xref: /linux/kernel/exit.c (revision 6e8331ac6973435b1e7604c30f2ad394035b46e1)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/smp_lock.h>
11 #include <linux/module.h>
12 #include <linux/capability.h>
13 #include <linux/completion.h>
14 #include <linux/personality.h>
15 #include <linux/tty.h>
16 #include <linux/namespace.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/ptrace.h>
24 #include <linux/profile.h>
25 #include <linux/mount.h>
26 #include <linux/proc_fs.h>
27 #include <linux/mempolicy.h>
28 #include <linux/taskstats_kern.h>
29 #include <linux/delayacct.h>
30 #include <linux/cpuset.h>
31 #include <linux/syscalls.h>
32 #include <linux/signal.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cn_proc.h>
35 #include <linux/mutex.h>
36 #include <linux/futex.h>
37 #include <linux/compat.h>
38 #include <linux/pipe_fs_i.h>
39 #include <linux/audit.h> /* for audit_free() */
40 #include <linux/resource.h>
41 
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/pgtable.h>
45 #include <asm/mmu_context.h>
46 
47 extern void sem_exit (void);
48 extern struct task_struct *child_reaper;
49 
50 static void exit_mm(struct task_struct * tsk);
51 
52 static void __unhash_process(struct task_struct *p)
53 {
54 	nr_threads--;
55 	detach_pid(p, PIDTYPE_PID);
56 	if (thread_group_leader(p)) {
57 		detach_pid(p, PIDTYPE_PGID);
58 		detach_pid(p, PIDTYPE_SID);
59 
60 		list_del_rcu(&p->tasks);
61 		__get_cpu_var(process_counts)--;
62 	}
63 	list_del_rcu(&p->thread_group);
64 	remove_parent(p);
65 }
66 
67 /*
68  * This function expects the tasklist_lock write-locked.
69  */
70 static void __exit_signal(struct task_struct *tsk)
71 {
72 	struct signal_struct *sig = tsk->signal;
73 	struct sighand_struct *sighand;
74 
75 	BUG_ON(!sig);
76 	BUG_ON(!atomic_read(&sig->count));
77 
78 	rcu_read_lock();
79 	sighand = rcu_dereference(tsk->sighand);
80 	spin_lock(&sighand->siglock);
81 
82 	posix_cpu_timers_exit(tsk);
83 	if (atomic_dec_and_test(&sig->count))
84 		posix_cpu_timers_exit_group(tsk);
85 	else {
86 		/*
87 		 * If there is any task waiting for the group exit
88 		 * then notify it:
89 		 */
90 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
91 			wake_up_process(sig->group_exit_task);
92 			sig->group_exit_task = NULL;
93 		}
94 		if (tsk == sig->curr_target)
95 			sig->curr_target = next_thread(tsk);
96 		/*
97 		 * Accumulate here the counters for all threads but the
98 		 * group leader as they die, so they can be added into
99 		 * the process-wide totals when those are taken.
100 		 * The group leader stays around as a zombie as long
101 		 * as there are other threads.  When it gets reaped,
102 		 * the exit.c code will add its counts into these totals.
103 		 * We won't ever get here for the group leader, since it
104 		 * will have been the last reference on the signal_struct.
105 		 */
106 		sig->utime = cputime_add(sig->utime, tsk->utime);
107 		sig->stime = cputime_add(sig->stime, tsk->stime);
108 		sig->min_flt += tsk->min_flt;
109 		sig->maj_flt += tsk->maj_flt;
110 		sig->nvcsw += tsk->nvcsw;
111 		sig->nivcsw += tsk->nivcsw;
112 		sig->sched_time += tsk->sched_time;
113 		sig = NULL; /* Marker for below. */
114 	}
115 
116 	__unhash_process(tsk);
117 
118 	tsk->signal = NULL;
119 	tsk->sighand = NULL;
120 	spin_unlock(&sighand->siglock);
121 	rcu_read_unlock();
122 
123 	__cleanup_sighand(sighand);
124 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
125 	flush_sigqueue(&tsk->pending);
126 	if (sig) {
127 		flush_sigqueue(&sig->shared_pending);
128 		__cleanup_signal(sig);
129 	}
130 }
131 
132 static void delayed_put_task_struct(struct rcu_head *rhp)
133 {
134 	put_task_struct(container_of(rhp, struct task_struct, rcu));
135 }
136 
137 void release_task(struct task_struct * p)
138 {
139 	struct task_struct *leader;
140 	int zap_leader;
141 repeat:
142 	atomic_dec(&p->user->processes);
143 	write_lock_irq(&tasklist_lock);
144 	ptrace_unlink(p);
145 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
146 	__exit_signal(p);
147 
148 	/*
149 	 * If we are the last non-leader member of the thread
150 	 * group, and the leader is zombie, then notify the
151 	 * group leader's parent process. (if it wants notification.)
152 	 */
153 	zap_leader = 0;
154 	leader = p->group_leader;
155 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
156 		BUG_ON(leader->exit_signal == -1);
157 		do_notify_parent(leader, leader->exit_signal);
158 		/*
159 		 * If we were the last child thread and the leader has
160 		 * exited already, and the leader's parent ignores SIGCHLD,
161 		 * then we are the one who should release the leader.
162 		 *
163 		 * do_notify_parent() will have marked it self-reaping in
164 		 * that case.
165 		 */
166 		zap_leader = (leader->exit_signal == -1);
167 	}
168 
169 	sched_exit(p);
170 	write_unlock_irq(&tasklist_lock);
171 	proc_flush_task(p);
172 	release_thread(p);
173 	call_rcu(&p->rcu, delayed_put_task_struct);
174 
175 	p = leader;
176 	if (unlikely(zap_leader))
177 		goto repeat;
178 }
179 
180 /*
181  * This checks not only the pgrp, but falls back on the pid if no
182  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
183  * without this...
184  */
185 int session_of_pgrp(int pgrp)
186 {
187 	struct task_struct *p;
188 	int sid = -1;
189 
190 	read_lock(&tasklist_lock);
191 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
192 		if (p->signal->session > 0) {
193 			sid = p->signal->session;
194 			goto out;
195 		}
196 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
197 	p = find_task_by_pid(pgrp);
198 	if (p)
199 		sid = p->signal->session;
200 out:
201 	read_unlock(&tasklist_lock);
202 
203 	return sid;
204 }
205 
206 /*
207  * Determine if a process group is "orphaned", according to the POSIX
208  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
209  * by terminal-generated stop signals.  Newly orphaned process groups are
210  * to receive a SIGHUP and a SIGCONT.
211  *
212  * "I ask you, have you ever known what it is to be an orphan?"
