1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/freezer.h> 29 #include <linux/binfmts.h> 30 #include <linux/nsproxy.h> 31 #include <linux/pid_namespace.h> 32 #include <linux/ptrace.h> 33 #include <linux/profile.h> 34 #include <linux/mount.h> 35 #include <linux/proc_fs.h> 36 #include <linux/kthread.h> 37 #include <linux/mempolicy.h> 38 #include <linux/taskstats_kern.h> 39 #include <linux/delayacct.h> 40 #include <linux/cgroup.h> 41 #include <linux/syscalls.h> 42 #include <linux/signal.h> 43 #include <linux/posix-timers.h> 44 #include <linux/cn_proc.h> 45 #include <linux/mutex.h> 46 #include <linux/futex.h> 47 #include <linux/pipe_fs_i.h> 48 #include <linux/audit.h> /* for audit_free() */ 49 #include <linux/resource.h> 50 #include <linux/task_io_accounting_ops.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_work.h> 53 #include <linux/fs_struct.h> 54 #include <linux/init_task.h> 55 #include <linux/perf_event.h> 56 #include <trace/events/sched.h> 57 #include <linux/hw_breakpoint.h> 58 #include <linux/oom.h> 59 #include <linux/writeback.h> 60 #include <linux/shm.h> 61 #include <linux/kcov.h> 62 #include <linux/kmsan.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 #include <linux/io_uring.h> 67 #include <linux/kprobes.h> 68 #include <linux/rethook.h> 69 #include <linux/sysfs.h> 70 #include <linux/user_events.h> 71 #include <linux/unwind_deferred.h> 72 #include <linux/uaccess.h> 73 #include <linux/pidfs.h> 74 75 #include <uapi/linux/wait.h> 76 77 #include <asm/unistd.h> 78 #include <asm/mmu_context.h> 79 80 #include "exit.h" 81 82 /* 83 * The default value should be high enough to not crash a system that randomly 84 * crashes its kernel from time to time, but low enough to at least not permit 85 * overflowing 32-bit refcounts or the ldsem writer count. 86 */ 87 static unsigned int oops_limit = 10000; 88 89 #ifdef CONFIG_SYSCTL 90 static const struct ctl_table kern_exit_table[] = { 91 { 92 .procname = "oops_limit", 93 .data = &oops_limit, 94 .maxlen = sizeof(oops_limit), 95 .mode = 0644, 96 .proc_handler = proc_douintvec, 97 }, 98 }; 99 100 static __init int kernel_exit_sysctls_init(void) 101 { 102 register_sysctl_init("kernel", kern_exit_table); 103 return 0; 104 } 105 late_initcall(kernel_exit_sysctls_init); 106 #endif 107 108 static atomic_t oops_count = ATOMIC_INIT(0); 109 110 #ifdef CONFIG_SYSFS 111 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr, 112 char *page) 113 { 114 return sysfs_emit(page, "%d\n", atomic_read(&oops_count)); 115 } 116 117 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count); 118 119 static __init int kernel_exit_sysfs_init(void) 120 { 121 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL); 122 return 0; 123 } 124 late_initcall(kernel_exit_sysfs_init); 125 #endif 126 127 /* 128 * For things release_task() would like to do *after* tasklist_lock is released. 129 */ 130 struct release_task_post { 131 struct pid *pids[PIDTYPE_MAX]; 132 }; 133 134 static void __unhash_process(struct release_task_post *post, struct task_struct *p, 135 bool group_dead) 136 { 137 struct pid *pid = task_pid(p); 138 139 nr_threads--; 140 141 detach_pid(post->pids, p, PIDTYPE_PID); 142 wake_up_all(&pid->wait_pidfd); 143 144 if (group_dead) { 145 detach_pid(post->pids, p, PIDTYPE_TGID); 146 detach_pid(post->pids, p, PIDTYPE_PGID); 147 detach_pid(post->pids, p, PIDTYPE_SID); 148 149 list_del_rcu(&p->tasks); 150 list_del_init(&p->sibling); 151 __this_cpu_dec(process_counts); 152 } 153 list_del_rcu(&p->thread_node); 154 } 155 156 /* 157 * This function expects the tasklist_lock write-locked. 158 */ 159 static void __exit_signal(struct release_task_post *post, struct task_struct *tsk) 160 { 161 struct signal_struct *sig = tsk->signal; 162 bool group_dead = thread_group_leader(tsk); 163 struct sighand_struct *sighand; 164 struct tty_struct *tty; 165 u64 utime, stime; 166 167 sighand = rcu_dereference_check(tsk->sighand, 168 lockdep_tasklist_lock_is_held()); 169 spin_lock(&sighand->siglock); 170 171 #ifdef CONFIG_POSIX_TIMERS 172 posix_cpu_timers_exit(tsk); 173 if (group_dead) 174 posix_cpu_timers_exit_group(tsk); 175 #endif 176 177 if (group_dead) { 178 tty = sig->tty; 179 sig->tty = NULL; 180 } else { 181 /* 182 * If there is any task waiting for the group exit 183 * then notify it: 184 */ 185 if (sig->notify_count > 0 && !--sig->notify_count) 186 wake_up_process(sig->group_exec_task); 187 188 if (tsk == sig->curr_target) 189 sig->curr_target = next_thread(tsk); 190 } 191 192 /* 193 * Accumulate here the counters for all threads as they die. We could 194 * skip the group leader because it is the last user of signal_struct, 195 * but we want to avoid the race with thread_group_cputime() which can 196 * see the empty ->thread_head list. 197 */ 198 task_cputime(tsk, &utime, &stime); 199 write_seqlock(&sig->stats_lock); 200 sig->utime += utime; 201 sig->stime += stime; 202 sig->gtime += task_gtime(tsk); 203 sig->min_flt += tsk->min_flt; 204 sig->maj_flt += tsk->maj_flt; 205 sig->nvcsw += tsk->nvcsw; 206 sig->nivcsw += tsk->nivcsw; 207 sig->inblock += task_io_get_inblock(tsk); 208 sig->oublock += task_io_get_oublock(tsk); 209 task_io_accounting_add(&sig->ioac, &tsk->ioac); 210 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 211 sig->nr_threads--; 212 __unhash_process(post, tsk, group_dead); 213 write_sequnlock(&sig->stats_lock); 214 215 tsk->sighand = NULL; 216 spin_unlock(&sighand->siglock); 217 218 __cleanup_sighand(sighand); 219 if (group_dead) 220 tty_kref_put(tty); 221 } 222 223 static void delayed_put_task_struct(struct rcu_head *rhp) 224 { 225 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 226 227 kprobe_flush_task(tsk); 228 rethook_flush_task(tsk); 229 perf_event_delayed_put(tsk); 230 trace_sched_process_free(tsk); 231 put_task_struct(tsk); 232 } 233 234 void put_task_struct_rcu_user(struct task_struct *task) 235 { 236 if (refcount_dec_and_test(&task->rcu_users)) 237 call_rcu(&task->rcu, delayed_put_task_struct); 238 } 239 240 void __weak release_thread(struct task_struct *dead_task) 241 { 242 } 243 244 void release_task(struct task_struct *p) 245 { 246 struct release_task_post post; 247 struct task_struct *leader; 248 struct pid *thread_pid; 249 int zap_leader; 250 repeat: 251 memset(&post, 0, sizeof(post)); 252 253 /* don't need to get the RCU readlock here - the process is dead and 254 * can't be modifying its own credentials. */ 255 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 256 257 pidfs_exit(p); 258 cgroup_task_release(p); 259 260 /* Retrieve @thread_pid before __unhash_process() may set it to NULL. */ 261 thread_pid = task_pid(p); 262 263 write_lock_irq(&tasklist_lock); 264 ptrace_release_task(p); 265 __exit_signal(&post, p); 266 267 /* 268 * If we are the last non-leader member of the thread 269 * group, and the leader is zombie, then notify the 270 * group leader's parent process. (if it wants notification.) 