xref: /linux/kernel/exit.c (revision 7b12b9137930eb821b68e1bfa11e9de692208620)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/smp_lock.h>
12 #include <linux/module.h>
13 #include <linux/capability.h>
14 #include <linux/completion.h>
15 #include <linux/personality.h>
16 #include <linux/tty.h>
17 #include <linux/namespace.h>
18 #include <linux/key.h>
19 #include <linux/security.h>
20 #include <linux/cpu.h>
21 #include <linux/acct.h>
22 #include <linux/file.h>
23 #include <linux/binfmts.h>
24 #include <linux/ptrace.h>
25 #include <linux/profile.h>
26 #include <linux/mount.h>
27 #include <linux/proc_fs.h>
28 #include <linux/mempolicy.h>
29 #include <linux/cpuset.h>
30 #include <linux/syscalls.h>
31 #include <linux/signal.h>
32 #include <linux/posix-timers.h>
33 #include <linux/cn_proc.h>
34 #include <linux/mutex.h>
35 #include <linux/futex.h>
36 #include <linux/compat.h>
37 #include <linux/pipe_fs_i.h>
38 
39 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
41 #include <asm/pgtable.h>
42 #include <asm/mmu_context.h>
43 
44 extern void sem_exit (void);
45 extern struct task_struct *child_reaper;
46 
47 int getrusage(struct task_struct *, int, struct rusage __user *);
48 
49 static void exit_mm(struct task_struct * tsk);
50 
51 static void __unhash_process(struct task_struct *p)
52 {
53 	nr_threads--;
54 	detach_pid(p, PIDTYPE_PID);
55 	if (thread_group_leader(p)) {
56 		detach_pid(p, PIDTYPE_PGID);
57 		detach_pid(p, PIDTYPE_SID);
58 
59 		list_del_rcu(&p->tasks);
60 		__get_cpu_var(process_counts)--;
61 	}
62 	list_del_rcu(&p->thread_group);
63 	remove_parent(p);
64 }
65 
66 /*
67  * This function expects the tasklist_lock write-locked.
68  */
69 static void __exit_signal(struct task_struct *tsk)
70 {
71 	struct signal_struct *sig = tsk->signal;
72 	struct sighand_struct *sighand;
73 
74 	BUG_ON(!sig);
75 	BUG_ON(!atomic_read(&sig->count));
76 
77 	rcu_read_lock();
78 	sighand = rcu_dereference(tsk->sighand);
79 	spin_lock(&sighand->siglock);
80 
81 	posix_cpu_timers_exit(tsk);
82 	if (atomic_dec_and_test(&sig->count))
83 		posix_cpu_timers_exit_group(tsk);
84 	else {
85 		/*
86 		 * If there is any task waiting for the group exit
87 		 * then notify it:
88 		 */
89 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
90 			wake_up_process(sig->group_exit_task);
91 			sig->group_exit_task = NULL;
92 		}
93 		if (tsk == sig->curr_target)
94 			sig->curr_target = next_thread(tsk);
95 		/*
96 		 * Accumulate here the counters for all threads but the
97 		 * group leader as they die, so they can be added into
98 		 * the process-wide totals when those are taken.
99 		 * The group leader stays around as a zombie as long
100 		 * as there are other threads.  When it gets reaped,
101 		 * the exit.c code will add its counts into these totals.
102 		 * We won't ever get here for the group leader, since it
103 		 * will have been the last reference on the signal_struct.
104 		 */
105 		sig->utime = cputime_add(sig->utime, tsk->utime);
106 		sig->stime = cputime_add(sig->stime, tsk->stime);
107 		sig->min_flt += tsk->min_flt;
108 		sig->maj_flt += tsk->maj_flt;
109 		sig->nvcsw += tsk->nvcsw;
110 		sig->nivcsw += tsk->nivcsw;
111 		sig->sched_time += tsk->sched_time;
112 		sig = NULL; /* Marker for below. */
113 	}
114 
115 	__unhash_process(tsk);
116 
117 	tsk->signal = NULL;
118 	tsk->sighand = NULL;
119 	spin_unlock(&sighand->siglock);
120 	rcu_read_unlock();
121 
122 	__cleanup_sighand(sighand);
123 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
124 	flush_sigqueue(&tsk->pending);
125 	if (sig) {
126 		flush_sigqueue(&sig->shared_pending);
127 		__cleanup_signal(sig);
128 	}
129 }
130 
131 static void delayed_put_task_struct(struct rcu_head *rhp)
132 {
133 	put_task_struct(container_of(rhp, struct task_struct, rcu));
134 }
135 
136 void release_task(struct task_struct * p)
137 {
138 	int zap_leader;
139 	task_t *leader;
140 	struct dentry *proc_dentry;
141 
142 repeat:
143 	atomic_dec(&p->user->processes);
144 	spin_lock(&p->proc_lock);
145 	proc_dentry = proc_pid_unhash(p);
146 	write_lock_irq(&tasklist_lock);
147 	ptrace_unlink(p);
148 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
149 	__exit_signal(p);
150 
151 	/*
152 	 * If we are the last non-leader member of the thread
153 	 * group, and the leader is zombie, then notify the
154 	 * group leader's parent process. (if it wants notification.)
155 	 */
156 	zap_leader = 0;
157 	leader = p->group_leader;
158 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
159 		BUG_ON(leader->exit_signal == -1);
160 		do_notify_parent(leader, leader->exit_signal);
161 		/*
162 		 * If we were the last child thread and the leader has
163 		 * exited already, and the leader's parent ignores SIGCHLD,
164 		 * then we are the one who should release the leader.
165 		 *
166 		 * do_notify_parent() will have marked it self-reaping in
167 		 * that case.
168 		 */
169 		zap_leader = (leader->exit_signal == -1);
170 	}
171 
172 	sched_exit(p);
173 	write_unlock_irq(&tasklist_lock);
174 	spin_unlock(&p->proc_lock);
175 	proc_pid_flush(proc_dentry);
176 	release_thread(p);
177 	call_rcu(&p->rcu, delayed_put_task_struct);
178 
179 	p = leader;
180 	if (unlikely(zap_leader))
181 		goto repeat;
182 }
183 
184 /*
185  * This checks not only the pgrp, but falls back on the pid if no
186  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
187  * without this...
188  */
189 int session_of_pgrp(int pgrp)
190 {
191 	struct task_struct *p;
192 	int sid = -1;
193 
194 	read_lock(&tasklist_lock);
195 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
196 		if (p->signal->session > 0) {
197 			sid = p->signal->session;
198 			goto out;
199 		}
200 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
201 	p = find_task_by_pid(pgrp);
202 	if (p)
203 		sid = p->signal->session;
204 out:
205 	read_unlock(&tasklist_lock);
206 
207 	return sid;
208 }
209 
210 /*
211  * Determine if a process group is "orphaned", according to the POSIX
212  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
213  * by terminal-generated stop signals.  Newly orphaned process groups are
214  * to receive a SIGHUP and a SIGCONT.
