1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 53 #include <asm/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/pgtable.h> 56 #include <asm/mmu_context.h> 57 #include "cred-internals.h" 58 59 static void exit_mm(struct task_struct * tsk); 60 61 static void __unhash_process(struct task_struct *p) 62 { 63 nr_threads--; 64 detach_pid(p, PIDTYPE_PID); 65 if (thread_group_leader(p)) { 66 detach_pid(p, PIDTYPE_PGID); 67 detach_pid(p, PIDTYPE_SID); 68 69 list_del_rcu(&p->tasks); 70 __get_cpu_var(process_counts)--; 71 } 72 list_del_rcu(&p->thread_group); 73 list_del_init(&p->sibling); 74 } 75 76 /* 77 * This function expects the tasklist_lock write-locked. 78 */ 79 static void __exit_signal(struct task_struct *tsk) 80 { 81 struct signal_struct *sig = tsk->signal; 82 struct sighand_struct *sighand; 83 84 BUG_ON(!sig); 85 BUG_ON(!atomic_read(&sig->count)); 86 87 sighand = rcu_dereference(tsk->sighand); 88 spin_lock(&sighand->siglock); 89 90 posix_cpu_timers_exit(tsk); 91 if (atomic_dec_and_test(&sig->count)) 92 posix_cpu_timers_exit_group(tsk); 93 else { 94 /* 95 * If there is any task waiting for the group exit 96 * then notify it: 97 */ 98 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 99 wake_up_process(sig->group_exit_task); 100 101 if (tsk == sig->curr_target) 102 sig->curr_target = next_thread(tsk); 103 /* 104 * Accumulate here the counters for all threads but the 105 * group leader as they die, so they can be added into 106 * the process-wide totals when those are taken. 107 * The group leader stays around as a zombie as long 108 * as there are other threads. When it gets reaped, 109 * the exit.c code will add its counts into these totals. 110 * We won't ever get here for the group leader, since it 111 * will have been the last reference on the signal_struct. 112 */ 113 sig->utime = cputime_add(sig->utime, task_utime(tsk)); 114 sig->stime = cputime_add(sig->stime, task_stime(tsk)); 115 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); 116 sig->min_flt += tsk->min_flt; 117 sig->maj_flt += tsk->maj_flt; 118 sig->nvcsw += tsk->nvcsw; 119 sig->nivcsw += tsk->nivcsw; 120 sig->inblock += task_io_get_inblock(tsk); 121 sig->oublock += task_io_get_oublock(tsk); 122 task_io_accounting_add(&sig->ioac, &tsk->ioac); 123 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 124 sig = NULL; /* Marker for below. */ 125 } 126 127 __unhash_process(tsk); 128 129 /* 130 * Do this under ->siglock, we can race with another thread 131 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 132 */ 133 flush_sigqueue(&tsk->pending); 134 135 tsk->signal = NULL; 136 tsk->sighand = NULL; 137 spin_unlock(&sighand->siglock); 138 139 __cleanup_sighand(sighand); 140 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 141 if (sig) { 142 flush_sigqueue(&sig->shared_pending); 143 taskstats_tgid_free(sig); 144 /* 145 * Make sure ->signal can't go away under rq->lock, 146 * see account_group_exec_runtime(). 147 */ 148 task_rq_unlock_wait(tsk); 149 __cleanup_signal(sig); 150 } 151 } 152 153 static void delayed_put_task_struct(struct rcu_head *rhp) 154 { 155 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 156 157 #ifdef CONFIG_PERF_EVENTS 158 WARN_ON_ONCE(tsk->perf_event_ctxp); 159 #endif 160 trace_sched_process_free(tsk); 161 put_task_struct(tsk); 162 } 163 164 165 void release_task(struct task_struct * p) 166 { 167 struct task_struct *leader; 168 int zap_leader; 169 repeat: 170 tracehook_prepare_release_task(p); 171 /* don't need to get the RCU readlock here - the process is dead and 172 * can't be modifying its own credentials */ 173 atomic_dec(&__task_cred(p)->user->processes); 174 175 proc_flush_task(p); 176 177 write_lock_irq(&tasklist_lock); 178 tracehook_finish_release_task(p); 179 __exit_signal(p); 180 181 /* 182 * If we are the last non-leader member of the thread 183 * group, and the leader is zombie, then notify the 184 * group leader's parent process. (if it wants notification.) 185 */ 186 zap_leader = 0; 187 leader = p->group_leader; 188 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 189 BUG_ON(task_detached(leader)); 190 do_notify_parent(leader, leader->exit_signal); 191 /* 192 * If we were the last child thread and the leader has 193 * exited already, and the leader's parent ignores SIGCHLD, 194 * then we are the one who should release the leader. 195 * 196 * do_notify_parent() will have marked it self-reaping in 197 * that case. 198 */ 199 zap_leader = task_detached(leader); 200 201 /* 202 * This maintains the invariant that release_task() 203 * only runs on a task in EXIT_DEAD, just for sanity. 204 */ 205 if (zap_leader) 206 leader->exit_state = EXIT_DEAD; 207 } 208 209 write_unlock_irq(&tasklist_lock); 210 release_thread(p); 211 call_rcu(&p->rcu, delayed_put_task_struct); 212 213 p = leader; 214 if (unlikely(zap_leader)) 215 goto repeat; 216 } 217 218 /* 219 * This checks not only the pgrp, but falls back on the pid if no 220 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 221 * without this... 222 * 223 * The caller must hold rcu lock or the tasklist lock. 224 */ 225 struct pid *session_of_pgrp(struct pid *pgrp) 226 { 227 struct task_struct *p; 228 struct pid *sid = NULL; 229 230 p = pid_task(pgrp, PIDTYPE_PGID); 231 if (p == NULL) 232 p = pid_task(pgrp, PIDTYPE_PID); 233 if (p != NULL) 234 sid = task_session(p); 235 236 return sid; 237 } 238 239 /* 240 * Determine if a process group is "orphaned", according to the POSIX 241 * definition in 2.2.2.52. Orphaned process groups are not to be affected 242 * by terminal-generated stop signals. Newly orphaned process groups are 243 * to receive a SIGHUP and a SIGCONT. 244 * 245 * "I ask you, have you ever known what it is to be an orphan?" 