271 */ 272 zap_leader = 0; 273 leader = p->group_leader; 274 if (leader != p && thread_group_empty(leader) 275 && leader->exit_state == EXIT_ZOMBIE) { 276 /* for pidfs_exit() and do_notify_parent() */ 277 if (leader->signal->flags & SIGNAL_GROUP_EXIT) 278 leader->exit_code = leader->signal->group_exit_code; 279 /* 280 * If we were the last child thread and the leader has 281 * exited already, and the leader's parent ignores SIGCHLD, 282 * then we are the one who should release the leader. 283 */ 284 zap_leader = do_notify_parent(leader, leader->exit_signal); 285 if (zap_leader) 286 leader->exit_state = EXIT_DEAD; 287 } 288 289 write_unlock_irq(&tasklist_lock); 290 /* @thread_pid can't go away until free_pids() below */ 291 proc_flush_pid(thread_pid); 292 exit_cred_namespaces(p); 293 add_device_randomness(&p->se.sum_exec_runtime, 294 sizeof(p->se.sum_exec_runtime)); 295 free_pids(post.pids); 296 release_thread(p); 297 /* 298 * This task was already removed from the process/thread/pid lists 299 * and lock_task_sighand(p) can't succeed. Nobody else can touch 300 * ->pending or, if group dead, signal->shared_pending. We can call 301 * flush_sigqueue() lockless. 302 */ 303 flush_sigqueue(&p->pending); 304 if (thread_group_leader(p)) 305 flush_sigqueue(&p->signal->shared_pending); 306 307 put_task_struct_rcu_user(p); 308 309 p = leader; 310 if (unlikely(zap_leader)) 311 goto repeat; 312 } 313 314 int rcuwait_wake_up(struct rcuwait *w) 315 { 316 int ret = 0; 317 struct task_struct *task; 318 319 rcu_read_lock(); 320 321 /* 322 * Order condition vs @task, such that everything prior to the load 323 * of @task is visible. This is the condition as to why the user called 324 * rcuwait_wake() in the first place. Pairs with set_current_state() 325 * barrier (A) in rcuwait_wait_event(). 326 * 327 * WAIT WAKE 328 * [S] tsk = current [S] cond = true 329 * MB (A) MB (B) 330 * [L] cond [L] tsk 331 */ 332 smp_mb(); /* (B) */ 333 334 task = rcu_dereference(w->task); 335 if (task) 336 ret = wake_up_process(task); 337 rcu_read_unlock(); 338 339 return ret; 340 } 341 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 342 343 /* 344 * Determine if a process group is "orphaned", according to the POSIX 345 * definition in 2.2.2.52. Orphaned process groups are not to be affected 346 * by terminal-generated stop signals. Newly orphaned process groups are 347 * to receive a SIGHUP and a SIGCONT. 348 * 349 * "I ask you, have you ever known what it is to be an orphan?" 350 */ 351 static int will_become_orphaned_pgrp(struct pid *pgrp, 352 struct task_struct *ignored_task) 353 { 354 struct task_struct *p; 355 356 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 357 if ((p == ignored_task) || 358 (p->exit_state && thread_group_empty(p)) || 359 is_global_init(p->real_parent)) 360 continue; 361 362 if (task_pgrp(p->real_parent) != pgrp && 363 task_session(p->real_parent) == task_session(p)) 364 return 0; 365 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 366 367 return 1; 368 } 369 370 int is_current_pgrp_orphaned(void) 371 { 372 int retval; 373 374 read_lock(&tasklist_lock); 375 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 376 read_unlock(&tasklist_lock); 377 378 return retval; 379 } 380 381 static bool has_stopped_jobs(struct pid *pgrp) 382 { 383 struct task_struct *p; 384 385 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 386 if (p->signal->flags & SIGNAL_STOP_STOPPED) 387 return true; 388 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 389 390 return false; 391 } 392 393 /* 394 * Check to see if any process groups have become orphaned as 395 * a result of our exiting, and if they have any stopped jobs, 396 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 397 */ 398 static void 399 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 400 { 401 struct pid *pgrp = task_pgrp(tsk); 402 struct task_struct *ignored_task = tsk; 403 404 if (!parent) 405 /* exit: our father is in a different pgrp than 406 * we are and we were the only connection outside. 407 */ 408 parent = tsk->real_parent; 409 else 410 /* reparent: our child is in a different pgrp than 411 * we are, and it was the only connection outside. 412 */ 413 ignored_task = NULL; 414 415 if (task_pgrp(parent) != pgrp && 416 task_session(parent) == task_session(tsk) && 417 will_become_orphaned_pgrp(pgrp, ignored_task) && 418 has_stopped_jobs(pgrp)) { 419 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 420 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 421 } 422 } 423 424 static void coredump_task_exit(struct task_struct *tsk, 425 struct core_state *core_state) 426 { 427 struct core_thread self; 428 429 self.task = tsk; 430 if (self.task->flags & PF_SIGNALED) 431 self.next = xchg(&core_state->dumper.next, &self); 432 else 433 self.task = NULL; 434 /* 435 * Implies mb(), the result of xchg() must be visible 436 * to core_state->dumper. 437 */ 438 if (atomic_dec_and_test(&core_state->nr_threads)) 439 complete(&core_state->startup); 440 441 for (;;) { 442 set_current_state(TASK_IDLE|TASK_FREEZABLE); 443 if (!self.task) /* see coredump_finish() */ 444 break; 445 schedule(); 446 } 447 __set_current_state(TASK_RUNNING); 448 } 449 450 #ifdef CONFIG_MEMCG 451 /* drops tasklist_lock if succeeds */ 452 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm) 453 { 454 bool ret = false; 455 456 task_lock(tsk); 457 if (likely(tsk->mm == mm)) { 458 /* tsk can't pass exit_mm/exec_mmap and exit */ 459 read_unlock(&tasklist_lock); 460 WRITE_ONCE(mm->owner, tsk); 461 lru_gen_migrate_mm(mm); 462 ret = true; 463 } 464 task_unlock(tsk); 465 return ret; 466 } 467 468 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm) 469 { 470 struct task_struct *t; 471 472 for_each_thread(g, t) { 473 struct mm_struct *t_mm = READ_ONCE(t->mm); 474 if (t_mm == mm) { 475 if (__try_to_set_owner(t, mm)) 476 return true; 477 } else if (t_mm) 478 break; 479 } 480 481 return false; 482 } 483 484 /* 485 * A task is exiting. If it owned this mm, find a new owner for the mm. 486 */ 487 void mm_update_next_owner(struct mm_struct *mm) 488 { 489 struct task_struct *g, *p = current; 490 491 /* 492 * If the exiting or execing task is not the owner, it's 493 * someone else's problem. 494 */ 495 if (mm->owner != p) 496 return; 497 /* 498 * The current owner is exiting/execing and there are no other 499 * candidates. Do not leave the mm pointing to a possibly 500 * freed task structure. 501 */ 502 if (atomic_read(&mm->mm_users) <= 1) { 503 WRITE_ONCE(mm->owner, NULL); 504 return; 505 } 506 507 read_lock(&tasklist_lock); 508 /* 509 * Search in the children 510 */ 511 list_for_each_entry(g, &p->children, sibling) { 512 if (try_to_set_owner(g, mm)) 513 goto ret; 514 } 515 /* 516 * Search in the siblings 517 */ 518 list_for_each_entry(g, &p->real_parent->children, sibling) { 519 if (try_to_set_owner(g, mm)) 520 goto ret; 521 } 522 /* 523 * Search through everything else, we should not get here often. 