215  *
216  * "I ask you, have you ever known what it is to be an orphan?"
217  */
218 static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task)
219 {
220 	struct task_struct *p;
221 	int ret = 1;
222 
223 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
224 		if (p == ignored_task
225 				|| p->exit_state
226 				|| p->real_parent->pid == 1)
227 			continue;
228 		if (process_group(p->real_parent) != pgrp
229 			    && p->real_parent->signal->session == p->signal->session) {
230 			ret = 0;
231 			break;
232 		}
233 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
234 	return ret;	/* (sighing) "Often!" */
235 }
236 
237 int is_orphaned_pgrp(int pgrp)
238 {
239 	int retval;
240 
241 	read_lock(&tasklist_lock);
242 	retval = will_become_orphaned_pgrp(pgrp, NULL);
243 	read_unlock(&tasklist_lock);
244 
245 	return retval;
246 }
247 
248 static int has_stopped_jobs(int pgrp)
249 {
250 	int retval = 0;
251 	struct task_struct *p;
252 
253 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
254 		if (p->state != TASK_STOPPED)
255 			continue;
256 
257 		/* If p is stopped by a debugger on a signal that won't
258 		   stop it, then don't count p as stopped.  This isn't
259 		   perfect but it's a good approximation.  */
260 		if (unlikely (p->ptrace)
261 		    && p->exit_code != SIGSTOP
262 		    && p->exit_code != SIGTSTP
263 		    && p->exit_code != SIGTTOU
264 		    && p->exit_code != SIGTTIN)
265 			continue;
266 
267 		retval = 1;
268 		break;
269 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
270 	return retval;
271 }
272 
273 /**
274  * reparent_to_init - Reparent the calling kernel thread to the init task.
275  *
276  * If a kernel thread is launched as a result of a system call, or if
277  * it ever exits, it should generally reparent itself to init so that
278  * it is correctly cleaned up on exit.
279  *
280  * The various task state such as scheduling policy and priority may have
281  * been inherited from a user process, so we reset them to sane values here.
282  *
283  * NOTE that reparent_to_init() gives the caller full capabilities.
284  */
285 static void reparent_to_init(void)
286 {
287 	write_lock_irq(&tasklist_lock);
288 
289 	ptrace_unlink(current);
290 	/* Reparent to init */
291 	remove_parent(current);
292 	current->parent = child_reaper;
293 	current->real_parent = child_reaper;
294 	add_parent(current);
295 
296 	/* Set the exit signal to SIGCHLD so we signal init on exit */
297 	current->exit_signal = SIGCHLD;
298 
299 	if ((current->policy == SCHED_NORMAL ||
300 			current->policy == SCHED_BATCH)
301 				&& (task_nice(current) < 0))
302 		set_user_nice(current, 0);
303 	/* cpus_allowed? */
304 	/* rt_priority? */
305 	/* signals? */
306 	security_task_reparent_to_init(current);
307 	memcpy(current->signal->rlim, init_task.signal->rlim,
308 	       sizeof(current->signal->rlim));
309 	atomic_inc(&(INIT_USER->__count));
310 	write_unlock_irq(&tasklist_lock);
311 	switch_uid(INIT_USER);
312 }
313 
314 void __set_special_pids(pid_t session, pid_t pgrp)
315 {
316 	struct task_struct *curr = current->group_leader;
317 
318 	if (curr->signal->session != session) {
319 		detach_pid(curr, PIDTYPE_SID);
320 		curr->signal->session = session;
321 		attach_pid(curr, PIDTYPE_SID, session);
322 	}
323 	if (process_group(curr) != pgrp) {
324 		detach_pid(curr, PIDTYPE_PGID);
325 		curr->signal->pgrp = pgrp;
326 		attach_pid(curr, PIDTYPE_PGID, pgrp);
327 	}
328 }
329 
330 void set_special_pids(pid_t session, pid_t pgrp)
331 {
332 	write_lock_irq(&tasklist_lock);
333 	__set_special_pids(session, pgrp);
334 	write_unlock_irq(&tasklist_lock);
335 }
336 
337 /*
338  * Let kernel threads use this to say that they
339  * allow a certain signal (since daemonize() will
340  * have disabled all of them by default).
341  */
342 int allow_signal(int sig)
343 {
344 	if (!valid_signal(sig) || sig < 1)
345 		return -EINVAL;
346 
347 	spin_lock_irq(&current->sighand->siglock);
348 	sigdelset(&current->blocked, sig);
349 	if (!current->mm) {
350 		/* Kernel threads handle their own signals.
351 		   Let the signal code know it'll be handled, so
352 		   that they don't get converted to SIGKILL or
353 		   just silently dropped */
354 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
355 	}
356 	recalc_sigpending();
357 	spin_unlock_irq(&current->sighand->siglock);
358 	return 0;
359 }
360 
361 EXPORT_SYMBOL(allow_signal);
362 
363 int disallow_signal(int sig)
364 {
365 	if (!valid_signal(sig) || sig < 1)
366 		return -EINVAL;
367 
368 	spin_lock_irq(&current->sighand->siglock);
369 	sigaddset(&current->blocked, sig);
370 	recalc_sigpending();
371 	spin_unlock_irq(&current->sighand->siglock);
372 	return 0;
373 }
374 
375 EXPORT_SYMBOL(disallow_signal);
376 
377 /*
378  *	Put all the gunge required to become a kernel thread without
379  *	attached user resources in one place where it belongs.
380  */
381 
382 void daemonize(const char *name, ...)
383 {
384 	va_list args;
385 	struct fs_struct *fs;
386 	sigset_t blocked;
387 
388 	va_start(args, name);
389 	vsnprintf(current->comm, sizeof(current->comm), name, args);
390 	va_end(args);
391 
392 	/*
393 	 * If we were started as result of loading a module, close all of the
394 	 * user space pages.  We don't need them, and if we didn't close them
395 	 * they would be locked into memory.
396 	 */
397 	exit_mm(current);
398 
399 	set_special_pids(1, 1);
400 	mutex_lock(&tty_mutex);
401 	current->signal->tty = NULL;
402 	mutex_unlock(&tty_mutex);
403 
404 	/* Block and flush all signals */
405 	sigfillset(&blocked);
406 	sigprocmask(SIG_BLOCK, &blocked, NULL);
407 	flush_signals(current);
408 
409 	/* Become as one with the init task */
410 
411 	exit_fs(current);	/* current->fs->count--; */
412 	fs = init_task.fs;
413 	current->fs = fs;
414 	atomic_inc(&fs->count);
415 	exit_namespace(current);
416 	current->namespace = init_task.namespace;
417 	get_namespace(current->namespace);
418  	exit_files(current);
419 	current->files = init_task.files;
420 	atomic_inc(&current->files->count);
421 
422 	reparent_to_init();
423 }
424 
425 EXPORT_SYMBOL(daemonize);
426 
427 static void close_files(struct files_struct * files)
428 {
429 	int i, j;
430 	struct fdtable *fdt;
431 
432 	j = 0;
433 
434 	/*
435 	 * It is safe to dereference the fd table without RCU or
436 	 * ->file_lock because this is the last reference to the
437 	 * files structure.
