1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 54 #include <asm/uaccess.h> 55 #include <asm/unistd.h> 56 #include <asm/pgtable.h> 57 #include <asm/mmu_context.h> 58 #include "cred-internals.h" 59 60 static void exit_mm(struct task_struct * tsk); 61 62 static void __unhash_process(struct task_struct *p) 63 { 64 nr_threads--; 65 detach_pid(p, PIDTYPE_PID); 66 if (thread_group_leader(p)) { 67 detach_pid(p, PIDTYPE_PGID); 68 detach_pid(p, PIDTYPE_SID); 69 70 list_del_rcu(&p->tasks); 71 list_del_init(&p->sibling); 72 __get_cpu_var(process_counts)--; 73 } 74 list_del_rcu(&p->thread_group); 75 } 76 77 /* 78 * This function expects the tasklist_lock write-locked. 79 */ 80 static void __exit_signal(struct task_struct *tsk) 81 { 82 struct signal_struct *sig = tsk->signal; 83 struct sighand_struct *sighand; 84 85 BUG_ON(!sig); 86 BUG_ON(!atomic_read(&sig->count)); 87 88 sighand = rcu_dereference_check(tsk->sighand, 89 rcu_read_lock_held() || 90 lockdep_tasklist_lock_is_held()); 91 spin_lock(&sighand->siglock); 92 93 posix_cpu_timers_exit(tsk); 94 if (atomic_dec_and_test(&sig->count)) 95 posix_cpu_timers_exit_group(tsk); 96 else { 97 /* 98 * If there is any task waiting for the group exit 99 * then notify it: 100 */ 101 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 102 wake_up_process(sig->group_exit_task); 103 104 if (tsk == sig->curr_target) 105 sig->curr_target = next_thread(tsk); 106 /* 107 * Accumulate here the counters for all threads but the 108 * group leader as they die, so they can be added into 109 * the process-wide totals when those are taken. 110 * The group leader stays around as a zombie as long 111 * as there are other threads. When it gets reaped, 112 * the exit.c code will add its counts into these totals. 113 * We won't ever get here for the group leader, since it 114 * will have been the last reference on the signal_struct. 115 */ 116 sig->utime = cputime_add(sig->utime, tsk->utime); 117 sig->stime = cputime_add(sig->stime, tsk->stime); 118 sig->gtime = cputime_add(sig->gtime, tsk->gtime); 119 sig->min_flt += tsk->min_flt; 120 sig->maj_flt += tsk->maj_flt; 121 sig->nvcsw += tsk->nvcsw; 122 sig->nivcsw += tsk->nivcsw; 123 sig->inblock += task_io_get_inblock(tsk); 124 sig->oublock += task_io_get_oublock(tsk); 125 task_io_accounting_add(&sig->ioac, &tsk->ioac); 126 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 127 sig = NULL; /* Marker for below. */ 128 } 129 130 __unhash_process(tsk); 131 132 /* 133 * Do this under ->siglock, we can race with another thread 134 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 135 */ 136 flush_sigqueue(&tsk->pending); 137 138 tsk->signal = NULL; 139 tsk->sighand = NULL; 140 spin_unlock(&sighand->siglock); 141 142 __cleanup_sighand(sighand); 143 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 144 if (sig) { 145 flush_sigqueue(&sig->shared_pending); 146 taskstats_tgid_free(sig); 147 /* 148 * Make sure ->signal can't go away under rq->lock, 149 * see account_group_exec_runtime(). 150 */ 151 task_rq_unlock_wait(tsk); 152 __cleanup_signal(sig); 153 } 154 } 155 156 static void delayed_put_task_struct(struct rcu_head *rhp) 157 { 158 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 159 160 #ifdef CONFIG_PERF_EVENTS 161 WARN_ON_ONCE(tsk->perf_event_ctxp); 162 #endif 163 trace_sched_process_free(tsk); 164 put_task_struct(tsk); 165 } 166 167 168 void release_task(struct task_struct * p) 169 { 170 struct task_struct *leader; 171 int zap_leader; 172 repeat: 173 tracehook_prepare_release_task(p); 174 /* don't need to get the RCU readlock here - the process is dead and 175 * can't be modifying its own credentials. But shut RCU-lockdep up */ 176 rcu_read_lock(); 177 atomic_dec(&__task_cred(p)->user->processes); 178 rcu_read_unlock(); 179 180 proc_flush_task(p); 181 182 write_lock_irq(&tasklist_lock); 183 tracehook_finish_release_task(p); 184 __exit_signal(p); 185 186 /* 187 * If we are the last non-leader member of the thread 188 * group, and the leader is zombie, then notify the 189 * group leader's parent process. (if it wants notification.) 