xref: /linux/kernel/exit.c (revision 6084a6e23c971ef703229ee1aec68d01688578d6)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61 
62 static void exit_mm(struct task_struct * tsk);
63 
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 	nr_threads--;
67 	detach_pid(p, PIDTYPE_PID);
68 	if (group_dead) {
69 		detach_pid(p, PIDTYPE_PGID);
70 		detach_pid(p, PIDTYPE_SID);
71 
72 		list_del_rcu(&p->tasks);
73 		list_del_init(&p->sibling);
74 		__this_cpu_dec(process_counts);
75 	}
76 	list_del_rcu(&p->thread_group);
77 	list_del_rcu(&p->thread_node);
78 }
79 
80 /*
81  * This function expects the tasklist_lock write-locked.
82  */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 	struct signal_struct *sig = tsk->signal;
86 	bool group_dead = thread_group_leader(tsk);
87 	struct sighand_struct *sighand;
88 	struct tty_struct *uninitialized_var(tty);
89 	cputime_t utime, stime;
90 
91 	sighand = rcu_dereference_check(tsk->sighand,
92 					lockdep_tasklist_lock_is_held());
93 	spin_lock(&sighand->siglock);
94 
95 	posix_cpu_timers_exit(tsk);
96 	if (group_dead) {
97 		posix_cpu_timers_exit_group(tsk);
98 		tty = sig->tty;
99 		sig->tty = NULL;
100 	} else {
101 		/*
102 		 * This can only happen if the caller is de_thread().
103 		 * FIXME: this is the temporary hack, we should teach
104 		 * posix-cpu-timers to handle this case correctly.
105 		 */
106 		if (unlikely(has_group_leader_pid(tsk)))
107 			posix_cpu_timers_exit_group(tsk);
108 
109 		/*
110 		 * If there is any task waiting for the group exit
111 		 * then notify it:
112 		 */
113 		if (sig->notify_count > 0 && !--sig->notify_count)
114 			wake_up_process(sig->group_exit_task);
115 
116 		if (tsk == sig->curr_target)
117 			sig->curr_target = next_thread(tsk);
118 		/*
119 		 * Accumulate here the counters for all threads but the
120 		 * group leader as they die, so they can be added into
121 		 * the process-wide totals when those are taken.
122 		 * The group leader stays around as a zombie as long
123 		 * as there are other threads.  When it gets reaped,
124 		 * the exit.c code will add its counts into these totals.
125 		 * We won't ever get here for the group leader, since it
126 		 * will have been the last reference on the signal_struct.
127 		 */
128 		task_cputime(tsk, &utime, &stime);
129 		sig->utime += utime;
130 		sig->stime += stime;
131 		sig->gtime += task_gtime(tsk);
132 		sig->min_flt += tsk->min_flt;
133 		sig->maj_flt += tsk->maj_flt;
134 		sig->nvcsw += tsk->nvcsw;
135 		sig->nivcsw += tsk->nivcsw;
136 		sig->inblock += task_io_get_inblock(tsk);
137 		sig->oublock += task_io_get_oublock(tsk);
138 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
139 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
140 	}
141 
142 	sig->nr_threads--;
143 	__unhash_process(tsk, group_dead);
144 
145 	/*
146 	 * Do this under ->siglock, we can race with another thread
147 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
148 	 */
149 	flush_sigqueue(&tsk->pending);
150 	tsk->sighand = NULL;
151 	spin_unlock(&sighand->siglock);
152 
153 	__cleanup_sighand(sighand);
154 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
155 	if (group_dead) {
156 		flush_sigqueue(&sig->shared_pending);
157 		tty_kref_put(tty);
158 	}
159 }
160 
161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
164 
165 	perf_event_delayed_put(tsk);
166 	trace_sched_process_free(tsk);
167 	put_task_struct(tsk);
168 }
169 
170 
171 void release_task(struct task_struct * p)
172 {
173 	struct task_struct *leader;
174 	int zap_leader;
175 repeat:
176 	/* don't need to get the RCU readlock here - the process is dead and
177 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
178 	rcu_read_lock();
179 	atomic_dec(&__task_cred(p)->user->processes);
180 	rcu_read_unlock();
181 
182 	proc_flush_task(p);
183 
184 	write_lock_irq(&tasklist_lock);
185 	ptrace_release_task(p);
186 	__exit_signal(p);
187 
188 	/*
189 	 * If we are the last non-leader member of the thread
190 	 * group, and the leader is zombie, then notify the
191 	 * group leader's parent process. (if it wants notification.)
192 	 */
193 	zap_leader = 0;
194 	leader = p->group_leader;
195 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
196 		/*
197 		 * If we were the last child thread and the leader has
198 		 * exited already, and the leader's parent ignores SIGCHLD,
199 		 * then we are the one who should release the leader.
200 		 */
201 		zap_leader = do_notify_parent(leader, leader->exit_signal);
202 		if (zap_leader)
203 			leader->exit_state = EXIT_DEAD;
204 	}
205 
206 	write_unlock_irq(&tasklist_lock);
207 	release_thread(p);
208 	call_rcu(&p->rcu, delayed_put_task_struct);
209 
210 	p = leader;
211 	if (unlikely(zap_leader))
212 		goto repeat;
213 }
214 
215 /*
216  * This checks not only the pgrp, but falls back on the pid if no
217  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
218  * without this...
219  *
220  * The caller must hold rcu lock or the tasklist lock.
221  */
222 struct pid *session_of_pgrp(struct pid *pgrp)
223 {
224 	struct task_struct *p;
225 	struct pid *sid = NULL;
226 
227 	p = pid_task(pgrp, PIDTYPE_PGID);
228 	if (p == NULL)
229 		p = pid_task(pgrp, PIDTYPE_PID);
230 	if (p != NULL)
231 		sid = task_session(p);
232 
233 	return sid;
234 }
235 
236 /*
237  * Determine if a process group is "orphaned", according to the POSIX
238  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
239  * by terminal-generated stop signals.  Newly orphaned process groups are
240  * to receive a SIGHUP and a SIGCONT.
241  *
242  * "I ask you, have you ever known what it is to be an orphan?"