524 */ 525 for_each_process(g) { 526 if (atomic_read(&mm->mm_users) <= 1) 527 break; 528 if (g->flags & PF_KTHREAD) 529 continue; 530 if (try_to_set_owner(g, mm)) 531 goto ret; 532 } 533 read_unlock(&tasklist_lock); 534 /* 535 * We found no owner yet mm_users > 1: this implies that we are 536 * most likely racing with swapoff (try_to_unuse()) or /proc or 537 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 538 */ 539 WRITE_ONCE(mm->owner, NULL); 540 ret: 541 return; 542 543 } 544 #endif /* CONFIG_MEMCG */ 545 546 /* 547 * Turn us into a lazy TLB process if we 548 * aren't already.. 549 */ 550 static void exit_mm(void) 551 { 552 struct mm_struct *mm = current->mm; 553 554 exit_mm_release(current, mm); 555 if (!mm) 556 return; 557 mmap_read_lock(mm); 558 mmgrab_lazy_tlb(mm); 559 BUG_ON(mm != current->active_mm); 560 /* more a memory barrier than a real lock */ 561 task_lock(current); 562 /* 563 * When a thread stops operating on an address space, the loop 564 * in membarrier_private_expedited() may not observe that 565 * tsk->mm, and the loop in membarrier_global_expedited() may 566 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 567 * rq->membarrier_state, so those would not issue an IPI. 568 * Membarrier requires a memory barrier after accessing 569 * user-space memory, before clearing tsk->mm or the 570 * rq->membarrier_state. 571 */ 572 smp_mb__after_spinlock(); 573 local_irq_disable(); 574 current->mm = NULL; 575 membarrier_update_current_mm(NULL); 576 enter_lazy_tlb(mm, current); 577 local_irq_enable(); 578 task_unlock(current); 579 mmap_read_unlock(mm); 580 mm_update_next_owner(mm); 581 mmput(mm); 582 if (test_thread_flag(TIF_MEMDIE)) 583 exit_oom_victim(); 584 } 585 586 static struct task_struct *find_alive_thread(struct task_struct *p) 587 { 588 struct task_struct *t; 589 590 for_each_thread(p, t) { 591 if (!(t->flags & PF_EXITING)) 592 return t; 593 } 594 return NULL; 595 } 596 597 static struct task_struct *find_child_reaper(struct task_struct *father, 598 struct list_head *dead) 599 __releases(&tasklist_lock) 600 __acquires(&tasklist_lock) 601 { 602 struct pid_namespace *pid_ns = task_active_pid_ns(father); 603 struct task_struct *reaper = pid_ns->child_reaper; 604 struct task_struct *p, *n; 605 606 if (likely(reaper != father)) 607 return reaper; 608 609 reaper = find_alive_thread(father); 610 if (reaper) { 611 pid_ns->child_reaper = reaper; 612 return reaper; 613 } 614 615 write_unlock_irq(&tasklist_lock); 616 617 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 618 list_del_init(&p->ptrace_entry); 619 release_task(p); 620 } 621 622 zap_pid_ns_processes(pid_ns); 623 write_lock_irq(&tasklist_lock); 624 625 return father; 626 } 627 628 /* 629 * When we die, we re-parent all our children, and try to: 630 * 1. give them to another thread in our thread group, if such a member exists 631 * 2. give it to the first ancestor process which prctl'd itself as a 632 * child_subreaper for its children (like a service manager) 633 * 3. give it to the init process (PID 1) in our pid namespace 634 */ 635 static struct task_struct *find_new_reaper(struct task_struct *father, 636 struct task_struct *child_reaper) 637 { 638 struct task_struct *thread, *reaper; 639 640 thread = find_alive_thread(father); 641 if (thread) 642 return thread; 643 644 if (father->signal->has_child_subreaper) { 645 unsigned int ns_level = task_pid(father)->level; 646 /* 647 * Find the first ->is_child_subreaper ancestor in our pid_ns. 648 * We can't check reaper != child_reaper to ensure we do not 649 * cross the namespaces, the exiting parent could be injected 650 * by setns() + fork(). 651 * We check pid->level, this is slightly more efficient than 652 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 653 */ 654 for (reaper = father->real_parent; 655 task_pid(reaper)->level == ns_level; 656 reaper = reaper->real_parent) { 657 if (reaper == &init_task) 658 break; 659 if (!reaper->signal->is_child_subreaper) 660 continue; 661 thread = find_alive_thread(reaper); 662 if (thread) 663 return thread; 664 } 665 } 666 667 return child_reaper; 668 } 669 670 /* 671 * Any that need to be release_task'd are put on the @dead list. 672 */ 673 static void reparent_leader(struct task_struct *father, struct task_struct *p, 674 struct list_head *dead) 675 { 676 if (unlikely(p->exit_state == EXIT_DEAD)) 677 return; 678 679 /* We don't want people slaying init. */ 680 p->exit_signal = SIGCHLD; 681 682 /* If it has exited notify the new parent about this child's death. */ 683 if (!p->ptrace && 684 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 685 if (do_notify_parent(p, p->exit_signal)) { 686 p->exit_state = EXIT_DEAD; 687 list_add(&p->ptrace_entry, dead); 688 } 689 } 690 691 kill_orphaned_pgrp(p, father); 692 } 693 694 /* 695 * Make init inherit all the child processes 696 */ 697 static void forget_original_parent(struct task_struct *father, 698 struct list_head *dead) 699 { 700 struct task_struct *p, *t, *reaper; 701 702 if (unlikely(!list_empty(&father->ptraced))) 703 exit_ptrace(father, dead); 704 705 /* Can drop and reacquire tasklist_lock */ 706 reaper = find_child_reaper(father, dead); 707 if (list_empty(&father->children)) 708 return; 709 710 reaper = find_new_reaper(father, reaper); 711 list_for_each_entry(p, &father->children, sibling) { 712 for_each_thread(p, t) { 713 RCU_INIT_POINTER(t->real_parent, reaper); 714 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 715 if (likely(!t->ptrace)) 716 t->parent = t->real_parent; 717 if (t->pdeath_signal) 718 group_send_sig_info(t->pdeath_signal, 719 SEND_SIG_NOINFO, t, 720 PIDTYPE_TGID); 721 } 722 /* 723 * If this is a threaded reparent there is no need to 724 * notify anyone anything has happened. 725 */ 726 if (!same_thread_group(reaper, father)) 727 reparent_leader(father, p, dead); 728 } 729 list_splice_tail_init(&father->children, &reaper->children); 730 } 731 732 /* 733 * Send signals to all our closest relatives so that they know 734 * to properly mourn us.. 735 */ 736 static void exit_notify(struct task_struct *tsk, int group_dead) 737 { 738 bool autoreap; 739 struct task_struct *p, *n; 740 LIST_HEAD(dead); 741 742 write_lock_irq(&tasklist_lock); 743 forget_original_parent(tsk, &dead); 744 745 if (group_dead) 746 kill_orphaned_pgrp(tsk->group_leader, NULL); 747 748 tsk->exit_state = EXIT_ZOMBIE; 749 750 if (unlikely(tsk->ptrace)) { 751 int sig = thread_group_leader(tsk) && 752 thread_group_empty(tsk) && 753 !ptrace_reparented(tsk) ? 