438 	 */
439 	fdt = files_fdtable(files);
440 	for (;;) {
441 		unsigned long set;
442 		i = j * __NFDBITS;
443 		if (i >= fdt->max_fdset || i >= fdt->max_fds)
444 			break;
445 		set = fdt->open_fds->fds_bits[j++];
446 		while (set) {
447 			if (set & 1) {
448 				struct file * file = xchg(&fdt->fd[i], NULL);
449 				if (file)
450 					filp_close(file, files);
451 			}
452 			i++;
453 			set >>= 1;
454 		}
455 	}
456 }
457 
458 struct files_struct *get_files_struct(struct task_struct *task)
459 {
460 	struct files_struct *files;
461 
462 	task_lock(task);
463 	files = task->files;
464 	if (files)
465 		atomic_inc(&files->count);
466 	task_unlock(task);
467 
468 	return files;
469 }
470 
471 void fastcall put_files_struct(struct files_struct *files)
472 {
473 	struct fdtable *fdt;
474 
475 	if (atomic_dec_and_test(&files->count)) {
476 		close_files(files);
477 		/*
478 		 * Free the fd and fdset arrays if we expanded them.
479 		 * If the fdtable was embedded, pass files for freeing
480 		 * at the end of the RCU grace period. Otherwise,
481 		 * you can free files immediately.
482 		 */
483 		fdt = files_fdtable(files);
484 		if (fdt == &files->fdtab)
485 			fdt->free_files = files;
486 		else
487 			kmem_cache_free(files_cachep, files);
488 		free_fdtable(fdt);
489 	}
490 }
491 
492 EXPORT_SYMBOL(put_files_struct);
493 
494 static inline void __exit_files(struct task_struct *tsk)
495 {
496 	struct files_struct * files = tsk->files;
497 
498 	if (files) {
499 		task_lock(tsk);
500 		tsk->files = NULL;
501 		task_unlock(tsk);
502 		put_files_struct(files);
503 	}
504 }
505 
506 void exit_files(struct task_struct *tsk)
507 {
508 	__exit_files(tsk);
509 }
510 
511 static inline void __put_fs_struct(struct fs_struct *fs)
512 {
513 	/* No need to hold fs->lock if we are killing it */
514 	if (atomic_dec_and_test(&fs->count)) {
515 		dput(fs->root);
516 		mntput(fs->rootmnt);
517 		dput(fs->pwd);
518 		mntput(fs->pwdmnt);
519 		if (fs->altroot) {
520 			dput(fs->altroot);
521 			mntput(fs->altrootmnt);
522 		}
523 		kmem_cache_free(fs_cachep, fs);
524 	}
525 }
526 
527 void put_fs_struct(struct fs_struct *fs)
528 {
529 	__put_fs_struct(fs);
530 }
531 
532 static inline void __exit_fs(struct task_struct *tsk)
533 {
534 	struct fs_struct * fs = tsk->fs;
535 
536 	if (fs) {
537 		task_lock(tsk);
538 		tsk->fs = NULL;
539 		task_unlock(tsk);
540 		__put_fs_struct(fs);
541 	}
542 }
543 
544 void exit_fs(struct task_struct *tsk)
545 {
546 	__exit_fs(tsk);
547 }
548 
549 EXPORT_SYMBOL_GPL(exit_fs);
550 
551 /*
552  * Turn us into a lazy TLB process if we
553  * aren't already..
554  */
555 static void exit_mm(struct task_struct * tsk)
556 {
557 	struct mm_struct *mm = tsk->mm;
558 
559 	mm_release(tsk, mm);
560 	if (!mm)
561 		return;
562 	/*
563 	 * Serialize with any possible pending coredump.
564 	 * We must hold mmap_sem around checking core_waiters
565 	 * and clearing tsk->mm.  The core-inducing thread
566 	 * will increment core_waiters for each thread in the
567 	 * group with ->mm != NULL.
568 	 */
569 	down_read(&mm->mmap_sem);
570 	if (mm->core_waiters) {
571 		up_read(&mm->mmap_sem);
572 		down_write(&mm->mmap_sem);
573 		if (!--mm->core_waiters)
574 			complete(mm->core_startup_done);
575 		up_write(&mm->mmap_sem);
576 
577 		wait_for_completion(&mm->core_done);
578 		down_read(&mm->mmap_sem);
579 	}
580 	atomic_inc(&mm->mm_count);
581 	if (mm != tsk->active_mm) BUG();
582 	/* more a memory barrier than a real lock */
583 	task_lock(tsk);
584 	tsk->mm = NULL;
585 	up_read(&mm->mmap_sem);
586 	enter_lazy_tlb(mm, current);
587 	task_unlock(tsk);
588 	mmput(mm);
589 }
590 
591 static inline void choose_new_parent(task_t *p, task_t *reaper)
592 {
593 	/*
594 	 * Make sure we're not reparenting to ourselves and that
595 	 * the parent is not a zombie.
596 	 */
597 	BUG_ON(p == reaper || reaper->exit_state);
598 	p->real_parent = reaper;
599 }
600 
601 static void reparent_thread(task_t *p, task_t *father, int traced)
602 {
603 	/* We don't want people slaying init.  */
604 	if (p->exit_signal != -1)
605 		p->exit_signal = SIGCHLD;
606 
607 	if (p->pdeath_signal)
608 		/* We already hold the tasklist_lock here.  */
609 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
610 
611 	/* Move the child from its dying parent to the new one.  */
612 	if (unlikely(traced)) {
613 		/* Preserve ptrace links if someone else is tracing this child.  */
614 		list_del_init(&p->ptrace_list);
615 		if (p->parent != p->real_parent)
616 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
617 	} else {
618 		/* If this child is being traced, then we're the one tracing it
619 		 * anyway, so let go of it.
620 		 */
621 		p->ptrace = 0;
622 		remove_parent(p);
623 		p->parent = p->real_parent;
624 		add_parent(p);
625 
626 		/* If we'd notified the old parent about this child's death,
627 		 * also notify the new parent.