243  */
244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
245 {
246 	struct task_struct *p;
247 
248 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 		if ((p == ignored_task) ||
250 		    (p->exit_state && thread_group_empty(p)) ||
251 		    is_global_init(p->real_parent))
252 			continue;
253 
254 		if (task_pgrp(p->real_parent) != pgrp &&
255 		    task_session(p->real_parent) == task_session(p))
256 			return 0;
257 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258 
259 	return 1;
260 }
261 
262 int is_current_pgrp_orphaned(void)
263 {
264 	int retval;
265 
266 	read_lock(&tasklist_lock);
267 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
268 	read_unlock(&tasklist_lock);
269 
270 	return retval;
271 }
272 
273 static bool has_stopped_jobs(struct pid *pgrp)
274 {
275 	struct task_struct *p;
276 
277 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
279 			return true;
280 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
281 
282 	return false;
283 }
284 
285 /*
286  * Check to see if any process groups have become orphaned as
287  * a result of our exiting, and if they have any stopped jobs,
288  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
289  */
290 static void
291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
292 {
293 	struct pid *pgrp = task_pgrp(tsk);
294 	struct task_struct *ignored_task = tsk;
295 
296 	if (!parent)
297 		 /* exit: our father is in a different pgrp than
298 		  * we are and we were the only connection outside.
299 		  */
300 		parent = tsk->real_parent;
301 	else
302 		/* reparent: our child is in a different pgrp than
303 		 * we are, and it was the only connection outside.
304 		 */
305 		ignored_task = NULL;
306 
307 	if (task_pgrp(parent) != pgrp &&
308 	    task_session(parent) == task_session(tsk) &&
309 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
310 	    has_stopped_jobs(pgrp)) {
311 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
312 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
313 	}
314 }
315 
316 #ifdef CONFIG_MEMCG
317 /*
318  * A task is exiting.   If it owned this mm, find a new owner for the mm.
319  */
320 void mm_update_next_owner(struct mm_struct *mm)
321 {
322 	struct task_struct *c, *g, *p = current;
323 
324 retry:
325 	/*
326 	 * If the exiting or execing task is not the owner, it's
327 	 * someone else's problem.
328 	 */
329 	if (mm->owner != p)
330 		return;
331 	/*
332 	 * The current owner is exiting/execing and there are no other
333 	 * candidates.  Do not leave the mm pointing to a possibly
334 	 * freed task structure.
335 	 */
336 	if (atomic_read(&mm->mm_users) <= 1) {
337 		mm->owner = NULL;
338 		return;
339 	}
340 
341 	read_lock(&tasklist_lock);
342 	/*
343 	 * Search in the children
344 	 */
345 	list_for_each_entry(c, &p->children, sibling) {
346 		if (c->mm == mm)
347 			goto assign_new_owner;
348 	}
349 
350 	/*
351 	 * Search in the siblings
352 	 */
353 	list_for_each_entry(c, &p->real_parent->children, sibling) {
354 		if (c->mm == mm)
355 			goto assign_new_owner;
356 	}
357 
358 	/*
359 	 * Search through everything else, we should not get here often.
360 	 */
361 	for_each_process(g) {
362 		if (g->flags & PF_KTHREAD)
363 			continue;
364 		for_each_thread(g, c) {
365 			if (c->mm == mm)
366 				goto assign_new_owner;
367 			if (c->mm)
368 				break;
369 		}
370 	}
371 	read_unlock(&tasklist_lock);
372 	/*
373 	 * We found no owner yet mm_users > 1: this implies that we are
374 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
375 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
376 	 */
377 	mm->owner = NULL;
378 	return;
379 
380 assign_new_owner:
381 	BUG_ON(c == p);
382 	get_task_struct(c);
383 	/*
384 	 * The task_lock protects c->mm from changing.
385 	 * We always want mm->owner->mm == mm
386 	 */
387 	task_lock(c);
388 	/*
389 	 * Delay read_unlock() till we have the task_lock()
390 	 * to ensure that c does not slip away underneath us
391 	 */
392 	read_unlock(&tasklist_lock);
393 	if (c->mm != mm) {
394 		task_unlock(c);
395 		put_task_struct(c);
396 		goto retry;
397 	}
398 	mm->owner = c;
399 	task_unlock(c);
400 	put_task_struct(c);
401 }
402 #endif /* CONFIG_MEMCG */
403 
404 /*
405  * Turn us into a lazy TLB process if we
406  * aren't already..
407  */
408 static void exit_mm(struct task_struct * tsk)
409 {
410 	struct mm_struct *mm = tsk->mm;
411 	struct core_state *core_state;
412 
413 	mm_release(tsk, mm);
414 	if (!mm)
415 		return;
416 	sync_mm_rss(mm);
417 	/*
418 	 * Serialize with any possible pending coredump.
419 	 * We must hold mmap_sem around checking core_state
420 	 * and clearing tsk->mm.  The core-inducing thread
421 	 * will increment ->nr_threads for each thread in the
422 	 * group with ->mm != NULL.
423 	 */
424 	down_read(&mm->mmap_sem);
425 	core_state = mm->core_state;
426 	if (core_state) {
427 		struct core_thread self;
428 		up_read(&mm->mmap_sem);
429 
430 		self.task = tsk;
431 		self.next = xchg(&core_state->dumper.next, &self);
432 		/*
433 		 * Implies mb(), the result of xchg() must be visible
434 		 * to core_state->dumper.
435 		 */
436 		if (atomic_dec_and_test(&core_state->nr_threads))
437 			complete(&core_state->startup);
438 
439 		for (;;) {
440 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
441 			if (!self.task) /* see coredump_finish() */
442 				break;
443 			freezable_schedule();
444 		}
445 		__set_task_state(tsk, TASK_RUNNING);
446 		down_read(&mm->mmap_sem);
447 	}
448 	atomic_inc(&mm->mm_count);
449 	BUG_ON(mm != tsk->active_mm);
450 	/* more a memory barrier than a real lock */
451 	task_lock(tsk);
452 	tsk->mm = NULL;
453 	up_read(&mm->mmap_sem);
454 	enter_lazy_tlb(mm, current);
455 	task_unlock(tsk);
456 	mm_update_next_owner(mm);
457 	mmput(mm);
458 }
459 
460 /*
461  * When we die, we re-parent all our children, and try to:
462  * 1. give them to another thread in our thread group, if such a member exists
463  * 2. give it to the first ancestor process which prctl'd itself as a
464  *    child_subreaper for its children (like a service manager)
465  * 3. give it to the init process (PID 1) in our pid namespace
466  */
467 static struct task_struct *find_new_reaper(struct task_struct *father)
468 	__releases(&tasklist_lock)
469 	__acquires(&tasklist_lock)
470 {
471 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
472 	struct task_struct *thread;
473 
474 	thread = father;
475 	while_each_thread(father, thread) {
476 		if (thread->flags & PF_EXITING)
477 			continue;
478 		if (unlikely(pid_ns->child_reaper == father))
479 			pid_ns->child_reaper = thread;
480 		return thread;
481 	}
482 
483 	if (unlikely(pid_ns->child_reaper == father)) {
484 		write_unlock_irq(&tasklist_lock);
485 		if (unlikely(pid_ns == &init_pid_ns)) {
486 			panic("Attempted to kill init! exitcode=0x%08x\n",
487 				father->signal->group_exit_code ?:
488 					father->exit_code);
489 		}
490 
491 		zap_pid_ns_processes(pid_ns);
492 		write_lock_irq(&tasklist_lock);
493 	} else if (father->signal->has_child_subreaper) {
494 		struct task_struct *reaper;
495 
496 		/*
497 		 * Find the first ancestor marked as child_subreaper.
