1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/config.h> 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/interrupt.h> 11 #include <linux/smp_lock.h> 12 #include <linux/module.h> 13 #include <linux/completion.h> 14 #include <linux/personality.h> 15 #include <linux/tty.h> 16 #include <linux/namespace.h> 17 #include <linux/key.h> 18 #include <linux/security.h> 19 #include <linux/cpu.h> 20 #include <linux/acct.h> 21 #include <linux/file.h> 22 #include <linux/binfmts.h> 23 #include <linux/ptrace.h> 24 #include <linux/profile.h> 25 #include <linux/mount.h> 26 #include <linux/proc_fs.h> 27 #include <linux/mempolicy.h> 28 #include <linux/cpuset.h> 29 #include <linux/syscalls.h> 30 #include <linux/signal.h> 31 32 #include <asm/uaccess.h> 33 #include <asm/unistd.h> 34 #include <asm/pgtable.h> 35 #include <asm/mmu_context.h> 36 37 extern void sem_exit (void); 38 extern struct task_struct *child_reaper; 39 40 int getrusage(struct task_struct *, int, struct rusage __user *); 41 42 static void exit_mm(struct task_struct * tsk); 43 44 static void __unhash_process(struct task_struct *p) 45 { 46 nr_threads--; 47 detach_pid(p, PIDTYPE_PID); 48 detach_pid(p, PIDTYPE_TGID); 49 if (thread_group_leader(p)) { 50 detach_pid(p, PIDTYPE_PGID); 51 detach_pid(p, PIDTYPE_SID); 52 if (p->pid) 53 __get_cpu_var(process_counts)--; 54 } 55 56 REMOVE_LINKS(p); 57 } 58 59 void release_task(struct task_struct * p) 60 { 61 int zap_leader; 62 task_t *leader; 63 struct dentry *proc_dentry; 64 65 repeat: 66 atomic_dec(&p->user->processes); 67 spin_lock(&p->proc_lock); 68 proc_dentry = proc_pid_unhash(p); 69 write_lock_irq(&tasklist_lock); 70 if (unlikely(p->ptrace)) 71 __ptrace_unlink(p); 72 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); 73 __exit_signal(p); 74 __exit_sighand(p); 75 __unhash_process(p); 76 77 /* 78 * If we are the last non-leader member of the thread 79 * group, and the leader is zombie, then notify the 80 * group leader's parent process. (if it wants notification.) 81 */ 82 zap_leader = 0; 83 leader = p->group_leader; 84 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 85 BUG_ON(leader->exit_signal == -1); 86 do_notify_parent(leader, leader->exit_signal); 87 /* 88 * If we were the last child thread and the leader has 89 * exited already, and the leader's parent ignores SIGCHLD, 90 * then we are the one who should release the leader. 91 * 92 * do_notify_parent() will have marked it self-reaping in 93 * that case. 94 */ 95 zap_leader = (leader->exit_signal == -1); 96 } 97 98 sched_exit(p); 99 write_unlock_irq(&tasklist_lock); 100 spin_unlock(&p->proc_lock); 101 proc_pid_flush(proc_dentry); 102 release_thread(p); 103 put_task_struct(p); 104 105 p = leader; 106 if (unlikely(zap_leader)) 107 goto repeat; 108 } 109 110 /* we are using it only for SMP init */ 111 112 void unhash_process(struct task_struct *p) 113 { 114 struct dentry *proc_dentry; 115 116 spin_lock(&p->proc_lock); 117 proc_dentry = proc_pid_unhash(p); 118 write_lock_irq(&tasklist_lock); 119 __unhash_process(p); 120 write_unlock_irq(&tasklist_lock); 121 spin_unlock(&p->proc_lock); 122 proc_pid_flush(proc_dentry); 123 } 124 125 /* 126 * This checks not only the pgrp, but falls back on the pid if no 127 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 128 * without this... 129 */ 130 int session_of_pgrp(int pgrp) 131 { 132 struct task_struct *p; 133 int sid = -1; 134 135 read_lock(&tasklist_lock); 136 do_each_task_pid(pgrp, PIDTYPE_PGID, p) { 137 if (p->signal->session > 0) { 138 sid = p->signal->session; 139 goto out; 140 } 141 } while_each_task_pid(pgrp, PIDTYPE_PGID, p); 142 p = find_task_by_pid(pgrp); 143 if (p) 144 sid = p->signal->session; 145 out: 146 read_unlock(&tasklist_lock); 147 148 return sid; 149 } 150 151 /* 152 * Determine if a process group is "orphaned", according to the POSIX 153 * definition in 2.2.2.52. Orphaned process groups are not to be affected 154 * by terminal-generated stop signals. Newly orphaned process groups are 155 * to receive a SIGHUP and a SIGCONT. 156 * 157 * "I ask you, have you ever known what it is to be an orphan?" 158 */ 159 static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task) 160 { 161 struct task_struct *p; 162 int ret = 1; 163 164 do_each_task_pid(pgrp, PIDTYPE_PGID, p) { 165 if (p == ignored_task 166 || p->exit_state 167 || p->real_parent->pid == 1) 168 continue; 169 if (process_group(p->real_parent) != pgrp 170 && p->real_parent->signal->session == p->signal->session) { 171 ret = 0; 172 break; 173 } 174 } while_each_task_pid(pgrp, PIDTYPE_PGID, p); 175 return ret; /* (sighing) "Often!" */ 176 } 177 178 int is_orphaned_pgrp(int pgrp) 179 { 180 int retval; 181 182 read_lock(&tasklist_lock); 183 retval = will_become_orphaned_pgrp(pgrp, NULL); 184 read_unlock(&tasklist_lock); 185 186 return retval; 187 } 188 189 static inline int has_stopped_jobs(int pgrp) 190 { 191 int retval = 0; 192 struct task_struct *p; 193 194 do_each_task_pid(pgrp, PIDTYPE_PGID, p) { 195 if (p->state != TASK_STOPPED) 196 continue; 197 198 /* If p is stopped by a debugger on a signal that won't 199 stop it, then don't count p as stopped. This isn't 200 perfect but it's a good approximation. */ 201 if (unlikely (p->ptrace) 202 && p->exit_code != SIGSTOP 203 && p->exit_code != SIGTSTP 204 && p->exit_code != SIGTTOU 205 && p->exit_code != SIGTTIN) 206 continue; 207 208 retval = 1; 209 break; 210 } while_each_task_pid(pgrp, PIDTYPE_PGID, p); 211 return retval; 212 } 213 214 /** 215 * reparent_to_init - Reparent the calling kernel thread to the init task. 216 * 217 * If a kernel thread is launched as a result of a system call, or if 218 * it ever exits, it should generally reparent itself to init so that 219 * it is correctly cleaned up on exit. 220 * 221 * The various task state such as scheduling policy and priority may have 222 * been inherited from a user process, so we reset them to sane values here. 223 * 224 * NOTE that reparent_to_init() gives the caller full capabilities. 