original_parent(tsk, &dead);
740 
741 	if (group_dead)
742 		kill_orphaned_pgrp(tsk->group_leader, NULL);
743 
744 	tsk->exit_state = EXIT_ZOMBIE;
745 	/*
746 	 * Ignore thread-group leaders that exited before all
747 	 * subthreads did.
748 	 */
749 	if (!delay_group_leader(tsk))
750 		do_notify_pidfd(tsk);
751 
752 	if (unlikely(tsk->ptrace)) {
753 		int sig = thread_group_leader(tsk) &&
754 				thread_group_empty(tsk) &&
755 				!ptrace_reparented(tsk) ?
756 			tsk->exit_signal : SIGCHLD;
757 		autoreap = do_notify_parent(tsk, sig);
758 	} else if (thread_group_leader(tsk)) {
759 		autoreap = thread_group_empty(tsk) &&
760 			do_notify_parent(tsk, tsk->exit_signal);
761 	} else {
762 		autoreap = true;
763 	}
764 
765 	if (autoreap) {
766 		tsk->exit_state = EXIT_DEAD;
767 		list_add(&tsk->ptrace_entry, &dead);
768 	}
769 
770 	/* mt-exec, de_thread() is waiting for group leader */
771 	if (unlikely(tsk->signal->notify_count < 0))
772 		wake_up_process(tsk->signal->group_exec_task);
773 	write_unlock_irq(&tasklist_lock);
774 
775 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
776 		list_del_init(&p->ptrace_entry);
777 		release_task(p);
778 	}
779 }
780 
781 #ifdef CONFIG_DEBUG_STACK_USAGE
782 unsigned long stack_not_used(struct task_struct *p)
783 {
784 	unsigned long *n = end_of_stack(p);
785 
786 	do {	/* Skip over canary */
787 # ifdef CONFIG_STACK_GROWSUP
788 		n--;
789 # else
790 		n++;
791 # endif
792 	} while (!*n);
793 
794 # ifdef CONFIG_STACK_GROWSUP
795 	return (unsigned long)end_of_stack(p) - (unsigned long)n;
796 # else
797 	return (unsigned long)n - (unsigned long)end_of_stack(p);
798 # endif
799 }
800 
801 /* Count the maximum pages reached in kernel stacks */
802 static inline void kstack_histogram(unsigned long used_stack)
803 {
804 #ifdef CONFIG_VM_EVENT_COUNTERS
805 	if (used_stack <= 1024)
806 		count_vm_event(KSTACK_1K);
807 #if THREAD_SIZE > 1024
808 	else if (used_stack <= 2048)
809 		count_vm_event(KSTACK_2K);
810 #endif
811 #if THREAD_SIZE > 2048
812 	else if (used_stack <= 4096)
813 		count_vm_event(KSTACK_4K);
814 #endif
815 #if THREAD_SIZE > 4096
816 	else if (used_stack <= 8192)
817 		count_vm_event(KSTACK_8K);
818 #endif
819 #if THREAD_SIZE > 8192
820 	else if (used_stack <= 16384)
821 		count_vm_event(KSTACK_16K);
822 #endif
823 #if THREAD_SIZE > 16384
824 	else if (used_stack <= 32768)
825 		count_vm_event(KSTACK_32K);
826 #endif
827 #if THREAD_SIZE > 32768
828 	else if (used_stack <= 65536)
829 		count_vm_event(KSTACK_64K);
830 #endif
831 #if THREAD_SIZE > 65536
832 	else
833 		count_vm_event(KSTACK_REST);
834 #endif
835 #endif /* CONFIG_VM_EVENT_COUNTERS */
836 }
837 
838 static void check_stack_usage(void)
839 {
840 	static DEFINE_SPINLOCK(low_water_lock);
841 	static int lowest_to_date = THREAD_SIZE;
842 	unsigned long free;
843 
844 	free = stack_not_used(current);
845 	kstack_histogram(THREAD_SIZE - free);
846 
847 	if (free >= lowest_to_date)
848 		return;
849 
850 	spin_lock(&low_water_lock);
851 	if (free < lowest_to_date) {
852 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
853 			current->comm, task_pid_nr(current), free);
854 		lowest_to_date = free;
855 	}
856 	spin_unlock(&low_water_lock);
857 }
858 #else
859 static inline void check_stack_usage(void) {}
860 #endif
861 
862 static void synchronize_group_exit(struct task_struct *tsk, long code)
863 {
864 	struct sighand_struct *sighand = tsk->sighand;
865 	struct signal_struct *signal = tsk->signal;
866 
867 	spin_lock_irq(&sighand->siglock);
868 	signal->quick_threads--;
869 	if ((signal->quick_threads == 0) &&
870 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
871 		signal->flags = SIGNAL_GROUP_EXIT;
872 		signal->group_exit_code = code;
873 		signal->group_stop_count = 0;
874 	}
875 	spin_unlock_irq(&sighand->siglock);
876 }
877 
878 void __noreturn do_exit(long code)
879 {
880 	struct task_struct *tsk = current;
881 	int group_dead;
882 
883 	WARN_ON(irqs_disabled());
884 
885 	synchronize_group_exit(tsk, code);
886 
887 	WARN_ON(tsk->plug);
888 
889 	kcov_task_exit(tsk);
890 	kmsan_task_exit(tsk);
891 
892 	coredump_task_exit(tsk);
893 	ptrace_event(PTRACE_EVENT_EXIT, code);
894 	user_events_exit(tsk);
895 
896 	io_uring_files_cancel();
897 	exit_signals(tsk);  /* sets PF_EXITING */
898 
899 	seccomp_filter_release(tsk);
900 
901 	acct_update_integrals(tsk);
902 	group_dead = atomic_dec_and_test(&tsk->signal->live);
903 	if (group_dead) {
904 		/*
905 		 * If the last thread of global init has exited, panic
906 		 * immediately to get a useable coredump.