498 		 * Note that the code below checks same_thread_group(reaper,
499 		 * pid_ns->child_reaper).  This is what we need to DTRT in a
500 		 * PID namespace. However we still need the check above, see
501 		 * http://marc.info/?l=linux-kernel&m=131385460420380
502 		 */
503 		for (reaper = father->real_parent;
504 		     reaper != &init_task;
505 		     reaper = reaper->real_parent) {
506 			if (same_thread_group(reaper, pid_ns->child_reaper))
507 				break;
508 			if (!reaper->signal->is_child_subreaper)
509 				continue;
510 			thread = reaper;
511 			do {
512 				if (!(thread->flags & PF_EXITING))
513 					return reaper;
514 			} while_each_thread(reaper, thread);
515 		}
516 	}
517 
518 	return pid_ns->child_reaper;
519 }
520 
521 /*
522 * Any that need to be release_task'd are put on the @dead list.
523  */
524 static void reparent_leader(struct task_struct *father, struct task_struct *p,
525 				struct list_head *dead)
526 {
527 	list_move_tail(&p->sibling, &p->real_parent->children);
528 
529 	if (p->exit_state == EXIT_DEAD)
530 		return;
531 	/*
532 	 * If this is a threaded reparent there is no need to
533 	 * notify anyone anything has happened.
534 	 */
535 	if (same_thread_group(p->real_parent, father))
536 		return;
537 
538 	/* We don't want people slaying init. */
539 	p->exit_signal = SIGCHLD;
540 
541 	/* If it has exited notify the new parent about this child's death. */
542 	if (!p->ptrace &&
543 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
544 		if (do_notify_parent(p, p->exit_signal)) {
545 			p->exit_state = EXIT_DEAD;
546 			list_move_tail(&p->sibling, dead);
547 		}
548 	}
549 
550 	kill_orphaned_pgrp(p, father);
551 }
552 
553 static void forget_original_parent(struct task_struct *father)
554 {
555 	struct task_struct *p, *n, *reaper;
556 	LIST_HEAD(dead_children);
557 
558 	write_lock_irq(&tasklist_lock);
559 	/*
560 	 * Note that exit_ptrace() and find_new_reaper() might
561 	 * drop tasklist_lock and reacquire it.
562 	 */
563 	exit_ptrace(father);
564 	reaper = find_new_reaper(father);
565 
566 	list_for_each_entry_safe(p, n, &father->children, sibling) {
567 		struct task_struct *t = p;
568 		do {
569 			t->real_parent = reaper;
570 			if (t->parent == father) {
571 				BUG_ON(t->ptrace);
572 				t->parent = t->real_parent;
573 			}
574 			if (t->pdeath_signal)
575 				group_send_sig_info(t->pdeath_signal,
576 						    SEND_SIG_NOINFO, t);
577 		} while_each_thread(p, t);
578 		reparent_leader(father, p, &dead_children);
579 	}
580 	write_unlock_irq(&tasklist_lock);
581 
582 	BUG_ON(!list_empty(&father->children));
583 
584 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
585 		list_del_init(&p->sibling);
586 		release_task(p);
587 	}
588 }
589 
590 /*
591  * Send signals to all our closest relatives so that they know
592  * to properly mourn us..
593  */
594 static void exit_notify(struct task_struct *tsk, int group_dead)
595 {
596 	bool autoreap;
597 
598 	/*
599 	 * This does two things:
600 	 *
601   	 * A.  Make init inherit all the child processes
602 	 * B.  Check to see if any process groups have become orphaned
603 	 *	as a result of our exiting, and if they have any stopped
604 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
605 	 */
606 	forget_original_parent(tsk);
607 
608 	write_lock_irq(&tasklist_lock);
609 	if (group_dead)
610 		kill_orphaned_pgrp(tsk->group_leader, NULL);
611 
612 	if (unlikely(tsk->ptrace)) {
613 		int sig = thread_group_leader(tsk) &&
614 				thread_group_empty(tsk) &&
615 				!ptrace_reparented(tsk) ?
616 			tsk->exit_signal : SIGCHLD;
617 		autoreap = do_notify_parent(tsk, sig);
618 	} else if (thread_group_leader(tsk)) {
619 		autoreap = thread_group_empty(tsk) &&
620 			do_notify_parent(tsk, tsk->exit_signal);
621 	} else {
622 		autoreap = true;
623 	}
624 
625 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
626 
627 	/* mt-exec, de_thread() is waiting for group leader */
628 	if (unlikely(tsk->signal->notify_count < 0))
629 		wake_up_process(tsk->signal->group_exit_task);
630 	write_unlock_irq(&tasklist_lock);
631 
632 	/* If the process is dead, release it - nobody will wait for it */
633 	if (autoreap)
634 		release_task(tsk);
635 }
636 
637 #ifdef CONFIG_DEBUG_STACK_USAGE
638 static void check_stack_usage(void)
639 {
640 	static DEFINE_SPINLOCK(low_water_lock);
641 	static int lowest_to_date = THREAD_SIZE;
642 	unsigned long free;
643 
644 	free = stack_not_used(current);
645 
646 	if (free >= lowest_to_date)
647 		return;
648 
649 	spin_lock(&low_water_lock);
650 	if (free < lowest_to_date) {
651 		printk(KERN_WARNING "%s (%d) used greatest stack depth: "
652 				"%lu bytes left\n",
653 				current->comm, task_pid_nr(current), free);
654 		lowest_to_date = free;
655 	}
656 	spin_unlock(&low_water_lock);
657 }
658 #else
659 static inline void check_stack_usage(void) {}
660 #endif
661 
662 void do_exit(long code)
663 {
664 	struct task_struct *tsk = current;
665 	int group_dead;
666 
667 	profile_task_exit(tsk);
668 
669 	WARN_ON(blk_needs_flush_plug(tsk));
670 
671 	if (unlikely(in_interrupt()))
672 		panic("Aiee, killing interrupt handler!");
673 	if (unlikely(!tsk->pid))
674 		panic("Attempted to kill the idle task!");
675 
676 	/*
677 	 * If do_exit is called because this processes oopsed, it's possible
678 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
679 	 * continuing. Amongst other possible reasons, this is to prevent
680 	 * mm_release()->clear_child_tid() from writing to a user-controlled
681 	 * kernel address.