225 */ 226 static inline void reparent_to_init(void) 227 { 228 write_lock_irq(&tasklist_lock); 229 230 ptrace_unlink(current); 231 /* Reparent to init */ 232 REMOVE_LINKS(current); 233 current->parent = child_reaper; 234 current->real_parent = child_reaper; 235 SET_LINKS(current); 236 237 /* Set the exit signal to SIGCHLD so we signal init on exit */ 238 current->exit_signal = SIGCHLD; 239 240 if ((current->policy == SCHED_NORMAL) && (task_nice(current) < 0)) 241 set_user_nice(current, 0); 242 /* cpus_allowed? */ 243 /* rt_priority? */ 244 /* signals? */ 245 security_task_reparent_to_init(current); 246 memcpy(current->signal->rlim, init_task.signal->rlim, 247 sizeof(current->signal->rlim)); 248 atomic_inc(&(INIT_USER->__count)); 249 write_unlock_irq(&tasklist_lock); 250 switch_uid(INIT_USER); 251 } 252 253 void __set_special_pids(pid_t session, pid_t pgrp) 254 { 255 struct task_struct *curr = current; 256 257 if (curr->signal->session != session) { 258 detach_pid(curr, PIDTYPE_SID); 259 curr->signal->session = session; 260 attach_pid(curr, PIDTYPE_SID, session); 261 } 262 if (process_group(curr) != pgrp) { 263 detach_pid(curr, PIDTYPE_PGID); 264 curr->signal->pgrp = pgrp; 265 attach_pid(curr, PIDTYPE_PGID, pgrp); 266 } 267 } 268 269 void set_special_pids(pid_t session, pid_t pgrp) 270 { 271 write_lock_irq(&tasklist_lock); 272 __set_special_pids(session, pgrp); 273 write_unlock_irq(&tasklist_lock); 274 } 275 276 /* 277 * Let kernel threads use this to say that they 278 * allow a certain signal (since daemonize() will 279 * have disabled all of them by default). 280 */ 281 int allow_signal(int sig) 282 { 283 if (!valid_signal(sig) || sig < 1) 284 return -EINVAL; 285 286 spin_lock_irq(¤t->sighand->siglock); 287 sigdelset(¤t->blocked, sig); 288 if (!current->mm) { 289 /* Kernel threads handle their own signals. 290 Let the signal code know it'll be handled, so 291 that they don't get converted to SIGKILL or 292 just silently dropped */ 293 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 294 } 295 recalc_sigpending(); 296 spin_unlock_irq(¤t->sighand->siglock); 297 return 0; 298 } 299 300 EXPORT_SYMBOL(allow_signal); 301 302 int disallow_signal(int sig) 303 { 304 if (!valid_signal(sig) || sig < 1) 305 return -EINVAL; 306 307 spin_lock_irq(¤t->sighand->siglock); 308 sigaddset(¤t->blocked, sig); 309 recalc_sigpending(); 310 spin_unlock_irq(¤t->sighand->siglock); 311 return 0; 312 } 313 314 EXPORT_SYMBOL(disallow_signal); 315 316 /* 317 * Put all the gunge required to become a kernel thread without 318 * attached user resources in one place where it belongs. 319 */ 320 321 void daemonize(const char *name, ...) 322 { 323 va_list args; 324 struct fs_struct *fs; 325 sigset_t blocked; 326 327 va_start(args, name); 328 vsnprintf(current->comm, sizeof(current->comm), name, args); 329 va_end(args); 330 331 /* 332 * If we were started as result of loading a module, close all of the 333 * user space pages. We don't need them, and if we didn't close them 334 * they would be locked into memory. 335 */ 336 exit_mm(current); 337 338 set_special_pids(1, 1); 339 down(&tty_sem); 340 current->signal->tty = NULL; 341 up(&tty_sem); 342 343 /* Block and flush all signals */ 344 sigfillset(&blocked); 345 sigprocmask(SIG_BLOCK, &blocked, NULL); 346 flush_signals(current); 347 348 /* Become as one with the init task */ 349 350 exit_fs(current); /* current->fs->count--; */ 351 fs = init_task.fs; 352 current->fs = fs; 353 atomic_inc(&fs->count); 354 exit_files(current); 355 current->files = init_task.files; 356 atomic_inc(¤t->files->count); 357 358 reparent_to_init(); 359 } 360 361 EXPORT_SYMBOL(daemonize); 362 363 static inline void close_files(struct files_struct * files) 364 { 365 int i, j; 366 367 j = 0; 368 for (;;) { 369 unsigned long set; 370 i = j * __NFDBITS; 371 if (i >= files->max_fdset || i >= files->max_fds) 372 break; 373 set = files->open_fds->fds_bits[j++]; 374 while (set) { 375 if (set & 1) { 376 struct file * file = xchg(&files->fd[i], NULL); 377 if (file) 378 filp_close(file, files); 379 } 380 i++; 381 set >>= 1; 382 } 383 } 384 } 385 386 struct files_struct *get_files_struct(struct task_struct *task) 387 { 388 struct files_struct *files; 389 390 task_lock(task); 391 files = task->files; 392 if (files) 393 atomic_inc(&files->count); 394 task_unlock(task); 395 396 return files; 397 } 398 399 void fastcall put_files_struct(struct files_struct *files) 400 { 401 if (atomic_dec_and_test(&files->count)) { 402 close_files(files); 403 /* 404 * Free the fd and fdset arrays if we expanded them. 405 */ 406 if (files->fd != &files->fd_array[0]) 407 free_fd_array(files->fd, files->max_fds); 408 if (files->max_fdset > __FD_SETSIZE) { 409 