213  */
214 static int will_become_orphaned_pgrp(int pgrp, struct task_struct *ignored_task)
215 {
216 	struct task_struct *p;
217 	int ret = 1;
218 
219 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
220 		if (p == ignored_task
221 				|| p->exit_state
222 				|| p->real_parent->pid == 1)
223 			continue;
224 		if (process_group(p->real_parent) != pgrp
225 			    && p->real_parent->signal->session == p->signal->session) {
226 			ret = 0;
227 			break;
228 		}
229 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
230 	return ret;	/* (sighing) "Often!" */
231 }
232 
233 int is_orphaned_pgrp(int pgrp)
234 {
235 	int retval;
236 
237 	read_lock(&tasklist_lock);
238 	retval = will_become_orphaned_pgrp(pgrp, NULL);
239 	read_unlock(&tasklist_lock);
240 
241 	return retval;
242 }
243 
244 static int has_stopped_jobs(int pgrp)
245 {
246 	int retval = 0;
247 	struct task_struct *p;
248 
249 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
250 		if (p->state != TASK_STOPPED)
251 			continue;
252 
253 		/* If p is stopped by a debugger on a signal that won't
254 		   stop it, then don't count p as stopped.  This isn't
255 		   perfect but it's a good approximation.  */
256 		if (unlikely (p->ptrace)
257 		    && p->exit_code != SIGSTOP
258 		    && p->exit_code != SIGTSTP
259 		    && p->exit_code != SIGTTOU
260 		    && p->exit_code != SIGTTIN)
261 			continue;
262 
263 		retval = 1;
264 		break;
265 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
266 	return retval;
267 }
268 
269 /**
270  * reparent_to_init - Reparent the calling kernel thread to the init task.
271  *
272  * If a kernel thread is launched as a result of a system call, or if
273  * it ever exits, it should generally reparent itself to init so that
274  * it is correctly cleaned up on exit.
275  *
276  * The various task state such as scheduling policy and priority may have
277  * been inherited from a user process, so we reset them to sane values here.
278  *
279  * NOTE that reparent_to_init() gives the caller full capabilities.
280  */
281 static void reparent_to_init(void)
282 {
283 	write_lock_irq(&tasklist_lock);
284 
285 	ptrace_unlink(current);
286 	/* Reparent to init */
287 	remove_parent(current);
288 	current->parent = child_reaper;
289 	current->real_parent = child_reaper;
290 	add_parent(current);
291 
292 	/* Set the exit signal to SIGCHLD so we signal init on exit */
293 	current->exit_signal = SIGCHLD;
294 
295 	if ((current->policy == SCHED_NORMAL ||
296 			current->policy == SCHED_BATCH)
297 				&& (task_nice(current) < 0))
298 		set_user_nice(current, 0);
299 	/* cpus_allowed? */
300 	/* rt_priority? */
301 	/* signals? */
302 	security_task_reparent_to_init(current);
303 	memcpy(current->signal->rlim, init_task.signal->rlim,
304 	       sizeof(current->signal->rlim));
305 	atomic_inc(&(INIT_USER->__count));
306 	write_unlock_irq(&tasklist_lock);
307 	switch_uid(INIT_USER);
308 }
309 
310 void __set_special_pids(pid_t session, pid_t pgrp)
311 {
312 	struct task_struct *curr = current->group_leader;
313 
314 	if (curr->signal->session != session) {
315 		detach_pid(curr, PIDTYPE_SID);
316 		curr->signal->session = session;
317 		attach_pid(curr, PIDTYPE_SID, session);
318 	}
319 	if (process_group(curr) != pgrp) {
320 		detach_pid(curr, PIDTYPE_PGID);
321 		curr->signal->pgrp = pgrp;
322 		attach_pid(curr, PIDTYPE_PGID, pgrp);
323 	}
324 }
325 
326 void set_special_pids(pid_t session, pid_t pgrp)
327 {
328 	write_lock_irq(&tasklist_lock);
329 	__set_special_pids(session, pgrp);
330 	write_unlock_irq(&tasklist_lock);
331 }
332 
333 /*
334  * Let kernel threads use this to say that they
335  * allow a certain signal (since daemonize() will
336  * have disabled all of them by default).
337  */
338 int allow_signal(int sig)
339 {
340 	if (!valid_signal(sig) || sig < 1)
341 		return -EINVAL;
342 
343 	spin_lock_irq(&current->sighand->siglock);
344 	sigdelset(&current->blocked, sig);
345 	if (!current->mm) {
346 		/* Kernel threads handle their own signals.
347 		   Let the signal code know it'll be handled, so
348 		   that they don't get converted to SIGKILL or
349 		   just silently dropped */
350 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
351 	}
352 	recalc_sigpending();
353 	spin_unlock_irq(&current->sighand->siglock);
354 	return 0;
355 }
356 
357 EXPORT_SYMBOL(allow_signal);
358 
359 int disallow_signal(int sig)
360 {
361 	if (!valid_signal(sig) || sig < 1)
362 		return -EINVAL;
363 
364 	spin_lock_irq(&current->sighand->siglock);
365 	sigaddset(&current->blocked, sig);
366 	recalc_sigpending();
367 	spin_unlock_irq(&current->sighand->siglock);
368 	return 0;
369 }
370 
371 EXPORT_SYMBOL(disallow_signal);
372 
373 /*
374  *	Put all the gunge required to become a kernel thread without
375  *	attached user resources in one place where it belongs.
376  */
377 
378 void daemonize(const char *name, ...)
379 {
380 	va_list args;
381 	struct fs_struct *fs;
382 	sigset_t blocked;
383 
384 	va_start(args, name);
385 	vsnprintf(current->comm, sizeof(current->comm), name, args);
386 	va_end(args);
387 
388 	/*
389 	 * If we were started as result of loading a module, close all of the
390 	 * user space pages.  We don't need them, and if we didn't close them
391 	 * they would be locked into memory.
392 	 */
393 	exit_mm(current);
394 
395 	set_special_pids(1, 1);
396 	mutex_lock(&tty_mutex);
397 	current->signal->tty = NULL;
398 	mutex_unlock(&tty_mutex);
399 
400 	/* Block and flush all signals */
401 	sigfillset(&blocked);
402 	sigprocmask(SIG_BLOCK, &blocked, NULL);
403 	flush_signals(current);
404 
405 	/* Become as one with the init task */
406 
407 	exit_fs(current);	/* current->fs->count--; */
408 	fs = init_task.fs;
409 	current->fs = fs;
410 	atomic_inc(&fs->count);
411 	exit_namespace(current);
412 	current->namespace = init_task.namespace;
413 	get_namespace(current->namespace);
414  	exit_files(current);
415 	current->files = init_task.files;
416 	atomic_inc(&current->files->count);
417 
418 	reparent_to_init();
419 }
420 
421 EXPORT_SYMBOL(daemonize);
422 
423 static void close_files(struct files_struct * files)
424 {
425 	int i, j;
426 	struct fdtable *fdt;
427 
428 	j = 0;
429 
430 	/*
431 	 * It is safe to dereference the fd table without RCU or
432 	 * ->file_lock because this is the last reference to the
433 	 * files structure.