628 		 */
629 		if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
630 		    thread_group_empty(p))
631 			do_notify_parent(p, p->exit_signal);
632 		else if (p->state == TASK_TRACED) {
633 			/*
634 			 * If it was at a trace stop, turn it into
635 			 * a normal stop since it's no longer being
636 			 * traced.
637 			 */
638 			ptrace_untrace(p);
639 		}
640 	}
641 
642 	/*
643 	 * process group orphan check
644 	 * Case ii: Our child is in a different pgrp
645 	 * than we are, and it was the only connection
646 	 * outside, so the child pgrp is now orphaned.
647 	 */
648 	if ((process_group(p) != process_group(father)) &&
649 	    (p->signal->session == father->signal->session)) {
650 		int pgrp = process_group(p);
651 
652 		if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
653 			__kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
654 			__kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
655 		}
656 	}
657 }
658 
659 /*
660  * When we die, we re-parent all our children.
661  * Try to give them to another thread in our thread
662  * group, and if no such member exists, give it to
663  * the global child reaper process (ie "init")
664  */
665 static void forget_original_parent(struct task_struct * father,
666 					  struct list_head *to_release)
667 {
668 	struct task_struct *p, *reaper = father;
669 	struct list_head *_p, *_n;
670 
671 	do {
672 		reaper = next_thread(reaper);
673 		if (reaper == father) {
674 			reaper = child_reaper;
675 			break;
676 		}
677 	} while (reaper->exit_state);
678 
679 	/*
680 	 * There are only two places where our children can be:
681 	 *
682 	 * - in our child list
683 	 * - in our ptraced child list
684 	 *
685 	 * Search them and reparent children.
686 	 */
687 	list_for_each_safe(_p, _n, &father->children) {
688 		int ptrace;
689 		p = list_entry(_p,struct task_struct,sibling);
690 
691 		ptrace = p->ptrace;
692 
693 		/* if father isn't the real parent, then ptrace must be enabled */
694 		BUG_ON(father != p->real_parent && !ptrace);
695 
696 		if (father == p->real_parent) {
697 			/* reparent with a reaper, real father it's us */
698 			choose_new_parent(p, reaper);
699 			reparent_thread(p, father, 0);
700 		} else {
701 			/* reparent ptraced task to its real parent */
702 			__ptrace_unlink (p);
703 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
704 			    thread_group_empty(p))
705 				do_notify_parent(p, p->exit_signal);
706 		}
707 
708 		/*
709 		 * if the ptraced child is a zombie with exit_signal == -1
710 		 * we must collect it before we exit, or it will remain
711 		 * zombie forever since we prevented it from self-reap itself
712 		 * while it was being traced by us, to be able to see it in wait4.
713 		 */
714 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
715 			list_add(&p->ptrace_list, to_release);
716 	}
717 	list_for_each_safe(_p, _n, &father->ptrace_children) {
718 		p = list_entry(_p,struct task_struct,ptrace_list);
719 		choose_new_parent(p, reaper);
720 		reparent_thread(p, father, 1);
721 	}
722 }
723 
724 /*
725  * Send signals to all our closest relatives so that they know
726  * to properly mourn us..
727  */
728 static void exit_notify(struct task_struct *tsk)
729 {
730 	int state;
731 	struct task_struct *t;
732 	struct list_head ptrace_dead, *_p, *_n;
733 
734 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
735 	    && !thread_group_empty(tsk)) {
736 		/*
737 		 * This occurs when there was a race between our exit
738 		 * syscall and a group signal choosing us as the one to
739 		 * wake up.  It could be that we are the only thread
740 		 * alerted to check for pending signals, but another thread
741 		 * should be woken now to take the signal since we will not.
742 		 * Now we'll wake all the threads in the group just to make
743 		 * sure someone gets all the pending signals.
744 		 */
745 		read_lock(&tasklist_lock);
746 		spin_lock_irq(&tsk->sighand->siglock);
747 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
748 			if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
749 				recalc_sigpending_tsk(t);
750 				if (signal_pending(t))
751 					signal_wake_up(t, 0);
752 			}
753 		spin_unlock_irq(&tsk->sighand->siglock);
754 		read_unlock(&tasklist_lock);
755 	}
756 
757 	write_lock_irq(&tasklist_lock);
758 
759 	/*
760 	 * This does two things:
761 	 *
762   	 * A.  Make init inherit all the child processes
763 	 * B.  Check to see if any process groups have become orphaned
764 	 *	as a result of our exiting, and if they have any stopped
765 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
766 	 */
767 
768 	INIT_LIST_HEAD(&ptrace_dead);
769 	forget_original_parent(tsk, &ptrace_dead);
770 	BUG_ON(!list_empty(&tsk->children));
771 	BUG_ON(!list_empty(&tsk->ptrace_children));
772 
773 	/*
774 	 * Check to see if any process groups have become orphaned
775 	 * as a result of our exiting, and if they have any stopped
776 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
777 	 *
778 	 * Case i: Our father is in a different pgrp than we are
779 	 * and we were the only connection outside, so our pgrp
780 	 * is about to become orphaned.
781 	 */
782 
783 	t = tsk->real_parent;
784 
785 	if ((process_group(t) != process_group(tsk)) &&
786 	    (t->signal->session == tsk->signal->session) &&
787 	    will_become_orphaned_pgrp(process_group(tsk), tsk) &&
788 	    has_stopped_jobs(process_group(tsk))) {
789 		__kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
790 		__kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
791 	}
792 
793 	/* Let father know we died
794 	 *
795 	 * Thread signals are configurable, but you aren't going to use
796 	 * that to send signals to arbitary processes.
797 	 * That stops right now.
798 	 *
799 	 * If the parent exec id doesn't match the exec id we saved
800 	 * when we started then we know the parent has changed security
801 	 * domain.
802 	 *
803 	 * If our self_exec id doesn't match our parent_exec_id then
804 	 * we have changed execution domain as these two values started
805 	 * the same after a fork.
806 	 *
807 	 */
808 
809 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
810 	    ( tsk->parent_exec_id != t->self_exec_id  ||
811 	      tsk->self_exec_id != tsk->parent_exec_id)
812 	    && !capable(CAP_KILL))
813 		tsk->exit_signal = SIGCHLD;
814 
815 
816 	/* If something other than our normal parent is ptracing us, then
817 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
818 	 * only has special meaning to our real parent.