246 */ 247 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 248 { 249 struct task_struct *p; 250 251 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 252 if ((p == ignored_task) || 253 (p->exit_state && thread_group_empty(p)) || 254 is_global_init(p->real_parent)) 255 continue; 256 257 if (task_pgrp(p->real_parent) != pgrp && 258 task_session(p->real_parent) == task_session(p)) 259 return 0; 260 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 261 262 return 1; 263 } 264 265 int is_current_pgrp_orphaned(void) 266 { 267 int retval; 268 269 read_lock(&tasklist_lock); 270 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 271 read_unlock(&tasklist_lock); 272 273 return retval; 274 } 275 276 static int has_stopped_jobs(struct pid *pgrp) 277 { 278 int retval = 0; 279 struct task_struct *p; 280 281 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 282 if (!task_is_stopped(p)) 283 continue; 284 retval = 1; 285 break; 286 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 287 return retval; 288 } 289 290 /* 291 * Check to see if any process groups have become orphaned as 292 * a result of our exiting, and if they have any stopped jobs, 293 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 294 */ 295 static void 296 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 297 { 298 struct pid *pgrp = task_pgrp(tsk); 299 struct task_struct *ignored_task = tsk; 300 301 if (!parent) 302 /* exit: our father is in a different pgrp than 303 * we are and we were the only connection outside. 304 */ 305 parent = tsk->real_parent; 306 else 307 /* reparent: our child is in a different pgrp than 308 * we are, and it was the only connection outside. 309 */ 310 ignored_task = NULL; 311 312 if (task_pgrp(parent) != pgrp && 313 task_session(parent) == task_session(tsk) && 314 will_become_orphaned_pgrp(pgrp, ignored_task) && 315 has_stopped_jobs(pgrp)) { 316 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 317 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 318 } 319 } 320 321 /** 322 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 323 * 324 * If a kernel thread is launched as a result of a system call, or if 325 * it ever exits, it should generally reparent itself to kthreadd so it 326 * isn't in the way of other processes and is correctly cleaned up on exit. 327 * 328 * The various task state such as scheduling policy and priority may have 329 * been inherited from a user process, so we reset them to sane values here. 330 * 331 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 332 */ 333 static void reparent_to_kthreadd(void) 334 { 335 write_lock_irq(&tasklist_lock); 336 337 ptrace_unlink(current); 338 /* Reparent to init */ 339 current->real_parent = current->parent = kthreadd_task; 340 list_move_tail(¤t->sibling, ¤t->real_parent->children); 341 342 /* Set the exit signal to SIGCHLD so we signal init on exit */ 343 current->exit_signal = SIGCHLD; 344 345 if (task_nice(current) < 0) 346 set_user_nice(current, 0); 347 /* cpus_allowed? */ 348 /* rt_priority? */ 349 /* signals? */ 350 memcpy(current->signal->rlim, init_task.signal->rlim, 351 sizeof(current->signal->rlim)); 352 353 atomic_inc(&init_cred.usage); 354 commit_creds(&init_cred); 355 write_unlock_irq(&tasklist_lock); 356 } 357 358 void __set_special_pids(struct pid *pid) 359 { 360 struct task_struct *curr = current->group_leader; 361 362 if (task_session(curr) != pid) { 363 change_pid(curr, PIDTYPE_SID, pid); 364 proc_sid_connector(curr); 365 } 366 367 if (task_pgrp(curr) != pid) 368 change_pid(curr, PIDTYPE_PGID, pid); 369 } 370 371 static void set_special_pids(struct pid *pid) 372 { 373 write_lock_irq(&tasklist_lock); 374 __set_special_pids(pid); 375 write_unlock_irq(&tasklist_lock); 376 } 377 378 /* 379 * Let kernel threads use this to say that they allow a certain signal. 380 * Must not be used if kthread was cloned with CLONE_SIGHAND. 381 */ 382 int allow_signal(int sig) 383 { 384 if (!valid_signal(sig) || sig < 1) 385 return -EINVAL; 386 387 spin_lock_irq(¤t->sighand->siglock); 388 /* This is only needed for daemonize()'ed kthreads */ 389 sigdelset(¤t->blocked, sig); 390 /* 391 * Kernel threads handle their own signals. Let the signal code 392 * know it'll be handled, so that they don't get converted to 393 * SIGKILL or just silently dropped. 394 */ 395 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 396 recalc_sigpending(); 397 spin_unlock_irq(¤t->sighand->siglock); 398 return 0; 399 } 400 401 EXPORT_SYMBOL(allow_signal); 402 403 int disallow_signal(int sig) 404 { 405 if (!valid_signal(sig) || sig < 1) 406 return -EINVAL; 407 408 spin_lock_irq(¤t->sighand->siglock); 409 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 410 recalc_sigpending(); 411 spin_unlock_irq(¤t->sighand->siglock); 412 return 0; 413 } 414 415 EXPORT_SYMBOL(disallow_signal); 416 417 /* 418 * Put all the gunge required to become a kernel thread without 419 * attached user resources in one place where it belongs. 420 */ 421 422 void daemonize(const char *name, ...) 423 { 424 va_list args; 425 sigset_t blocked; 426 427 va_start(args, name); 428 vsnprintf(current->comm, sizeof(current->comm), name, args); 429 va_end(args); 430 431 /* 432 * If we were started as result of loading a module, close all of the 433 * user space pages. We don't need them, and if we didn't close them 434 * they would be locked into memory. 435 */ 436 exit_mm(current); 437 /* 438 * We don't want to have TIF_FREEZE set if the system-wide hibernation 439 * or suspend transition begins right now. 440 */ 441 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 442 443 if (current->nsproxy != &init_nsproxy) { 444 get_nsproxy(&init_nsproxy); 445 switch_task_namespaces(current, &init_nsproxy); 446 } 447 set_special_pids(&init_struct_pid); 448 proc_clear_tty(current); 449 450 /* Block and flush all signals */ 451 sigfillset(&blocked); 452 sigprocmask(SIG_BLOCK, &blocked, NULL); 453 flush_signals(current); 454 455 /* Become as one with the init task */ 456 457 daemonize_fs_struct(); 458 exit_files(current); 459 current->files = init_task.files; 460 atomic_inc(¤t->files->count); 461 462 reparent_to_kthreadd(); 463 } 464 465 EXPORT_SYMBOL(daemonize); 466 467 static void close_files(struct files_struct * files) 468 { 469 int i, j; 470 struct fdtable *fdt; 471 472 j = 0; 473 474 /* 475 * It is safe to dereference the fd table without RCU or 476 * ->file_lock because this is the last reference to the 477 * files structure. 