907 		 */
908 		if (unlikely(is_global_init(tsk)))
909 			panic("Attempted to kill init! exitcode=0x%08x\n",
910 				tsk->signal->group_exit_code ?: (int)code);
911 
912 #ifdef CONFIG_POSIX_TIMERS
913 		hrtimer_cancel(&tsk->signal->real_timer);
914 		exit_itimers(tsk);
915 #endif
916 		if (tsk->mm)
917 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
918 	}
919 	acct_collect(code, group_dead);
920 	if (group_dead)
921 		tty_audit_exit();
922 	audit_free(tsk);
923 
924 	tsk->exit_code = code;
925 	taskstats_exit(tsk, group_dead);
926 
927 	exit_mm();
928 
929 	if (group_dead)
930 		acct_process();
931 	trace_sched_process_exit(tsk);
932 
933 	exit_sem(tsk);
934 	exit_shm(tsk);
935 	exit_files(tsk);
936 	exit_fs(tsk);
937 	if (group_dead)
938 		disassociate_ctty(1);
939 	exit_task_namespaces(tsk);
940 	exit_task_work(tsk);
941 	exit_thread(tsk);
942 
943 	/*
944 	 * Flush inherited counters to the parent - before the parent
945 	 * gets woken up by child-exit notifications.
946 	 *
947 	 * because of cgroup mode, must be called before cgroup_exit()
948 	 */
949 	perf_event_exit_task(tsk);
950 
951 	sched_autogroup_exit_task(tsk);
952 	cgroup_exit(tsk);
953 
954 	/*
955 	 * FIXME: do that only when needed, using sched_exit tracepoint
956 	 */
957 	flush_ptrace_hw_breakpoint(tsk);
958 
959 	exit_tasks_rcu_start();
960 	exit_notify(tsk, group_dead);
961 	proc_exit_connector(tsk);
962 	mpol_put_task_policy(tsk);
963 #ifdef CONFIG_FUTEX
964 	if (unlikely(current->pi_state_cache))
965 		kfree(current->pi_state_cache);
966 #endif
967 	/*
968 	 * Make sure we are holding no locks:
969 	 */
970 	debug_check_no_locks_held();
971 
972 	if (tsk->io_context)
973 		exit_io_context(tsk);
974 
975 	if (tsk->splice_pipe)
976 		free_pipe_info(tsk->splice_pipe);
977 
978 	if (tsk->task_frag.page)
979 		put_page(tsk->task_frag.page);
980 
981 	exit_task_stack_account(tsk);
982 
983 	check_stack_usage();
984 	preempt_disable();
985 	if (tsk->nr_dirtied)
986 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
987 	exit_rcu();
988 	exit_tasks_rcu_finish();
989 
990 	lockdep_free_task(tsk);
991 	do_task_dead();
992 }
993 
994 void __noreturn make_task_dead(int signr)
995 {
996 	/*
997 	 * Take the task off the cpu after something catastrophic has
998 	 * happened.
999 	 *
1000 	 * We can get here from a kernel oops, sometimes with preemption off.
1001 	 * Start by checking for critical errors.
1002 	 * Then fix up important state like USER_DS and preemption.
1003 	 * Then do everything else.
1004 	 */
1005 	struct task_struct *tsk = current;
1006 	unsigned int limit;
1007 
1008 	if (unlikely(in_interrupt()))
1009 		panic("Aiee, killing interrupt handler!");
1010 	if (unlikely(!tsk->pid))
1011 		panic("Attempted to kill the idle task!");
1012 
1013 	if (unlikely(irqs_disabled())) {
1014 		pr_info("note: %s[%d] exited with irqs disabled\n",
1015 			current->comm, task_pid_nr(current));
1016 		local_irq_enable();
1017 	}
1018 	if (unlikely(in_atomic())) {
1019 		pr_info("note: %s[%d] exited with preempt_count %d\n",
1020 			current->comm, task_pid_nr(current),
1021 			preempt_count());
1022 		preempt_count_set(PREEMPT_ENABLED);
1023 	}
1024 
1025 	/*
1026 	 * Every time the system oopses, if the oops happens while a reference
1027 	 * to an object was held, the reference leaks.