free_fdset(files->open_fds, files->max_fdset); 410 free_fdset(files->close_on_exec, files->max_fdset); 411 } 412 kmem_cache_free(files_cachep, files); 413 } 414 } 415 416 EXPORT_SYMBOL(put_files_struct); 417 418 static inline void __exit_files(struct task_struct *tsk) 419 { 420 struct files_struct * files = tsk->files; 421 422 if (files) { 423 task_lock(tsk); 424 tsk->files = NULL; 425 task_unlock(tsk); 426 put_files_struct(files); 427 } 428 } 429 430 void exit_files(struct task_struct *tsk) 431 { 432 __exit_files(tsk); 433 } 434 435 static inline void __put_fs_struct(struct fs_struct *fs) 436 { 437 /* No need to hold fs->lock if we are killing it */ 438 if (atomic_dec_and_test(&fs->count)) { 439 dput(fs->root); 440 mntput(fs->rootmnt); 441 dput(fs->pwd); 442 mntput(fs->pwdmnt); 443 if (fs->altroot) { 444 dput(fs->altroot); 445 mntput(fs->altrootmnt); 446 } 447 kmem_cache_free(fs_cachep, fs); 448 } 449 } 450 451 void put_fs_struct(struct fs_struct *fs) 452 { 453 __put_fs_struct(fs); 454 } 455 456 static inline void __exit_fs(struct task_struct *tsk) 457 { 458 struct fs_struct * fs = tsk->fs; 459 460 if (fs) { 461 task_lock(tsk); 462 tsk->fs = NULL; 463 task_unlock(tsk); 464 __put_fs_struct(fs); 465 } 466 } 467 468 void exit_fs(struct task_struct *tsk) 469 { 470 __exit_fs(tsk); 471 } 472 473 EXPORT_SYMBOL_GPL(exit_fs); 474 475 /* 476 * Turn us into a lazy TLB process if we 477 * aren't already.. 478 */ 479 static void exit_mm(struct task_struct * tsk) 480 { 481 struct mm_struct *mm = tsk->mm; 482 483 mm_release(tsk, mm); 484 if (!mm) 485 return; 486 /* 487 * Serialize with any possible pending coredump. 488 * We must hold mmap_sem around checking core_waiters 489 * and clearing tsk->mm. The core-inducing thread 490 * will increment core_waiters for each thread in the 491 * group with ->mm != NULL. 492 */ 493 down_read(&mm->mmap_sem); 494 if (mm->core_waiters) { 495 up_read(&mm->mmap_sem); 496 down_write(&mm->mmap_sem); 497 if (!--mm->core_waiters) 498 complete(mm->core_startup_done); 499 up_write(&mm->mmap_sem); 500 501 wait_for_completion(&mm->core_done); 502 down_read(&mm->mmap_sem); 503 } 504 atomic_inc(&mm->mm_count); 505 if (mm != tsk->active_mm) BUG(); 506 /* more a memory barrier than a real lock */ 507 task_lock(tsk); 508 tsk->mm = NULL; 509 up_read(&mm->mmap_sem); 510 enter_lazy_tlb(mm, current); 511 task_unlock(tsk); 512 mmput(mm); 513 } 514 515 static inline void choose_new_parent(task_t *p, task_t *reaper, task_t *child_reaper) 516 { 517 /* 518 * Make sure we're not reparenting to ourselves and that 519 * the parent is not a zombie. 520 */ 521 BUG_ON(p == reaper || reaper->exit_state >= EXIT_ZOMBIE); 522 p->real_parent = reaper; 523 } 524 525 static inline void reparent_thread(task_t *p, task_t *father, int traced) 526 { 527 /* We don't want people slaying init. */ 528 if (p->exit_signal != -1) 529 p->exit_signal = SIGCHLD; 530 531 if (p->pdeath_signal) 532 /* We already hold the tasklist_lock here. */ 533 group_send_sig_info(p->pdeath_signal, (void *) 0, p); 534 535 /* Move the child from its dying parent to the new one. */ 536 if (unlikely(traced)) { 537 /* Preserve ptrace links if someone else is tracing this child. */ 538 list_del_init(&p->ptrace_list); 539 if (p->parent != p->real_parent) 540 list_add(&p->ptrace_list, &p->real_parent->ptrace_children); 541 } else { 542 /* If this child is being traced, then we're the one tracing it 543 * anyway, so let go of it. 544 */ 545 p->ptrace = 0; 546 list_del_init(&p->sibling); 547 p->parent = p->real_parent; 548 list_add_tail(&p->sibling, &p->parent->children); 549 550 /* If we'd notified the old parent about this child's death, 551 * also notify the new parent. 552 */ 553 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && 554 thread_group_empty(p)) 555 do_notify_parent(p, p->exit_signal); 556 else if (p->state == TASK_TRACED) { 557 /* 558 * If it was at a trace stop, turn it into 559 * a normal stop since it's no longer being 560 * traced. 561 */ 562 ptrace_untrace(p); 563 } 564 } 565 566 /* 567 * process group orphan check 568 * Case ii: Our child is in a different pgrp 569 * than we are, and it was the only connection 570 * outside, so the child pgrp is now orphaned. 571 */ 572 if ((process_group(p) != process_group(father)) && 573 (p->signal->session == father->signal->session)) { 574 int pgrp = process_group(p); 575 576 if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) { 577 __kill_pg_info(SIGHUP, (void *)1, pgrp); 578 __kill_pg_info(SIGCONT, (void *)1, pgrp); 579 } 580 } 581 } 582 583 /* 584 * When we die, we re-parent all our children. 585 * Try to give them to another thread in our thread 586 * group, and if no such member exists, give it to 587 * the global child reaper process (ie "init") 588 */ 589 static inline void forget_original_parent(struct task_struct * father, 590 struct list_head *to_release) 591 { 592 struct task_struct *p, *reaper = father; 593 struct list_head *_p, *_n; 594 595 do { 596 reaper = next_thread(reaper); 597 if (reaper == father) { 598 reaper = child_reaper; 599 break; 600 } 601 } while (reaper->exit_state); 602 603 /* 604 * There are only two places where our children can be: 605 * 606 * - in our child list 607 * - in our ptraced child list 608 * 609 * Search them and reparent children. 