434 	 */
435 	fdt = files_fdtable(files);
436 	for (;;) {
437 		unsigned long set;
438 		i = j * __NFDBITS;
439 		if (i >= fdt->max_fdset || i >= fdt->max_fds)
440 			break;
441 		set = fdt->open_fds->fds_bits[j++];
442 		while (set) {
443 			if (set & 1) {
444 				struct file * file = xchg(&fdt->fd[i], NULL);
445 				if (file)
446 					filp_close(file, files);
447 			}
448 			i++;
449 			set >>= 1;
450 		}
451 	}
452 }
453 
454 struct files_struct *get_files_struct(struct task_struct *task)
455 {
456 	struct files_struct *files;
457 
458 	task_lock(task);
459 	files = task->files;
460 	if (files)
461 		atomic_inc(&files->count);
462 	task_unlock(task);
463 
464 	return files;
465 }
466 
467 void fastcall put_files_struct(struct files_struct *files)
468 {
469 	struct fdtable *fdt;
470 
471 	if (atomic_dec_and_test(&files->count)) {
472 		close_files(files);
473 		/*
474 		 * Free the fd and fdset arrays if we expanded them.
475 		 * If the fdtable was embedded, pass files for freeing
476 		 * at the end of the RCU grace period. Otherwise,
477 		 * you can free files immediately.
478 		 */
479 		fdt = files_fdtable(files);
480 		if (fdt == &files->fdtab)
481 			fdt->free_files = files;
482 		else
483 			kmem_cache_free(files_cachep, files);
484 		free_fdtable(fdt);
485 	}
486 }
487 
488 EXPORT_SYMBOL(put_files_struct);
489 
490 static inline void __exit_files(struct task_struct *tsk)
491 {
492 	struct files_struct * files = tsk->files;
493 
494 	if (files) {
495 		task_lock(tsk);
496 		tsk->files = NULL;
497 		task_unlock(tsk);
498 		put_files_struct(files);
499 	}
500 }
501 
502 void exit_files(struct task_struct *tsk)
503 {
504 	__exit_files(tsk);
505 }
506 
507 static inline void __put_fs_struct(struct fs_struct *fs)
508 {
509 	/* No need to hold fs->lock if we are killing it */
510 	if (atomic_dec_and_test(&fs->count)) {
511 		dput(fs->root);
512 		mntput(fs->rootmnt);
513 		dput(fs->pwd);
514 		mntput(fs->pwdmnt);
515 		if (fs->altroot) {
516 			dput(fs->altroot);
517 			mntput(fs->altrootmnt);
518 		}
519 		kmem_cache_free(fs_cachep, fs);
520 	}
521 }
522 
523 void put_fs_struct(struct fs_struct *fs)
524 {
525 	__put_fs_struct(fs);
526 }
527 
528 static inline void __exit_fs(struct task_struct *tsk)
529 {
530 	struct fs_struct * fs = tsk->fs;
531 
532 	if (fs) {
533 		task_lock(tsk);
534 		tsk->fs = NULL;
535 		task_unlock(tsk);
536 		__put_fs_struct(fs);
537 	}
538 }
539 
540 void exit_fs(struct task_struct *tsk)
541 {
542 	__exit_fs(tsk);
543 }
544 
545 EXPORT_SYMBOL_GPL(exit_fs);
546 
547 /*
548  * Turn us into a lazy TLB process if we
549  * aren't already..
550  */
551 static void exit_mm(struct task_struct * tsk)
552 {
553 	struct mm_struct *mm = tsk->mm;
554 
555 	mm_release(tsk, mm);
556 	if (!mm)
557 		return;
558 	/*
559 	 * Serialize with any possible pending coredump.
560 	 * We must hold mmap_sem around checking core_waiters
561 	 * and clearing tsk->mm.  The core-inducing thread
562 	 * will increment core_waiters for each thread in the
563 	 * group with ->mm != NULL.
564 	 */
565 	down_read(&mm->mmap_sem);
566 	if (mm->core_waiters) {
567 		up_read(&mm->mmap_sem);
568 		down_write(&mm->mmap_sem);
569 		if (!--mm->core_waiters)
570 			complete(mm->core_startup_done);
571 		up_write(&mm->mmap_sem);
572 
573 		wait_for_completion(&mm->core_done);
574 		down_read(&mm->mmap_sem);
575 	}
576 	atomic_inc(&mm->mm_count);
577 	BUG_ON(mm != tsk->active_mm);
578 	/* more a memory barrier than a real lock */
579 	task_lock(tsk);
580 	tsk->mm = NULL;
581 	up_read(&mm->mmap_sem);
582 	enter_lazy_tlb(mm, current);
583 	task_unlock(tsk);
584 	mmput(mm);
585 }
586 
587 static inline void
588 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
589 {
590 	/*
591 	 * Make sure we're not reparenting to ourselves and that
592 	 * the parent is not a zombie.
593 	 */
594 	BUG_ON(p == reaper || reaper->exit_state);
595 	p->real_parent = reaper;
596 }
597 
598 static void
599 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
600 {
601 	/* We don't want people slaying init.  */
602 	if (p->exit_signal != -1)
603 		p->exit_signal = SIGCHLD;
604 
605 	if (p->pdeath_signal)
606 		/* We already hold the tasklist_lock here.  */
607 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
608 
609 	/* Move the child from its dying parent to the new one.  */
610 	if (unlikely(traced)) {
611 		/* Preserve ptrace links if someone else is tracing this child.  */
612 		list_del_init(&p->ptrace_list);
613 		if (p->parent != p->real_parent)
614 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
615 	} else {
616 		/* If this child is being traced, then we're the one tracing it
617 		 * anyway, so let go of it.
618 		 */
619 		p->ptrace = 0;
620 		remove_parent(p);
621 		p->parent = p->real_parent;
622 		add_parent(p);
623 
624 		/* If we'd notified the old parent about this child's death,
625 		 * also notify the new parent.
626 		 */
627 		if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
628 		    thread_group_empty(p))
629 			do_notify_parent(p, p->exit_signal);
630 		else if (p->state == TASK_TRACED) {
631 			/*
632 			 * If it was at a trace stop, turn it into
633 			 * a normal stop since it's no longer being
634 			 * traced.
635 			 */
636 			ptrace_untrace(p);
637 		}
638 	}
639 
640 	/*
641 	 * process group orphan check
642 	 * Case ii: Our child is in a different pgrp
643 	 * than we are, and it was the only connection
644 	 * outside, so the child pgrp is now orphaned.