1028 	 * If the oops doesn't also leak memory, repeated oopsing can cause
1029 	 * reference counters to wrap around (if they're not using refcount_t).
1030 	 * This means that repeated oopsing can make unexploitable-looking bugs
1031 	 * exploitable through repeated oopsing.
1032 	 * To make sure this can't happen, place an upper bound on how often the
1033 	 * kernel may oops without panic().
1034 	 */
1035 	limit = READ_ONCE(oops_limit);
1036 	if (atomic_inc_return(&oops_count) >= limit && limit)
1037 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
1038 
1039 	/*
1040 	 * We're taking recursive faults here in make_task_dead. Safest is to just
1041 	 * leave this task alone and wait for reboot.
1042 	 */
1043 	if (unlikely(tsk->flags & PF_EXITING)) {
1044 		pr_alert("Fixing recursive fault but reboot is needed!\n");
1045 		futex_exit_recursive(tsk);
1046 		tsk->exit_state = EXIT_DEAD;
1047 		refcount_inc(&tsk->rcu_users);
1048 		do_task_dead();
1049 	}
1050 
1051 	do_exit(signr);
1052 }
1053 
1054 SYSCALL_DEFINE1(exit, int, error_code)
1055 {
1056 	do_exit((error_code&0xff)<<8);
1057 }
1058 
1059 /*
1060  * Take down every thread in the group.  This is called by fatal signals
1061  * as well as by sys_exit_group (below).
1062  */
1063 void __noreturn
1064 do_group_exit(int exit_code)
1065 {
1066 	struct signal_struct *sig = current->signal;
1067 
1068 	if (sig->flags & SIGNAL_GROUP_EXIT)
1069 		exit_code = sig->group_exit_code;
1070 	else if (sig->group_exec_task)
1071 		exit_code = 0;
1072 	else {
1073 		struct sighand_struct *const sighand = current->sighand;
1074 
1075 		spin_lock_irq(&sighand->siglock);
1076 		if (sig->flags & SIGNAL_GROUP_EXIT)
1077 			/* Another thread got here before we took the lock.  */
1078 			exit_code = sig->group_exit_code;
1079 		else if (sig->group_exec_task)
1080 			exit_code = 0;
1081 		else {
1082 			sig->group_exit_code = exit_code;
1083 			sig->flags = SIGNAL_GROUP_EXIT;
1084 			zap_other_threads(current);
1085 		}
1086 		spin_unlock_irq(&sighand->siglock);
1087 	}
1088 
1089 	do_exit(exit_code);
1090 	/* NOTREACHED */
1091 }
1092 
1093 /*
1094  * this kills every thread in the thread group. Note that any externally
1095  * wait4()-ing process will get the correct exit code - even if this
1096  * thread is not the thread group leader.
1097  */
1098 SYSCALL_DEFINE1(exit_group, int, error_code)
1099 {
1100 	do_group_exit((error_code & 0xff) << 8);
1101 	/* NOTREACHED */
1102 	return 0;
1103 }
1104 
1105 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1106 {
1107 	return	wo->wo_type == PIDTYPE_MAX ||
1108 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1109 }
1110 
1111 static int
1112 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1113 {
1114 	if (!eligible_pid(wo, p))
1115 		return 0;
1116 
1117 	/*
1118 	 * Wait for all children (clone and not) if __WALL is set or
1119 	 * if it is traced by us.
1120 	 */
1121 	if (ptrace || (wo->wo_flags & __WALL))
1122 		return 1;
1123 
1124 	/*
1125 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1126 	 * otherwise, wait for non-clone children *only*.
1127 	 *
1128 	 * Note: a "clone" child here is one that reports to its parent
1129 	 * using a signal other than SIGCHLD, or a non-leader thread which
1130 	 * we can only see if it is traced by us.
1131 	 */
1132 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1133 		return 0;
1134 
1135 	return 1;
1136 }
1137 
1138 /*
1139  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1140  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1141  * the lock and this task is uninteresting.  If we return nonzero, we have
1142  * released the lock and the system call should return.
1143  */
1144 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1145 {
1146 	int state, status;
1147 	pid_t pid = task_pid_vnr(p);
1148 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1149 	struct waitid_info *infop;
1150 
1151 	if (!likely(wo->wo_flags & WEXITED))
1152 		return 0;
1153 
1154 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1155 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1156 			? p->signal->group_exit_code : p->exit_code;
1157 		get_task_struct(p);
1158 		read_unlock(&tasklist_lock);
1159 		sched_annotate_sleep();
1160 		if (wo->wo_rusage)
1161 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1162 		put_task_struct(p);
1163 		goto out_info;
1164 	}
1165 	/*
1166 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1167 	 */
1168 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1169 		EXIT_TRACE : EXIT_DEAD;
1170 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1171 		return 0;
1172 	/*
1173 	 * We own this thread, nobody else can reap it.
1174 	 */
1175 	read_unlock(&tasklist_lock);
1176 	sched_annotate_sleep();
1177 
1178 	/*
1179 	 * Check thread_group_leader() to exclude the traced sub-threads.