682 	 */
683 	set_fs(USER_DS);
684 
685 	ptrace_event(PTRACE_EVENT_EXIT, code);
686 
687 	validate_creds_for_do_exit(tsk);
688 
689 	/*
690 	 * We're taking recursive faults here in do_exit. Safest is to just
691 	 * leave this task alone and wait for reboot.
692 	 */
693 	if (unlikely(tsk->flags & PF_EXITING)) {
694 		printk(KERN_ALERT
695 			"Fixing recursive fault but reboot is needed!\n");
696 		/*
697 		 * We can do this unlocked here. The futex code uses
698 		 * this flag just to verify whether the pi state
699 		 * cleanup has been done or not. In the worst case it
700 		 * loops once more. We pretend that the cleanup was
701 		 * done as there is no way to return. Either the
702 		 * OWNER_DIED bit is set by now or we push the blocked
703 		 * task into the wait for ever nirwana as well.
704 		 */
705 		tsk->flags |= PF_EXITPIDONE;
706 		set_current_state(TASK_UNINTERRUPTIBLE);
707 		schedule();
708 	}
709 
710 	exit_signals(tsk);  /* sets PF_EXITING */
711 	/*
712 	 * tsk->flags are checked in the futex code to protect against
713 	 * an exiting task cleaning up the robust pi futexes.
714 	 */
715 	smp_mb();
716 	raw_spin_unlock_wait(&tsk->pi_lock);
717 
718 	if (unlikely(in_atomic()))
719 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
720 				current->comm, task_pid_nr(current),
721 				preempt_count());
722 
723 	acct_update_integrals(tsk);
724 	/* sync mm's RSS info before statistics gathering */
725 	if (tsk->mm)
726 		sync_mm_rss(tsk->mm);
727 	group_dead = atomic_dec_and_test(&tsk->signal->live);
728 	if (group_dead) {
729 		hrtimer_cancel(&tsk->signal->real_timer);
730 		exit_itimers(tsk->signal);
731 		if (tsk->mm)
732 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
733 	}
734 	acct_collect(code, group_dead);
735 	if (group_dead)
736 		tty_audit_exit();
737 	audit_free(tsk);
738 
739 	tsk->exit_code = code;
740 	taskstats_exit(tsk, group_dead);
741 
742 	exit_mm(tsk);
743 
744 	if (group_dead)
745 		acct_process();
746 	trace_sched_process_exit(tsk);
747 
748 	exit_sem(tsk);
749 	exit_shm(tsk);
750 	exit_files(tsk);
751 	exit_fs(tsk);
752 	if (group_dead)
753 		disassociate_ctty(1);
754 	exit_task_namespaces(tsk);
755 	exit_task_work(tsk);
756 	exit_thread();
757 
758 	/*
759 	 * Flush inherited counters to the parent - before the parent
760 	 * gets woken up by child-exit notifications.
761 	 *
762 	 * because of cgroup mode, must be called before cgroup_exit()
763 	 */
764 	perf_event_exit_task(tsk);
765 
766 	cgroup_exit(tsk);
767 
768 	module_put(task_thread_info(tsk)->exec_domain->module);
769 
770 	/*
771 	 * FIXME: do that only when needed, using sched_exit tracepoint
772 	 */
773 	flush_ptrace_hw_breakpoint(tsk);
774 
775 	exit_notify(tsk, group_dead);
776 	proc_exit_connector(tsk);
777 #ifdef CONFIG_NUMA
778 	task_lock(tsk);
779 	mpol_put(tsk->mempolicy);
780 	tsk->mempolicy = NULL;
781 	task_unlock(tsk);
782 #endif
783 #ifdef CONFIG_FUTEX
784 	if (unlikely(current->pi_state_cache))
785 		kfree(current->pi_state_cache);
786 #endif
787 	/*
788 	 * Make sure we are holding no locks:
789 	 */
790 	debug_check_no_locks_held();
791 	/*
792 	 * We can do this unlocked here. The futex code uses this flag
793 	 * just to verify whether the pi state cleanup has been done
794 	 * or not. In the worst case it loops once more.
795 	 */
796 	tsk->flags |= PF_EXITPIDONE;
797 
798 	if (tsk->io_context)
799 		exit_io_context(tsk);
800 
801 	if (tsk->splice_pipe)
802 		free_pipe_info(tsk->splice_pipe);
803 
804 	if (tsk->task_frag.page)
805 		put_page(tsk->task_frag.page);
806 
807 	validate_creds_for_do_exit(tsk);
808 
809 	check_stack_usage();
810 	preempt_disable();
811 	if (tsk->nr_dirtied)
812 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
813 	exit_rcu();
814 
815 	/*
816 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
817 	 * when the following two conditions become true.
818 	 *   - There is race condition of mmap_sem (It is acquired by
819 	 *     exit_mm()), and
820 	 *   - SMI occurs before setting TASK_RUNINNG.
821 	 *     (or hypervisor of virtual machine switches to other guest)
822 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
823 	 *
824 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
825 	 * is held by try_to_wake_up()
826 	 */
827 	smp_mb();
828 	raw_spin_unlock_wait(&tsk->pi_lock);
829 
830 	/* causes final put_task_struct in finish_task_switch(). */
831 	tsk->state = TASK_DEAD;
832 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
833 	schedule();
834 	BUG();
835 	/* Avoid "noreturn function does return".  */
836 	for (;;)
837 		cpu_relax();	/* For when BUG is null */
838 }
839 
840 EXPORT_SYMBOL_GPL(do_exit);
841 
842 void complete_and_exit(struct completion *comp, long code)
843 {
844 	if (comp)
845 		complete(comp);
846 
847 	do_exit(code);
848 }
849 
850 EXPORT_SYMBOL(complete_and_exit);
851 
852 SYSCALL_DEFINE1(exit, int, error_code)
853 {
854 	do_exit((error_code&0xff)<<8);
855 }
856 
857 /*
858  * Take down every thread in the group.  This is called by fatal signals
859  * as well as by sys_exit_group (below).