610 */ 611 list_for_each_safe(_p, _n, &father->children) { 612 int ptrace; 613 p = list_entry(_p,struct task_struct,sibling); 614 615 ptrace = p->ptrace; 616 617 /* if father isn't the real parent, then ptrace must be enabled */ 618 BUG_ON(father != p->real_parent && !ptrace); 619 620 if (father == p->real_parent) { 621 /* reparent with a reaper, real father it's us */ 622 choose_new_parent(p, reaper, child_reaper); 623 reparent_thread(p, father, 0); 624 } else { 625 /* reparent ptraced task to its real parent */ 626 __ptrace_unlink (p); 627 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && 628 thread_group_empty(p)) 629 do_notify_parent(p, p->exit_signal); 630 } 631 632 /* 633 * if the ptraced child is a zombie with exit_signal == -1 634 * we must collect it before we exit, or it will remain 635 * zombie forever since we prevented it from self-reap itself 636 * while it was being traced by us, to be able to see it in wait4. 637 */ 638 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) 639 list_add(&p->ptrace_list, to_release); 640 } 641 list_for_each_safe(_p, _n, &father->ptrace_children) { 642 p = list_entry(_p,struct task_struct,ptrace_list); 643 choose_new_parent(p, reaper, child_reaper); 644 reparent_thread(p, father, 1); 645 } 646 } 647 648 /* 649 * Send signals to all our closest relatives so that they know 650 * to properly mourn us.. 651 */ 652 static void exit_notify(struct task_struct *tsk) 653 { 654 int state; 655 struct task_struct *t; 656 struct list_head ptrace_dead, *_p, *_n; 657 658 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT) 659 && !thread_group_empty(tsk)) { 660 /* 661 * This occurs when there was a race between our exit 662 * syscall and a group signal choosing us as the one to 663 * wake up. It could be that we are the only thread 664 * alerted to check for pending signals, but another thread 665 * should be woken now to take the signal since we will not. 666 * Now we'll wake all the threads in the group just to make 667 * sure someone gets all the pending signals. 668 */ 669 read_lock(&tasklist_lock); 670 spin_lock_irq(&tsk->sighand->siglock); 671 for (t = next_thread(tsk); t != tsk; t = next_thread(t)) 672 if (!signal_pending(t) && !(t->flags & PF_EXITING)) { 673 recalc_sigpending_tsk(t); 674 if (signal_pending(t)) 675 signal_wake_up(t, 0); 676 } 677 spin_unlock_irq(&tsk->sighand->siglock); 678 read_unlock(&tasklist_lock); 679 } 680 681 write_lock_irq(&tasklist_lock); 682 683 /* 684 * This does two things: 685 * 686 * A. Make init inherit all the child processes 687 * B. Check to see if any process groups have become orphaned 688 * as a result of our exiting, and if they have any stopped 689 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 690 */ 691 692 INIT_LIST_HEAD(&ptrace_dead); 693 forget_original_parent(tsk, &ptrace_dead); 694 BUG_ON(!list_empty(&tsk->children)); 695 BUG_ON(!list_empty(&tsk->ptrace_children)); 696 697 /* 698 * Check to see if any process groups have become orphaned 699 * as a result of our exiting, and if they have any stopped 700 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 701 * 702 * Case i: Our father is in a different pgrp than we are 703 * and we were the only connection outside, so our pgrp 704 * is about to become orphaned. 705 */ 706 707 t = tsk->real_parent; 708 709 if ((process_group(t) != process_group(tsk)) && 710 (t->signal->session == tsk->signal->session) && 711 will_become_orphaned_pgrp(process_group(tsk), tsk) && 712 has_stopped_jobs(process_group(tsk))) { 713 __kill_pg_info(SIGHUP, (void *)1, process_group(tsk)); 714 __kill_pg_info(SIGCONT, (void *)1, process_group(tsk)); 715 } 716 717 /* Let father know we died 718 * 719 * Thread signals are configurable, but you aren't going to use 720 * that to send signals to arbitary processes. 721 * That stops right now. 722 * 723 * If the parent exec id doesn't match the exec id we saved 724 * when we started then we know the parent has changed security 725 * domain. 726 * 727 * If our self_exec id doesn't match our parent_exec_id then 728 * we have changed execution domain as these two values started 729 * the same after a fork. 730 * 731 */ 732 733 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && 734 ( tsk->parent_exec_id != t->self_exec_id || 735 tsk->self_exec_id != tsk->parent_exec_id) 736 && !capable(CAP_KILL)) 737 tsk->exit_signal = SIGCHLD; 738 739 740 /* If something other than our normal parent is ptracing us, then 741 * send it a SIGCHLD instead of honoring exit_signal. exit_signal 742 * only has special meaning to our real parent. 743 */ 744 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { 745 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; 746 do_notify_parent(tsk, signal); 747 } else if (tsk->ptrace) { 748 do_notify_parent(tsk, SIGCHLD); 749 } 750 751 state = EXIT_ZOMBIE; 752 if (tsk->exit_signal == -1 && 753 (likely(tsk->ptrace == 0) || 754 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT))) 755 state = EXIT_DEAD; 756 tsk->exit_state = state; 757 758 write_unlock_irq(&tasklist_lock); 759 760 list_for_each_safe(_p, _n, &ptrace_dead) { 761 list_del_init(_p); 762 t = list_entry(_p,struct task_struct,ptrace_list); 763 release_task(t); 764 } 765 766 /* If the process is dead, release it - nobody will wait for it */ 767 if (state == EXIT_DEAD) 768 release_task(tsk); 769 770 /* PF_DEAD causes final put_task_struct after we schedule. */ 771 preempt_disable(); 772 tsk->flags |= PF_DEAD; 773 } 774 775 fastcall NORET_TYPE void do_exit(long code) 776 { 777 struct task_struct *tsk = current; 778 int group_dead; 779 780 profile_task_exit(tsk); 781 782 if (unlikely(in_interrupt())) 783 panic("Aiee, killing interrupt handler!"); 784 if (unlikely(!tsk->pid)) 785 panic("Attempted to kill the idle task!"); 786 if (unlikely(tsk->pid == 1)) 787 panic("Attempted to kill init!"); 788 if (tsk->io_context) 789 exit_io_context(); 790 791 if (unlikely(current->ptrace & PT_TRACE_EXIT)) { 792 current->ptrace_message = code; 793 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); 794 } 795 796 tsk->flags |= PF_EXITING; 797 798 /* 799 * Make sure we don't try to process any timer firings 800 * while we are already exiting. 