478 */ 479 fdt = files_fdtable(files); 480 for (;;) { 481 unsigned long set; 482 i = j * __NFDBITS; 483 if (i >= fdt->max_fds) 484 break; 485 set = fdt->open_fds->fds_bits[j++]; 486 while (set) { 487 if (set & 1) { 488 struct file * file = xchg(&fdt->fd[i], NULL); 489 if (file) { 490 filp_close(file, files); 491 cond_resched(); 492 } 493 } 494 i++; 495 set >>= 1; 496 } 497 } 498 } 499 500 struct files_struct *get_files_struct(struct task_struct *task) 501 { 502 struct files_struct *files; 503 504 task_lock(task); 505 files = task->files; 506 if (files) 507 atomic_inc(&files->count); 508 task_unlock(task); 509 510 return files; 511 } 512 513 void put_files_struct(struct files_struct *files) 514 { 515 struct fdtable *fdt; 516 517 if (atomic_dec_and_test(&files->count)) { 518 close_files(files); 519 /* 520 * Free the fd and fdset arrays if we expanded them. 521 * If the fdtable was embedded, pass files for freeing 522 * at the end of the RCU grace period. Otherwise, 523 * you can free files immediately. 524 */ 525 fdt = files_fdtable(files); 526 if (fdt != &files->fdtab) 527 kmem_cache_free(files_cachep, files); 528 free_fdtable(fdt); 529 } 530 } 531 532 void reset_files_struct(struct files_struct *files) 533 { 534 struct task_struct *tsk = current; 535 struct files_struct *old; 536 537 old = tsk->files; 538 task_lock(tsk); 539 tsk->files = files; 540 task_unlock(tsk); 541 put_files_struct(old); 542 } 543 544 void exit_files(struct task_struct *tsk) 545 { 546 struct files_struct * files = tsk->files; 547 548 if (files) { 549 task_lock(tsk); 550 tsk->files = NULL; 551 task_unlock(tsk); 552 put_files_struct(files); 553 } 554 } 555 556 #ifdef CONFIG_MM_OWNER 557 /* 558 * Task p is exiting and it owned mm, lets find a new owner for it 559 */ 560 static inline int 561 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 562 { 563 /* 564 * If there are other users of the mm and the owner (us) is exiting 565 * we need to find a new owner to take on the responsibility. 566 */ 567 if (atomic_read(&mm->mm_users) <= 1) 568 return 0; 569 if (mm->owner != p) 570 return 0; 571 return 1; 572 } 573 574 void mm_update_next_owner(struct mm_struct *mm) 575 { 576 struct task_struct *c, *g, *p = current; 577 578 retry: 579 if (!mm_need_new_owner(mm, p)) 580 return; 581 582 read_lock(&tasklist_lock); 583 /* 584 * Search in the children 585 */ 586 list_for_each_entry(c, &p->children, sibling) { 587 if (c->mm == mm) 588 goto assign_new_owner; 589 } 590 591 /* 592 * Search in the siblings 593 */ 594 list_for_each_entry(c, &p->real_parent->children, sibling) { 595 if (c->mm == mm) 596 goto assign_new_owner; 597 } 598 599 /* 600 * Search through everything else. We should not get 601 * here often 602 */ 603 do_each_thread(g, c) { 604 if (c->mm == mm) 605 goto assign_new_owner; 606 } while_each_thread(g, c); 607 608 read_unlock(&tasklist_lock); 609 /* 610 * We found no owner yet mm_users > 1: this implies that we are 611 * most likely racing with swapoff (try_to_unuse()) or /proc or 612 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 613 */ 614 mm->owner = NULL; 615 return; 616 617 assign_new_owner: 618 BUG_ON(c == p); 619 get_task_struct(c); 620 /* 621 * The task_lock protects c->mm from changing. 622 * We always want mm->owner->mm == mm 623 */ 624 task_lock(c); 625 /* 626 * Delay read_unlock() till we have the task_lock() 627 * to ensure that c does not slip away underneath us 628 */ 629 read_unlock(&tasklist_lock); 630 if (c->mm != mm) { 631 task_unlock(c); 632 put_task_struct(c); 633 goto retry; 634 } 635 mm->owner = c; 636 task_unlock(c); 637 put_task_struct(c); 638 } 639 #endif /* CONFIG_MM_OWNER */ 640 641 /* 642 * Turn us into a lazy TLB process if we 643 * aren't already.. 644 */ 645 static void exit_mm(struct task_struct * tsk) 646 { 647 struct mm_struct *mm = tsk->mm; 648 struct core_state *core_state; 649 650 mm_release(tsk, mm); 651 if (!mm) 652 return; 653 /* 654 * Serialize with any possible pending coredump. 655 * We must hold mmap_sem around checking core_state 656 * and clearing tsk->mm. The core-inducing thread 657 * will increment ->nr_threads for each thread in the 658 * group with ->mm != NULL. 659 */ 660 down_read(&mm->mmap_sem); 661 core_state = mm->core_state; 662 if (core_state) { 663 struct core_thread self; 664 up_read(&mm->mmap_sem); 665 666 self.task = tsk; 667 self.next = xchg(&core_state->dumper.next, &self); 668 /* 669 * Implies mb(), the result of xchg() must be visible 670 * to core_state->dumper. 671 */ 672 if (atomic_dec_and_test(&core_state->nr_threads)) 673 complete(&core_state->startup); 674 675 for (;;) { 676 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 677 if (!self.task) /* see coredump_finish() */ 678 break; 679 schedule(); 680 } 681 __set_task_state(tsk, TASK_RUNNING); 682 down_read(&mm->mmap_sem); 683 } 684 atomic_inc(&mm->mm_count); 685 BUG_ON(mm != tsk->active_mm); 686 /* more a memory barrier than a real lock */ 687 task_lock(tsk); 688 tsk->mm = NULL; 689 up_read(&mm->mmap_sem); 690 enter_lazy_tlb(mm, current); 691 /* We don't want this task to be frozen prematurely */ 692 clear_freeze_flag(tsk); 693 task_unlock(tsk); 694 mm_update_next_owner(mm); 695 mmput(mm); 696 } 697 698 /* 699 * When we die, we re-parent all our children. 700 * Try to give them to another thread in our thread 701 * group, and if no such member exists, give it to 702 * the child reaper process (ie "init") in our pid 703 * space. 