819 	 */
820 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
821 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
822 		do_notify_parent(tsk, signal);
823 	} else if (tsk->ptrace) {
824 		do_notify_parent(tsk, SIGCHLD);
825 	}
826 
827 	state = EXIT_ZOMBIE;
828 	if (tsk->exit_signal == -1 &&
829 	    (likely(tsk->ptrace == 0) ||
830 	     unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
831 		state = EXIT_DEAD;
832 	tsk->exit_state = state;
833 
834 	write_unlock_irq(&tasklist_lock);
835 
836 	list_for_each_safe(_p, _n, &ptrace_dead) {
837 		list_del_init(_p);
838 		t = list_entry(_p,struct task_struct,ptrace_list);
839 		release_task(t);
840 	}
841 
842 	/* If the process is dead, release it - nobody will wait for it */
843 	if (state == EXIT_DEAD)
844 		release_task(tsk);
845 }
846 
847 fastcall NORET_TYPE void do_exit(long code)
848 {
849 	struct task_struct *tsk = current;
850 	int group_dead;
851 
852 	profile_task_exit(tsk);
853 
854 	WARN_ON(atomic_read(&tsk->fs_excl));
855 
856 	if (unlikely(in_interrupt()))
857 		panic("Aiee, killing interrupt handler!");
858 	if (unlikely(!tsk->pid))
859 		panic("Attempted to kill the idle task!");
860 	if (unlikely(tsk == child_reaper))
861 		panic("Attempted to kill init!");
862 
863 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
864 		current->ptrace_message = code;
865 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
866 	}
867 
868 	/*
869 	 * We're taking recursive faults here in do_exit. Safest is to just
870 	 * leave this task alone and wait for reboot.
871 	 */
872 	if (unlikely(tsk->flags & PF_EXITING)) {
873 		printk(KERN_ALERT
874 			"Fixing recursive fault but reboot is needed!\n");
875 		if (tsk->io_context)
876 			exit_io_context();
877 		set_current_state(TASK_UNINTERRUPTIBLE);
878 		schedule();
879 	}
880 
881 	tsk->flags |= PF_EXITING;
882 
883 	/*
884 	 * Make sure we don't try to process any timer firings
885 	 * while we are already exiting.
886 	 */
887  	tsk->it_virt_expires = cputime_zero;
888  	tsk->it_prof_expires = cputime_zero;
889 	tsk->it_sched_expires = 0;
890 
891 	if (unlikely(in_atomic()))
892 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
893 				current->comm, current->pid,
894 				preempt_count());
895 
896 	acct_update_integrals(tsk);
897 	if (tsk->mm) {
898 		update_hiwater_rss(tsk->mm);
899 		update_hiwater_vm(tsk->mm);
900 	}
901 	group_dead = atomic_dec_and_test(&tsk->signal->live);
902 	if (group_dead) {
903  		hrtimer_cancel(&tsk->signal->real_timer);
904 		exit_itimers(tsk->signal);
905 		acct_process(code);
906 	}
907 	if (unlikely(tsk->robust_list))
908 		exit_robust_list(tsk);
909 #ifdef CONFIG_COMPAT
910 	if (unlikely(tsk->compat_robust_list))
911 		compat_exit_robust_list(tsk);
912 #endif
913 	exit_mm(tsk);
914 
915 	exit_sem(tsk);
916 	__exit_files(tsk);
917 	__exit_fs(tsk);
918 	exit_namespace(tsk);
919 	exit_thread();
920 	cpuset_exit(tsk);
921 	exit_keys(tsk);
922 
923 	if (group_dead && tsk->signal->leader)
924 		disassociate_ctty(1);
925 
926 	module_put(task_thread_info(tsk)->exec_domain->module);
927 	if (tsk->binfmt)
928 		module_put(tsk->binfmt->module);
929 
930 	tsk->exit_code = code;
931 	proc_exit_connector(tsk);
932 	exit_notify(tsk);
933 #ifdef CONFIG_NUMA
934 	mpol_free(tsk->mempolicy);
935 	tsk->mempolicy = NULL;
936 #endif
937 	/*
938 	 * If DEBUG_MUTEXES is on, make sure we are holding no locks:
939 	 */
940 	mutex_debug_check_no_locks_held(tsk);
941 
942 	if (tsk->io_context)
943 		exit_io_context();
944 
945 	if (tsk->splice_pipe)
946 		__free_pipe_info(tsk->splice_pipe);
947 
948 	/* PF_DEAD causes final put_task_struct after we schedule. */
949 	preempt_disable();
950 	BUG_ON(tsk->flags & PF_DEAD);
951 	tsk->flags |= PF_DEAD;
952 
953 	schedule();
954 	BUG();
955 	/* Avoid "noreturn function does return".  */
956 	for (;;) ;
957 }
958 
959 EXPORT_SYMBOL_GPL(do_exit);
960 
961 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
962 {
963 	if (comp)
964 		complete(comp);
965 
966 	do_exit(code);
967 }
968 
969 EXPORT_SYMBOL(complete_and_exit);
970 
971 asmlinkage long sys_exit(int error_code)
972 {
973 	do_exit((error_code&0xff)<<8);
974 }
975 
976 /*
977  * Take down every thread in the group.  This is called by fatal signals
978  * as well as by sys_exit_group (below).
979  */
980 NORET_TYPE void
981 do_group_exit(int exit_code)
982 {
983 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
984 
985 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
986 		exit_code = current->signal->group_exit_code;
987 	else if (!thread_group_empty(current)) {
988 		struct signal_struct *const sig = current->signal;
989 		struct sighand_struct *const sighand = current->sighand;
990 		spin_lock_irq(&sighand->siglock);
991 		if (sig->flags & SIGNAL_GROUP_EXIT)
992 			/* Another thread got here before we took the lock.  */
993 			exit_code = sig->group_exit_code;
994 		else {
995 			sig->group_exit_code = exit_code;
996 			zap_other_threads(current);
997 		}
998 		spin_unlock_irq(&sighand->siglock);
999 	}
1000 
1001 	do_exit(exit_code);
1002 	/* NOTREACHED */
1003 }
1004 
1005 /*
1006  * this kills every thread in the thread group. Note that any externally
1007  * wait4()-ing process will get the correct exit code - even if this
1008  * thread is not the thread group leader.