645 	 */
646 	if ((process_group(p) != process_group(father)) &&
647 	    (p->signal->session == father->signal->session)) {
648 		int pgrp = process_group(p);
649 
650 		if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
651 			__kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
652 			__kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
653 		}
654 	}
655 }
656 
657 /*
658  * When we die, we re-parent all our children.
659  * Try to give them to another thread in our thread
660  * group, and if no such member exists, give it to
661  * the global child reaper process (ie "init")
662  */
663 static void
664 forget_original_parent(struct task_struct *father, struct list_head *to_release)
665 {
666 	struct task_struct *p, *reaper = father;
667 	struct list_head *_p, *_n;
668 
669 	do {
670 		reaper = next_thread(reaper);
671 		if (reaper == father) {
672 			reaper = child_reaper;
673 			break;
674 		}
675 	} while (reaper->exit_state);
676 
677 	/*
678 	 * There are only two places where our children can be:
679 	 *
680 	 * - in our child list
681 	 * - in our ptraced child list
682 	 *
683 	 * Search them and reparent children.
684 	 */
685 	list_for_each_safe(_p, _n, &father->children) {
686 		int ptrace;
687 		p = list_entry(_p, struct task_struct, sibling);
688 
689 		ptrace = p->ptrace;
690 
691 		/* if father isn't the real parent, then ptrace must be enabled */
692 		BUG_ON(father != p->real_parent && !ptrace);
693 
694 		if (father == p->real_parent) {
695 			/* reparent with a reaper, real father it's us */
696 			choose_new_parent(p, reaper);
697 			reparent_thread(p, father, 0);
698 		} else {
699 			/* reparent ptraced task to its real parent */
700 			__ptrace_unlink (p);
701 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
702 			    thread_group_empty(p))
703 				do_notify_parent(p, p->exit_signal);
704 		}
705 
706 		/*
707 		 * if the ptraced child is a zombie with exit_signal == -1
708 		 * we must collect it before we exit, or it will remain
709 		 * zombie forever since we prevented it from self-reap itself
710 		 * while it was being traced by us, to be able to see it in wait4.
711 		 */
712 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
713 			list_add(&p->ptrace_list, to_release);
714 	}
715 	list_for_each_safe(_p, _n, &father->ptrace_children) {
716 		p = list_entry(_p, struct task_struct, ptrace_list);
717 		choose_new_parent(p, reaper);
718 		reparent_thread(p, father, 1);
719 	}
720 }
721 
722 /*
723  * Send signals to all our closest relatives so that they know
724  * to properly mourn us..
725  */
726 static void exit_notify(struct task_struct *tsk)
727 {
728 	int state;
729 	struct task_struct *t;
730 	struct list_head ptrace_dead, *_p, *_n;
731 
732 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
733 	    && !thread_group_empty(tsk)) {
734 		/*
735 		 * This occurs when there was a race between our exit
736 		 * syscall and a group signal choosing us as the one to
737 		 * wake up.  It could be that we are the only thread
738 		 * alerted to check for pending signals, but another thread
739 		 * should be woken now to take the signal since we will not.
740 		 * Now we'll wake all the threads in the group just to make
741 		 * sure someone gets all the pending signals.
742 		 */
743 		read_lock(&tasklist_lock);
744 		spin_lock_irq(&tsk->sighand->siglock);
745 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
746 			if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
747 				recalc_sigpending_tsk(t);
748 				if (signal_pending(t))
749 					signal_wake_up(t, 0);
750 			}
751 		spin_unlock_irq(&tsk->sighand->siglock);
752 		read_unlock(&tasklist_lock);
753 	}
754 
755 	write_lock_irq(&tasklist_lock);
756 
757 	/*
758 	 * This does two things:
759 	 *
760   	 * A.  Make init inherit all the child processes
761 	 * B.  Check to see if any process groups have become orphaned
762 	 *	as a result of our exiting, and if they have any stopped
763 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
764 	 */
765 
766 	INIT_LIST_HEAD(&ptrace_dead);
767 	forget_original_parent(tsk, &ptrace_dead);
768 	BUG_ON(!list_empty(&tsk->children));
769 	BUG_ON(!list_empty(&tsk->ptrace_children));
770 
771 	/*
772 	 * Check to see if any process groups have become orphaned
773 	 * as a result of our exiting, and if they have any stopped
774 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
775 	 *
776 	 * Case i: Our father is in a different pgrp than we are
777 	 * and we were the only connection outside, so our pgrp
778 	 * is about to become orphaned.
779 	 */
780 
781 	t = tsk->real_parent;
782 
783 	if ((process_group(t) != process_group(tsk)) &&
784 	    (t->signal->session == tsk->signal->session) &&
785 	    will_become_orphaned_pgrp(process_group(tsk), tsk) &&
786 	    has_stopped_jobs(process_group(tsk))) {
787 		__kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
788 		__kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
789 	}
790 
791 	/* Let father know we died
792 	 *
793 	 * Thread signals are configurable, but you aren't going to use
794 	 * that to send signals to arbitary processes.
795 	 * That stops right now.
796 	 *
797 	 * If the parent exec id doesn't match the exec id we saved
798 	 * when we started then we know the parent has changed security
799 	 * domain.
800 	 *
801 	 * If our self_exec id doesn't match our parent_exec_id then
802 	 * we have changed execution domain as these two values started
803 	 * the same after a fork.
804 	 *
805 	 */
806 
807 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
808 	    ( tsk->parent_exec_id != t->self_exec_id  ||
809 	      tsk->self_exec_id != tsk->parent_exec_id)
810 	    && !capable(CAP_KILL))
811 		tsk->exit_signal = SIGCHLD;
812 
813 
814 	/* If something other than our normal parent is ptracing us, then
815 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
816 	 * only has special meaning to our real parent.
817 	 */
818 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
819 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
820 		do_notify_parent(tsk, signal);
821 	} else if (tsk->ptrace) {
822 		do_notify_parent(tsk, SIGCHLD);
823 	}
824 
825 	state = EXIT_ZOMBIE;
826 	if (tsk->exit_signal == -1 &&
827 	    (likely(tsk->ptrace == 0) ||
828 	     unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
829 		state = EXIT_DEAD;
830 	tsk->exit_state = state;
831 
832 	write_unlock_irq(&tasklist_lock);
833 
834 	list_for_each_safe(_p, _n, &ptrace_dead) {
835 		list_del_init(_p);
836 		t = list_entry(_p, struct task_struct, ptrace_list);
837 		release_task(t);
838 	}
839 
840 	/* If the process is dead, release it - nobody will wait for it */
841 	if (state == EXIT_DEAD)
842 		release_task(tsk);
843 }
844 
845 fastcall NORET_TYPE void do_exit(long code)
846 {
847 	struct task_struct *tsk = current;
848 	struct taskstats *tidstats;
849 	int group_dead;
850 	unsigned int mycpu;
851 
852 	profile_task_exit(tsk);
853 
854 	WARN_ON(atomic_read(&tsk->fs_excl));
855 
856 	if (unlikely(in_interrupt()))
857 		panic("Aiee, killing interrupt handler!");
858 	if (unlikely(!tsk->pid))
859 		panic("Attempted to kill the idle task!");
860 	if (unlikely(tsk == child_reaper))
861 		panic("Attempted to kill init!");
862 
863 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
864 		current->ptrace_message = code;
865 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
866 	}
867 
868 	/*
869 	 * We're taking recursive faults here in do_exit. Safest is to just
870 	 * leave this task alone and wait for reboot.