754 tsk->exit_signal : SIGCHLD; 755 autoreap = do_notify_parent(tsk, sig); 756 } else if (thread_group_leader(tsk)) { 757 autoreap = thread_group_empty(tsk) && 758 do_notify_parent(tsk, tsk->exit_signal); 759 } else { 760 autoreap = true; 761 /* untraced sub-thread */ 762 do_notify_pidfd(tsk); 763 } 764 765 if (autoreap) { 766 tsk->exit_state = EXIT_DEAD; 767 list_add(&tsk->ptrace_entry, &dead); 768 } 769 770 /* mt-exec, de_thread() is waiting for group leader */ 771 if (unlikely(tsk->signal->notify_count < 0)) 772 wake_up_process(tsk->signal->group_exec_task); 773 write_unlock_irq(&tasklist_lock); 774 775 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 776 list_del_init(&p->ptrace_entry); 777 release_task(p); 778 } 779 } 780 781 #ifdef CONFIG_DEBUG_STACK_USAGE 782 #ifdef CONFIG_STACK_GROWSUP 783 unsigned long stack_not_used(struct task_struct *p) 784 { 785 unsigned long *n = end_of_stack(p); 786 787 do { /* Skip over canary */ 788 n--; 789 } while (!*n); 790 791 return (unsigned long)end_of_stack(p) - (unsigned long)n; 792 } 793 #else /* !CONFIG_STACK_GROWSUP */ 794 unsigned long stack_not_used(struct task_struct *p) 795 { 796 unsigned long *n = end_of_stack(p); 797 798 do { /* Skip over canary */ 799 n++; 800 } while (!*n); 801 802 return (unsigned long)n - (unsigned long)end_of_stack(p); 803 } 804 #endif /* CONFIG_STACK_GROWSUP */ 805 806 /* Count the maximum pages reached in kernel stacks */ 807 static inline void kstack_histogram(unsigned long used_stack) 808 { 809 #ifdef CONFIG_VM_EVENT_COUNTERS 810 if (used_stack <= 1024) 811 count_vm_event(KSTACK_1K); 812 #if THREAD_SIZE > 1024 813 else if (used_stack <= 2048) 814 count_vm_event(KSTACK_2K); 815 #endif 816 #if THREAD_SIZE > 2048 817 else if (used_stack <= 4096) 818 count_vm_event(KSTACK_4K); 819 #endif 820 #if THREAD_SIZE > 4096 821 else if (used_stack <= 8192) 822 count_vm_event(KSTACK_8K); 823 #endif 824 #if THREAD_SIZE > 8192 825 else if (used_stack <= 16384) 826 count_vm_event(KSTACK_16K); 827 #endif 828 #if THREAD_SIZE > 16384 829 else if (used_stack <= 32768) 830 count_vm_event(KSTACK_32K); 831 #endif 832 #if THREAD_SIZE > 32768 833 else if (used_stack <= 65536) 834 count_vm_event(KSTACK_64K); 835 #endif 836 #if THREAD_SIZE > 65536 837 else 838 count_vm_event(KSTACK_REST); 839 #endif 840 #endif /* CONFIG_VM_EVENT_COUNTERS */ 841 } 842 843 static void check_stack_usage(void) 844 { 845 static DEFINE_SPINLOCK(low_water_lock); 846 static int lowest_to_date = THREAD_SIZE; 847 unsigned long free; 848 849 free = stack_not_used(current); 850 kstack_histogram(THREAD_SIZE - free); 851 852 if (free >= lowest_to_date) 853 return; 854 855 spin_lock(&low_water_lock); 856 if (free < lowest_to_date) { 857 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 858 current->comm, task_pid_nr(current), free); 859 lowest_to_date = free; 860 } 861 spin_unlock(&low_water_lock); 862 } 863 #else /* !CONFIG_DEBUG_STACK_USAGE */ 864 static inline void check_stack_usage(void) {} 865 #endif /* CONFIG_DEBUG_STACK_USAGE */ 866 867 static void synchronize_group_exit(struct task_struct *tsk, long code) 868 { 869 struct sighand_struct *sighand = tsk->sighand; 870 struct signal_struct *signal = tsk->signal; 871 struct core_state *core_state; 872 873 spin_lock_irq(&sighand->siglock); 874 signal->quick_threads--; 875 if ((signal->quick_threads == 0) && 876 !(signal->flags & SIGNAL_GROUP_EXIT)) { 877 signal->flags = SIGNAL_GROUP_EXIT; 878 signal->group_exit_code = code; 879 signal->group_stop_count = 0; 880 } 881 /* 882 * Serialize with any possible pending coredump. 883 * We must hold siglock around checking core_state 884 * and setting PF_POSTCOREDUMP. The core-inducing thread 885 * will increment ->nr_threads for each thread in the 886 * group without PF_POSTCOREDUMP set. 887 */ 888 tsk->flags |= PF_POSTCOREDUMP; 889 core_state = signal->core_state; 890 spin_unlock_irq(&sighand->siglock); 891 892 if (unlikely(core_state)) 893 coredump_task_exit(tsk, core_state); 894 } 895 896 void __noreturn do_exit(long code) 897 { 898 struct task_struct *tsk = current; 899 int group_dead; 900 901 WARN_ON(irqs_disabled()); 902 WARN_ON(tsk->plug); 903 904 kcov_task_exit(tsk); 905 kmsan_task_exit(tsk); 906 907 synchronize_group_exit(tsk, code); 908 ptrace_event(PTRACE_EVENT_EXIT, code); 909 user_events_exit(tsk); 910 911 io_uring_files_cancel(); 912 sched_mm_cid_exit(tsk); 913 exit_signals(tsk); /* sets PF_EXITING */ 914 915 seccomp_filter_release(tsk); 916 917 acct_update_integrals(tsk); 918 group_dead = atomic_dec_and_test(&tsk->signal->live); 919 if (group_dead) { 920 /* 921 * If the last thread of global init has exited, panic 922 * immediately to get a useable coredump. 923 */ 924 if (unlikely(is_global_init(tsk))) 925 panic("Attempted to kill init! exitcode=0x%08x\n", 926 tsk->signal->group_exit_code ?: (int)code); 927 928 #ifdef CONFIG_POSIX_TIMERS 929 hrtimer_cancel(&tsk->signal->real_timer); 930 exit_itimers(tsk); 931 #endif 932 if (tsk->mm) 933 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 934 } 935 acct_collect(code, group_dead); 936 if (group_dead) 937 tty_audit_exit(); 938 audit_free(tsk); 939 940 tsk->exit_code = code; 941 taskstats_exit(tsk, group_dead); 942 trace_sched_process_exit(tsk, group_dead); 943 944 /* 945 * Since sampling can touch ->mm, make sure to stop everything before we 946 * tear it down. 947 * 948 * Also flushes inherited counters to the parent - before the parent 949 * gets woken up by child-exit notifications. 950 */ 951 perf_event_exit_task(tsk); 952 /* 953 * PF_EXITING (above) ensures unwind_deferred_request() will no 954 * longer add new unwinds. While exit_mm() (below) will destroy the 955 * abaility to do unwinds. So flush any pending unwinds here. 956 */ 957 unwind_deferred_task_exit(tsk); 958 959 exit_mm(); 960 961 if (group_dead) 962 acct_process(); 963 964 exit_sem(tsk); 965 exit_shm(tsk); 966 exit_files(tsk); 967 exit_fs(tsk); 968 if (group_dead) 969 disassociate_ctty(1); 970 exit_nsproxy_namespaces(tsk); 971 exit_task_work(tsk); 972 exit_thread(tsk); 973 974 sched_autogroup_exit_task(tsk); 975 cgroup_task_exit(tsk); 976 977 /* 978 * FIXME: do that only when needed, using sched_exit tracepoint 979 */ 980 flush_ptrace_hw_breakpoint(tsk); 981 982 exit_tasks_rcu_start(); 983 exit_notify(tsk, group_dead); 984 proc_exit_connector(tsk); 985 mpol_put_task_policy(tsk); 986 #ifdef CONFIG_FUTEX 987 if (unlikely(current->pi_state_cache)) 988 kfree(current->pi_state_cache); 989 #endif 990 /* 991 * Make sure we are holding no locks: 992 */ 993 debug_check_no_locks_held(); 994 995 if (tsk->io_context) 996 exit_io_context(tsk); 997 998 if (tsk->splice_pipe) 999 free_pipe_info(tsk->splice_pipe); 1000 1001 if (tsk->task_frag.page) 1002 put_page(tsk->task_frag.page); 1003 1004 exit_task_stack_account(tsk); 1005 1006 check_stack_usage(); 1007 preempt_disable(); 1008 if (tsk->nr_dirtied) 1009 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 1010 exit_rcu(); 1011 exit_tasks_rcu_finish(); 1012 1013 lockdep_free_task(tsk); 1014 do_task_dead(); 1015 } 1016 1017 void __noreturn make_task_dead(int signr) 1018 { 1019 /* 1020 * Take the task off the cpu after something catastrophic has 1021 * happened. 1022 * 1023 * We can get here from a kernel oops, sometimes with preemption off. 1024 * Start by checking for critical errors. 1025 * Then fix up important state like USER_DS and preemption. 