1009  */
1010 asmlinkage void sys_exit_group(int error_code)
1011 {
1012 	do_group_exit((error_code & 0xff) << 8);
1013 }
1014 
1015 static int eligible_child(pid_t pid, int options, task_t *p)
1016 {
1017 	if (pid > 0) {
1018 		if (p->pid != pid)
1019 			return 0;
1020 	} else if (!pid) {
1021 		if (process_group(p) != process_group(current))
1022 			return 0;
1023 	} else if (pid != -1) {
1024 		if (process_group(p) != -pid)
1025 			return 0;
1026 	}
1027 
1028 	/*
1029 	 * Do not consider detached threads that are
1030 	 * not ptraced:
1031 	 */
1032 	if (p->exit_signal == -1 && !p->ptrace)
1033 		return 0;
1034 
1035 	/* Wait for all children (clone and not) if __WALL is set;
1036 	 * otherwise, wait for clone children *only* if __WCLONE is
1037 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1038 	 * A "clone" child here is one that reports to its parent
1039 	 * using a signal other than SIGCHLD.) */
1040 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1041 	    && !(options & __WALL))
1042 		return 0;
1043 	/*
1044 	 * Do not consider thread group leaders that are
1045 	 * in a non-empty thread group:
1046 	 */
1047 	if (current->tgid != p->tgid && delay_group_leader(p))
1048 		return 2;
1049 
1050 	if (security_task_wait(p))
1051 		return 0;
1052 
1053 	return 1;
1054 }
1055 
1056 static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid,
1057 			       int why, int status,
1058 			       struct siginfo __user *infop,
1059 			       struct rusage __user *rusagep)
1060 {
1061 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1062 	put_task_struct(p);
1063 	if (!retval)
1064 		retval = put_user(SIGCHLD, &infop->si_signo);
1065 	if (!retval)
1066 		retval = put_user(0, &infop->si_errno);
1067 	if (!retval)
1068 		retval = put_user((short)why, &infop->si_code);
1069 	if (!retval)
1070 		retval = put_user(pid, &infop->si_pid);
1071 	if (!retval)
1072 		retval = put_user(uid, &infop->si_uid);
1073 	if (!retval)
1074 		retval = put_user(status, &infop->si_status);
1075 	if (!retval)
1076 		retval = pid;
1077 	return retval;
1078 }
1079 
1080 /*
1081  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1082  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1083  * the lock and this task is uninteresting.  If we return nonzero, we have
1084  * released the lock and the system call should return.
1085  */
1086 static int wait_task_zombie(task_t *p, int noreap,
1087 			    struct siginfo __user *infop,
1088 			    int __user *stat_addr, struct rusage __user *ru)
1089 {
1090 	unsigned long state;
1091 	int retval;
1092 	int status;
1093 
1094 	if (unlikely(noreap)) {
1095 		pid_t pid = p->pid;
1096 		uid_t uid = p->uid;
1097 		int exit_code = p->exit_code;
1098 		int why, status;
1099 
1100 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1101 			return 0;
1102 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1103 			return 0;
1104 		get_task_struct(p);
1105 		read_unlock(&tasklist_lock);
1106 		if ((exit_code & 0x7f) == 0) {
1107 			why = CLD_EXITED;
1108 			status = exit_code >> 8;
1109 		} else {
1110 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1111 			status = exit_code & 0x7f;
1112 		}
1113 		return wait_noreap_copyout(p, pid, uid, why,
1114 					   status, infop, ru);
1115 	}
1116 
1117 	/*
1118 	 * Try to move the task's state to DEAD
1119 	 * only one thread is allowed to do this:
1120 	 */
1121 	state = xchg(&p->exit_state, EXIT_DEAD);
1122 	if (state != EXIT_ZOMBIE) {
1123 		BUG_ON(state != EXIT_DEAD);
1124 		return 0;
1125 	}
1126 	if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1127 		/*
1128 		 * This can only happen in a race with a ptraced thread
1129 		 * dying on another processor.
1130 		 */
1131 		return 0;
1132 	}
1133 
1134 	if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1135 		struct signal_struct *psig;
1136 		struct signal_struct *sig;
1137 
1138 		/*
1139 		 * The resource counters for the group leader are in its
1140 		 * own task_struct.  Those for dead threads in the group
1141 		 * are in its signal_struct, as are those for the child
1142 		 * processes it has previously reaped.  All these
1143 		 * accumulate in the parent's signal_struct c* fields.
1144 		 *
1145 		 * We don't bother to take a lock here to protect these
1146 		 * p->signal fields, because they are only touched by
1147 		 * __exit_signal, which runs with tasklist_lock
1148 		 * write-locked anyway, and so is excluded here.  We do
1149 		 * need to protect the access to p->parent->signal fields,
1150 		 * as other threads in the parent group can be right
1151 		 * here reaping other children at the same time.
1152 		 */
1153 		spin_lock_irq(&p->parent->sighand->siglock);
1154 		psig = p->parent->signal;
1155 		sig = p->signal;
1156 		psig->cutime =
1157 			cputime_add(psig->cutime,
1158 			cputime_add(p->utime,
1159 			cputime_add(sig->utime,
1160 				    sig->cutime)));
1161 		psig->cstime =
1162 			cputime_add(psig->cstime,
1163 			cputime_add(p->stime,
1164 			cputime_add(sig->stime,
1165 				    sig->cstime)));
1166 		psig->cmin_flt +=
1167 			p->min_flt + sig->min_flt + sig->cmin_flt;
1168 		psig->cmaj_flt +=
1169 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1170 		psig->cnvcsw +=
1171 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1172 		psig->cnivcsw +=
1173 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1174 		spin_unlock_irq(&p->parent->sighand->siglock);
1175 	}
1176 
1177 	/*
1178 	 * Now we are sure this task is interesting, and no other
1179 	 * thread can reap it because we set its state to EXIT_DEAD.
1180 	 */
1181 	read_unlock(&tasklist_lock);
1182 
1183 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1184 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1185 		? p->signal->group_exit_code : p->exit_code;
1186 	if (!retval && stat_addr)
1187 		retval = put_user(status, stat_addr);
1188 	if (!retval && infop)
1189 		retval = put_user(SIGCHLD, &infop->si_signo);
1190 	if (!retval && infop)
1191 		retval = put_user(0, &infop->si_errno);
1192 	if (!retval && infop) {
1193 		int why;
1194 
1195 		if ((status & 0x7f) == 0) {
1196 			why = CLD_EXITED;
1197 			status >>= 8;
1198 		} else {
1199 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1200 			status &= 0x7f;
1201 		}
1202 		retval = put_user((short)why, &infop->si_code);
1203 		if (!retval)
1204 			retval = put_user(status, &infop->si_status);
1205 	}
1206 	if (!retval && infop)
1207 		retval = put_user(p->pid, &infop->si_pid);
1208 	if (!retval && infop)
1209 		retval = put_user(p->uid, &infop->si_uid);
1210 	if (retval) {
1211 		// TODO: is this safe?
1212 		p->exit_state = EXIT_ZOMBIE;
1213 		return retval;
1214 	}
1215 	retval = p->pid;
1216 	if (p->real_parent != p->parent) {
1217 		write_lock_irq(&tasklist_lock);
1218 		/* Double-check with lock held.  */
1219 		if (p->real_parent != p->parent) {
1220 			__ptrace_unlink(p);
1221 			// TODO: is this safe?
1222 			p->exit_state = EXIT_ZOMBIE;
1223 			/*
1224 			 * If this is not a detached task, notify the parent.
1225 			 * If it's still not detached after that, don't release
1226 			 * it now.