704 */ 705 static struct task_struct *find_new_reaper(struct task_struct *father) 706 { 707 struct pid_namespace *pid_ns = task_active_pid_ns(father); 708 struct task_struct *thread; 709 710 thread = father; 711 while_each_thread(father, thread) { 712 if (thread->flags & PF_EXITING) 713 continue; 714 if (unlikely(pid_ns->child_reaper == father)) 715 pid_ns->child_reaper = thread; 716 return thread; 717 } 718 719 if (unlikely(pid_ns->child_reaper == father)) { 720 write_unlock_irq(&tasklist_lock); 721 if (unlikely(pid_ns == &init_pid_ns)) 722 panic("Attempted to kill init!"); 723 724 zap_pid_ns_processes(pid_ns); 725 write_lock_irq(&tasklist_lock); 726 /* 727 * We can not clear ->child_reaper or leave it alone. 728 * There may by stealth EXIT_DEAD tasks on ->children, 729 * forget_original_parent() must move them somewhere. 730 */ 731 pid_ns->child_reaper = init_pid_ns.child_reaper; 732 } 733 734 return pid_ns->child_reaper; 735 } 736 737 /* 738 * Any that need to be release_task'd are put on the @dead list. 739 */ 740 static void reparent_thread(struct task_struct *father, struct task_struct *p, 741 struct list_head *dead) 742 { 743 if (p->pdeath_signal) 744 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 745 746 list_move_tail(&p->sibling, &p->real_parent->children); 747 748 if (task_detached(p)) 749 return; 750 /* 751 * If this is a threaded reparent there is no need to 752 * notify anyone anything has happened. 753 */ 754 if (same_thread_group(p->real_parent, father)) 755 return; 756 757 /* We don't want people slaying init. */ 758 p->exit_signal = SIGCHLD; 759 760 /* If it has exited notify the new parent about this child's death. */ 761 if (!task_ptrace(p) && 762 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 763 do_notify_parent(p, p->exit_signal); 764 if (task_detached(p)) { 765 p->exit_state = EXIT_DEAD; 766 list_move_tail(&p->sibling, dead); 767 } 768 } 769 770 kill_orphaned_pgrp(p, father); 771 } 772 773 static void forget_original_parent(struct task_struct *father) 774 { 775 struct task_struct *p, *n, *reaper; 776 LIST_HEAD(dead_children); 777 778 exit_ptrace(father); 779 780 write_lock_irq(&tasklist_lock); 781 reaper = find_new_reaper(father); 782 783 list_for_each_entry_safe(p, n, &father->children, sibling) { 784 p->real_parent = reaper; 785 if (p->parent == father) { 786 BUG_ON(task_ptrace(p)); 787 p->parent = p->real_parent; 788 } 789 reparent_thread(father, p, &dead_children); 790 } 791 write_unlock_irq(&tasklist_lock); 792 793 BUG_ON(!list_empty(&father->children)); 794 795 list_for_each_entry_safe(p, n, &dead_children, sibling) { 796 list_del_init(&p->sibling); 797 release_task(p); 798 } 799 } 800 801 /* 802 * Send signals to all our closest relatives so that they know 803 * to properly mourn us.. 804 */ 805 static void exit_notify(struct task_struct *tsk, int group_dead) 806 { 807 int signal; 808 void *cookie; 809 810 /* 811 * This does two things: 812 * 813 * A. Make init inherit all the child processes 814 * B. Check to see if any process groups have become orphaned 815 * as a result of our exiting, and if they have any stopped 816 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 817 */ 818 forget_original_parent(tsk); 819 exit_task_namespaces(tsk); 820 821 write_lock_irq(&tasklist_lock); 822 if (group_dead) 823 kill_orphaned_pgrp(tsk->group_leader, NULL); 824 825 /* Let father know we died 826 * 827 * Thread signals are configurable, but you aren't going to use 828 * that to send signals to arbitary processes. 829 * That stops right now. 830 * 831 * If the parent exec id doesn't match the exec id we saved 832 * when we started then we know the parent has changed security 833 * domain. 834 * 835 * If our self_exec id doesn't match our parent_exec_id then 836 * we have changed execution domain as these two values started 837 * the same after a fork. 838 */ 839 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 840 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 841 tsk->self_exec_id != tsk->parent_exec_id)) 842 tsk->exit_signal = SIGCHLD; 843 844 signal = tracehook_notify_death(tsk, &cookie, group_dead); 845 if (signal >= 0) 846 signal = do_notify_parent(tsk, signal); 847 848 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 849 850 /* mt-exec, de_thread() is waiting for us */ 851 if (thread_group_leader(tsk) && 852 tsk->signal->group_exit_task && 853 tsk->signal->notify_count < 0) 854 wake_up_process(tsk->signal->group_exit_task); 855 856 write_unlock_irq(&tasklist_lock); 857 858 tracehook_report_death(tsk, signal, cookie, group_dead); 859 860 /* If the process is dead, release it - nobody will wait for it */ 861 if (signal == DEATH_REAP) 862 release_task(tsk); 863 } 864 865 #ifdef CONFIG_DEBUG_STACK_USAGE 866 static void check_stack_usage(void) 867 { 868 static DEFINE_SPINLOCK(low_water_lock); 869 static int lowest_to_date = THREAD_SIZE; 870 unsigned long free; 871 872 free = stack_not_used(current); 873 874 if (free >= lowest_to_date) 875 return; 876 877 spin_lock(&low_water_lock); 878 if (free < lowest_to_date) { 879 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 880 "left\n", 881 current->comm, free); 882 lowest_to_date = free; 883 } 884 spin_unlock(&low_water_lock); 885 } 886 #else 887 static inline void check_stack_usage(void) {} 888 #endif 889 890 NORET_TYPE void do_exit(long code) 891 { 892 struct task_struct *tsk = current; 893 int group_dead; 894 895 profile_task_exit(tsk); 896 897 WARN_ON(atomic_read(&tsk->fs_excl)); 898 899 if (unlikely(in_interrupt())) 900 panic("Aiee, killing interrupt handler!"); 901 if (unlikely(!tsk->pid)) 902 panic("Attempted to kill the idle task!"); 903 904 tracehook_report_exit(&code); 905 906 validate_creds_for_do_exit(tsk); 907 908 /* 909 * We're taking recursive faults here in do_exit. Safest is to just 910 * leave this task alone and wait for reboot. 911 */ 912 if (unlikely(tsk->flags & PF_EXITING)) { 913 printk(KERN_ALERT 914 "Fixing recursive fault but reboot is needed!