801 */ 802 tsk->it_virt_expires = cputime_zero; 803 tsk->it_prof_expires = cputime_zero; 804 tsk->it_sched_expires = 0; 805 806 if (unlikely(in_atomic())) 807 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 808 current->comm, current->pid, 809 preempt_count()); 810 811 acct_update_integrals(tsk); 812 update_mem_hiwater(tsk); 813 group_dead = atomic_dec_and_test(&tsk->signal->live); 814 if (group_dead) 815 acct_process(code); 816 exit_mm(tsk); 817 818 exit_sem(tsk); 819 __exit_files(tsk); 820 __exit_fs(tsk); 821 exit_namespace(tsk); 822 exit_thread(); 823 cpuset_exit(tsk); 824 exit_keys(tsk); 825 826 if (group_dead && tsk->signal->leader) 827 disassociate_ctty(1); 828 829 module_put(tsk->thread_info->exec_domain->module); 830 if (tsk->binfmt) 831 module_put(tsk->binfmt->module); 832 833 tsk->exit_code = code; 834 exit_notify(tsk); 835 #ifdef CONFIG_NUMA 836 mpol_free(tsk->mempolicy); 837 tsk->mempolicy = NULL; 838 #endif 839 840 BUG_ON(!(current->flags & PF_DEAD)); 841 schedule(); 842 BUG(); 843 /* Avoid "noreturn function does return". */ 844 for (;;) ; 845 } 846 847 EXPORT_SYMBOL_GPL(do_exit); 848 849 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 850 { 851 if (comp) 852 complete(comp); 853 854 do_exit(code); 855 } 856 857 EXPORT_SYMBOL(complete_and_exit); 858 859 asmlinkage long sys_exit(int error_code) 860 { 861 do_exit((error_code&0xff)<<8); 862 } 863 864 task_t fastcall *next_thread(const task_t *p) 865 { 866 return pid_task(p->pids[PIDTYPE_TGID].pid_list.next, PIDTYPE_TGID); 867 } 868 869 EXPORT_SYMBOL(next_thread); 870 871 /* 872 * Take down every thread in the group. This is called by fatal signals 873 * as well as by sys_exit_group (below). 874 */ 875 NORET_TYPE void 876 do_group_exit(int exit_code) 877 { 878 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 879 880 if (current->signal->flags & SIGNAL_GROUP_EXIT) 881 exit_code = current->signal->group_exit_code; 882 else if (!thread_group_empty(current)) { 883 struct signal_struct *const sig = current->signal; 884 struct sighand_struct *const sighand = current->sighand; 885 read_lock(&tasklist_lock); 886 spin_lock_irq(&sighand->siglock); 887 if (sig->flags & SIGNAL_GROUP_EXIT) 888 /* Another thread got here before we took the lock. */ 889 exit_code = sig->group_exit_code; 890 else { 891 sig->flags = SIGNAL_GROUP_EXIT; 892 sig->group_exit_code = exit_code; 893 zap_other_threads(current); 894 } 895 spin_unlock_irq(&sighand->siglock); 896 read_unlock(&tasklist_lock); 897 } 898 899 do_exit(exit_code); 900 /* NOTREACHED */ 901 } 902 903 /* 904 * this kills every thread in the thread group. Note that any externally 905 * wait4()-ing process will get the correct exit code - even if this 906 * thread is not the thread group leader. 907 */ 908 asmlinkage void sys_exit_group(int error_code) 909 { 910 do_group_exit((error_code & 0xff) << 8); 911 } 912 913 static int eligible_child(pid_t pid, int options, task_t *p) 914 { 915 if (pid > 0) { 916 if (p->pid != pid) 917 return 0; 918 } else if (!pid) { 919 if (process_group(p) != process_group(current)) 920 return 0; 921 } else if (pid != -1) { 922 if (process_group(p) != -pid) 923 return 0; 924 } 925 926 /* 927 * Do not consider detached threads that are 928 * not ptraced: 929 */ 930 if (p->exit_signal == -1 && !p->ptrace) 931 return 0; 932 933 /* Wait for all children (clone and not) if __WALL is set; 934 * otherwise, wait for clone children *only* if __WCLONE is 935 * set; otherwise, wait for non-clone children *only*. (Note: 936 * A "clone" child here is one that reports to its parent 937 * using a signal other than SIGCHLD.) */ 938 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 939 && !(options & __WALL)) 940 return 0; 941 /* 942 * Do not consider thread group leaders that are 943 * in a non-empty thread group: 944 */ 945 if (current->tgid != p->tgid && delay_group_leader(p)) 946 return 2; 947 948 if (security_task_wait(p)) 949 return 0; 950 951 return 1; 952 } 953 954 static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid, 955 int why, int status, 956 struct siginfo __user *infop, 957 struct rusage __user *rusagep) 958 { 959 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 960 put_task_struct(p); 961 if (!retval) 962 retval = put_user(SIGCHLD, &infop->si_signo); 963 if (!retval) 964 retval = put_user(0, &infop->si_errno); 965 if (!retval) 966 retval = put_user((short)why, &infop->si_code); 967 if (!retval) 968 retval = put_user(pid, &infop->si_pid); 969 if (!retval) 970 retval = put_user(uid, &infop->si_uid); 971 if (!retval) 972 retval = put_user(status, &infop->si_status); 973 if (!retval) 974 retval = pid; 975 return retval; 976 } 977 978 /* 979 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 980 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 981 * the lock and this task is uninteresting. If we return nonzero, we have 982 * released the lock and the system call should return. 