860  */
861 void
862 do_group_exit(int exit_code)
863 {
864 	struct signal_struct *sig = current->signal;
865 
866 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
867 
868 	if (signal_group_exit(sig))
869 		exit_code = sig->group_exit_code;
870 	else if (!thread_group_empty(current)) {
871 		struct sighand_struct *const sighand = current->sighand;
872 		spin_lock_irq(&sighand->siglock);
873 		if (signal_group_exit(sig))
874 			/* Another thread got here before we took the lock.  */
875 			exit_code = sig->group_exit_code;
876 		else {
877 			sig->group_exit_code = exit_code;
878 			sig->flags = SIGNAL_GROUP_EXIT;
879 			zap_other_threads(current);
880 		}
881 		spin_unlock_irq(&sighand->siglock);
882 	}
883 
884 	do_exit(exit_code);
885 	/* NOTREACHED */
886 }
887 
888 /*
889  * this kills every thread in the thread group. Note that any externally
890  * wait4()-ing process will get the correct exit code - even if this
891  * thread is not the thread group leader.
892  */
893 SYSCALL_DEFINE1(exit_group, int, error_code)
894 {
895 	do_group_exit((error_code & 0xff) << 8);
896 	/* NOTREACHED */
897 	return 0;
898 }
899 
900 struct wait_opts {
901 	enum pid_type		wo_type;
902 	int			wo_flags;
903 	struct pid		*wo_pid;
904 
905 	struct siginfo __user	*wo_info;
906 	int __user		*wo_stat;
907 	struct rusage __user	*wo_rusage;
908 
909 	wait_queue_t		child_wait;
910 	int			notask_error;
911 };
912 
913 static inline
914 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
915 {
916 	if (type != PIDTYPE_PID)
917 		task = task->group_leader;
918 	return task->pids[type].pid;
919 }
920 
921 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
922 {
923 	return	wo->wo_type == PIDTYPE_MAX ||
924 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
925 }
926 
927 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
928 {
929 	if (!eligible_pid(wo, p))
930 		return 0;
931 	/* Wait for all children (clone and not) if __WALL is set;
932 	 * otherwise, wait for clone children *only* if __WCLONE is
933 	 * set; otherwise, wait for non-clone children *only*.  (Note:
934 	 * A "clone" child here is one that reports to its parent
935 	 * using a signal other than SIGCHLD.) */
936 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
937 	    && !(wo->wo_flags & __WALL))
938 		return 0;
939 
940 	return 1;
941 }
942 
943 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
944 				pid_t pid, uid_t uid, int why, int status)
945 {
946 	struct siginfo __user *infop;
947 	int retval = wo->wo_rusage
948 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
949 
950 	put_task_struct(p);
951 	infop = wo->wo_info;
952 	if (infop) {
953 		if (!retval)
954 			retval = put_user(SIGCHLD, &infop->si_signo);
955 		if (!retval)
956 			retval = put_user(0, &infop->si_errno);
957 		if (!retval)
958 			retval = put_user((short)why, &infop->si_code);
959 		if (!retval)
960 			retval = put_user(pid, &infop->si_pid);
961 		if (!retval)
962 			retval = put_user(uid, &infop->si_uid);
963 		if (!retval)
964 			retval = put_user(status, &infop->si_status);
965 	}
966 	if (!retval)
967 		retval = pid;
968 	return retval;
969 }
970 
971 /*
972  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
973  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
974  * the lock and this task is uninteresting.  If we return nonzero, we have
975  * released the lock and the system call should return.
976  */
977 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
978 {
979 	unsigned long state;
980 	int retval, status, traced;
981 	pid_t pid = task_pid_vnr(p);
982 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
983 	struct siginfo __user *infop;
984 
985 	if (!likely(wo->wo_flags & WEXITED))
986 		return 0;
987 
988 	if (unlikely(wo->wo_flags & WNOWAIT)) {
989 		int exit_code = p->exit_code;
990 		int why;
991 
992 		get_task_struct(p);
993 		read_unlock(&tasklist_lock);
994 		if ((exit_code & 0x7f) == 0) {
995 			why = CLD_EXITED;
996 			status = exit_code >> 8;
997 		} else {
998 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
999 			status = exit_code & 0x7f;
1000 		}
1001 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1002 	}
1003 
1004 	traced = ptrace_reparented(p);
1005 	/*
1006 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1007 	 */
1008 	state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD;
1009 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1010 		return 0;
1011 	/*
1012 	 * It can be ptraced but not reparented, check
1013 	 * thread_group_leader() to filter out sub-threads.
1014 	 */
1015 	if (likely(!traced) && thread_group_leader(p)) {
1016 		struct signal_struct *psig;
1017 		struct signal_struct *sig;
1018 		unsigned long maxrss;
1019 		cputime_t tgutime, tgstime;
1020 
1021 		/*
1022 		 * The resource counters for the group leader are in its
1023 		 * own task_struct.  Those for dead threads in the group
1024 		 * are in its signal_struct, as are those for the child
1025 		 * processes it has previously reaped.  All these
1026 		 * accumulate in the parent's signal_struct c* fields.
1027 		 *
1028 		 * We don't bother to take a lock here to protect these
1029 		 * p->signal fields, because they are only touched by
1030 		 * __exit_signal, which runs with tasklist_lock
1031 		 * write-locked anyway, and so is excluded here.  We do
1032 		 * need to protect the access to parent->signal fields,
1033 		 * as other threads in the parent group can be right
1034 		 * here reaping other children at the same time.
1035 		 *
1036 		 * We use thread_group_cputime_adjusted() to get times for the thread
1037 		 * group, which consolidates times for all threads in the
1038 		 * group including the group leader.