871 	 */
872 	if (unlikely(tsk->flags & PF_EXITING)) {
873 		printk(KERN_ALERT
874 			"Fixing recursive fault but reboot is needed!\n");
875 		if (tsk->io_context)
876 			exit_io_context();
877 		set_current_state(TASK_UNINTERRUPTIBLE);
878 		schedule();
879 	}
880 
881 	tsk->flags |= PF_EXITING;
882 
883 	if (unlikely(in_atomic()))
884 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
885 				current->comm, current->pid,
886 				preempt_count());
887 
888 	taskstats_exit_alloc(&tidstats, &mycpu);
889 
890 	acct_update_integrals(tsk);
891 	if (tsk->mm) {
892 		update_hiwater_rss(tsk->mm);
893 		update_hiwater_vm(tsk->mm);
894 	}
895 	group_dead = atomic_dec_and_test(&tsk->signal->live);
896 	if (group_dead) {
897  		hrtimer_cancel(&tsk->signal->real_timer);
898 		exit_itimers(tsk->signal);
899 	}
900 	acct_collect(code, group_dead);
901 	if (unlikely(tsk->robust_list))
902 		exit_robust_list(tsk);
903 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
904 	if (unlikely(tsk->compat_robust_list))
905 		compat_exit_robust_list(tsk);
906 #endif
907 	if (unlikely(tsk->audit_context))
908 		audit_free(tsk);
909 	taskstats_exit_send(tsk, tidstats, group_dead, mycpu);
910 	taskstats_exit_free(tidstats);
911 	delayacct_tsk_exit(tsk);
912 
913 	exit_mm(tsk);
914 
915 	if (group_dead)
916 		acct_process();
917 	exit_sem(tsk);
918 	__exit_files(tsk);
919 	__exit_fs(tsk);
920 	exit_namespace(tsk);
921 	exit_thread();
922 	cpuset_exit(tsk);
923 	exit_keys(tsk);
924 
925 	if (group_dead && tsk->signal->leader)
926 		disassociate_ctty(1);
927 
928 	module_put(task_thread_info(tsk)->exec_domain->module);
929 	if (tsk->binfmt)
930 		module_put(tsk->binfmt->module);
931 
932 	tsk->exit_code = code;
933 	proc_exit_connector(tsk);
934 	exit_notify(tsk);
935 #ifdef CONFIG_NUMA
936 	mpol_free(tsk->mempolicy);
937 	tsk->mempolicy = NULL;
938 #endif
939 	/*
940 	 * This must happen late, after the PID is not
941 	 * hashed anymore:
942 	 */
943 	if (unlikely(!list_empty(&tsk->pi_state_list)))
944 		exit_pi_state_list(tsk);
945 	if (unlikely(current->pi_state_cache))
946 		kfree(current->pi_state_cache);
947 	/*
948 	 * Make sure we are holding no locks:
949 	 */
950 	debug_check_no_locks_held(tsk);
951 
952 	if (tsk->io_context)
953 		exit_io_context();
954 
955 	if (tsk->splice_pipe)
956 		__free_pipe_info(tsk->splice_pipe);
957 
958 	/* PF_DEAD causes final put_task_struct after we schedule. */
959 	preempt_disable();
960 	BUG_ON(tsk->flags & PF_DEAD);
961 	tsk->flags |= PF_DEAD;
962 
963 	schedule();
964 	BUG();
965 	/* Avoid "noreturn function does return".  */
966 	for (;;) ;
967 }
968 
969 EXPORT_SYMBOL_GPL(do_exit);
970 
971 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
972 {
973 	if (comp)
974 		complete(comp);
975 
976 	do_exit(code);
977 }
978 
979 EXPORT_SYMBOL(complete_and_exit);
980 
981 asmlinkage long sys_exit(int error_code)
982 {
983 	do_exit((error_code&0xff)<<8);
984 }
985 
986 /*
987  * Take down every thread in the group.  This is called by fatal signals
988  * as well as by sys_exit_group (below).
989  */
990 NORET_TYPE void
991 do_group_exit(int exit_code)
992 {
993 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
994 
995 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
996 		exit_code = current->signal->group_exit_code;
997 	else if (!thread_group_empty(current)) {
998 		struct signal_struct *const sig = current->signal;
999 		struct sighand_struct *const sighand = current->sighand;
1000 		spin_lock_irq(&sighand->siglock);
1001 		if (sig->flags & SIGNAL_GROUP_EXIT)
1002 			/* Another thread got here before we took the lock.  */
1003 			exit_code = sig->group_exit_code;
1004 		else {
1005 			sig->group_exit_code = exit_code;
1006 			zap_other_threads(current);
1007 		}
1008 		spin_unlock_irq(&sighand->siglock);
1009 	}
1010 
1011 	do_exit(exit_code);
1012 	/* NOTREACHED */
1013 }
1014 
1015 /*
1016  * this kills every thread in the thread group. Note that any externally
1017  * wait4()-ing process will get the correct exit code - even if this
1018  * thread is not the thread group leader.