1180 	 */
1181 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1182 		struct signal_struct *sig = p->signal;
1183 		struct signal_struct *psig = current->signal;
1184 		unsigned long maxrss;
1185 		u64 tgutime, tgstime;
1186 
1187 		/*
1188 		 * The resource counters for the group leader are in its
1189 		 * own task_struct.  Those for dead threads in the group
1190 		 * are in its signal_struct, as are those for the child
1191 		 * processes it has previously reaped.  All these
1192 		 * accumulate in the parent's signal_struct c* fields.
1193 		 *
1194 		 * We don't bother to take a lock here to protect these
1195 		 * p->signal fields because the whole thread group is dead
1196 		 * and nobody can change them.
1197 		 *
1198 		 * psig->stats_lock also protects us from our sub-threads
1199 		 * which can reap other children at the same time.
1200 		 *
1201 		 * We use thread_group_cputime_adjusted() to get times for
1202 		 * the thread group, which consolidates times for all threads
1203 		 * in the group including the group leader.
1204 		 */
1205 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1206 		write_seqlock_irq(&psig->stats_lock);
1207 		psig->cutime += tgutime + sig->cutime;
1208 		psig->cstime += tgstime + sig->cstime;
1209 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1210 		psig->cmin_flt +=
1211 			p->min_flt + sig->min_flt + sig->cmin_flt;
1212 		psig->cmaj_flt +=
1213 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1214 		psig->cnvcsw +=
1215 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1216 		psig->cnivcsw +=
1217 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1218 		psig->cinblock +=
1219 			task_io_get_inblock(p) +
1220 			sig->inblock + sig->cinblock;
1221 		psig->coublock +=
1222 			task_io_get_oublock(p) +
1223 			sig->oublock + sig->coublock;
1224 		maxrss = max(sig->maxrss, sig->cmaxrss);
1225 		if (psig->cmaxrss < maxrss)
1226 			psig->cmaxrss = maxrss;
1227 		task_io_accounting_add(&psig->ioac, &p->ioac);
1228 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1229 		write_sequnlock_irq(&psig->stats_lock);
1230 	}
1231 
1232 	if (wo->wo_rusage)
1233 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1234 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1235 		? p->signal->group_exit_code : p->exit_code;
1236 	wo->wo_stat = status;
1237 
1238 	if (state == EXIT_TRACE) {
1239 		write_lock_irq(&tasklist_lock);
1240 		/* We dropped tasklist, ptracer could die and untrace */
1241 		ptrace_unlink(p);
1242 
1243 		/* If parent wants a zombie, don't release it now */
1244 		state = EXIT_ZOMBIE;
1245 		if (do_notify_parent(p, p->exit_signal))
1246 			state = EXIT_DEAD;
1247 		p->exit_state = state;
1248 		write_unlock_irq(&tasklist_lock);
1249 	}
1250 	if (state == EXIT_DEAD)
1251 		release_task(p);
1252 
1253 out_info:
1254 	infop = wo->wo_info;
1255 	if (infop) {
1256 		if ((status & 0x7f) == 0) {
1257 			infop->cause = CLD_EXITED;
1258 			infop->status = status >> 8;
1259 		} else {
1260 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1261 			infop->status = status & 0x7f;
1262 		}
1263 		infop->pid = pid;
1264 		infop->uid = uid;
1265 	}
1266 
1267 	return pid;
1268 }
1269 
1270 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1271 {
1272 	if (ptrace) {
1273 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1274 			return &p->exit_code;
1275 	} else {
1276 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1277 			return &p->signal->group_exit_code;
1278 	}
1279 	return NULL;
1280 }
1281 
1282 /**
1283  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1284  * @wo: wait options
1285  * @ptrace: is the wait for ptrace
1286  * @p: task to wait for
1287  *
1288  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1289  *
1290  * CONTEXT:
1291  * read_lock(&tasklist_lock), which is released if return value is
1292  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1293  *
1294  * RETURNS:
1295  * 0 if wait condition didn't exist and search for other wait conditions
1296  * should continue.  Non-zero return, -errno on failure and @p's pid on
1297  * success, implies that tasklist_lock is released and wait condition
1298  * search should terminate.
1299  */
1300 static int wait_task_stopped(struct wait_opts *wo,
1301 				int ptrace, struct task_struct *p)
1302 {
1303 	struct waitid_info *infop;
1304 	int exit_code, *p_code, why;
1305 	uid_t uid = 0; /* unneeded, required by compiler */
1306 	pid_t pid;
1307 
1308 	/*
1309 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1310 	 */
1311 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1312 		return 0;
1313 
1314 	if (!task_stopped_code(p, ptrace))
1315 		return 0;
1316 
1317 	exit_code = 0;
1318 	spin_lock_irq(&p->sighand->siglock);
1319 
1320 	p_code = task_stopped_code(p, ptrace);
1321 	if (unlikely(!p_code))
1322 		goto unlock_sig;
1323 
1324 	exit_code = *p_code;
1325 	if (!exit_code)
1326 		goto unlock_sig;
1327 
1328 	if (!unlikely(wo->wo_flags & WNOWAIT))
1329 		*p_code = 0;
1330 
1331 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1332 unlock_sig:
1333 	spin_unlock_irq(&p->sighand->siglock);
1334 	if (!exit_code)
1335 		return 0;
1336 
1337 	/*
1338 	 * Now we are pretty sure this task is interesting.