1026 * Then do everything else. 1027 */ 1028 struct task_struct *tsk = current; 1029 unsigned int limit; 1030 1031 if (unlikely(in_interrupt())) 1032 panic("Aiee, killing interrupt handler!"); 1033 if (unlikely(!tsk->pid)) 1034 panic("Attempted to kill the idle task!"); 1035 1036 if (unlikely(irqs_disabled())) { 1037 pr_info("note: %s[%d] exited with irqs disabled\n", 1038 current->comm, task_pid_nr(current)); 1039 local_irq_enable(); 1040 } 1041 if (unlikely(in_atomic())) { 1042 pr_info("note: %s[%d] exited with preempt_count %d\n", 1043 current->comm, task_pid_nr(current), 1044 preempt_count()); 1045 preempt_count_set(PREEMPT_ENABLED); 1046 } 1047 1048 /* 1049 * Every time the system oopses, if the oops happens while a reference 1050 * to an object was held, the reference leaks. 1051 * If the oops doesn't also leak memory, repeated oopsing can cause 1052 * reference counters to wrap around (if they're not using refcount_t). 1053 * This means that repeated oopsing can make unexploitable-looking bugs 1054 * exploitable through repeated oopsing. 1055 * To make sure this can't happen, place an upper bound on how often the 1056 * kernel may oops without panic(). 1057 */ 1058 limit = READ_ONCE(oops_limit); 1059 if (atomic_inc_return(&oops_count) >= limit && limit) 1060 panic("Oopsed too often (kernel.oops_limit is %d)", limit); 1061 1062 /* 1063 * We're taking recursive faults here in make_task_dead. Safest is to just 1064 * leave this task alone and wait for reboot. 1065 */ 1066 if (unlikely(tsk->flags & PF_EXITING)) { 1067 pr_alert("Fixing recursive fault but reboot is needed!\n"); 1068 futex_exit_recursive(tsk); 1069 tsk->exit_state = EXIT_DEAD; 1070 refcount_inc(&tsk->rcu_users); 1071 do_task_dead(); 1072 } 1073 1074 do_exit(signr); 1075 } 1076 1077 SYSCALL_DEFINE1(exit, int, error_code) 1078 { 1079 do_exit((error_code&0xff)<<8); 1080 } 1081 1082 /* 1083 * Take down every thread in the group. This is called by fatal signals 1084 * as well as by sys_exit_group (below). 1085 */ 1086 void __noreturn 1087 do_group_exit(int exit_code) 1088 { 1089 struct signal_struct *sig = current->signal; 1090 1091 if (sig->flags & SIGNAL_GROUP_EXIT) 1092 exit_code = sig->group_exit_code; 1093 else if (sig->group_exec_task) 1094 exit_code = 0; 1095 else { 1096 struct sighand_struct *const sighand = current->sighand; 1097 1098 spin_lock_irq(&sighand->siglock); 1099 if (sig->flags & SIGNAL_GROUP_EXIT) 1100 /* Another thread got here before we took the lock. */ 1101 exit_code = sig->group_exit_code; 1102 else if (sig->group_exec_task) 1103 exit_code = 0; 1104 else { 1105 sig->group_exit_code = exit_code; 1106 sig->flags = SIGNAL_GROUP_EXIT; 1107 zap_other_threads(current); 1108 } 1109 spin_unlock_irq(&sighand->siglock); 1110 } 1111 1112 do_exit(exit_code); 1113 /* NOTREACHED */ 1114 } 1115 1116 /* 1117 * this kills every thread in the thread group. Note that any externally 1118 * wait4()-ing process will get the correct exit code - even if this 1119 * thread is not the thread group leader. 1120 */ 1121 SYSCALL_DEFINE1(exit_group, int, error_code) 1122 { 1123 do_group_exit((error_code & 0xff) << 8); 1124 /* NOTREACHED */ 1125 return 0; 1126 } 1127 1128 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1129 { 1130 return wo->wo_type == PIDTYPE_MAX || 1131 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1132 } 1133 1134 static int 1135 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1136 { 1137 if (!eligible_pid(wo, p)) 1138 return 0; 1139 1140 /* 1141 * Wait for all children (clone and not) if __WALL is set or 1142 * if it is traced by us. 1143 */ 1144 if (ptrace || (wo->wo_flags & __WALL)) 1145 return 1; 1146 1147 /* 1148 * Otherwise, wait for clone children *only* if __WCLONE is set; 1149 * otherwise, wait for non-clone children *only*. 1150 * 1151 * Note: a "clone" child here is one that reports to its parent 1152 * using a signal other than SIGCHLD, or a non-leader thread which 1153 * we can only see if it is traced by us. 1154 */ 1155 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1156 return 0; 1157 1158 return 1; 1159 } 1160 1161 /* 1162 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1163 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1164 * the lock and this task is uninteresting. If we return nonzero, we have 1165 * released the lock and the system call should return. 1166 */ 1167 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1168 { 1169 int state, status; 1170 pid_t pid = task_pid_vnr(p); 1171 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1172 struct waitid_info *infop; 1173 1174 if (!likely(wo->wo_flags & WEXITED)) 1175 return 0; 1176 1177 if (unlikely(wo->wo_flags & WNOWAIT)) { 1178 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1179 ? p->signal->group_exit_code : p->exit_code; 1180 get_task_struct(p); 1181 read_unlock(&tasklist_lock); 1182 sched_annotate_sleep(); 1183 if (wo->wo_rusage) 1184 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1185 put_task_struct(p); 1186 goto out_info; 1187 } 1188 /* 1189 * Move the task's state to DEAD/TRACE, only one thread can do this. 1190 */ 1191 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1192 EXIT_TRACE : EXIT_DEAD; 1193 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1194 return 0; 1195 /* 1196 * We own this thread, nobody else can reap it. 1197 */ 1198 read_unlock(&tasklist_lock); 1199 sched_annotate_sleep(); 1200 1201 /* 1202 * Check thread_group_leader() to exclude the traced sub-threads. 1203 */ 1204 if (state == EXIT_DEAD && thread_group_leader(p)) { 1205 struct signal_struct *sig = p->signal; 1206 struct signal_struct *psig = current->signal; 1207 unsigned long maxrss; 1208 u64 tgutime, tgstime; 1209 1210 /* 1211 * The resource counters for the group leader are in its 1212 * own task_struct. Those for dead threads in the group 1213 * are in its signal_struct, as are those for the child 1214 * processes it has previously reaped. All these 1215 * accumulate in the parent's signal_struct c* fields. 1216 * 1217 * We don't bother to take a lock here to protect these 1218 * p->signal fields because the whole thread group is dead 1219 * and nobody can change them. 1220 * 1221 * psig->stats_lock also protects us from our sub-threads 1222 * which can reap other children at the same time. 1223 * 1224 * We use thread_group_cputime_adjusted() to get times for 1225 * the thread group, which consolidates times for all threads 1226 * in the group including the group leader. 