1019  */
1020 asmlinkage void sys_exit_group(int error_code)
1021 {
1022 	do_group_exit((error_code & 0xff) << 8);
1023 }
1024 
1025 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1026 {
1027 	if (pid > 0) {
1028 		if (p->pid != pid)
1029 			return 0;
1030 	} else if (!pid) {
1031 		if (process_group(p) != process_group(current))
1032 			return 0;
1033 	} else if (pid != -1) {
1034 		if (process_group(p) != -pid)
1035 			return 0;
1036 	}
1037 
1038 	/*
1039 	 * Do not consider detached threads that are
1040 	 * not ptraced:
1041 	 */
1042 	if (p->exit_signal == -1 && !p->ptrace)
1043 		return 0;
1044 
1045 	/* Wait for all children (clone and not) if __WALL is set;
1046 	 * otherwise, wait for clone children *only* if __WCLONE is
1047 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1048 	 * A "clone" child here is one that reports to its parent
1049 	 * using a signal other than SIGCHLD.) */
1050 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1051 	    && !(options & __WALL))
1052 		return 0;
1053 	/*
1054 	 * Do not consider thread group leaders that are
1055 	 * in a non-empty thread group:
1056 	 */
1057 	if (current->tgid != p->tgid && delay_group_leader(p))
1058 		return 2;
1059 
1060 	if (security_task_wait(p))
1061 		return 0;
1062 
1063 	return 1;
1064 }
1065 
1066 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1067 			       int why, int status,
1068 			       struct siginfo __user *infop,
1069 			       struct rusage __user *rusagep)
1070 {
1071 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1072 
1073 	put_task_struct(p);
1074 	if (!retval)
1075 		retval = put_user(SIGCHLD, &infop->si_signo);
1076 	if (!retval)
1077 		retval = put_user(0, &infop->si_errno);
1078 	if (!retval)
1079 		retval = put_user((short)why, &infop->si_code);
1080 	if (!retval)
1081 		retval = put_user(pid, &infop->si_pid);
1082 	if (!retval)
1083 		retval = put_user(uid, &infop->si_uid);
1084 	if (!retval)
1085 		retval = put_user(status, &infop->si_status);
1086 	if (!retval)
1087 		retval = pid;
1088 	return retval;
1089 }
1090 
1091 /*
1092  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1093  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1094  * the lock and this task is uninteresting.  If we return nonzero, we have
1095  * released the lock and the system call should return.
1096  */
1097 static int wait_task_zombie(struct task_struct *p, int noreap,
1098 			    struct siginfo __user *infop,
1099 			    int __user *stat_addr, struct rusage __user *ru)
1100 {
1101 	unsigned long state;
1102 	int retval;
1103 	int status;
1104 
1105 	if (unlikely(noreap)) {
1106 		pid_t pid = p->pid;
1107 		uid_t uid = p->uid;
1108 		int exit_code = p->exit_code;
1109 		int why, status;
1110 
1111 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1112 			return 0;
1113 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1114 			return 0;
1115 		get_task_struct(p);
1116 		read_unlock(&tasklist_lock);
1117 		if ((exit_code & 0x7f) == 0) {
1118 			why = CLD_EXITED;
1119 			status = exit_code >> 8;
1120 		} else {
1121 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1122 			status = exit_code & 0x7f;
1123 		}
1124 		return wait_noreap_copyout(p, pid, uid, why,
1125 					   status, infop, ru);
1126 	}
1127 
1128 	/*
1129 	 * Try to move the task's state to DEAD
1130 	 * only one thread is allowed to do this:
1131 	 */
1132 	state = xchg(&p->exit_state, EXIT_DEAD);
1133 	if (state != EXIT_ZOMBIE) {
1134 		BUG_ON(state != EXIT_DEAD);
1135 		return 0;
1136 	}
1137 	if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1138 		/*
1139 		 * This can only happen in a race with a ptraced thread
1140 		 * dying on another processor.
1141 		 */
1142 		return 0;
1143 	}
1144 
1145 	if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1146 		struct signal_struct *psig;
1147 		struct signal_struct *sig;
1148 
1149 		/*
1150 		 * The resource counters for the group leader are in its
1151 		 * own task_struct.  Those for dead threads in the group
1152 		 * are in its signal_struct, as are those for the child
1153 		 * processes it has previously reaped.  All these
1154 		 * accumulate in the parent's signal_struct c* fields.
1155 		 *
1156 		 * We don't bother to take a lock here to protect these
1157 		 * p->signal fields, because they are only touched by
1158 		 * __exit_signal, which runs with tasklist_lock
1159 		 * write-locked anyway, and so is excluded here.  We do
1160 		 * need to protect the access to p->parent->signal fields,
1161 		 * as other threads in the parent group can be right
1162 		 * here reaping other children at the same time.
1163 		 */
1164 		spin_lock_irq(&p->parent->sighand->siglock);
1165 		psig = p->parent->signal;
1166 		sig = p->signal;
1167 		psig->cutime =
1168 			cputime_add(psig->cutime,
1169 			cputime_add(p->utime,
1170 			cputime_add(sig->utime,
1171 				    sig->cutime)));
1172 		psig->cstime =
1173 			cputime_add(psig->cstime,
1174 			cputime_add(p->stime,
1175 			cputime_add(sig->stime,
1176 				    sig->cstime)));
1177 		psig->cmin_flt +=
1178 			p->min_flt + sig->min_flt + sig->cmin_flt;
1179 		psig->cmaj_flt +=
1180 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1181 		psig->cnvcsw +=
1182 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1183 		psig->cnivcsw +=
1184 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1185 		spin_unlock_irq(&p->parent->sighand->siglock);
1186 	}
1187 
1188 	/*
1189 	 * Now we are sure this task is interesting, and no other
1190 	 * thread can reap it because we set its state to EXIT_DEAD.
1191 	 */
1192 	read_unlock(&tasklist_lock);
1193 
1194 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1195 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1196 		? p->signal->group_exit_code : p->exit_code;
1197 	if (!retval && stat_addr)
1198 		retval = put_user(status, stat_addr);
1199 	if (!retval && infop)
1200 		retval = put_user(SIGCHLD, &infop->si_signo);
1201 	if (!retval && infop)
1202 		retval = put_user(0, &infop->si_errno);
1203 	if (!retval && infop) {
1204 		int why;
1205 
1206 		if ((status & 0x7f) == 0) {
1207 			why = CLD_EXITED;
1208 			status >>= 8;
1209 		} else {
1210 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1211 			status &= 0x7f;
1212 		}
1213 		retval = put_user((short)why, &infop->si_code);
1214 		if (!retval)
1215 			retval = put_user(status, &infop->si_status);
1216 	}
1217 	if (!retval && infop)
1218 		retval = put_user(p->pid, &infop->si_pid);
1219 	if (!retval && infop)
1220 		retval = put_user(p->uid, &infop->si_uid);
1221 	if (retval) {
1222 		// TODO: is this safe?
1223 		p->exit_state = EXIT_ZOMBIE;
1224 		return retval;
1225 	}
1226 	retval = p->pid;
1227 	if (p->real_parent != p->parent) {
1228 		write_lock_irq(&tasklist_lock);
1229 		/* Double-check with lock held.  */
1230 		if (p->real_parent != p->parent) {
1231 			__ptrace_unlink(p);
1232 			// TODO: is this safe?
1233 			p->exit_state = EXIT_ZOMBIE;
1234 			/*
1235 			 * If this is not a detached task, notify the parent.
1236 			 * If it's still not detached after that, don't release
1237 			 * it now.