1039 		 */
1040 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1041 		spin_lock_irq(&p->real_parent->sighand->siglock);
1042 		psig = p->real_parent->signal;
1043 		sig = p->signal;
1044 		psig->cutime += tgutime + sig->cutime;
1045 		psig->cstime += tgstime + sig->cstime;
1046 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1047 		psig->cmin_flt +=
1048 			p->min_flt + sig->min_flt + sig->cmin_flt;
1049 		psig->cmaj_flt +=
1050 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1051 		psig->cnvcsw +=
1052 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1053 		psig->cnivcsw +=
1054 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1055 		psig->cinblock +=
1056 			task_io_get_inblock(p) +
1057 			sig->inblock + sig->cinblock;
1058 		psig->coublock +=
1059 			task_io_get_oublock(p) +
1060 			sig->oublock + sig->coublock;
1061 		maxrss = max(sig->maxrss, sig->cmaxrss);
1062 		if (psig->cmaxrss < maxrss)
1063 			psig->cmaxrss = maxrss;
1064 		task_io_accounting_add(&psig->ioac, &p->ioac);
1065 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1066 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1067 	}
1068 
1069 	/*
1070 	 * Now we are sure this task is interesting, and no other
1071 	 * thread can reap it because we its state == DEAD/TRACE.
1072 	 */
1073 	read_unlock(&tasklist_lock);
1074 
1075 	retval = wo->wo_rusage
1076 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1077 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1078 		? p->signal->group_exit_code : p->exit_code;
1079 	if (!retval && wo->wo_stat)
1080 		retval = put_user(status, wo->wo_stat);
1081 
1082 	infop = wo->wo_info;
1083 	if (!retval && infop)
1084 		retval = put_user(SIGCHLD, &infop->si_signo);
1085 	if (!retval && infop)
1086 		retval = put_user(0, &infop->si_errno);
1087 	if (!retval && infop) {
1088 		int why;
1089 
1090 		if ((status & 0x7f) == 0) {
1091 			why = CLD_EXITED;
1092 			status >>= 8;
1093 		} else {
1094 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1095 			status &= 0x7f;
1096 		}
1097 		retval = put_user((short)why, &infop->si_code);
1098 		if (!retval)
1099 			retval = put_user(status, &infop->si_status);
1100 	}
1101 	if (!retval && infop)
1102 		retval = put_user(pid, &infop->si_pid);
1103 	if (!retval && infop)
1104 		retval = put_user(uid, &infop->si_uid);
1105 	if (!retval)
1106 		retval = pid;
1107 
1108 	if (state == EXIT_TRACE) {
1109 		write_lock_irq(&tasklist_lock);
1110 		/* We dropped tasklist, ptracer could die and untrace */
1111 		ptrace_unlink(p);
1112 
1113 		/* If parent wants a zombie, don't release it now */
1114 		state = EXIT_ZOMBIE;
1115 		if (do_notify_parent(p, p->exit_signal))
1116 			state = EXIT_DEAD;
1117 		p->exit_state = state;
1118 		write_unlock_irq(&tasklist_lock);
1119 	}
1120 	if (state == EXIT_DEAD)
1121 		release_task(p);
1122 
1123 	return retval;
1124 }
1125 
1126 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1127 {
1128 	if (ptrace) {
1129 		if (task_is_stopped_or_traced(p) &&
1130 		    !(p->jobctl & JOBCTL_LISTENING))
1131 			return &p->exit_code;
1132 	} else {
1133 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1134 			return &p->signal->group_exit_code;
1135 	}
1136 	return NULL;
1137 }
1138 
1139 /**
1140  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1141  * @wo: wait options
1142  * @ptrace: is the wait for ptrace
1143  * @p: task to wait for
1144  *
1145  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1146  *
1147  * CONTEXT:
1148  * read_lock(&tasklist_lock), which is released if return value is
1149  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1150  *
1151  * RETURNS:
1152  * 0 if wait condition didn't exist and search for other wait conditions
1153  * should continue.  Non-zero return, -errno on failure and @p's pid on
1154  * success, implies that tasklist_lock is released and wait condition
1155  * search should terminate.
1156  */
1157 static int wait_task_stopped(struct wait_opts *wo,
1158 				int ptrace, struct task_struct *p)
1159 {
1160 	struct siginfo __user *infop;
1161 	int retval, exit_code, *p_code, why;
1162 	uid_t uid = 0; /* unneeded, required by compiler */
1163 	pid_t pid;
1164 
1165 	/*
1166 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1167 	 */
1168 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1169 		return 0;
1170 
1171 	if (!task_stopped_code(p, ptrace))
1172 		return 0;
1173 
1174 	exit_code = 0;
1175 	spin_lock_irq(&p->sighand->siglock);
1176 
1177 	p_code = task_stopped_code(p, ptrace);
1178 	if (unlikely(!p_code))
1179 		goto unlock_sig;
1180 
1181 	exit_code = *p_code;
1182 	if (!exit_code)
1183 		goto unlock_sig;
1184 
1185 	if (!unlikely(wo->wo_flags & WNOWAIT))
1186 		*p_code = 0;
1187 
1188 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1189 unlock_sig:
1190 	spin_unlock_irq(&p->sighand->siglock);
1191 	if (!exit_code)
1192 		return 0;
1193 
1194 	/*
1195 	 * Now we are pretty sure this task is interesting.
1196 	 * Make sure it doesn't get reaped out from under us while we
1197 	 * give up the lock and then examine it below.  We don't want to
1198 	 * keep holding onto the tasklist_lock while we call getrusage and
1199 	 * possibly take page faults for user memory.
1200 	 */
1201 	get_task_struct(p);
1202 	pid = task_pid_vnr(p);
1203 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1204 	read_unlock(&tasklist_lock);
1205 
1206 	if (unlikely(wo->wo_flags & WNOWAIT))
1207 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1208 
1209 	retval = wo->wo_rusage
1210 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1211 	if (!retval && wo->wo_stat)
1212 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1213 
1214 	infop = wo->wo_info;
1215 	if (!retval && infop)
1216 		retval = put_user(SIGCHLD, &infop->si_signo);
1217 	if (!retval && infop)
1218 		retval = put_user(0, &infop->si_errno);
1219 	if (!retval && infop)
1220 		retval = put_user((short)why, &infop->si_code);
1221 	if (!retval && infop)
1222 		retval = put_user(exit_code, &infop->si_status);
1223 	if (!retval && infop)
1224 		retval = put_user(pid, &infop->si_pid);
1225 	if (!retval && infop)
1226 		retval = put_user(uid, &infop->si_uid);
1227 	if (!retval)
1228 		retval = pid;
1229 	put_task_struct(p);
1230 
1231 	BUG_ON(!retval);
1232 	return retval;
1233 }
1234 
1235 /*
1236  * Handle do_wait work for one task in a live, non-stopped state.