1227 */ 1228 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1229 write_seqlock_irq(&psig->stats_lock); 1230 psig->cutime += tgutime + sig->cutime; 1231 psig->cstime += tgstime + sig->cstime; 1232 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1233 psig->cmin_flt += 1234 p->min_flt + sig->min_flt + sig->cmin_flt; 1235 psig->cmaj_flt += 1236 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1237 psig->cnvcsw += 1238 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1239 psig->cnivcsw += 1240 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1241 psig->cinblock += 1242 task_io_get_inblock(p) + 1243 sig->inblock + sig->cinblock; 1244 psig->coublock += 1245 task_io_get_oublock(p) + 1246 sig->oublock + sig->coublock; 1247 maxrss = max(sig->maxrss, sig->cmaxrss); 1248 if (psig->cmaxrss < maxrss) 1249 psig->cmaxrss = maxrss; 1250 task_io_accounting_add(&psig->ioac, &p->ioac); 1251 task_io_accounting_add(&psig->ioac, &sig->ioac); 1252 write_sequnlock_irq(&psig->stats_lock); 1253 } 1254 1255 if (wo->wo_rusage) 1256 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1257 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1258 ? p->signal->group_exit_code : p->exit_code; 1259 wo->wo_stat = status; 1260 1261 if (state == EXIT_TRACE) { 1262 write_lock_irq(&tasklist_lock); 1263 /* We dropped tasklist, ptracer could die and untrace */ 1264 ptrace_unlink(p); 1265 1266 /* If parent wants a zombie, don't release it now */ 1267 state = EXIT_ZOMBIE; 1268 if (do_notify_parent(p, p->exit_signal)) 1269 state = EXIT_DEAD; 1270 p->exit_state = state; 1271 write_unlock_irq(&tasklist_lock); 1272 } 1273 if (state == EXIT_DEAD) 1274 release_task(p); 1275 1276 out_info: 1277 infop = wo->wo_info; 1278 if (infop) { 1279 if ((status & 0x7f) == 0) { 1280 infop->cause = CLD_EXITED; 1281 infop->status = status >> 8; 1282 } else { 1283 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1284 infop->status = status & 0x7f; 1285 } 1286 infop->pid = pid; 1287 infop->uid = uid; 1288 } 1289 1290 return pid; 1291 } 1292 1293 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1294 { 1295 if (ptrace) { 1296 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1297 return &p->exit_code; 1298 } else { 1299 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1300 return &p->signal->group_exit_code; 1301 } 1302 return NULL; 1303 } 1304 1305 /** 1306 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1307 * @wo: wait options 1308 * @ptrace: is the wait for ptrace 1309 * @p: task to wait for 1310 * 1311 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1312 * 1313 * CONTEXT: 1314 * read_lock(&tasklist_lock), which is released if return value is 1315 * non-zero. Also, grabs and releases @p->sighand->siglock. 1316 * 1317 * RETURNS: 1318 * 0 if wait condition didn't exist and search for other wait conditions 1319 * should continue. Non-zero return, -errno on failure and @p's pid on 1320 * success, implies that tasklist_lock is released and wait condition 1321 * search should terminate. 1322 */ 1323 static int wait_task_stopped(struct wait_opts *wo, 1324 int ptrace, struct task_struct *p) 1325 { 1326 struct waitid_info *infop; 1327 int exit_code, *p_code, why; 1328 uid_t uid = 0; /* unneeded, required by compiler */ 1329 pid_t pid; 1330 1331 /* 1332 * Traditionally we see ptrace'd stopped tasks regardless of options. 1333 */ 1334 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1335 return 0; 1336 1337 if (!task_stopped_code(p, ptrace)) 1338 return 0; 1339 1340 exit_code = 0; 1341 spin_lock_irq(&p->sighand->siglock); 1342 1343 p_code = task_stopped_code(p, ptrace); 1344 if (unlikely(!p_code)) 1345 goto unlock_sig; 1346 1347 exit_code = *p_code; 1348 if (!exit_code) 1349 goto unlock_sig; 1350 1351 if (!unlikely(wo->wo_flags & WNOWAIT)) 1352 *p_code = 0; 1353 1354 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1355 unlock_sig: 1356 spin_unlock_irq(&p->sighand->siglock); 1357 if (!exit_code) 1358 return 0; 1359 1360 /* 1361 * Now we are pretty sure this task is interesting. 1362 * Make sure it doesn't get reaped out from under us while we 1363 * give up the lock and then examine it below. We don't want to 1364 * keep holding onto the tasklist_lock while we call getrusage and 1365 * possibly take page faults for user memory. 1366 */ 1367 get_task_struct(p); 1368 pid = task_pid_vnr(p); 1369 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1370 read_unlock(&tasklist_lock); 1371 sched_annotate_sleep(); 1372 if (wo->wo_rusage) 1373 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1374 put_task_struct(p); 1375 1376 if (likely(!(wo->wo_flags & WNOWAIT))) 1377 wo->wo_stat = (exit_code << 8) | 0x7f; 1378 1379 infop = wo->wo_info; 1380 if (infop) { 1381 infop->cause = why; 1382 infop->status = exit_code; 1383 infop->pid = pid; 1384 infop->uid = uid; 1385 } 1386 return pid; 1387 } 1388 1389 /* 1390 * Handle do_wait work for one task in a live, non-stopped state. 1391 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1392 * the lock and this task is uninteresting. If we return nonzero, we have 1393 * released the lock and the system call should return. 1394 */ 1395 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1396 { 1397 struct waitid_info *infop; 1398 pid_t pid; 1399 uid_t uid; 1400 1401 if (!unlikely(wo->wo_flags & WCONTINUED)) 1402 return 0; 1403 1404 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1405 return 0; 1406 1407 spin_lock_irq(&p->sighand->siglock); 1408 /* Re-check with the lock held. */ 1409 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1410 spin_unlock_irq(&p->sighand->siglock); 1411 return 0; 1412 } 1413 if (!unlikely(wo->wo_flags & WNOWAIT)) 1414 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1415 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1416 spin_unlock_irq(&p->sighand->siglock); 1417 1418 pid = task_pid_vnr(p); 1419 get_task_struct(p); 1420 read_unlock(&tasklist_lock); 1421 sched_annotate_sleep(); 1422 if (wo->wo_rusage) 1423 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1424 put_task_struct(p); 1425 1426 infop = wo->wo_info; 1427 if (!infop) { 1428 wo->wo_stat = 0xffff; 1429 } else { 1430 infop->cause = CLD_CONTINUED; 1431 infop->pid = pid; 1432 infop->uid = uid; 1433 infop->status = SIGCONT; 1434 } 1435 return pid; 1436 } 1437 1438 /* 1439 * Consider @p for a wait by @parent. 1440 * 1441 * -ECHILD should be in ->notask_error before the first call. 1442 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1443 * Returns zero if the search for a child should continue; 1444 * then ->notask_error is 0 if @p is an eligible child, 1445 * or still -ECHILD. 1446 */ 1447 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1448 struct task_struct *p) 1449 { 1450 /* 1451 * We can race with wait_task_zombie() from another thread. 1452 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1453 * can't confuse the checks below. 1454 */ 1455 int exit_state = READ_ONCE(p->exit_state); 1456 int ret; 1457 1458 if (unlikely(exit_state == EXIT_DEAD)) 1459 return 0; 1460 1461 ret = eligible_child(wo, ptrace, p); 1462 if (!ret) 1463 return ret; 1464 1465 if (unlikely(exit_state == EXIT_TRACE)) { 1466 /* 1467 * ptrace == 0 means we are the natural parent. In this case 1468 * we should clear notask_error, debugger will notify us. 1469 */ 1470 if (likely(!ptrace)) 1471 wo->notask_error = 0; 1472 return 0; 1473 } 1474 1475 if (likely(!ptrace) && unlikely(p->ptrace)) { 1476 /* 1477 * If it is traced by its real parent's group, just pretend 1478 * the caller is ptrace_do_wait() and reap this child if it 1479 * is zombie. 