1238 			 */
1239 			if (p->exit_signal != -1) {
1240 				do_notify_parent(p, p->exit_signal);
1241 				if (p->exit_signal != -1)
1242 					p = NULL;
1243 			}
1244 		}
1245 		write_unlock_irq(&tasklist_lock);
1246 	}
1247 	if (p != NULL)
1248 		release_task(p);
1249 	BUG_ON(!retval);
1250 	return retval;
1251 }
1252 
1253 /*
1254  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1255  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1256  * the lock and this task is uninteresting.  If we return nonzero, we have
1257  * released the lock and the system call should return.
1258  */
1259 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1260 			     int noreap, struct siginfo __user *infop,
1261 			     int __user *stat_addr, struct rusage __user *ru)
1262 {
1263 	int retval, exit_code;
1264 
1265 	if (!p->exit_code)
1266 		return 0;
1267 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1268 	    p->signal && p->signal->group_stop_count > 0)
1269 		/*
1270 		 * A group stop is in progress and this is the group leader.
1271 		 * We won't report until all threads have stopped.
1272 		 */
1273 		return 0;
1274 
1275 	/*
1276 	 * Now we are pretty sure this task is interesting.
1277 	 * Make sure it doesn't get reaped out from under us while we
1278 	 * give up the lock and then examine it below.  We don't want to
1279 	 * keep holding onto the tasklist_lock while we call getrusage and
1280 	 * possibly take page faults for user memory.
1281 	 */
1282 	get_task_struct(p);
1283 	read_unlock(&tasklist_lock);
1284 
1285 	if (unlikely(noreap)) {
1286 		pid_t pid = p->pid;
1287 		uid_t uid = p->uid;
1288 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1289 
1290 		exit_code = p->exit_code;
1291 		if (unlikely(!exit_code) ||
1292 		    unlikely(p->state & TASK_TRACED))
1293 			goto bail_ref;
1294 		return wait_noreap_copyout(p, pid, uid,
1295 					   why, (exit_code << 8) | 0x7f,
1296 					   infop, ru);
1297 	}
1298 
1299 	write_lock_irq(&tasklist_lock);
1300 
1301 	/*
1302 	 * This uses xchg to be atomic with the thread resuming and setting
1303 	 * it.  It must also be done with the write lock held to prevent a
1304 	 * race with the EXIT_ZOMBIE case.
1305 	 */
1306 	exit_code = xchg(&p->exit_code, 0);
1307 	if (unlikely(p->exit_state)) {
1308 		/*
1309 		 * The task resumed and then died.  Let the next iteration
1310 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1311 		 * already be zero here if it resumed and did _exit(0).
1312 		 * The task itself is dead and won't touch exit_code again;
1313 		 * other processors in this function are locked out.
1314 		 */
1315 		p->exit_code = exit_code;
1316 		exit_code = 0;
1317 	}
1318 	if (unlikely(exit_code == 0)) {
1319 		/*
1320 		 * Another thread in this function got to it first, or it
1321 		 * resumed, or it resumed and then died.
1322 		 */
1323 		write_unlock_irq(&tasklist_lock);
1324 bail_ref:
1325 		put_task_struct(p);
1326 		/*
1327 		 * We are returning to the wait loop without having successfully
1328 		 * removed the process and having released the lock. We cannot
1329 		 * continue, since the "p" task pointer is potentially stale.
1330 		 *
1331 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1332 		 * beginning. Do _not_ re-acquire the lock.
1333 		 */
1334 		return -EAGAIN;
1335 	}
1336 
1337 	/* move to end of parent's list to avoid starvation */
1338 	remove_parent(p);
1339 	add_parent(p);
1340 
1341 	write_unlock_irq(&tasklist_lock);
1342 
1343 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1344 	if (!retval && stat_addr)
1345 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1346 	if (!retval && infop)
1347 		retval = put_user(SIGCHLD, &infop->si_signo);
1348 	if (!retval && infop)
1349 		retval = put_user(0, &infop->si_errno);
1350 	if (!retval && infop)
1351 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1352 					  ? CLD_TRAPPED : CLD_STOPPED),
1353 				  &infop->si_code);
1354 	if (!retval && infop)
1355 		retval = put_user(exit_code, &infop->si_status);
1356 	if (!retval && infop)
1357 		retval = put_user(p->pid, &infop->si_pid);
1358 	if (!retval && infop)
1359 		retval = put_user(p->uid, &infop->si_uid);
1360 	if (!retval)
1361 		retval = p->pid;
1362 	put_task_struct(p);
1363 
1364 	BUG_ON(!retval);
1365 	return retval;
1366 }
1367 
1368 /*
1369  * Handle do_wait work for one task in a live, non-stopped state.
1370  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1371  * the lock and this task is uninteresting.  If we return nonzero, we have
1372  * released the lock and the system call should return.
1373  */
1374 static int wait_task_continued(struct task_struct *p, int noreap,
1375 			       struct siginfo __user *infop,
1376 			       int __user *stat_addr, struct rusage __user *ru)
1377 {
1378 	int retval;
1379 	pid_t pid;
1380 	uid_t uid;
1381 
1382 	if (unlikely(!p->signal))
1383 		return 0;
1384 
1385 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1386 		return 0;
1387 
1388 	spin_lock_irq(&p->sighand->siglock);
1389 	/* Re-check with the lock held.  */
1390 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1391 		spin_unlock_irq(&p->sighand->siglock);
1392 		return 0;
1393 	}
1394 	if (!noreap)
1395 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1396 	spin_unlock_irq(&p->sighand->siglock);
1397 
1398 	pid = p->pid;
1399 	uid = p->uid;
1400 	get_task_struct(p);
1401 	read_unlock(&tasklist_lock);
1402 
1403 	if (!infop) {
1404 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1405 		put_task_struct(p);
1406 		if (!retval && stat_addr)
1407 			retval = put_user(0xffff, stat_addr);
1408 		if (!retval)
1409 			retval = p->pid;
1410 	} else {
1411 		retval = wait_noreap_copyout(p, pid, uid,
1412 					     CLD_CONTINUED, SIGCONT,
1413 					     infop, ru);
1414 		BUG_ON(retval == 0);
1415 	}
1416 
1417 	return retval;
1418 }
1419 
1420 
1421 static inline int my_ptrace_child(struct task_struct *p)
1422 {
1423 	if (!(p->ptrace & PT_PTRACED))
1424 		return 0;
1425 	if (!(p->ptrace & PT_ATTACHED))
1426 		return 1;
1427 	/*
1428 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1429 	 * we are the attacher.  If we are the real parent, this is a race
1430 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1431 	 * which we have to switch the parent links, but has already set
1432 	 * the flags in p->ptrace.
1433 	 */
1434 	return (p->parent != p->real_parent);
1435 }
1436 
1437 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1438 		    int __user *stat_addr, struct rusage __user *ru)
1439 {
1440 	DECLARE_WAITQUEUE(wait, current);
1441 	struct task_struct *tsk;
1442 	int flag, retval;
1443 
1444 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1445 repeat:
1446 	/*
1447 	 * We will set this flag if we see any child that might later
1448 	 * match our criteria, even if we are not able to reap it yet.