190 */ 191 zap_leader = 0; 192 leader = p->group_leader; 193 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 194 BUG_ON(task_detached(leader)); 195 do_notify_parent(leader, leader->exit_signal); 196 /* 197 * If we were the last child thread and the leader has 198 * exited already, and the leader's parent ignores SIGCHLD, 199 * then we are the one who should release the leader. 200 * 201 * do_notify_parent() will have marked it self-reaping in 202 * that case. 203 */ 204 zap_leader = task_detached(leader); 205 206 /* 207 * This maintains the invariant that release_task() 208 * only runs on a task in EXIT_DEAD, just for sanity. 209 */ 210 if (zap_leader) 211 leader->exit_state = EXIT_DEAD; 212 } 213 214 write_unlock_irq(&tasklist_lock); 215 release_thread(p); 216 call_rcu(&p->rcu, delayed_put_task_struct); 217 218 p = leader; 219 if (unlikely(zap_leader)) 220 goto repeat; 221 } 222 223 /* 224 * This checks not only the pgrp, but falls back on the pid if no 225 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 226 * without this... 227 * 228 * The caller must hold rcu lock or the tasklist lock. 229 */ 230 struct pid *session_of_pgrp(struct pid *pgrp) 231 { 232 struct task_struct *p; 233 struct pid *sid = NULL; 234 235 p = pid_task(pgrp, PIDTYPE_PGID); 236 if (p == NULL) 237 p = pid_task(pgrp, PIDTYPE_PID); 238 if (p != NULL) 239 sid = task_session(p); 240 241 return sid; 242 } 243 244 /* 245 * Determine if a process group is "orphaned", according to the POSIX 246 * definition in 2.2.2.52. Orphaned process groups are not to be affected 247 * by terminal-generated stop signals. Newly orphaned process groups are 248 * to receive a SIGHUP and a SIGCONT. 249 * 250 * "I ask you, have you ever known what it is to be an orphan?" 251 */ 252 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 253 { 254 struct task_struct *p; 255 256 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 257 if ((p == ignored_task) || 258 (p->exit_state && thread_group_empty(p)) || 259 is_global_init(p->real_parent)) 260 continue; 261 262 if (task_pgrp(p->real_parent) != pgrp && 263 task_session(p->real_parent) == task_session(p)) 264 return 0; 265 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 266 267 return 1; 268 } 269 270 int is_current_pgrp_orphaned(void) 271 { 272 int retval; 273 274 read_lock(&tasklist_lock); 275 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 276 read_unlock(&tasklist_lock); 277 278 return retval; 279 } 280 281 static int has_stopped_jobs(struct pid *pgrp) 282 { 283 int retval = 0; 284 struct task_struct *p; 285 286 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 287 if (!task_is_stopped(p)) 288 continue; 289 retval = 1; 290 break; 291 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 292 return retval; 293 } 294 295 /* 296 * Check to see if any process groups have become orphaned as 297 * a result of our exiting, and if they have any stopped jobs, 298 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 299 */ 300 static void 301 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 302 { 303 struct pid *pgrp = task_pgrp(tsk); 304 struct task_struct *ignored_task = tsk; 305 306 if (!parent) 307 /* exit: our father is in a different pgrp than 308 * we are and we were the only connection outside. 309 */ 310 parent = tsk->real_parent; 311 else 312 /* reparent: our child is in a different pgrp than 313 * we are, and it was the only connection outside. 314 */ 315 ignored_task = NULL; 316 317 if (task_pgrp(parent) != pgrp && 318 task_session(parent) == task_session(tsk) && 319 will_become_orphaned_pgrp(pgrp, ignored_task) && 320 has_stopped_jobs(pgrp)) { 321 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 322 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 323 } 324 } 325 326 /** 327 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 328 * 329 * If a kernel thread is launched as a result of a system call, or if 330 * it ever exits, it should generally reparent itself to kthreadd so it 331 * isn't in the way of other processes and is correctly cleaned up on exit. 332 * 333 * The various task state such as scheduling policy and priority may have 334 * been inherited from a