\n"); 915 /* 916 * We can do this unlocked here. The futex code uses 917 * this flag just to verify whether the pi state 918 * cleanup has been done or not. In the worst case it 919 * loops once more. We pretend that the cleanup was 920 * done as there is no way to return. Either the 921 * OWNER_DIED bit is set by now or we push the blocked 922 * task into the wait for ever nirwana as well. 923 */ 924 tsk->flags |= PF_EXITPIDONE; 925 set_current_state(TASK_UNINTERRUPTIBLE); 926 schedule(); 927 } 928 929 exit_irq_thread(); 930 931 exit_signals(tsk); /* sets PF_EXITING */ 932 /* 933 * tsk->flags are checked in the futex code to protect against 934 * an exiting task cleaning up the robust pi futexes. 935 */ 936 smp_mb(); 937 spin_unlock_wait(&tsk->pi_lock); 938 939 if (unlikely(in_atomic())) 940 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 941 current->comm, task_pid_nr(current), 942 preempt_count()); 943 944 acct_update_integrals(tsk); 945 946 group_dead = atomic_dec_and_test(&tsk->signal->live); 947 if (group_dead) { 948 hrtimer_cancel(&tsk->signal->real_timer); 949 exit_itimers(tsk->signal); 950 if (tsk->mm) 951 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 952 } 953 acct_collect(code, group_dead); 954 if (group_dead) 955 tty_audit_exit(); 956 if (unlikely(tsk->audit_context)) 957 audit_free(tsk); 958 959 tsk->exit_code = code; 960 taskstats_exit(tsk, group_dead); 961 962 exit_mm(tsk); 963 964 if (group_dead) 965 acct_process(); 966 trace_sched_process_exit(tsk); 967 968 exit_sem(tsk); 969 exit_files(tsk); 970 exit_fs(tsk); 971 check_stack_usage(); 972 exit_thread(); 973 cgroup_exit(tsk, 1); 974 975 if (group_dead && tsk->signal->leader) 976 disassociate_ctty(1); 977 978 module_put(task_thread_info(tsk)->exec_domain->module); 979 if (tsk->binfmt) 980 module_put(tsk->binfmt->module); 981 982 proc_exit_connector(tsk); 983 984 /* 985 * Flush inherited counters to the parent - before the parent 986 * gets woken up by child-exit notifications. 987 */ 988 perf_event_exit_task(tsk); 989 990 exit_notify(tsk, group_dead); 991 #ifdef CONFIG_NUMA 992 mpol_put(tsk->mempolicy); 993 tsk->mempolicy = NULL; 994 #endif 995 #ifdef CONFIG_FUTEX 996 if (unlikely(!list_empty(&tsk->pi_state_list))) 997 exit_pi_state_list(tsk); 998 if (unlikely(current->pi_state_cache)) 999 kfree(current->pi_state_cache); 1000 #endif 1001 /* 1002 * Make sure we are holding no locks: 1003 */ 1004 debug_check_no_locks_held(tsk); 1005 /* 1006 * We can do this unlocked here. The futex code uses this flag 1007 * just to verify whether the pi state cleanup has been done 1008 * or not. In the worst case it loops once more. 1009 */ 1010 tsk->flags |= PF_EXITPIDONE; 1011 1012 if (tsk->io_context) 1013 exit_io_context(); 1014 1015 if (tsk->splice_pipe) 1016 __free_pipe_info(tsk->splice_pipe); 1017 1018 validate_creds_for_do_exit(tsk); 1019 1020 preempt_disable(); 1021 exit_rcu(); 1022 /* causes final put_task_struct in finish_task_switch(). */ 1023 tsk->state = TASK_DEAD; 1024 schedule(); 1025 BUG(); 1026 /* Avoid "noreturn function does return". */ 1027 for (;;) 1028 cpu_relax(); /* For when BUG is null */ 1029 } 1030 1031 EXPORT_SYMBOL_GPL(do_exit); 1032 1033 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1034 { 1035 if (comp) 1036 complete(comp); 1037 1038 do_exit(code); 1039 } 1040 1041 EXPORT_SYMBOL(complete_and_exit); 1042 1043 SYSCALL_DEFINE1(exit, int, error_code) 1044 { 1045 do_exit((error_code&0xff)<<8); 1046 } 1047 1048 /* 1049 * Take down every thread in the group. This is called by fatal signals 1050 * as well as by sys_exit_group (below). 1051 */ 1052 NORET_TYPE void 1053 do_group_exit(int exit_code) 1054 { 1055 struct signal_struct *sig = current->signal; 1056 1057 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1058 1059 if (signal_group_exit(sig)) 1060 exit_code = sig->group_exit_code; 1061 else if (!thread_group_empty(current)) { 1062 struct sighand_struct *const sighand = current->sighand; 1063 spin_lock_irq(&sighand->siglock); 1064 if (signal_group_exit(sig)) 1065 /* Another thread got here before we took the lock. */ 1066 exit_code = sig->group_exit_code; 1067 else { 1068 sig->group_exit_code = exit_code; 1069 sig->flags = SIGNAL_GROUP_EXIT; 1070 zap_other_threads(current); 1071 } 1072 spin_unlock_irq(&sighand->siglock); 1073 } 1074 1075 do_exit(exit_code); 1076 /* NOTREACHED */ 1077 } 1078 1079 /* 1080 * this kills every thread in the thread group. Note that any externally 1081 * wait4()-ing process will get the correct exit code - even if this 1082 * thread is not the thread group leader. 1083 */ 1084 SYSCALL_DEFINE1(exit_group, int, error_code) 1085 { 1086 do_group_exit((error_code & 0xff) << 8); 1087 /* NOTREACHED */ 1088 return 0; 1089 } 1090 1091 struct wait_opts { 1092 enum pid_type wo_type; 1093 int wo_flags; 1094 struct pid *wo_pid; 1095 1096 struct siginfo __user *wo_info; 1097 int __user *wo_stat; 1098 struct rusage __user *wo_rusage; 1099 1100 int notask_error; 1101 }; 1102 1103 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1104 { 1105 struct pid *pid = NULL; 1106 if (type == PIDTYPE_PID) 1107 pid = task->pids[type].pid; 1108 else if (type < PIDTYPE_MAX) 1109 pid = task->group_leader->pids[type].pid; 1110 return pid; 1111 } 1112 1113 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 1114 { 1115 int err; 1116 1117 if (wo->wo_type < PIDTYPE_MAX) { 1118 if (task_pid_type(p, wo->wo_type) != wo->wo_pid) 1119 return 0; 1120 } 1121 1122 /* Wait for all children (clone and not) if __WALL is set; 1123 * otherwise, wait for clone children *only* if __WCLONE is 1124 * set; otherwise, wait for non-clone children *only*. (Note: 1125 * A "clone" child here is one that reports to its parent 1126 * using a signal other than SIGCHLD.) */ 1127 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1128 && !