1339 	 * Make sure it doesn't get reaped out from under us while we
1340 	 * give up the lock and then examine it below.  We don't want to
1341 	 * keep holding onto the tasklist_lock while we call getrusage and
1342 	 * possibly take page faults for user memory.
1343 	 */
1344 	get_task_struct(p);
1345 	pid = task_pid_vnr(p);
1346 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1347 	read_unlock(&tasklist_lock);
1348 	sched_annotate_sleep();
1349 	if (wo->wo_rusage)
1350 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1351 	put_task_struct(p);
1352 
1353 	if (likely(!(wo->wo_flags & WNOWAIT)))
1354 		wo->wo_stat = (exit_code << 8) | 0x7f;
1355 
1356 	infop = wo->wo_info;
1357 	if (infop) {
1358 		infop->cause = why;
1359 		infop->status = exit_code;
1360 		infop->pid = pid;
1361 		infop->uid = uid;
1362 	}
1363 	return pid;
1364 }
1365 
1366 /*
1367  * Handle do_wait work for one task in a live, non-stopped state.
1368  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1369  * the lock and this task is uninteresting.  If we return nonzero, we have
1370  * released the lock and the system call should return.
1371  */
1372 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1373 {
1374 	struct waitid_info *infop;
1375 	pid_t pid;
1376 	uid_t uid;
1377 
1378 	if (!unlikely(wo->wo_flags & WCONTINUED))
1379 		return 0;
1380 
1381 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1382 		return 0;
1383 
1384 	spin_lock_irq(&p->sighand->siglock);
1385 	/* Re-check with the lock held.  */
1386 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1387 		spin_unlock_irq(&p->sighand->siglock);
1388 		return 0;
1389 	}
1390 	if (!unlikely(wo->wo_flags & WNOWAIT))
1391 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1392 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1393 	spin_unlock_irq(&p->sighand->siglock);
1394 
1395 	pid = task_pid_vnr(p);
1396 	get_task_struct(p);
1397 	read_unlock(&tasklist_lock);
1398 	sched_annotate_sleep();
1399 	if (wo->wo_rusage)
1400 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1401 	put_task_struct(p);
1402 
1403 	infop = wo->wo_info;
1404 	if (!infop) {
1405 		wo->wo_stat = 0xffff;
1406 	} else {
1407 		infop->cause = CLD_CONTINUED;
1408 		infop->pid = pid;
1409 		infop->uid = uid;
1410 		infop->status = SIGCONT;
1411 	}
1412 	return pid;
1413 }
1414 
1415 /*
1416  * Consider @p for a wait by @parent.
1417  *
1418  * -ECHILD should be in ->notask_error before the first call.
1419  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1420  * Returns zero if the search for a child should continue;
1421  * then ->notask_error is 0 if @p is an eligible child,
1422  * or still -ECHILD.
1423  */
1424 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1425 				struct task_struct *p)
1426 {
1427 	/*
1428 	 * We can race with wait_task_zombie() from another thread.
1429 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1430 	 * can't confuse the checks below.
1431 	 */
1432 	int exit_state = READ_ONCE(p->exit_state);
1433 	int ret;
1434 
1435 	if (unlikely(exit_state == EXIT_DEAD))
1436 		return 0;
1437 
1438 	ret = eligible_child(wo, ptrace, p);
1439 	if (!ret)
1440 		return ret;
1441 
1442 	if (unlikely(exit_state == EXIT_TRACE)) {
1443 		/*
1444 		 * ptrace == 0 means we are the natural parent. In this case
1445 		 * we should clear notask_error, debugger will notify us.
1446 		 */
1447 		if (likely(!ptrace))
1448 			wo->notask_error = 0;
1449 		return 0;
1450 	}
1451 
1452 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1453 		/*
1454 		 * If it is traced by its real parent's group, just pretend
1455 		 * the caller is ptrace_do_wait() and reap this child if it
1456 		 * is zombie.
1457 		 *
1458 		 * This also hides group stop state from real parent; otherwise
1459 		 * a single stop can be reported twice as group and ptrace stop.
1460 		 * If a ptracer wants to distinguish these two events for its
1461 		 * own children it should create a separate process which takes
1462 		 * the role of real parent.
1463 		 */
1464 		if (!ptrace_reparented(p))
1465 			ptrace = 1;
1466 	}
1467 
1468 	/* slay zombie? */
1469 	if (exit_state == EXIT_ZOMBIE) {
1470 		/* we don't reap group leaders with subthreads */
1471 		if (!delay_group_leader(p)) {
1472 			/*
1473 			 * A zombie ptracee is only visible to its ptracer.