user process, so we reset them to sane values here. 335 * 336 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 337 */ 338 static void reparent_to_kthreadd(void) 339 { 340 write_lock_irq(&tasklist_lock); 341 342 ptrace_unlink(current); 343 /* Reparent to init */ 344 current->real_parent = current->parent = kthreadd_task; 345 list_move_tail(¤t->sibling, ¤t->real_parent->children); 346 347 /* Set the exit signal to SIGCHLD so we signal init on exit */ 348 current->exit_signal = SIGCHLD; 349 350 if (task_nice(current) < 0) 351 set_user_nice(current, 0); 352 /* cpus_allowed? */ 353 /* rt_priority? */ 354 /* signals? */ 355 memcpy(current->signal->rlim, init_task.signal->rlim, 356 sizeof(current->signal->rlim)); 357 358 atomic_inc(&init_cred.usage); 359 commit_creds(&init_cred); 360 write_unlock_irq(&tasklist_lock); 361 } 362 363 void __set_special_pids(struct pid *pid) 364 { 365 struct task_struct *curr = current->group_leader; 366 367 if (task_session(curr) != pid) 368 change_pid(curr, PIDTYPE_SID, pid); 369 370 if (task_pgrp(curr) != pid) 371 change_pid(curr, PIDTYPE_PGID, pid); 372 } 373 374 static void set_special_pids(struct pid *pid) 375 { 376 write_lock_irq(&tasklist_lock); 377 __set_special_pids(pid); 378 write_unlock_irq(&tasklist_lock); 379 } 380 381 /* 382 * Let kernel threads use this to say that they allow a certain signal. 383 * Must not be used if kthread was cloned with CLONE_SIGHAND. 384 */ 385 int allow_signal(int sig) 386 { 387 if (!valid_signal(sig) || sig < 1) 388 return -EINVAL; 389 390 spin_lock_irq(¤t->sighand->siglock); 391 /* This is only needed for daemonize()'ed kthreads */ 392 sigdelset(¤t->blocked, sig); 393 /* 394 * Kernel threads handle their own signals. Let the signal code 395 * know it'll be handled, so that they don't get converted to 396 * SIGKILL or just silently dropped. 397 */ 398 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 399 recalc_sigpending(); 400 spin_unlock_irq(¤t->sighand->siglock); 401 return 0; 402 } 403 404 EXPORT_SYMBOL(allow_signal); 405 406 int disallow_signal(int sig) 407 { 408 if (!valid_signal(sig) || sig < 1) 409 return -EINVAL; 410 411 spin_lock_irq(¤t->sighand->siglock); 412 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 413 recalc_sigpending(); 414 spin_unlock_irq(¤t->sighand->siglock); 415 return 0; 416 } 417 418 EXPORT_SYMBOL(disallow_signal); 419 420 /* 421 * Put all the gunge required to become a kernel thread without 422 * attached user resources in one place where it belongs. 423 */ 424 425 void daemonize(const char *name, ...) 426 { 427 va_list args; 428 sigset_t blocked; 429 430 va_start(args, name); 431 vsnprintf(current->comm, sizeof(current->comm), name, args); 432 va_end(args); 433 434 /* 435 * If we were started as result of loading a module, close all of the 436 * user space pages. We don't need them, and if we didn't close them 437 * they would be locked into memory. 438 */ 439 exit_mm(current); 440 /* 441 * We don't want to have TIF_FREEZE set if the system-wide hibernation 442 * or suspend transition begins right now. 443 */ 444 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 445 446 if (current->nsproxy != &init_nsproxy) { 447 get_nsproxy(&init_nsproxy); 448 switch_task_namespaces(current, &init_nsproxy); 449 } 450 set_special_pids(&init_struct_pid); 451 proc_clear_tty(current); 452 453 /* Block and flush all signals */ 454 sigfillset(&blocked); 455 sigprocmask(SIG_BLOCK, &blocked, NULL); 456 flush_signals(current); 457 458 /* Become as one with the init task */ 459 460 daemonize_fs_struct(); 461 exit_files(current); 462 current->files = init_task.files; 463 atomic_inc(¤t->files->count); 464 465 reparent_to_kthreadd(); 466 } 467 468 EXPORT_SYMBOL(daemonize); 469 470 static void close_files(struct files_struct * files) 471 { 472 int i, j; 473 struct fdtable *fdt; 474 475 j = 0; 476 477 /* 478 * It is safe to dereference the fd table without RCU or 479 * ->file_lock because this is the last reference to the 480 * files structure. But use RCU to shut RCU-lockdep up. 481 */ 482 rcu_read_lock(); 483 fdt = files_fdtable(files); 484 rcu_read_unlock(); 485 for (;;) { 