(wo->wo_flags & __WALL)) 1129 return 0; 1130 1131 err = security_task_wait(p); 1132 if (err) 1133 return err; 1134 1135 return 1; 1136 } 1137 1138 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1139 pid_t pid, uid_t uid, int why, int status) 1140 { 1141 struct siginfo __user *infop; 1142 int retval = wo->wo_rusage 1143 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1144 1145 put_task_struct(p); 1146 infop = wo->wo_info; 1147 if (!retval) 1148 retval = put_user(SIGCHLD, &infop->si_signo); 1149 if (!retval) 1150 retval = put_user(0, &infop->si_errno); 1151 if (!retval) 1152 retval = put_user((short)why, &infop->si_code); 1153 if (!retval) 1154 retval = put_user(pid, &infop->si_pid); 1155 if (!retval) 1156 retval = put_user(uid, &infop->si_uid); 1157 if (!retval) 1158 retval = put_user(status, &infop->si_status); 1159 if (!retval) 1160 retval = pid; 1161 return retval; 1162 } 1163 1164 /* 1165 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1166 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1167 * the lock and this task is uninteresting. If we return nonzero, we have 1168 * released the lock and the system call should return. 1169 */ 1170 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1171 { 1172 unsigned long state; 1173 int retval, status, traced; 1174 pid_t pid = task_pid_vnr(p); 1175 uid_t uid = __task_cred(p)->uid; 1176 struct siginfo __user *infop; 1177 1178 if (!likely(wo->wo_flags & WEXITED)) 1179 return 0; 1180 1181 if (unlikely(wo->wo_flags & WNOWAIT)) { 1182 int exit_code = p->exit_code; 1183 int why, status; 1184 1185 get_task_struct(p); 1186 read_unlock(&tasklist_lock); 1187 if ((exit_code & 0x7f) == 0) { 1188 why = CLD_EXITED; 1189 status = exit_code >> 8; 1190 } else { 1191 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1192 status = exit_code & 0x7f; 1193 } 1194 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1195 } 1196 1197 /* 1198 * Try to move the task's state to DEAD 1199 * only one thread is allowed to do this: 1200 */ 1201 state = xchg(&p->exit_state, EXIT_DEAD); 1202 if (state != EXIT_ZOMBIE) { 1203 BUG_ON(state != EXIT_DEAD); 1204 return 0; 1205 } 1206 1207 traced = ptrace_reparented(p); 1208 /* 1209 * It can be ptraced but not reparented, check 1210 * !task_detached() to filter out sub-threads. 1211 */ 1212 if (likely(!traced) && likely(!task_detached(p))) { 1213 struct signal_struct *psig; 1214 struct signal_struct *sig; 1215 unsigned long maxrss; 1216 1217 /* 1218 * The resource counters for the group leader are in its 1219 * own task_struct. Those for dead threads in the group 1220 * are in its signal_struct, as are those for the child 1221 * processes it has previously reaped. All these 1222 * accumulate in the parent's signal_struct c* fields. 1223 * 1224 * We don't bother to take a lock here to protect these 1225 * p->signal fields, because they are only touched by 1226 * __exit_signal, which runs with tasklist_lock 1227 * write-locked anyway, and so is excluded here. We do 1228 * need to protect the access to parent->signal fields, 1229 * as other threads in the parent group can be right 1230 * here reaping other children at the same time. 1231 */ 1232 spin_lock_irq(&p->real_parent->sighand->siglock); 1233 psig = p->real_parent->signal; 1234 sig = p->signal; 1235 psig->cutime = 1236 cputime_add(psig->cutime, 1237 cputime_add(p->utime, 1238 cputime_add(sig->utime, 1239 sig->cutime))); 1240 psig->cstime = 1241 cputime_add(psig->cstime, 1242 cputime_add(p->stime, 1243 cputime_add(sig->stime, 1244 sig->cstime))); 1245 psig->cgtime = 1246 cputime_add(psig->cgtime, 1247 cputime_add(p->gtime, 1248 cputime_add(sig->gtime, 1249 sig->cgtime))); 1250 psig->cmin_flt += 1251 p->min_flt + sig->min_flt + sig->cmin_flt; 1252 psig->cmaj_flt += 1253 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1254 psig->cnvcsw += 1255 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1256 psig->cnivcsw += 1257 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1258 psig->cinblock += 1259 task_io_get_inblock(p) + 1260 sig->inblock + sig->cinblock; 1261 psig->coublock += 1262 task_io_get_oublock(p) + 1263 sig->oublock + sig->coublock; 1264 maxrss = max(sig->maxrss, sig->cmaxrss); 1265 if (psig->cmaxrss < maxrss) 1266 psig->cmaxrss = maxrss; 1267 task_io_accounting_add(&psig->ioac, &p->ioac); 1268 task_io_accounting_add(&psig->ioac, &sig->ioac); 1269 spin_unlock_irq(&p->real_parent->sighand->siglock); 1270 } 1271 1272 /* 1273 * Now we are sure this task is interesting, and no other 1274 * thread can reap it because we set its state to EXIT_DEAD. 1275 */ 1276 read_unlock(&tasklist_lock); 1277 1278 retval = wo->wo_rusage 1279 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1280 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1281 ? p->signal->group_exit_code : p->exit_code; 1282 if (!retval && wo->wo_stat) 1283 retval = put_user(status, wo->wo_stat); 1284 1285 infop = wo->wo_info; 1286 if (!retval && infop) 1287 retval = put_user(SIGCHLD, &infop->si_signo); 1288 if (!retval && infop) 1289 retval = put_user(0, &infop->si_errno); 1290 if (!retval && infop) { 1291 int why; 1292 1293 if ((status & 0x7f) == 0) { 1294 why = CLD_EXITED; 1295 status >>= 8; 1296 } else { 1297 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1298 status &= 0x7f; 1299 } 1300 retval = put_user((short)why, &infop->si_code); 1301 if (!retval) 1302 retval = put_user(status, &infop->si_status); 1303 } 1304 if (!retval && infop) 1305 retval = put_user(pid, &infop->si_pid); 1306 if (!retval && infop) 1307 retval = put_user(uid, &infop->si_uid); 1308 if (!retval) 1309 retval = pid; 1310 1311 if (traced) { 1312 write_lock_irq(&tasklist_lock); 1313 /* We dropped tasklist, ptracer could die and untrace */ 1314 ptrace_unlink(p); 1315 /* 1316 * If this is not a detached task, notify the parent. 