1227 			 */
1228 			if (p->exit_signal != -1) {
1229 				do_notify_parent(p, p->exit_signal);
1230 				if (p->exit_signal != -1)
1231 					p = NULL;
1232 			}
1233 		}
1234 		write_unlock_irq(&tasklist_lock);
1235 	}
1236 	if (p != NULL)
1237 		release_task(p);
1238 	BUG_ON(!retval);
1239 	return retval;
1240 }
1241 
1242 /*
1243  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1244  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1245  * the lock and this task is uninteresting.  If we return nonzero, we have
1246  * released the lock and the system call should return.
1247  */
1248 static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap,
1249 			     struct siginfo __user *infop,
1250 			     int __user *stat_addr, struct rusage __user *ru)
1251 {
1252 	int retval, exit_code;
1253 
1254 	if (!p->exit_code)
1255 		return 0;
1256 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1257 	    p->signal && p->signal->group_stop_count > 0)
1258 		/*
1259 		 * A group stop is in progress and this is the group leader.
1260 		 * We won't report until all threads have stopped.
1261 		 */
1262 		return 0;
1263 
1264 	/*
1265 	 * Now we are pretty sure this task is interesting.
1266 	 * Make sure it doesn't get reaped out from under us while we
1267 	 * give up the lock and then examine it below.  We don't want to
1268 	 * keep holding onto the tasklist_lock while we call getrusage and
1269 	 * possibly take page faults for user memory.
1270 	 */
1271 	get_task_struct(p);
1272 	read_unlock(&tasklist_lock);
1273 
1274 	if (unlikely(noreap)) {
1275 		pid_t pid = p->pid;
1276 		uid_t uid = p->uid;
1277 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1278 
1279 		exit_code = p->exit_code;
1280 		if (unlikely(!exit_code) ||
1281 		    unlikely(p->state & TASK_TRACED))
1282 			goto bail_ref;
1283 		return wait_noreap_copyout(p, pid, uid,
1284 					   why, (exit_code << 8) | 0x7f,
1285 					   infop, ru);
1286 	}
1287 
1288 	write_lock_irq(&tasklist_lock);
1289 
1290 	/*
1291 	 * This uses xchg to be atomic with the thread resuming and setting
1292 	 * it.  It must also be done with the write lock held to prevent a
1293 	 * race with the EXIT_ZOMBIE case.
1294 	 */
1295 	exit_code = xchg(&p->exit_code, 0);
1296 	if (unlikely(p->exit_state)) {
1297 		/*
1298 		 * The task resumed and then died.  Let the next iteration
1299 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1300 		 * already be zero here if it resumed and did _exit(0).
1301 		 * The task itself is dead and won't touch exit_code again;
1302 		 * other processors in this function are locked out.
1303 		 */
1304 		p->exit_code = exit_code;
1305 		exit_code = 0;
1306 	}
1307 	if (unlikely(exit_code == 0)) {
1308 		/*
1309 		 * Another thread in this function got to it first, or it
1310 		 * resumed, or it resumed and then died.
1311 		 */
1312 		write_unlock_irq(&tasklist_lock);
1313 bail_ref:
1314 		put_task_struct(p);
1315 		/*
1316 		 * We are returning to the wait loop without having successfully
1317 		 * removed the process and having released the lock. We cannot
1318 		 * continue, since the "p" task pointer is potentially stale.
1319 		 *
1320 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1321 		 * beginning. Do _not_ re-acquire the lock.
1322 		 */
1323 		return -EAGAIN;
1324 	}
1325 
1326 	/* move to end of parent's list to avoid starvation */
1327 	remove_parent(p);
1328 	add_parent(p);
1329 
1330 	write_unlock_irq(&tasklist_lock);
1331 
1332 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1333 	if (!retval && stat_addr)
1334 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1335 	if (!retval && infop)
1336 		retval = put_user(SIGCHLD, &infop->si_signo);
1337 	if (!retval && infop)
1338 		retval = put_user(0, &infop->si_errno);
1339 	if (!retval && infop)
1340 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1341 					  ? CLD_TRAPPED : CLD_STOPPED),
1342 				  &infop->si_code);
1343 	if (!retval && infop)
1344 		retval = put_user(exit_code, &infop->si_status);
1345 	if (!retval && infop)
1346 		retval = put_user(p->pid, &infop->si_pid);
1347 	if (!retval && infop)
1348 		retval = put_user(p->uid, &infop->si_uid);
1349 	if (!retval)
1350 		retval = p->pid;
1351 	put_task_struct(p);
1352 
1353 	BUG_ON(!retval);
1354 	return retval;
1355 }
1356 
1357 /*
1358  * Handle do_wait work for one task in a live, non-stopped state.
1359  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1360  * the lock and this task is uninteresting.  If we return nonzero, we have
1361  * released the lock and the system call should return.
1362  */
1363 static int wait_task_continued(task_t *p, int noreap,
1364 			       struct siginfo __user *infop,
1365 			       int __user *stat_addr, struct rusage __user *ru)
1366 {
1367 	int retval;
1368 	pid_t pid;
1369 	uid_t uid;
1370 
1371 	if (unlikely(!p->signal))
1372 		return 0;
1373 
1374 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1375 		return 0;
1376 
1377 	spin_lock_irq(&p->sighand->siglock);
1378 	/* Re-check with the lock held.  */
1379 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1380 		spin_unlock_irq(&p->sighand->siglock);
1381 		return 0;
1382 	}
1383 	if (!noreap)
1384 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1385 	spin_unlock_irq(&p->sighand->siglock);
1386 
1387 	pid = p->pid;
1388 	uid = p->uid;
1389 	get_task_struct(p);
1390 	read_unlock(&tasklist_lock);
1391 
1392 	if (!infop) {
1393 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1394 		put_task_struct(p);
1395 		if (!retval && stat_addr)
1396 			retval = put_user(0xffff, stat_addr);
1397 		if (!retval)
1398 			retval = p->pid;
1399 	} else {
1400 		retval = wait_noreap_copyout(p, pid, uid,
1401 					     CLD_CONTINUED, SIGCONT,
1402 					     infop, ru);
1403 		BUG_ON(retval == 0);
1404 	}
1405 
1406 	return retval;
1407 }
1408 
1409 
1410 static inline int my_ptrace_child(struct task_struct *p)
1411 {
1412 	if (!(p->ptrace & PT_PTRACED))
1413 		return 0;
1414 	if (!(p->ptrace & PT_ATTACHED))
1415 		return 1;
1416 	/*
1417 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1418 	 * we are the attacher.  If we are the real parent, this is a race
1419 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1420 	 * which we have to switch the parent links, but has already set
1421 	 * the flags in p->ptrace.
1422 	 */
1423 	return (p->parent != p->real_parent);
1424 }
1425 
1426 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1427 		    int __user *stat_addr, struct rusage __user *ru)
1428 {
1429 	DECLARE_WAITQUEUE(wait, current);
1430 	struct task_struct *tsk;
1431 	int flag, retval;
1432 
1433 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1434 repeat:
1435 	/*
1436 	 * We will set this flag if we see any child that might later
1437 	 * match our criteria, even if we are not able to reap it yet.