983 */ 984 static int wait_task_zombie(task_t *p, int noreap, 985 struct siginfo __user *infop, 986 int __user *stat_addr, struct rusage __user *ru) 987 { 988 unsigned long state; 989 int retval; 990 int status; 991 992 if (unlikely(noreap)) { 993 pid_t pid = p->pid; 994 uid_t uid = p->uid; 995 int exit_code = p->exit_code; 996 int why, status; 997 998 if (unlikely(p->exit_state != EXIT_ZOMBIE)) 999 return 0; 1000 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) 1001 return 0; 1002 get_task_struct(p); 1003 read_unlock(&tasklist_lock); 1004 if ((exit_code & 0x7f) == 0) { 1005 why = CLD_EXITED; 1006 status = exit_code >> 8; 1007 } else { 1008 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1009 status = exit_code & 0x7f; 1010 } 1011 return wait_noreap_copyout(p, pid, uid, why, 1012 status, infop, ru); 1013 } 1014 1015 /* 1016 * Try to move the task's state to DEAD 1017 * only one thread is allowed to do this: 1018 */ 1019 state = xchg(&p->exit_state, EXIT_DEAD); 1020 if (state != EXIT_ZOMBIE) { 1021 BUG_ON(state != EXIT_DEAD); 1022 return 0; 1023 } 1024 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) { 1025 /* 1026 * This can only happen in a race with a ptraced thread 1027 * dying on another processor. 1028 */ 1029 return 0; 1030 } 1031 1032 if (likely(p->real_parent == p->parent) && likely(p->signal)) { 1033 /* 1034 * The resource counters for the group leader are in its 1035 * own task_struct. Those for dead threads in the group 1036 * are in its signal_struct, as are those for the child 1037 * processes it has previously reaped. All these 1038 * accumulate in the parent's signal_struct c* fields. 1039 * 1040 * We don't bother to take a lock here to protect these 1041 * p->signal fields, because they are only touched by 1042 * __exit_signal, which runs with tasklist_lock 1043 * write-locked anyway, and so is excluded here. We do 1044 * need to protect the access to p->parent->signal fields, 1045 * as other threads in the parent group can be right 1046 * here reaping other children at the same time. 1047 */ 1048 spin_lock_irq(&p->parent->sighand->siglock); 1049 p->parent->signal->cutime = 1050 cputime_add(p->parent->signal->cutime, 1051 cputime_add(p->utime, 1052 cputime_add(p->signal->utime, 1053 p->signal->cutime))); 1054 p->parent->signal->cstime = 1055 cputime_add(p->parent->signal->cstime, 1056 cputime_add(p->stime, 1057 cputime_add(p->signal->stime, 1058 p->signal->cstime))); 1059 p->parent->signal->cmin_flt += 1060 p->min_flt + p->signal->min_flt + p->signal->cmin_flt; 1061 p->parent->signal->cmaj_flt += 1062 p->maj_flt + p->signal->maj_flt + p->signal->cmaj_flt; 1063 p->parent->signal->cnvcsw += 1064 p->nvcsw + p->signal->nvcsw + p->signal->cnvcsw; 1065 p->parent->signal->cnivcsw += 1066 p->nivcsw + p->signal->nivcsw + p->signal->cnivcsw; 1067 spin_unlock_irq(&p->parent->sighand->siglock); 1068 } 1069 1070 /* 1071 * Now we are sure this task is interesting, and no other 1072 * thread can reap it because we set its state to EXIT_DEAD. 1073 */ 1074 read_unlock(&tasklist_lock); 1075 1076 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1077 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1078 ? p->signal->group_exit_code : p->exit_code; 1079 if (!retval && stat_addr) 1080 retval = put_user(status, stat_addr); 1081 if (!retval && infop) 1082 retval = put_user(SIGCHLD, &infop->si_signo); 1083 if (!retval && infop) 1084 retval = put_user(0, &infop->si_errno); 1085 if (!retval && infop) { 1086 int why; 1087 1088 if ((status & 0x7f) == 0) { 1089 why = CLD_EXITED; 1090 status >>= 8; 1091 } else { 1092 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1093 status &= 0x7f; 1094 } 1095 retval = put_user((short)why, &infop->si_code); 1096 if (!retval) 1097 retval = put_user(status, &infop->si_status); 1098 } 1099 if (!retval && infop) 1100 retval = put_user(p->pid, &infop->si_pid); 1101 if (!retval && infop) 1102 retval = put_user(p->uid, &infop->si_uid); 1103 if (retval) { 1104 // TODO: is this safe? 1105 p->exit_state = EXIT_ZOMBIE; 1106 return retval; 1107 } 1108 retval = p->pid; 1109 if (p->real_parent != p->parent) { 1110 write_lock_irq(&tasklist_lock); 1111 /* Double-check with lock held. */ 1112 if (p->real_parent != p->parent) { 1113 __ptrace_unlink(p); 1114 // TODO: is this safe? 1115 p->exit_state = EXIT_ZOMBIE; 1116 /* 1117 * If this is not a detached task, notify the parent. 1118 * If it's still not detached after that, don't release 1119 * it now. 1120 */ 1121 if (p->exit_signal != -1) { 1122 do_notify_parent(p, p->exit_signal); 1123 if (p->exit_signal != -1) 1124 p = NULL; 1125 } 1126 } 1127 write_unlock_irq(&tasklist_lock); 1128 } 1129 if (p != NULL) 1130 release_task(p); 1131 BUG_ON(!retval); 1132 return retval; 1133 } 1134 1135 /* 1136 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1137 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1138 * the lock and this task is uninteresting. If we return nonzero, we have 1139 * released the lock and the system call should return. 