1480 * 1481 * This also hides group stop state from real parent; otherwise 1482 * a single stop can be reported twice as group and ptrace stop. 1483 * If a ptracer wants to distinguish these two events for its 1484 * own children it should create a separate process which takes 1485 * the role of real parent. 1486 */ 1487 if (!ptrace_reparented(p)) 1488 ptrace = 1; 1489 } 1490 1491 /* slay zombie? */ 1492 if (exit_state == EXIT_ZOMBIE) { 1493 /* we don't reap group leaders with subthreads */ 1494 if (!delay_group_leader(p)) { 1495 /* 1496 * A zombie ptracee is only visible to its ptracer. 1497 * Notification and reaping will be cascaded to the 1498 * real parent when the ptracer detaches. 1499 */ 1500 if (unlikely(ptrace) || likely(!p->ptrace)) 1501 return wait_task_zombie(wo, p); 1502 } 1503 1504 /* 1505 * Allow access to stopped/continued state via zombie by 1506 * falling through. Clearing of notask_error is complex. 1507 * 1508 * When !@ptrace: 1509 * 1510 * If WEXITED is set, notask_error should naturally be 1511 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1512 * so, if there are live subthreads, there are events to 1513 * wait for. If all subthreads are dead, it's still safe 1514 * to clear - this function will be called again in finite 1515 * amount time once all the subthreads are released and 1516 * will then return without clearing. 1517 * 1518 * When @ptrace: 1519 * 1520 * Stopped state is per-task and thus can't change once the 1521 * target task dies. Only continued and exited can happen. 1522 * Clear notask_error if WCONTINUED | WEXITED. 1523 */ 1524 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1525 wo->notask_error = 0; 1526 } else { 1527 /* 1528 * @p is alive and it's gonna stop, continue or exit, so 1529 * there always is something to wait for. 1530 */ 1531 wo->notask_error = 0; 1532 } 1533 1534 /* 1535 * Wait for stopped. Depending on @ptrace, different stopped state 1536 * is used and the two don't interact with each other. 1537 */ 1538 ret = wait_task_stopped(wo, ptrace, p); 1539 if (ret) 1540 return ret; 1541 1542 /* 1543 * Wait for continued. There's only one continued state and the 1544 * ptracer can consume it which can confuse the real parent. Don't 1545 * use WCONTINUED from ptracer. You don't need or want it. 1546 */ 1547 return wait_task_continued(wo, p); 1548 } 1549 1550 /* 1551 * Do the work of do_wait() for one thread in the group, @tsk. 1552 * 1553 * -ECHILD should be in ->notask_error before the first call. 1554 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1555 * Returns zero if the search for a child should continue; then 1556 * ->notask_error is 0 if there were any eligible children, 1557 * or still -ECHILD. 1558 */ 1559 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1560 { 1561 struct task_struct *p; 1562 1563 list_for_each_entry(p, &tsk->children, sibling) { 1564 int ret = wait_consider_task(wo, 0, p); 1565 1566 if (ret) 1567 return ret; 1568 } 1569 1570 return 0; 1571 } 1572 1573 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1574 { 1575 struct task_struct *p; 1576 1577 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1578 int ret = wait_consider_task(wo, 1, p); 1579 1580 if (ret) 1581 return ret; 1582 } 1583 1584 return 0; 1585 } 1586 1587 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p) 1588 { 1589 if (!eligible_pid(wo, p)) 1590 return false; 1591 1592 if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent) 1593 return false; 1594 1595 return true; 1596 } 1597 1598 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1599 int sync, void *key) 1600 { 1601 struct wait_opts *wo = container_of(wait, struct wait_opts, 1602 child_wait); 1603 struct task_struct *p = key; 1604 1605 if (pid_child_should_wake(wo, p)) 1606 return default_wake_function(wait, mode, sync, key); 1607 1608 return 0; 1609 } 1610 1611 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1612 { 1613 __wake_up_sync_key(&parent->signal->wait_chldexit, 1614 TASK_INTERRUPTIBLE, p); 1615 } 1616 1617 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1618 struct task_struct *target) 1619 { 1620 struct task_struct *parent = 1621 !ptrace ? target->real_parent : target->parent; 1622 1623 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1624 same_thread_group(current, parent)); 1625 } 1626 1627 /* 1628 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1629 * and tracee lists to find the target task. 1630 */ 1631 static int do_wait_pid(struct wait_opts *wo) 1632 { 1633 bool ptrace; 1634 struct task_struct *target; 1635 int retval; 1636 1637 ptrace = false; 1638 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1639 if (target && is_effectively_child(wo, ptrace, target)) { 1640 retval = wait_consider_task(wo, ptrace, target); 1641 if (retval) 1642 return retval; 1643 } 1644 1645 ptrace = true; 1646 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1647 if (target && target->ptrace && 1648 is_effectively_child(wo, ptrace, target)) { 1649 retval = wait_consider_task(wo, ptrace, target); 1650 if (retval) 1651 return retval; 1652 } 1653 1654 return 0; 1655 } 1656 1657 long __do_wait(struct wait_opts *wo) 1658 { 1659 long retval; 1660 1661 /* 1662 * If there is nothing that can match our criteria, just get out. 1663 * We will clear ->notask_error to zero if we see any child that 1664 * might later match our criteria, even if we are not able to reap 1665 * it yet. 1666 */ 1667 wo->notask_error = -ECHILD; 1668 if ((wo->wo_type < PIDTYPE_MAX) && 1669 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1670 goto notask; 1671 1672 read_lock(&tasklist_lock); 1673 1674 if (wo->wo_type == PIDTYPE_PID) { 1675 retval = do_wait_pid(wo); 1676 if (retval) 1677 return retval; 1678 } else { 1679 struct task_struct *tsk = current; 1680 1681 do { 1682 retval = do_wait_thread(wo, tsk); 1683 if (retval) 1684 return retval; 1685 1686 retval = ptrace_do_wait(wo, tsk); 1687 if (retval) 1688 return retval; 1689 1690 if (wo->wo_flags & __WNOTHREAD) 1691 break; 1692 } while_each_thread(current, tsk); 1693 } 1694 read_unlock(&tasklist_lock); 1695 1696 notask: 1697 retval = wo->notask_error; 1698 if (!retval && !