1317 * If it's still not detached after that, don't release 1318 * it now. 1319 */ 1320 if (!task_detached(p)) { 1321 do_notify_parent(p, p->exit_signal); 1322 if (!task_detached(p)) { 1323 p->exit_state = EXIT_ZOMBIE; 1324 p = NULL; 1325 } 1326 } 1327 write_unlock_irq(&tasklist_lock); 1328 } 1329 if (p != NULL) 1330 release_task(p); 1331 1332 return retval; 1333 } 1334 1335 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1336 { 1337 if (ptrace) { 1338 if (task_is_stopped_or_traced(p)) 1339 return &p->exit_code; 1340 } else { 1341 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1342 return &p->signal->group_exit_code; 1343 } 1344 return NULL; 1345 } 1346 1347 /* 1348 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1349 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1350 * the lock and this task is uninteresting. If we return nonzero, we have 1351 * released the lock and the system call should return. 1352 */ 1353 static int wait_task_stopped(struct wait_opts *wo, 1354 int ptrace, struct task_struct *p) 1355 { 1356 struct siginfo __user *infop; 1357 int retval, exit_code, *p_code, why; 1358 uid_t uid = 0; /* unneeded, required by compiler */ 1359 pid_t pid; 1360 1361 /* 1362 * Traditionally we see ptrace'd stopped tasks regardless of options. 1363 */ 1364 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1365 return 0; 1366 1367 exit_code = 0; 1368 spin_lock_irq(&p->sighand->siglock); 1369 1370 p_code = task_stopped_code(p, ptrace); 1371 if (unlikely(!p_code)) 1372 goto unlock_sig; 1373 1374 exit_code = *p_code; 1375 if (!exit_code) 1376 goto unlock_sig; 1377 1378 if (!unlikely(wo->wo_flags & WNOWAIT)) 1379 *p_code = 0; 1380 1381 /* don't need the RCU readlock here as we're holding a spinlock */ 1382 uid = __task_cred(p)->uid; 1383 unlock_sig: 1384 spin_unlock_irq(&p->sighand->siglock); 1385 if (!exit_code) 1386 return 0; 1387 1388 /* 1389 * Now we are pretty sure this task is interesting. 1390 * Make sure it doesn't get reaped out from under us while we 1391 * give up the lock and then examine it below. We don't want to 1392 * keep holding onto the tasklist_lock while we call getrusage and 1393 * possibly take page faults for user memory. 1394 */ 1395 get_task_struct(p); 1396 pid = task_pid_vnr(p); 1397 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1398 read_unlock(&tasklist_lock); 1399 1400 if (unlikely(wo->wo_flags & WNOWAIT)) 1401 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1402 1403 retval = wo->wo_rusage 1404 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1405 if (!retval && wo->wo_stat) 1406 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1407 1408 infop = wo->wo_info; 1409 if (!retval && infop) 1410 retval = put_user(SIGCHLD, &infop->si_signo); 1411 if (!retval && infop) 1412 retval = put_user(0, &infop->si_errno); 1413 if (!retval && infop) 1414 retval = put_user((short)why, &infop->si_code); 1415 if (!retval && infop) 1416 retval = put_user(exit_code, &infop->si_status); 1417 if (!retval && infop) 1418 retval = put_user(pid, &infop->si_pid); 1419 if (!retval && infop) 1420 retval = put_user(uid, &infop->si_uid); 1421 if (!retval) 1422 retval = pid; 1423 put_task_struct(p); 1424 1425 BUG_ON(!retval); 1426 return retval; 1427 } 1428 1429 /* 1430 * Handle do_wait work for one task in a live, non-stopped state. 1431 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1432 * the lock and this task is uninteresting. If we return nonzero, we have 1433 * released the lock and the system call should return. 1434 */ 1435 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1436 { 1437 int retval; 1438 pid_t pid; 1439 uid_t uid; 1440 1441 if (!unlikely(wo->wo_flags & WCONTINUED)) 1442 return 0; 1443 1444 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1445 return 0; 1446 1447 spin_lock_irq(&p->sighand->siglock); 1448 /* Re-check with the lock held. */ 1449 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1450 spin_unlock_irq(&p->sighand->siglock); 1451 return 0; 1452 } 1453 if (!unlikely(wo->wo_flags & WNOWAIT)) 1454 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1455 uid = __task_cred(p)->uid; 1456 spin_unlock_irq(&p->sighand->siglock); 1457 1458 pid = task_pid_vnr(p); 1459 get_task_struct(p); 1460 read_unlock(&tasklist_lock); 1461 1462 if (!wo->wo_info) { 1463 retval = wo->wo_rusage 1464 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1465 put_task_struct(p); 1466 if (!retval && wo->wo_stat) 1467 retval = put_user(0xffff, wo->wo_stat); 1468 if (!retval) 1469 retval = pid; 1470 } else { 1471 retval = wait_noreap_copyout(wo, p, pid, uid, 1472 CLD_CONTINUED, SIGCONT); 1473 BUG_ON(retval == 0); 1474 } 1475 1476 return retval; 1477 } 1478 1479 /* 1480 * Consider @p for a wait by @parent. 1481 * 1482 * -ECHILD should be in ->notask_error before the first call. 1483 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1484 * Returns zero if the search for a child should continue; 1485 * then ->notask_error is 0 if @p is an eligible child, 1486 * or another error from security_task_wait(), or still -ECHILD. 1487 */ 1488 static int wait_consider_task(struct wait_opts *wo, struct task_struct *parent, 1489 int ptrace, struct task_struct *p) 1490 { 1491 int ret = eligible_child(wo, p); 1492 if (!ret) 1493 return ret; 1494 1495 if (unlikely(ret < 0)) { 1496 /* 1497 * If we have not yet seen any eligible child, 1498 * then let this error code replace -ECHILD. 1499 * A permission error will give the user a clue 1500 * to look for security policy problems, rather 1501 * than for mysterious wait bugs. 1502 */ 1503 if (wo->notask_error) 1504 wo->notask_error = ret; 1505 return 0; 1506 } 1507 1508 if (likely(!ptrace) && unlikely(task_ptrace(p))) { 1509 /* 1510 * This child is hidden by ptrace. 1511 * We aren't allowed to see it now, but eventually we will. 1512 */ 1513 wo->notask_error = 0; 1514 return 0; 1515 } 1516 1517 if (p->exit_state == EXIT_DEAD) 1518 return 0; 1519 1520 /* 1521 * We don't reap group leaders with subthreads. 