1140 */ 1141 static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap, 1142 struct siginfo __user *infop, 1143 int __user *stat_addr, struct rusage __user *ru) 1144 { 1145 int retval, exit_code; 1146 1147 if (!p->exit_code) 1148 return 0; 1149 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) && 1150 p->signal && p->signal->group_stop_count > 0) 1151 /* 1152 * A group stop is in progress and this is the group leader. 1153 * We won't report until all threads have stopped. 1154 */ 1155 return 0; 1156 1157 /* 1158 * Now we are pretty sure this task is interesting. 1159 * Make sure it doesn't get reaped out from under us while we 1160 * give up the lock and then examine it below. We don't want to 1161 * keep holding onto the tasklist_lock while we call getrusage and 1162 * possibly take page faults for user memory. 1163 */ 1164 get_task_struct(p); 1165 read_unlock(&tasklist_lock); 1166 1167 if (unlikely(noreap)) { 1168 pid_t pid = p->pid; 1169 uid_t uid = p->uid; 1170 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; 1171 1172 exit_code = p->exit_code; 1173 if (unlikely(!exit_code) || 1174 unlikely(p->state > TASK_STOPPED)) 1175 goto bail_ref; 1176 return wait_noreap_copyout(p, pid, uid, 1177 why, (exit_code << 8) | 0x7f, 1178 infop, ru); 1179 } 1180 1181 write_lock_irq(&tasklist_lock); 1182 1183 /* 1184 * This uses xchg to be atomic with the thread resuming and setting 1185 * it. It must also be done with the write lock held to prevent a 1186 * race with the EXIT_ZOMBIE case. 1187 */ 1188 exit_code = xchg(&p->exit_code, 0); 1189 if (unlikely(p->exit_state)) { 1190 /* 1191 * The task resumed and then died. Let the next iteration 1192 * catch it in EXIT_ZOMBIE. Note that exit_code might 1193 * already be zero here if it resumed and did _exit(0). 1194 * The task itself is dead and won't touch exit_code again; 1195 * other processors in this function are locked out. 1196 */ 1197 p->exit_code = exit_code; 1198 exit_code = 0; 1199 } 1200 if (unlikely(exit_code == 0)) { 1201 /* 1202 * Another thread in this function got to it first, or it 1203 * resumed, or it resumed and then died. 1204 */ 1205 write_unlock_irq(&tasklist_lock); 1206 bail_ref: 1207 put_task_struct(p); 1208 /* 1209 * We are returning to the wait loop without having successfully 1210 * removed the process and having released the lock. We cannot 1211 * continue, since the "p" task pointer is potentially stale. 1212 * 1213 * Return -EAGAIN, and do_wait() will restart the loop from the 1214 * beginning. Do _not_ re-acquire the lock. 1215 */ 1216 return -EAGAIN; 1217 } 1218 1219 /* move to end of parent's list to avoid starvation */ 1220 remove_parent(p); 1221 add_parent(p, p->parent); 1222 1223 write_unlock_irq(&tasklist_lock); 1224 1225 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1226 if (!retval && stat_addr) 1227 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1228 if (!retval && infop) 1229 retval = put_user(SIGCHLD, &infop->si_signo); 1230 if (!retval && infop) 1231 retval = put_user(0, &infop->si_errno); 1232 if (!retval && infop) 1233 retval = put_user((short)((p->ptrace & PT_PTRACED) 1234 ? CLD_TRAPPED : CLD_STOPPED), 1235 &infop->si_code); 1236 if (!retval && infop) 1237 retval = put_user(exit_code, &infop->si_status); 1238 if (!retval && infop) 1239 retval = put_user(p->pid, &infop->si_pid); 1240 if (!retval && infop) 1241 retval = put_user(p->uid, &infop->si_uid); 1242 if (!retval) 1243 retval = p->pid; 1244 put_task_struct(p); 1245 1246 BUG_ON(!retval); 1247 return retval; 1248 } 1249 1250 /* 1251 * Handle do_wait work for one task in a live, non-stopped state. 1252 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1253 * the lock and this task is uninteresting. If we return nonzero, we have 1254 * released the lock and the system call should return. 1255 */ 1256 static int wait_task_continued(task_t *p, int noreap, 1257 struct siginfo __user *infop, 1258 int __user *stat_addr, struct rusage __user *ru) 1259 { 1260 int retval; 1261 pid_t pid; 1262 uid_t uid; 1263 1264 if (unlikely(!p->signal)) 1265 return 0; 1266 1267 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1268 return 0; 1269 1270 spin_lock_irq(&p->sighand->siglock); 1271 /* Re-check with the lock held. */ 1272 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1273 spin_unlock_irq(&p->sighand->siglock); 1274 return 0; 1275 } 1276 if (!noreap) 1277 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1278 spin_unlock_irq(&p->sighand->siglock); 1279 1280 pid = p->pid; 1281 uid = p->uid; 1282 get_task_struct(p); 1283 read_unlock(&tasklist_lock); 1284 1285 if (!infop) { 1286 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1287 put_task_struct(p); 1288 if (!retval && stat_addr) 1289 retval = put_user(0xffff, stat_addr); 1290 if (!retval) 1291 retval = p->pid; 1292 } else { 1293 retval = wait_noreap_copyout(p, pid, uid, 1294 CLD_CONTINUED, SIGCONT, 1295 infop, ru); 1296 BUG_ON(retval == 0); 1297 } 1298 1299 return retval; 1300 } 1301 1302 1303 static inline int my_ptrace_child(struct task_struct *p) 1304 { 1305 if (!(p->ptrace & PT_PTRACED)) 1306 return 0; 1307 if (!(p->ptrace & PT_ATTACHED)) 1308 return 1; 1309 /* 1310 * This child was PTRACE_ATTACH'd. We should be seeing it only if 1311 * we are the attacher. If we are the real parent, this is a race 1312 * inside ptrace_attach. It is waiting for the tasklist_lock, 1313 * which we have to switch the parent links, but has already set 1314 * the flags in p->ptrace. 