1438 	 */
1439 	flag = 0;
1440 	current->state = TASK_INTERRUPTIBLE;
1441 	read_lock(&tasklist_lock);
1442 	tsk = current;
1443 	do {
1444 		struct task_struct *p;
1445 		struct list_head *_p;
1446 		int ret;
1447 
1448 		list_for_each(_p,&tsk->children) {
1449 			p = list_entry(_p,struct task_struct,sibling);
1450 
1451 			ret = eligible_child(pid, options, p);
1452 			if (!ret)
1453 				continue;
1454 
1455 			switch (p->state) {
1456 			case TASK_TRACED:
1457 				/*
1458 				 * When we hit the race with PTRACE_ATTACH,
1459 				 * we will not report this child.  But the
1460 				 * race means it has not yet been moved to
1461 				 * our ptrace_children list, so we need to
1462 				 * set the flag here to avoid a spurious ECHILD
1463 				 * when the race happens with the only child.
1464 				 */
1465 				flag = 1;
1466 				if (!my_ptrace_child(p))
1467 					continue;
1468 				/*FALLTHROUGH*/
1469 			case TASK_STOPPED:
1470 				/*
1471 				 * It's stopped now, so it might later
1472 				 * continue, exit, or stop again.
1473 				 */
1474 				flag = 1;
1475 				if (!(options & WUNTRACED) &&
1476 				    !my_ptrace_child(p))
1477 					continue;
1478 				retval = wait_task_stopped(p, ret == 2,
1479 							   (options & WNOWAIT),
1480 							   infop,
1481 							   stat_addr, ru);
1482 				if (retval == -EAGAIN)
1483 					goto repeat;
1484 				if (retval != 0) /* He released the lock.  */
1485 					goto end;
1486 				break;
1487 			default:
1488 			// case EXIT_DEAD:
1489 				if (p->exit_state == EXIT_DEAD)
1490 					continue;
1491 			// case EXIT_ZOMBIE:
1492 				if (p->exit_state == EXIT_ZOMBIE) {
1493 					/*
1494 					 * Eligible but we cannot release
1495 					 * it yet:
1496 					 */
1497 					if (ret == 2)
1498 						goto check_continued;
1499 					if (!likely(options & WEXITED))
1500 						continue;
1501 					retval = wait_task_zombie(
1502 						p, (options & WNOWAIT),
1503 						infop, stat_addr, ru);
1504 					/* He released the lock.  */
1505 					if (retval != 0)
1506 						goto end;
1507 					break;
1508 				}
1509 check_continued:
1510 				/*
1511 				 * It's running now, so it might later
1512 				 * exit, stop, or stop and then continue.
1513 				 */
1514 				flag = 1;
1515 				if (!unlikely(options & WCONTINUED))
1516 					continue;
1517 				retval = wait_task_continued(
1518 					p, (options & WNOWAIT),
1519 					infop, stat_addr, ru);
1520 				if (retval != 0) /* He released the lock.  */
1521 					goto end;
1522 				break;
1523 			}
1524 		}
1525 		if (!flag) {
1526 			list_for_each(_p, &tsk->ptrace_children) {
1527 				p = list_entry(_p, struct task_struct,
1528 						ptrace_list);
1529 				if (!eligible_child(pid, options, p))
1530 					continue;
1531 				flag = 1;
1532 				break;
1533 			}
1534 		}
1535 		if (options & __WNOTHREAD)
1536 			break;
1537 		tsk = next_thread(tsk);
1538 		if (tsk->signal != current->signal)
1539 			BUG();
1540 	} while (tsk != current);
1541 
1542 	read_unlock(&tasklist_lock);
1543 	if (flag) {
1544 		retval = 0;
1545 		if (options & WNOHANG)
1546 			goto end;
1547 		retval = -ERESTARTSYS;
1548 		if (signal_pending(current))
1549 			goto end;
1550 		schedule();
1551 		goto repeat;
1552 	}
1553 	retval = -ECHILD;
1554 end:
1555 	current->state = TASK_RUNNING;
1556 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1557 	if (infop) {
1558 		if (retval > 0)
1559 		retval = 0;
1560 		else {
1561 			/*
1562 			 * For a WNOHANG return, clear out all the fields
1563 			 * we would set so the user can easily tell the
1564 			 * difference.
1565 			 */
1566 			if (!retval)
1567 				retval = put_user(0, &infop->si_signo);
1568 			if (!retval)
1569 				retval = put_user(0, &infop->si_errno);
1570 			if (!retval)
1571 				retval = put_user(0, &infop->si_code);
1572 			if (!retval)
1573 				retval = put_user(0, &infop->si_pid);
1574 			if (!retval)
1575 				retval = put_user(0, &infop->si_uid);
1576 			if (!retval)
1577 				retval = put_user(0, &infop->si_status);
1578 		}
1579 	}
1580 	return retval;
1581 }
1582 
1583 asmlinkage long sys_waitid(int which, pid_t pid,
1584 			   struct siginfo __user *infop, int options,
1585 			   struct rusage __user *ru)
1586 {
1587 	long ret;
1588 
1589 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1590 		return -EINVAL;
1591 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1592 		return -EINVAL;
1593 
1594 	switch (which) {
1595 	case P_ALL:
1596 		pid = -1;
1597 		break;
1598 	case P_PID:
1599 		if (pid <= 0)
1600 			return -EINVAL;
1601 		break;
1602 	case P_PGID:
1603 		if (pid <= 0)
1604 			return -EINVAL;
1605 		pid = -pid;
1606 		break;
1607 	default:
1608 		return -EINVAL;
1609 	}
1610 
1611 	ret = do_wait(pid, options, infop, NULL, ru);
1612 
1613 	/* avoid REGPARM breakage on x86: */
1614 	prevent_tail_call(ret);
1615 	return ret;
1616 }
1617 
1618 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1619 			  int options, struct rusage __user *ru)
1620 {
1621 	long ret;
1622 
1623 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1624 			__WNOTHREAD|__WCLONE|__WALL))
1625 		return -EINVAL;
1626 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1627 
1628 	/* avoid REGPARM breakage on x86: */
1629 	prevent_tail_call(ret);
1630 	return ret;
1631 }
1632 
1633 #ifdef __ARCH_WANT_SYS_WAITPID
1634 
1635 /*
1636  * sys_waitpid() remains for compatibility. waitpid() should be
1637  * implemented by calling sys_wait4() from libc.a.
1638  */
1639 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1640 {
1641 	return sys_wait4(pid, stat_addr, options, NULL);
1642 }
1643 
1644 #endif
1645