(wo->wo_flags & WNOHANG)) 1699 return -ERESTARTSYS; 1700 1701 return retval; 1702 } 1703 1704 static long do_wait(struct wait_opts *wo) 1705 { 1706 int retval; 1707 1708 trace_sched_process_wait(wo->wo_pid); 1709 1710 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1711 wo->child_wait.private = current; 1712 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1713 1714 do { 1715 set_current_state(TASK_INTERRUPTIBLE); 1716 retval = __do_wait(wo); 1717 if (retval != -ERESTARTSYS) 1718 break; 1719 if (signal_pending(current)) 1720 break; 1721 schedule(); 1722 } while (1); 1723 1724 __set_current_state(TASK_RUNNING); 1725 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1726 return retval; 1727 } 1728 1729 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid, 1730 struct waitid_info *infop, int options, 1731 struct rusage *ru) 1732 { 1733 unsigned int f_flags = 0; 1734 struct pid *pid = NULL; 1735 enum pid_type type; 1736 1737 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1738 __WNOTHREAD|__WCLONE|__WALL)) 1739 return -EINVAL; 1740 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1741 return -EINVAL; 1742 1743 switch (which) { 1744 case P_ALL: 1745 type = PIDTYPE_MAX; 1746 break; 1747 case P_PID: 1748 type = PIDTYPE_PID; 1749 if (upid <= 0) 1750 return -EINVAL; 1751 1752 pid = find_get_pid(upid); 1753 break; 1754 case P_PGID: 1755 type = PIDTYPE_PGID; 1756 if (upid < 0) 1757 return -EINVAL; 1758 1759 if (upid) 1760 pid = find_get_pid(upid); 1761 else 1762 pid = get_task_pid(current, PIDTYPE_PGID); 1763 break; 1764 case P_PIDFD: 1765 type = PIDTYPE_PID; 1766 if (upid < 0) 1767 return -EINVAL; 1768 1769 pid = pidfd_get_pid(upid, &f_flags); 1770 if (IS_ERR(pid)) 1771 return PTR_ERR(pid); 1772 1773 break; 1774 default: 1775 return -EINVAL; 1776 } 1777 1778 wo->wo_type = type; 1779 wo->wo_pid = pid; 1780 wo->wo_flags = options; 1781 wo->wo_info = infop; 1782 wo->wo_rusage = ru; 1783 if (f_flags & O_NONBLOCK) 1784 wo->wo_flags |= WNOHANG; 1785 1786 return 0; 1787 } 1788 1789 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1790 int options, struct rusage *ru) 1791 { 1792 struct wait_opts wo; 1793 long ret; 1794 1795 ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru); 1796 if (ret) 1797 return ret; 1798 1799 ret = do_wait(&wo); 1800 if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG)) 1801 ret = -EAGAIN; 1802 1803 put_pid(wo.wo_pid); 1804 return ret; 1805 } 1806 1807 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1808 infop, int, options, struct rusage __user *, ru) 1809 { 1810 struct rusage r; 1811 struct waitid_info info = {.status = 0}; 1812 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1813 int signo = 0; 1814 1815 if (err > 0) { 1816 signo = SIGCHLD; 1817 err = 0; 1818 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1819 return -EFAULT; 1820 } 1821 if (!infop) 1822 return err; 1823 1824 if (!user_write_access_begin(infop, sizeof(*infop))) 1825 return -EFAULT; 1826 1827 unsafe_put_user(signo, &infop->si_signo, Efault); 1828 unsafe_put_user(0, &infop->si_errno, Efault); 1829 unsafe_put_user(info.cause, &infop->si_code, Efault); 1830 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1831 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1832 unsafe_put_user(info.status, &infop->si_status, Efault); 1833 user_write_access_end(); 1834 return err; 1835 Efault: 1836 user_write_access_end(); 1837 return -EFAULT; 1838 } 1839 1840 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1841 struct rusage *ru) 1842 { 1843 struct wait_opts wo; 1844 struct pid *pid = NULL; 1845 enum pid_type type; 1846 long ret; 1847 1848 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1849 __WNOTHREAD|__WCLONE|__WALL)) 1850 return -EINVAL; 1851 1852 /* -INT_MIN is not defined */ 1853 if (upid == INT_MIN) 1854 return -ESRCH; 1855 1856 if (upid == -1) 1857 type = PIDTYPE_MAX; 1858 else if (upid < 0) { 1859 type = PIDTYPE_PGID; 1860 pid = find_get_pid(-upid); 1861 } else if (upid == 0) { 1862 type = PIDTYPE_PGID; 1863 pid = get_task_pid(current, PIDTYPE_PGID); 1864 } else /* upid > 0 */ { 1865 type = PIDTYPE_PID; 1866 pid = find_get_pid(upid); 1867 } 1868 1869 wo.wo_type = type; 1870 wo.wo_pid = pid; 1871 wo.wo_flags = options | WEXITED; 1872 wo.wo_info = NULL; 1873 wo.wo_stat = 0; 1874 wo.wo_rusage = ru; 1875 ret = do_wait(&wo); 1876 put_pid(pid); 1877 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1878 ret = -EFAULT; 1879 1880 return ret; 1881 } 1882 1883 int kernel_wait(pid_t pid, int *stat) 1884 { 1885 struct wait_opts wo = { 1886 .wo_type = PIDTYPE_PID, 1887 .wo_pid = find_get_pid(pid), 1888 .wo_flags = WEXITED, 1889 }; 1890 int ret; 1891 1892 ret = do_wait(&wo); 1893 if (ret > 0 && wo.wo_stat) 1894 *stat = wo.wo_stat; 1895 put_pid(wo.wo_pid); 1896 return ret; 1897 } 1898 1899 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1900 int, options, struct rusage __user *, ru) 1901 { 1902 struct rusage r; 1903 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1904 1905 if (err > 0) { 1906 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1907 return -EFAULT; 1908 } 1909 return err; 1910 } 1911 1912 #ifdef __ARCH_WANT_SYS_WAITPID 1913 1914 /* 1915 * sys_waitpid() remains for compatibility. waitpid() should be 1916 * implemented by calling sys_wait4() from libc.a. 1917 */ 1918 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1919 { 1920 return kernel_wait4(pid, stat_addr, options, NULL); 1921 } 1922 1923 #endif 1924 1925 #ifdef CONFIG_COMPAT 1926 COMPAT_SYSCALL_DEFINE4(wait4, 1927 compat_pid_t, pid, 1928 compat_uint_t __user *, stat_addr, 1929 int, options, 1930 struct compat_rusage __user *, ru) 1931 { 1932 struct rusage r; 1933 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1934 if (err > 0) { 1935 if (ru && put_compat_rusage(&r, ru)) 1936 return -EFAULT; 1937 } 1938 return err; 1939 } 1940 1941 COMPAT_SYSCALL_DEFINE5(waitid, 1942 int, which, compat_pid_t, pid, 1943 struct compat_siginfo __user *, infop, int, options, 1944 struct compat_rusage __user *, uru) 1945 { 1946 struct rusage ru; 1947 struct waitid_info info = {.status = 0}; 1948 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1949 int signo = 0; 1950 if (err > 0) { 1951 signo = SIGCHLD; 1952 err = 0; 1953 if (uru) { 1954 /* kernel_waitid() overwrites everything in ru */ 1955 if (COMPAT_USE_64BIT_TIME) 1956 err = copy_to_user(uru, &ru, sizeof(ru)); 1957 else 1958 err = put_compat_rusage(&ru, uru); 1959 if (err) 1960 return -EFAULT; 1961 } 1962 } 1963 1964 if (!infop) 1965 return err; 1966 1967 if (!user_write_access_begin(infop, sizeof(*infop))) 1968 return -EFAULT; 1969 1970 unsafe_put_user(signo, &infop->si_signo, Efault); 1971 unsafe_put_user(0, &infop->si_errno, Efault); 1972 unsafe_put_user(info.cause, &infop->si_code, Efault); 1973 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1974 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1975 unsafe_put_user(info.status, &infop->si_status, Efault); 1976 user_write_access_end(); 1977 return err; 1978 Efault: 1979 user_write_access_end(); 1980 return -EFAULT; 1981 } 1982 #endif 1983 1984 /* 1985 * This needs to be __function_aligned as GCC implicitly makes any 1986 * implementation of abort() cold and drops alignment specified by 1987 * -falign-functions=N. 1988 * 1989 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11 1990 */ 1991 __weak __function_aligned void abort(void) 1992 { 1993 BUG(); 1994 1995 /* if that doesn't kill us, halt */ 1996 panic("Oops failed to kill thread"); 1997 } 1998 EXPORT_SYMBOL(abort); 1999