1474 			 * Notification and reaping will be cascaded to the
1475 			 * real parent when the ptracer detaches.
1476 			 */
1477 			if (unlikely(ptrace) || likely(!p->ptrace))
1478 				return wait_task_zombie(wo, p);
1479 		}
1480 
1481 		/*
1482 		 * Allow access to stopped/continued state via zombie by
1483 		 * falling through.  Clearing of notask_error is complex.
1484 		 *
1485 		 * When !@ptrace:
1486 		 *
1487 		 * If WEXITED is set, notask_error should naturally be
1488 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1489 		 * so, if there are live subthreads, there are events to
1490 		 * wait for.  If all subthreads are dead, it's still safe
1491 		 * to clear - this function will be called again in finite
1492 		 * amount time once all the subthreads are released and
1493 		 * will then return without clearing.
1494 		 *
1495 		 * When @ptrace:
1496 		 *
1497 		 * Stopped state is per-task and thus can't change once the
1498 		 * target task dies.  Only continued and exited can happen.
1499 		 * Clear notask_error if WCONTINUED | WEXITED.
1500 		 */
1501 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1502 			wo->notask_error = 0;
1503 	} else {
1504 		/*
1505 		 * @p is alive and it's gonna stop, continue or exit, so
1506 		 * there always is something to wait for.
1507 		 */
1508 		wo->notask_error = 0;
1509 	}
1510 
1511 	/*
1512 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1513 	 * is used and the two don't interact with each other.
1514 	 */
1515 	ret = wait_task_stopped(wo, ptrace, p);
1516 	if (ret)
1517 		return ret;
1518 
1519 	/*
1520 	 * Wait for continued.  There's only one continued state and the
1521 	 * ptracer can consume it which can confuse the real parent.  Don't
1522 	 * use WCONTINUED from ptracer.  You don't need or want it.
1523 	 */
1524 	return wait_task_continued(wo, p);
1525 }
1526 
1527 /*
1528  * Do the work of do_wait() for one thread in the group, @tsk.
1529  *
1530  * -ECHILD should be in ->notask_error before the first call.
1531  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1532  * Returns zero if the search for a child should continue; then
1533  * ->notask_error is 0 if there were any eligible children,
1534  * or still -ECHILD.
1535  */
1536 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1537 {
1538 	struct task_struct *p;
1539 
1540 	list_for_each_entry(p, &tsk->children, sibling) {
1541 		int ret = wait_consider_task(wo, 0, p);
1542 
1543 		if (ret)
1544 			return ret;
1545 	}
1546 
1547 	return 0;
1548 }
1549 
1550 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1551 {
1552 	struct task_struct *p;
1553 
1554 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1555 		int ret = wait_consider_task(wo, 1, p);
1556 
1557 		if (ret)
1558 			return ret;
1559 	}
1560 
1561 	return 0;
1562 }
1563 
1564 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1565 {
1566 	if (!eligible_pid(wo, p))
1567 		return false;
1568 
1569 	if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1570 		return false;
1571 
1572 	return true;
1573 }
1574 
1575 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1576 				int sync, void *key)
1577 {
1578 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1579 						child_wait);
1580 	struct task_struct *p = key;
1581 
1582 	if (pid_child_should_wake(wo, p))
1583 		return default_wake_function(wait, mode, sync, key);
1584 
1585 	return 0;
1586 }
1587 
1588 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1589 {
1590 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1591 			   TASK_INTERRUPTIBLE, p);
1592 }
1593 
1594 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1595 				 struct task_struct *target)
1596 {
1597 	struct task_struct *parent =
1598 		!ptrace ? target->real_parent : target->parent;
1599 
1600 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1601 				     same_thread_group(current, parent));
1602 }
1603 
1604 /*
1605  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1606  * and tracee lists to find the target task.
1607  */
1608 static int do_wait_pid(struct wait_opts *wo)
1609 {
1610 	bool ptrace;
1611 	struct task_struct *target;
1612 	int retval;
1613 
1614 	ptrace = false;
1615 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1616 	if (target && is_effectively_child(wo, ptrace, target)) {
1617 		retval = wait_consider_task(wo, ptrace, target);
1618 		if (retval)
1619 			return retval;
1620 	}
1621 
1622 	ptrace = true;
1623 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1624 	if (target && target->ptrace &&
1625 	    is_effectively_child(wo, ptrace, target)) {
1626 		retval = wait_consider_task(wo, ptrace, target);
1627 		if (retval)
1628 			return retval;
1629 	}
1630 
1631 	return 0;
1632 }
1633 
1634 long __do_wait(struct wait_opts *wo)
1635 {
1636 	long retval;
1637 
1638 	/*
1639 	 * If there is nothing that can match our criteria, just get out.
1640 	 * We will clear ->notask_error to zero if we see any child that
1641 	 * might later match our criteria, even if we are not able to reap
1642 	 * it yet.