1237  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1238  * the lock and this task is uninteresting.  If we return nonzero, we have
1239  * released the lock and the system call should return.
1240  */
1241 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1242 {
1243 	int retval;
1244 	pid_t pid;
1245 	uid_t uid;
1246 
1247 	if (!unlikely(wo->wo_flags & WCONTINUED))
1248 		return 0;
1249 
1250 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1251 		return 0;
1252 
1253 	spin_lock_irq(&p->sighand->siglock);
1254 	/* Re-check with the lock held.  */
1255 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1256 		spin_unlock_irq(&p->sighand->siglock);
1257 		return 0;
1258 	}
1259 	if (!unlikely(wo->wo_flags & WNOWAIT))
1260 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1261 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1262 	spin_unlock_irq(&p->sighand->siglock);
1263 
1264 	pid = task_pid_vnr(p);
1265 	get_task_struct(p);
1266 	read_unlock(&tasklist_lock);
1267 
1268 	if (!wo->wo_info) {
1269 		retval = wo->wo_rusage
1270 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1271 		put_task_struct(p);
1272 		if (!retval && wo->wo_stat)
1273 			retval = put_user(0xffff, wo->wo_stat);
1274 		if (!retval)
1275 			retval = pid;
1276 	} else {
1277 		retval = wait_noreap_copyout(wo, p, pid, uid,
1278 					     CLD_CONTINUED, SIGCONT);
1279 		BUG_ON(retval == 0);
1280 	}
1281 
1282 	return retval;
1283 }
1284 
1285 /*
1286  * Consider @p for a wait by @parent.
1287  *
1288  * -ECHILD should be in ->notask_error before the first call.
1289  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1290  * Returns zero if the search for a child should continue;
1291  * then ->notask_error is 0 if @p is an eligible child,
1292  * or another error from security_task_wait(), or still -ECHILD.
1293  */
1294 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1295 				struct task_struct *p)
1296 {
1297 	int ret;
1298 
1299 	if (unlikely(p->exit_state == EXIT_DEAD))
1300 		return 0;
1301 
1302 	ret = eligible_child(wo, p);
1303 	if (!ret)
1304 		return ret;
1305 
1306 	ret = security_task_wait(p);
1307 	if (unlikely(ret < 0)) {
1308 		/*
1309 		 * If we have not yet seen any eligible child,
1310 		 * then let this error code replace -ECHILD.
1311 		 * A permission error will give the user a clue
1312 		 * to look for security policy problems, rather
1313 		 * than for mysterious wait bugs.
1314 		 */
1315 		if (wo->notask_error)
1316 			wo->notask_error = ret;
1317 		return 0;
1318 	}
1319 
1320 	if (unlikely(p->exit_state == EXIT_TRACE)) {
1321 		/*
1322 		 * ptrace == 0 means we are the natural parent. In this case
1323 		 * we should clear notask_error, debugger will notify us.
1324 		 */
1325 		if (likely(!ptrace))
1326 			wo->notask_error = 0;
1327 		return 0;
1328 	}
1329 
1330 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1331 		/*
1332 		 * If it is traced by its real parent's group, just pretend
1333 		 * the caller is ptrace_do_wait() and reap this child if it
1334 		 * is zombie.
1335 		 *
1336 		 * This also hides group stop state from real parent; otherwise
1337 		 * a single stop can be reported twice as group and ptrace stop.
1338 		 * If a ptracer wants to distinguish these two events for its
1339 		 * own children it should create a separate process which takes
1340 		 * the role of real parent.
1341 		 */
1342 		if (!ptrace_reparented(p))
1343 			ptrace = 1;
1344 	}
1345 
1346 	/* slay zombie? */
1347 	if (p->exit_state == EXIT_ZOMBIE) {
1348 		/* we don't reap group leaders with subthreads */
1349 		if (!delay_group_leader(p)) {
1350 			/*
1351 			 * A zombie ptracee is only visible to its ptracer.
1352 			 * Notification and reaping will be cascaded to the
1353 			 * real parent when the ptracer detaches.
1354 			 */
1355 			if (unlikely(ptrace) || likely(!p->ptrace))
1356 				return wait_task_zombie(wo, p);
1357 		}
1358 
1359 		/*
1360 		 * Allow access to stopped/continued state via zombie by
1361 		 * falling through.  Clearing of notask_error is complex.
1362 		 *
1363 		 * When !@ptrace:
1364 		 *
1365 		 * If WEXITED is set, notask_error should naturally be
1366 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1367 		 * so, if there are live subthreads, there are events to
1368 		 * wait for.  If all subthreads are dead, it's still safe
1369 		 * to clear - this function will be called again in finite
1370 		 * amount time once all the subthreads are released and
1371 		 * will then return without clearing.
1372 		 *
1373 		 * When @ptrace:
1374 		 *
1375 		 * Stopped state is per-task and thus can't change once the
1376 		 * target task dies.  Only continued and exited can happen.
1377 		 * Clear notask_error if WCONTINUED | WEXITED.
1378 		 */
1379 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1380 			wo->notask_error = 0;
1381 	} else {
1382 		/*
1383 		 * @p is alive and it's gonna stop, continue or exit, so
1384 		 * there always is something to wait for.
1385 		 */
1386 		wo->notask_error = 0;
1387 	}
1388 
1389 	/*
1390 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1391 	 * is used and the two don't interact with each other.
1392 	 */
1393 	ret = wait_task_stopped(wo, ptrace, p);
1394 	if (ret)
1395 		return ret;
1396 
1397 	/*
1398 	 * Wait for continued.  There's only one continued state and the
1399 	 * ptracer can consume it which can confuse the real parent.  Don't
1400 	 * use WCONTINUED from ptracer.  You don't need or want it.
1401 	 */
1402 	return wait_task_continued(wo, p);
1403 }
1404 
1405 /*
1406  * Do the work of do_wait() for one thread in the group, @tsk.
1407  *
1408  * -ECHILD should be in ->notask_error before the first call.
1409  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1410  * Returns zero if the search for a child should continue; then
1411  * ->notask_error is 0 if there were any eligible children,
1412  * or another error from security_task_wait(), or still -ECHILD.