1315 */ 1316 return (p->parent != p->real_parent); 1317 } 1318 1319 static long do_wait(pid_t pid, int options, struct siginfo __user *infop, 1320 int __user *stat_addr, struct rusage __user *ru) 1321 { 1322 DECLARE_WAITQUEUE(wait, current); 1323 struct task_struct *tsk; 1324 int flag, retval; 1325 1326 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1327 repeat: 1328 /* 1329 * We will set this flag if we see any child that might later 1330 * match our criteria, even if we are not able to reap it yet. 1331 */ 1332 flag = 0; 1333 current->state = TASK_INTERRUPTIBLE; 1334 read_lock(&tasklist_lock); 1335 tsk = current; 1336 do { 1337 struct task_struct *p; 1338 struct list_head *_p; 1339 int ret; 1340 1341 list_for_each(_p,&tsk->children) { 1342 p = list_entry(_p,struct task_struct,sibling); 1343 1344 ret = eligible_child(pid, options, p); 1345 if (!ret) 1346 continue; 1347 1348 switch (p->state) { 1349 case TASK_TRACED: 1350 if (!my_ptrace_child(p)) 1351 continue; 1352 /*FALLTHROUGH*/ 1353 case TASK_STOPPED: 1354 /* 1355 * It's stopped now, so it might later 1356 * continue, exit, or stop again. 1357 */ 1358 flag = 1; 1359 if (!(options & WUNTRACED) && 1360 !my_ptrace_child(p)) 1361 continue; 1362 retval = wait_task_stopped(p, ret == 2, 1363 (options & WNOWAIT), 1364 infop, 1365 stat_addr, ru); 1366 if (retval == -EAGAIN) 1367 goto repeat; 1368 if (retval != 0) /* He released the lock. */ 1369 goto end; 1370 break; 1371 default: 1372 // case EXIT_DEAD: 1373 if (p->exit_state == EXIT_DEAD) 1374 continue; 1375 // case EXIT_ZOMBIE: 1376 if (p->exit_state == EXIT_ZOMBIE) { 1377 /* 1378 * Eligible but we cannot release 1379 * it yet: 1380 */ 1381 if (ret == 2) 1382 goto check_continued; 1383 if (!likely(options & WEXITED)) 1384 continue; 1385 retval = wait_task_zombie( 1386 p, (options & WNOWAIT), 1387 infop, stat_addr, ru); 1388 /* He released the lock. */ 1389 if (retval != 0) 1390 goto end; 1391 break; 1392 } 1393 check_continued: 1394 /* 1395 * It's running now, so it might later 1396 * exit, stop, or stop and then continue. 1397 */ 1398 flag = 1; 1399 if (!unlikely(options & WCONTINUED)) 1400 continue; 1401 retval = wait_task_continued( 1402 p, (options & WNOWAIT), 1403 infop, stat_addr, ru); 1404 if (retval != 0) /* He released the lock. */ 1405 goto end; 1406 break; 1407 } 1408 } 1409 if (!flag) { 1410 list_for_each(_p, &tsk->ptrace_children) { 1411 p = list_entry(_p, struct task_struct, 1412 ptrace_list); 1413 if (!eligible_child(pid, options, p)) 1414 continue; 1415 flag = 1; 1416 break; 1417 } 1418 } 1419 if (options & __WNOTHREAD) 1420 break; 1421 tsk = next_thread(tsk); 1422 if (tsk->signal != current->signal) 1423 BUG(); 1424 } while (tsk != current); 1425 1426 read_unlock(&tasklist_lock); 1427 if (flag) { 1428 retval = 0; 1429 if (options & WNOHANG) 1430 goto end; 1431 retval = -ERESTARTSYS; 1432 if (signal_pending(current)) 1433 goto end; 1434 schedule(); 1435 goto repeat; 1436 } 1437 retval = -ECHILD; 1438 end: 1439 current->state = TASK_RUNNING; 1440 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1441 if (infop) { 1442 if (retval > 0) 1443 retval = 0; 1444 else { 1445 /* 1446 * For a WNOHANG return, clear out all the fields 1447 * we would set so the user can easily tell the 1448 * difference. 1449 */ 1450 if (!retval) 1451 retval = put_user(0, &infop->si_signo); 1452 if (!retval) 1453 retval = put_user(0, &infop->si_errno); 1454 if (!retval) 1455 retval = put_user(0, &infop->si_code); 1456 if (!retval) 1457 retval = put_user(0, &infop->si_pid); 1458 if (!retval) 1459 retval = put_user(0, &infop->si_uid); 1460 if (!retval) 1461 retval = put_user(0, &infop->si_status); 1462 } 1463 } 1464 return retval; 1465 } 1466 1467 asmlinkage long sys_waitid(int which, pid_t pid, 1468 struct siginfo __user *infop, int options, 1469 struct rusage __user *ru) 1470 { 1471 long ret; 1472 1473 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1474 return -EINVAL; 1475 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1476 return -EINVAL; 1477 1478 switch (which) { 1479 case P_ALL: 1480 pid = -1; 1481 break; 1482 case P_PID: 1483 if (pid <= 0) 1484 return -EINVAL; 1485 break; 1486 case P_PGID: 1487 if (pid <= 0) 1488 return -EINVAL; 1489 pid = -pid; 1490 break; 1491 default: 1492 return -EINVAL; 1493 } 1494 1495 ret = do_wait(pid, options, infop, NULL, ru); 1496 1497 /* avoid REGPARM breakage on x86: */ 1498 prevent_tail_call(ret); 1499 return ret; 1500 } 1501 1502 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr, 1503 int options, struct rusage __user *ru) 1504 { 1505 long ret; 1506 1507 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1508 __WNOTHREAD|__WCLONE|__WALL)) 1509 return -EINVAL; 1510 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru); 1511 1512 /* avoid REGPARM breakage on x86: */ 1513 prevent_tail_call(ret); 1514 return ret; 1515 } 1516 1517 #ifdef __ARCH_WANT_SYS_WAITPID 1518 1519 /* 1520 * sys_waitpid() remains for compatibility. waitpid() should be 1521 * implemented by calling sys_wait4() from libc.a. 1522 */ 1523 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1524 { 1525 return sys_wait4(pid, stat_addr, options, NULL); 1526 } 1527 1528 #endif 1529