486 unsigned long set; 487 i = j * __NFDBITS; 488 if (i >= fdt->max_fds) 489 break; 490 set = fdt->open_fds->fds_bits[j++]; 491 while (set) { 492 if (set & 1) { 493 struct file * file = xchg(&fdt->fd[i], NULL); 494 if (file) { 495 filp_close(file, files); 496 cond_resched(); 497 } 498 } 499 i++; 500 set >>= 1; 501 } 502 } 503 } 504 505 struct files_struct *get_files_struct(struct task_struct *task) 506 { 507 struct files_struct *files; 508 509 task_lock(task); 510 files = task->files; 511 if (files) 512 atomic_inc(&files->count); 513 task_unlock(task); 514 515 return files; 516 } 517 518 void put_files_struct(struct files_struct *files) 519 { 520 struct fdtable *fdt; 521 522 if (atomic_dec_and_test(&files->count)) { 523 close_files(files); 524 /* 525 * Free the fd and fdset arrays if we expanded them. 526 * If the fdtable was embedded, pass files for freeing 527 * at the end of the RCU grace period. Otherwise, 528 * you can free files immediately. 529 */ 530 rcu_read_lock(); 531 fdt = files_fdtable(files); 532 if (fdt != &files->fdtab) 533 kmem_cache_free(files_cachep, files); 534 free_fdtable(fdt); 535 rcu_read_unlock(); 536 } 537 } 538 539 void reset_files_struct(struct files_struct *files) 540 { 541 struct task_struct *tsk = current; 542 struct files_struct *old; 543 544 old = tsk->files; 545 task_lock(tsk); 546 tsk->files = files; 547 task_unlock(tsk); 548 put_files_struct(old); 549 } 550 551 void exit_files(struct task_struct *tsk) 552 { 553 struct files_struct * files = tsk->files; 554 555 if (files) { 556 task_lock(tsk); 557 tsk->files = NULL; 558 task_unlock(tsk); 559 put_files_struct(files); 560 } 561 } 562 563 #ifdef CONFIG_MM_OWNER 564 /* 565 * Task p is exiting and it owned mm, lets find a new owner for it 566 */ 567 static inline int 568 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 569 { 570 /* 571 * If there are other users of the mm and the owner (us) is exiting 572 * we need to find a new owner to take on the responsibility. 573 */ 574 if (atomic_read(&mm->mm_users) <= 1) 575 return 0; 576 if (mm->owner != p) 577 return 0; 578 return 1; 579 } 580 581 void mm_update_next_owner(struct mm_struct *mm) 582 { 583 struct task_struct *c, *g, *p = current; 584 585 retry: 586 if (!mm_need_new_owner(mm, p)) 587 return; 588 589 read_lock(&tasklist_lock); 590 /* 591 * Search in the children 592 */ 593 list_for_each_entry(c, &p->children, sibling) { 594 if (c->mm == mm) 595 goto assign_new_owner; 596 } 597 598 /* 599 * Search in the siblings 600 */ 601 list_for_each_entry(c, &p->real_parent->children, sibling) { 602 if (c->mm == mm) 603 goto assign_new_owner; 604 } 605 606 /* 607 * Search through everything else. We should not get 608 * here often 609 */ 610 do_each_thread(g, c) { 611 if (c->mm == mm) 612 goto assign_new_owner; 613 } while_each_thread(g, c); 614 615 read_unlock(&tasklist_lock); 616 /* 617 * We found no owner yet mm_users > 1: this implies that we are 618 * most likely racing with swapoff (try_to_unuse()) or /proc or 619 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 620 */ 621 mm->owner = NULL; 622 return; 623 624 assign_new_owner: 625 BUG_ON(c == p); 626 get_task_struct(c); 627 /* 628 * The task_lock protects c->mm from changing. 629 * We always want mm->owner->mm == mm 630 */ 631 task_lock(c); 632 /* 633 * Delay read_unlock() till we have the task_lock() 634 * to ensure that c does not slip away underneath us 635 */ 636 read_unlock(&tasklist_lock); 637 if (c->mm != mm) { 638 task_unlock(c); 639 put_task_struct(c); 640 goto retry; 641 } 642 mm->owner = c; 643 task_unlock(c); 644 put_task_struct(c); 645 } 646 #endif /* CONFIG_MM_OWNER */ 647 648 /* 649 * Turn us into a lazy TLB process if we 650 * aren't already.. 651 */ 652 static void exit_mm(struct task_struct * tsk) 653 { 654 struct mm_struct *mm = tsk->mm; 655 struct core_state *core_state; 656 657 mm_release(tsk, mm); 658 if (!mm) 659 return; 660 /* 661 * Serialize with any possible pending coredump. 