1413  */
1414 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1415 {
1416 	struct task_struct *p;
1417 
1418 	list_for_each_entry(p, &tsk->children, sibling) {
1419 		int ret = wait_consider_task(wo, 0, p);
1420 		if (ret)
1421 			return ret;
1422 	}
1423 
1424 	return 0;
1425 }
1426 
1427 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1428 {
1429 	struct task_struct *p;
1430 
1431 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1432 		int ret = wait_consider_task(wo, 1, p);
1433 		if (ret)
1434 			return ret;
1435 	}
1436 
1437 	return 0;
1438 }
1439 
1440 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1441 				int sync, void *key)
1442 {
1443 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1444 						child_wait);
1445 	struct task_struct *p = key;
1446 
1447 	if (!eligible_pid(wo, p))
1448 		return 0;
1449 
1450 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1451 		return 0;
1452 
1453 	return default_wake_function(wait, mode, sync, key);
1454 }
1455 
1456 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1457 {
1458 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1459 				TASK_INTERRUPTIBLE, 1, p);
1460 }
1461 
1462 static long do_wait(struct wait_opts *wo)
1463 {
1464 	struct task_struct *tsk;
1465 	int retval;
1466 
1467 	trace_sched_process_wait(wo->wo_pid);
1468 
1469 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1470 	wo->child_wait.private = current;
1471 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1472 repeat:
1473 	/*
1474 	 * If there is nothing that can match our critiera just get out.
1475 	 * We will clear ->notask_error to zero if we see any child that
1476 	 * might later match our criteria, even if we are not able to reap
1477 	 * it yet.
1478 	 */
1479 	wo->notask_error = -ECHILD;
1480 	if ((wo->wo_type < PIDTYPE_MAX) &&
1481 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1482 		goto notask;
1483 
1484 	set_current_state(TASK_INTERRUPTIBLE);
1485 	read_lock(&tasklist_lock);
1486 	tsk = current;
1487 	do {
1488 		retval = do_wait_thread(wo, tsk);
1489 		if (retval)
1490 			goto end;
1491 
1492 		retval = ptrace_do_wait(wo, tsk);
1493 		if (retval)
1494 			goto end;
1495 
1496 		if (wo->wo_flags & __WNOTHREAD)
1497 			break;
1498 	} while_each_thread(current, tsk);
1499 	read_unlock(&tasklist_lock);
1500 
1501 notask:
1502 	retval = wo->notask_error;
1503 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1504 		retval = -ERESTARTSYS;
1505 		if (!signal_pending(current)) {
1506 			schedule();
1507 			goto repeat;
1508 		}
1509 	}
1510 end:
1511 	__set_current_state(TASK_RUNNING);
1512 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1513 	return retval;
1514 }
1515 
1516 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1517 		infop, int, options, struct rusage __user *, ru)
1518 {
1519 	struct wait_opts wo;
1520 	struct pid *pid = NULL;
1521 	enum pid_type type;
1522 	long ret;
1523 
1524 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1525 		return -EINVAL;
1526 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1527 		return -EINVAL;
1528 
1529 	switch (which) {
1530 	case P_ALL:
1531 		type = PIDTYPE_MAX;
1532 		break;
1533 	case P_PID:
1534 		type = PIDTYPE_PID;
1535 		if (upid <= 0)
1536 			return -EINVAL;
1537 		break;
1538 	case P_PGID:
1539 		type = PIDTYPE_PGID;
1540 		if (upid <= 0)
1541 			return -EINVAL;
1542 		break;
1543 	default:
1544 		return -EINVAL;
1545 	}
1546 
1547 	if (type < PIDTYPE_MAX)
1548 		pid = find_get_pid(upid);
1549 
1550 	wo.wo_type	= type;
1551 	wo.wo_pid	= pid;
1552 	wo.wo_flags	= options;
1553 	wo.wo_info	= infop;
1554 	wo.wo_stat	= NULL;
1555 	wo.wo_rusage	= ru;
1556 	ret = do_wait(&wo);
1557 
1558 	if (ret > 0) {
1559 		ret = 0;
1560 	} else if (infop) {
1561 		/*
1562 		 * For a WNOHANG return, clear out all the fields
1563 		 * we would set so the user can easily tell the
1564 		 * difference.
1565 		 */
1566 		if (!ret)
1567 			ret = put_user(0, &infop->si_signo);
1568 		if (!ret)
1569 			ret = put_user(0, &infop->si_errno);
1570 		if (!ret)
1571 			ret = put_user(0, &infop->si_code);
1572 		if (!ret)
1573 			ret = put_user(0, &infop->si_pid);
1574 		if (!ret)
1575 			ret = put_user(0, &infop->si_uid);
1576 		if (!ret)
1577 			ret = put_user(0, &infop->si_status);
1578 	}
1579 
1580 	put_pid(pid);
1581 	return ret;
1582 }
1583 
1584 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1585 		int, options, struct rusage __user *, ru)
1586 {
1587 	struct wait_opts wo;
1588 	struct pid *pid = NULL;
1589 	enum pid_type type;
1590 	long ret;
1591 
1592 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1593 			__WNOTHREAD|__WCLONE|__WALL))
1594 		return -EINVAL;
1595 
1596 	if (upid == -1)
1597 		type = PIDTYPE_MAX;
1598 	else if (upid < 0) {
1599 		type = PIDTYPE_PGID;
1600 		pid = find_get_pid(-upid);
1601 	} else if (upid == 0) {
1602 		type = PIDTYPE_PGID;
1603 		pid = get_task_pid(current, PIDTYPE_PGID);
1604 	} else /* upid > 0 */ {
1605 		type = PIDTYPE_PID;
1606 		pid = find_get_pid(upid);
1607 	}
1608 
1609 	wo.wo_type	= type;
1610 	wo.wo_pid	= pid;
1611 	wo.wo_flags	= options | WEXITED;
1612 	wo.wo_info	= NULL;
1613 	wo.wo_stat	= stat_addr;
1614 	wo.wo_rusage	= ru;
1615 	ret = do_wait(&wo);
1616 	put_pid(pid);
1617 
1618 	return ret;
1619 }
1620 
1621 #ifdef __ARCH_WANT_SYS_WAITPID
1622 
1623 /*
1624  * sys_waitpid() remains for compatibility. waitpid() should be
1625  * implemented by calling sys_wait4() from libc.a.
1626  */
1627 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1628 {
1629 	return sys_wait4(pid, stat_addr, options, NULL);
1630 }
1631 
1632 #endif
1633