1449 	 */
1450 	flag = 0;
1451 	current->state = TASK_INTERRUPTIBLE;
1452 	read_lock(&tasklist_lock);
1453 	tsk = current;
1454 	do {
1455 		struct task_struct *p;
1456 		struct list_head *_p;
1457 		int ret;
1458 
1459 		list_for_each(_p,&tsk->children) {
1460 			p = list_entry(_p, struct task_struct, sibling);
1461 
1462 			ret = eligible_child(pid, options, p);
1463 			if (!ret)
1464 				continue;
1465 
1466 			switch (p->state) {
1467 			case TASK_TRACED:
1468 				/*
1469 				 * When we hit the race with PTRACE_ATTACH,
1470 				 * we will not report this child.  But the
1471 				 * race means it has not yet been moved to
1472 				 * our ptrace_children list, so we need to
1473 				 * set the flag here to avoid a spurious ECHILD
1474 				 * when the race happens with the only child.
1475 				 */
1476 				flag = 1;
1477 				if (!my_ptrace_child(p))
1478 					continue;
1479 				/*FALLTHROUGH*/
1480 			case TASK_STOPPED:
1481 				/*
1482 				 * It's stopped now, so it might later
1483 				 * continue, exit, or stop again.
1484 				 */
1485 				flag = 1;
1486 				if (!(options & WUNTRACED) &&
1487 				    !my_ptrace_child(p))
1488 					continue;
1489 				retval = wait_task_stopped(p, ret == 2,
1490 							   (options & WNOWAIT),
1491 							   infop,
1492 							   stat_addr, ru);
1493 				if (retval == -EAGAIN)
1494 					goto repeat;
1495 				if (retval != 0) /* He released the lock.  */
1496 					goto end;
1497 				break;
1498 			default:
1499 			// case EXIT_DEAD:
1500 				if (p->exit_state == EXIT_DEAD)
1501 					continue;
1502 			// case EXIT_ZOMBIE:
1503 				if (p->exit_state == EXIT_ZOMBIE) {
1504 					/*
1505 					 * Eligible but we cannot release
1506 					 * it yet:
1507 					 */
1508 					if (ret == 2)
1509 						goto check_continued;
1510 					if (!likely(options & WEXITED))
1511 						continue;
1512 					retval = wait_task_zombie(
1513 						p, (options & WNOWAIT),
1514 						infop, stat_addr, ru);
1515 					/* He released the lock.  */
1516 					if (retval != 0)
1517 						goto end;
1518 					break;
1519 				}
1520 check_continued:
1521 				/*
1522 				 * It's running now, so it might later
1523 				 * exit, stop, or stop and then continue.
1524 				 */
1525 				flag = 1;
1526 				if (!unlikely(options & WCONTINUED))
1527 					continue;
1528 				retval = wait_task_continued(
1529 					p, (options & WNOWAIT),
1530 					infop, stat_addr, ru);
1531 				if (retval != 0) /* He released the lock.  */
1532 					goto end;
1533 				break;
1534 			}
1535 		}
1536 		if (!flag) {
1537 			list_for_each(_p, &tsk->ptrace_children) {
1538 				p = list_entry(_p, struct task_struct,
1539 						ptrace_list);
1540 				if (!eligible_child(pid, options, p))
1541 					continue;
1542 				flag = 1;
1543 				break;
1544 			}
1545 		}
1546 		if (options & __WNOTHREAD)
1547 			break;
1548 		tsk = next_thread(tsk);
1549 		BUG_ON(tsk->signal != current->signal);
1550 	} while (tsk != current);
1551 
1552 	read_unlock(&tasklist_lock);
1553 	if (flag) {
1554 		retval = 0;
1555 		if (options & WNOHANG)
1556 			goto end;
1557 		retval = -ERESTARTSYS;
1558 		if (signal_pending(current))
1559 			goto end;
1560 		schedule();
1561 		goto repeat;
1562 	}
1563 	retval = -ECHILD;
1564 end:
1565 	current->state = TASK_RUNNING;
1566 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1567 	if (infop) {
1568 		if (retval > 0)
1569 		retval = 0;
1570 		else {
1571 			/*
1572 			 * For a WNOHANG return, clear out all the fields
1573 			 * we would set so the user can easily tell the
1574 			 * difference.
1575 			 */
1576 			if (!retval)
1577 				retval = put_user(0, &infop->si_signo);
1578 			if (!retval)
1579 				retval = put_user(0, &infop->si_errno);
1580 			if (!retval)
1581 				retval = put_user(0, &infop->si_code);
1582 			if (!retval)
1583 				retval = put_user(0, &infop->si_pid);
1584 			if (!retval)
1585 				retval = put_user(0, &infop->si_uid);
1586 			if (!retval)
1587 				retval = put_user(0, &infop->si_status);
1588 		}
1589 	}
1590 	return retval;
1591 }
1592 
1593 asmlinkage long sys_waitid(int which, pid_t pid,
1594 			   struct siginfo __user *infop, int options,
1595 			   struct rusage __user *ru)
1596 {
1597 	long ret;
1598 
1599 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1600 		return -EINVAL;
1601 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1602 		return -EINVAL;
1603 
1604 	switch (which) {
1605 	case P_ALL:
1606 		pid = -1;
1607 		break;
1608 	case P_PID:
1609 		if (pid <= 0)
1610 			return -EINVAL;
1611 		break;
1612 	case P_PGID:
1613 		if (pid <= 0)
1614 			return -EINVAL;
1615 		pid = -pid;
1616 		break;
1617 	default:
1618 		return -EINVAL;
1619 	}
1620 
1621 	ret = do_wait(pid, options, infop, NULL, ru);
1622 
1623 	/* avoid REGPARM breakage on x86: */
1624 	prevent_tail_call(ret);
1625 	return ret;
1626 }
1627 
1628 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1629 			  int options, struct rusage __user *ru)
1630 {
1631 	long ret;
1632 
1633 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1634 			__WNOTHREAD|__WCLONE|__WALL))
1635 		return -EINVAL;
1636 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1637 
1638 	/* avoid REGPARM breakage on x86: */
1639 	prevent_tail_call(ret);
1640 	return ret;
1641 }
1642 
1643 #ifdef __ARCH_WANT_SYS_WAITPID
1644 
1645 /*
1646  * sys_waitpid() remains for compatibility. waitpid() should be
1647  * implemented by calling sys_wait4() from libc.a.
1648  */
1649 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1650 {
1651 	return sys_wait4(pid, stat_addr, options, NULL);
1652 }
1653 
1654 #endif
1655