1643 	 */
1644 	wo->notask_error = -ECHILD;
1645 	if ((wo->wo_type < PIDTYPE_MAX) &&
1646 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1647 		goto notask;
1648 
1649 	read_lock(&tasklist_lock);
1650 
1651 	if (wo->wo_type == PIDTYPE_PID) {
1652 		retval = do_wait_pid(wo);
1653 		if (retval)
1654 			return retval;
1655 	} else {
1656 		struct task_struct *tsk = current;
1657 
1658 		do {
1659 			retval = do_wait_thread(wo, tsk);
1660 			if (retval)
1661 				return retval;
1662 
1663 			retval = ptrace_do_wait(wo, tsk);
1664 			if (retval)
1665 				return retval;
1666 
1667 			if (wo->wo_flags & __WNOTHREAD)
1668 				break;
1669 		} while_each_thread(current, tsk);
1670 	}
1671 	read_unlock(&tasklist_lock);
1672 
1673 notask:
1674 	retval = wo->notask_error;
1675 	if (!retval && !(wo->wo_flags & WNOHANG))
1676 		return -ERESTARTSYS;
1677 
1678 	return retval;
1679 }
1680 
1681 static long do_wait(struct wait_opts *wo)
1682 {
1683 	int retval;
1684 
1685 	trace_sched_process_wait(wo->wo_pid);
1686 
1687 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1688 	wo->child_wait.private = current;
1689 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1690 
1691 	do {
1692 		set_current_state(TASK_INTERRUPTIBLE);
1693 		retval = __do_wait(wo);
1694 		if (retval != -ERESTARTSYS)
1695 			break;
1696 		if (signal_pending(current))
1697 			break;
1698 		schedule();
1699 	} while (1);
1700 
1701 	__set_current_state(TASK_RUNNING);
1702 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1703 	return retval;
1704 }
1705 
1706 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1707 			  struct waitid_info *infop, int options,
1708 			  struct rusage *ru)
1709 {
1710 	unsigned int f_flags = 0;
1711 	struct pid *pid = NULL;
1712 	enum pid_type type;
1713 
1714 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1715 			__WNOTHREAD|__WCLONE|__WALL))
1716 		return -EINVAL;
1717 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1718 		return -EINVAL;
1719 
1720 	switch (which) {
1721 	case P_ALL:
1722 		type = PIDTYPE_MAX;
1723 		break;
1724 	case P_PID:
1725 		type = PIDTYPE_PID;
1726 		if (upid <= 0)
1727 			return -EINVAL;
1728 
1729 		pid = find_get_pid(upid);
1730 		break;
1731 	case P_PGID:
1732 		type = PIDTYPE_PGID;
1733 		if (upid < 0)
1734 			return -EINVAL;
1735 
1736 		if (upid)
1737 			pid = find_get_pid(upid);
1738 		else
1739 			pid = get_task_pid(current, PIDTYPE_PGID);
1740 		break;
1741 	case P_PIDFD:
1742 		type = PIDTYPE_PID;
1743 		if (upid < 0)
1744 			return -EINVAL;
1745 
1746 		pid = pidfd_get_pid(upid, &f_flags);
1747 		if (IS_ERR(pid))
1748 			return PTR_ERR(pid);
1749 
1750 		break;
1751 	default:
1752 		return -EINVAL;
1753 	}
1754 
1755 	wo->wo_type	= type;
1756 	wo->wo_pid	= pid;
1757 	wo->wo_flags	= options;
1758 	wo->wo_info	= infop;
1759 	wo->wo_rusage	= ru;
1760 	if (f_flags & O_NONBLOCK)
1761 		wo->wo_flags |= WNOHANG;
1762 
1763 	return 0;
1764 }
1765 
1766 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1767 			  int options, struct rusage *ru)
1768 {
1769 	struct wait_opts wo;
1770 	long ret;
1771 
1772 	ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1773 	if (ret)
1774 		return ret;
1775 
1776 	ret = do_wait(&wo);
1777 	if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1778 		ret = -EAGAIN;
1779 
1780 	put_pid(wo.wo_pid);
1781 	return ret;
1782 }
1783 
1784 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1785 		infop, int, options, struct rusage __user *, ru)
1786 {
1787 	struct rusage r;
1788 	struct waitid_info info = {.status = 0};
1789 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1790 	int signo = 0;
1791 
1792 	if (err > 0) {
1793 		signo = SIGCHLD;
1794 		err = 0;
1795 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1796 			return -EFAULT;
1797 	}
1798 	if (!infop)
1799 		return err;
1800 
1801 	if (!user_write_access_begin(infop, sizeof(*infop)))
1802 		return -EFAULT;
1803 
1804 	unsafe_put_user(signo, &infop->si_signo, Efault);
1805 	unsafe_put_user(0, &infop->si_errno, Efault);
1806 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1807 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1808 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1809 	unsafe_put_user(info.status, &infop->si_status, Efault);
1810 	user_write_access_end();
1811 	return err;
1812 Efault:
1813 	user_write_access_end();
1814 	return -EFAULT;
1815 }
1816 
1817 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1818 		  struct rusage *ru)
1819 {
1820 	struct wait_opts wo;
1821 	struct pid *pid = NULL;
1822 	enum pid_type type;
1823 	long ret;
1824 
1825 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1826 			__WNOTHREAD|__WCLONE|__WALL))
1827 		return -EINVAL;
1828 
1829 	/* -INT_MIN is not defined */
1830 	if (upid == INT_MIN)
1831 		return -ESRCH;
1832 
1833 	if (upid == -1)
1834 		type = PIDTYPE_MAX;
1835 	else if (upid < 0) {
1836 		type = PIDTYPE_PGID;
1837 		pid = find_get_pid(-upid);
1838 	} else if (upid == 0) {
1839 		type = PIDTYPE_PGID;
1840 		pid = get_task_pid(current, PIDTYPE_PGID);
1841 	} else /* upid > 0 */ {
1842 		type = PIDTYPE_PID;
1843 		pid = find_get_pid(upid);
1844 	}
1845 
1846 	wo.wo_type	= type;
1847 	wo.wo_pid	= pid;
1848 	wo.wo_flags	= options | WEXITED;
1849 	wo.wo_info	= NULL;
1850 	wo.wo_stat	= 0;
1851 	wo.wo_rusage	= ru;
1852 	ret = do_wait(&wo);
1853 	put_pid(pid);
1854 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1855 		ret = -EFAULT;
1856 
1857 	return ret;
1858 }
1859 
1860 int kernel_wait(pid_t pid, int *stat)
1861 {
1862 	struct wait_opts wo = {
1863 		.wo_type	= PIDTYPE_PID,
1864 		.wo_pid		= find_get_pid(pid),
1865 		.wo_flags	= WEXITED,
1866 	};
1867 	int ret;
1868 
1869 	ret = do_wait(&wo);
1870 	if (ret > 0 && wo.wo_stat)
1871 		*stat = wo.wo_stat;
1872 	put_pid(wo.wo_pid);
1873 	return ret;
1874 }
1875 
1876 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1877 		int, options, struct rusage __user *, ru)
1878 {
1879 	struct rusage r;
1880 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1881 
1882 	if (err > 0) {
1883 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1884 			return -EFAULT;
1885 	}
1886 	return err;
1887 }
1888 
1889 #ifdef __ARCH_WANT_SYS_WAITPID
1890 
1891 /*
1892  * sys_waitpid() remains for compatibility. waitpid() should be
1893  * implemented by calling sys_wait4() from libc.a.
1894  */
1895 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1896 {
1897 	return kernel_wait4(pid, stat_addr, options, NULL);
1898 }
1899 
1900 #endif
1901 
1902 #ifdef CONFIG_COMPAT
1903 COMPAT_SYSCALL_DEFINE4(wait4,
1904 	compat_pid_t, pid,
1905 	compat_uint_t __user *, stat_addr,
1906 	int, options,
1907 	struct compat_rusage __user *, ru)
1908 {
1909 	struct rusage r;
1910 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1911 	if (err > 0) {
1912 		if (ru && put_compat_rusage(&r, ru))
1913 			return -EFAULT;
1914 	}
1915 	return err;
1916 }
1917 
1918 COMPAT_SYSCALL_DEFINE5(waitid,
1919 		int, which, compat_pid_t, pid,
1920 		struct compat_siginfo __user *, infop, int, options,
1921 		struct compat_rusage __user *, uru)
1922 {
1923 	struct rusage ru;
1924 	struct waitid_info info = {.status = 0};
1925 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1926 	int signo = 0;
1927 	if (err > 0) {
1928 		signo = SIGCHLD;
1929 		err = 0;
1930 		if (uru) {
1931 			/* kernel_waitid() overwrites everything in ru */
1932 			if (COMPAT_USE_64BIT_TIME)
1933 				err = copy_to_user(uru, &ru, sizeof(ru));
1934 			else
1935 				err = put_compat_rusage(&ru, uru);
1936 			if (err)
1937 				return -EFAULT;
1938 		}
1939 	}
1940 
1941 	if (!infop)
1942 		return err;
1943 
1944 	if (!user_write_access_begin(infop, sizeof(*infop)))
1945 		return -EFAULT;
1946 
1947 	unsafe_put_user(signo, &infop->si_signo, Efault);
1948 	unsafe_put_user(0, &infop->si_errno, Efault);
1949 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1950 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1951 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1952 	unsafe_put_user(info.status, &infop->si_status, Efault);
1953 	user_write_access_end();
1954 	return err;
1955 Efault:
1956 	user_write_access_end();
1957 	return -EFAULT;
1958 }
1959 #endif
1960 
1961 /*
1962  * This needs to be __function_aligned as GCC implicitly makes any
1963  * implementation of abort() cold and drops alignment specified by
1964  * -falign-functions=N.
1965  *
1966  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1967  */
1968 __weak __function_aligned void abort(void)
1969 {
1970 	BUG();
1971 
1972 	/* if that doesn't kill us, halt */
1973 	panic("Oops failed to kill thread");
1974 }
1975 EXPORT_SYMBOL(abort);
1976