1522 */ 1523 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1524 return wait_task_zombie(wo, p); 1525 1526 /* 1527 * It's stopped or running now, so it might 1528 * later continue, exit, or stop again. 1529 */ 1530 wo->notask_error = 0; 1531 1532 if (task_stopped_code(p, ptrace)) 1533 return wait_task_stopped(wo, ptrace, p); 1534 1535 return wait_task_continued(wo, p); 1536 } 1537 1538 /* 1539 * Do the work of do_wait() for one thread in the group, @tsk. 1540 * 1541 * -ECHILD should be in ->notask_error before the first call. 1542 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1543 * Returns zero if the search for a child should continue; then 1544 * ->notask_error is 0 if there were any eligible children, 1545 * or another error from security_task_wait(), or still -ECHILD. 1546 */ 1547 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1548 { 1549 struct task_struct *p; 1550 1551 list_for_each_entry(p, &tsk->children, sibling) { 1552 /* 1553 * Do not consider detached threads. 1554 */ 1555 if (!task_detached(p)) { 1556 int ret = wait_consider_task(wo, tsk, 0, p); 1557 if (ret) 1558 return ret; 1559 } 1560 } 1561 1562 return 0; 1563 } 1564 1565 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1566 { 1567 struct task_struct *p; 1568 1569 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1570 int ret = wait_consider_task(wo, tsk, 1, p); 1571 if (ret) 1572 return ret; 1573 } 1574 1575 return 0; 1576 } 1577 1578 static long do_wait(struct wait_opts *wo) 1579 { 1580 DECLARE_WAITQUEUE(wait, current); 1581 struct task_struct *tsk; 1582 int retval; 1583 1584 trace_sched_process_wait(wo->wo_pid); 1585 1586 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1587 repeat: 1588 /* 1589 * If there is nothing that can match our critiera just get out. 1590 * We will clear ->notask_error to zero if we see any child that 1591 * might later match our criteria, even if we are not able to reap 1592 * it yet. 1593 */ 1594 wo->notask_error = -ECHILD; 1595 if ((wo->wo_type < PIDTYPE_MAX) && 1596 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1597 goto notask; 1598 1599 set_current_state(TASK_INTERRUPTIBLE); 1600 read_lock(&tasklist_lock); 1601 tsk = current; 1602 do { 1603 retval = do_wait_thread(wo, tsk); 1604 if (retval) 1605 goto end; 1606 1607 retval = ptrace_do_wait(wo, tsk); 1608 if (retval) 1609 goto end; 1610 1611 if (wo->wo_flags & __WNOTHREAD) 1612 break; 1613 } while_each_thread(current, tsk); 1614 read_unlock(&tasklist_lock); 1615 1616 notask: 1617 retval = wo->notask_error; 1618 if (!retval && !(wo->wo_flags & WNOHANG)) { 1619 retval = -ERESTARTSYS; 1620 if (!signal_pending(current)) { 1621 schedule(); 1622 goto repeat; 1623 } 1624 } 1625 end: 1626 __set_current_state(TASK_RUNNING); 1627 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1628 if (wo->wo_info) { 1629 struct siginfo __user *infop = wo->wo_info; 1630 1631 if (retval > 0) 1632 retval = 0; 1633 else { 1634 /* 1635 * For a WNOHANG return, clear out all the fields 1636 * we would set so the user can easily tell the 1637 * difference. 1638 */ 1639 if (!retval) 1640 retval = put_user(0, &infop->si_signo); 1641 if (!retval) 1642 retval = put_user(0, &infop->si_errno); 1643 if (!retval) 1644 retval = put_user(0, &infop->si_code); 1645 if (!retval) 1646 retval = put_user(0, &infop->si_pid); 1647 if (!retval) 1648 retval = put_user(0, &infop->si_uid); 1649 if (!retval) 1650 retval = put_user(0, &infop->si_status); 1651 } 1652 } 1653 return retval; 1654 } 1655 1656 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1657 infop, int, options, struct rusage __user *, ru) 1658 { 1659 struct wait_opts wo; 1660 struct pid *pid = NULL; 1661 enum pid_type type; 1662 long ret; 1663 1664 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1665 return -EINVAL; 1666 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1667 return -EINVAL; 1668 1669 switch (which) { 1670 case P_ALL: 1671 type = PIDTYPE_MAX; 1672 break; 1673 case P_PID: 1674 type = PIDTYPE_PID; 1675 if (upid <= 0) 1676 return -EINVAL; 1677 break; 1678 case P_PGID: 1679 type = PIDTYPE_PGID; 1680 if (upid <= 0) 1681 return -EINVAL; 1682 break; 1683 default: 1684 return -EINVAL; 1685 } 1686 1687 if (type < PIDTYPE_MAX) 1688 pid = find_get_pid(upid); 1689 1690 wo.wo_type = type; 1691 wo.wo_pid = pid; 1692 wo.wo_flags = options; 1693 wo.wo_info = infop; 1694 wo.wo_stat = NULL; 1695 wo.wo_rusage = ru; 1696 ret = do_wait(&wo); 1697 put_pid(pid); 1698 1699 /* avoid REGPARM breakage on x86: */ 1700 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1701 return ret; 1702 } 1703 1704 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1705 int, options, struct rusage __user *, ru) 1706 { 1707 struct wait_opts wo; 1708 struct pid *pid = NULL; 1709 enum pid_type type; 1710 long ret; 1711 1712 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1713 __WNOTHREAD|__WCLONE|__WALL)) 1714 return -EINVAL; 1715 1716 if (upid == -1) 1717 type = PIDTYPE_MAX; 1718 else if (upid < 0) { 1719 type = PIDTYPE_PGID; 1720 pid = find_get_pid(-upid); 1721 } else if (upid == 0) { 1722 type = PIDTYPE_PGID; 1723 pid = get_task_pid(current, PIDTYPE_PGID); 1724 } else /* upid > 0 */ { 1725 type = PIDTYPE_PID; 1726 pid = find_get_pid(upid); 1727 } 1728 1729 wo.wo_type = type; 1730 wo.wo_pid = pid; 1731 wo.wo_flags = options | WEXITED; 1732 wo.wo_info = NULL; 1733 wo.wo_stat = stat_addr; 1734 wo.wo_rusage = ru; 1735 ret = do_wait(&wo); 1736 put_pid(pid); 1737 1738 /* avoid REGPARM breakage on x86: */ 1739 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1740 return ret; 1741 } 1742 1743 #ifdef __ARCH_WANT_SYS_WAITPID 1744 1745 /* 1746 * sys_waitpid() remains for compatibility. waitpid() should be 1747 * implemented by calling sys_wait4() from libc.a. 1748 */ 1749 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1750 { 1751 return sys_wait4(pid, stat_addr, options, NULL); 1752 } 1753 1754 #endif 1755