662 * We must hold mmap_sem around checking core_state 663 * and clearing tsk->mm. The core-inducing thread 664 * will increment ->nr_threads for each thread in the 665 * group with ->mm != NULL. 666 */ 667 down_read(&mm->mmap_sem); 668 core_state = mm->core_state; 669 if (core_state) { 670 struct core_thread self; 671 up_read(&mm->mmap_sem); 672 673 self.task = tsk; 674 self.next = xchg(&core_state->dumper.next, &self); 675 /* 676 * Implies mb(), the result of xchg() must be visible 677 * to core_state->dumper. 678 */ 679 if (atomic_dec_and_test(&core_state->nr_threads)) 680 complete(&core_state->startup); 681 682 for (;;) { 683 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 684 if (!self.task) /* see coredump_finish() */ 685 break; 686 schedule(); 687 } 688 __set_task_state(tsk, TASK_RUNNING); 689 down_read(&mm->mmap_sem); 690 } 691 atomic_inc(&mm->mm_count); 692 BUG_ON(mm != tsk->active_mm); 693 /* more a memory barrier than a real lock */ 694 task_lock(tsk); 695 tsk->mm = NULL; 696 up_read(&mm->mmap_sem); 697 enter_lazy_tlb(mm, current); 698 /* We don't want this task to be frozen prematurely */ 699 clear_freeze_flag(tsk); 700 task_unlock(tsk); 701 mm_update_next_owner(mm); 702 mmput(mm); 703 } 704 705 /* 706 * When we die, we re-parent all our children. 707 * Try to give them to another thread in our thread 708 * group, and if no such member exists, give it to 709 * the child reaper process (ie "init") in our pid 710 * space. 711 */ 712 static struct task_struct *find_new_reaper(struct task_struct *father) 713 { 714 struct pid_namespace *pid_ns = task_active_pid_ns(father); 715 struct task_struct *thread; 716 717 thread = father; 718 while_each_thread(father, thread) { 719 if (thread->flags & PF_EXITING) 720 continue; 721 if (unlikely(pid_ns->child_reaper == father)) 722 pid_ns->child_reaper = thread; 723 return thread; 724 } 725 726 if (unlikely(pid_ns->child_reaper == father)) { 727 write_unlock_irq(&tasklist_lock); 728 if (unlikely(pid_ns == &init_pid_ns)) 729 panic("Attempted to kill init!"); 730 731 zap_pid_ns_processes(pid_ns); 732 write_lock_irq(&tasklist_lock); 733 /* 734 * We can not clear ->child_reaper or leave it alone. 735 * There may by stealth EXIT_DEAD tasks on ->children, 736 * forget_original_parent() must move them somewhere. 737 */ 738 pid_ns->child_reaper = init_pid_ns.child_reaper; 739 } 740 741 return pid_ns->child_reaper; 742 } 743 744 /* 745 * Any that need to be release_task'd are put on the @dead list. 746 */ 747 static void reparent_leader(struct task_struct *father, struct task_struct *p, 748 struct list_head *dead) 749 { 750 list_move_tail(&p->sibling, &p->real_parent->children); 751 752 if (task_detached(p)) 753 return; 754 /* 755 * If this is a threaded reparent there is no need to 756 * notify anyone anything has happened. 757 */ 758 if (same_thread_group(p->real_parent, father)) 759 return; 760 761 /* We don't want people slaying init. */ 762 p->exit_signal = SIGCHLD; 763 764 /* If it has exited notify the new parent about this child's death. */ 765 if (!task_ptrace(p) && 766 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 767 do_notify_parent(p, p->exit_signal); 768 if (task_detached(p)) { 769 p->exit_state = EXIT_DEAD; 770 list_move_tail(&p->sibling, dead); 771 } 772 } 773 774 kill_orphaned_pgrp(p, father); 775 } 776 777 static void forget_original_parent(struct task_struct *father) 778 { 779 struct task_struct *p, *n, *reaper; 780 LIST_HEAD(dead_children); 781 782 exit_ptrace(father); 783 784 write_lock_irq(&tasklist_lock); 785 reaper = find_new_reaper(father); 786 787 list_for_each_entry_safe(p, n, &father->children, sibling) { 788 struct task_struct *t = p; 789 do { 790 t->real_parent = reaper; 791 if (t->parent == father) { 792 BUG_ON(task_ptrace(t)); 793 t->parent = t->real_parent; 794 } 795 if (t->pdeath_signal) 796 group_send_sig_info(t->pdeath_signal, 797 SEND_SIG_NOINFO, t); 798 } while_each_thread(p, t); 799 reparent_leader(father, p, &dead_children); 800 } 801 write_unlock_irq(&tasklist_lock); 802 803 BUG_ON(!list_empty(&father->children)); 804 805 list_for_each_entry_safe(p, n, &dead_children, sibling) { 806 list_del_init(&p->sibling); 807 release_task(p); 808 } 809 } 810 811 /* 812 * Send signals to all our closest relatives so that they know 813 * to properly mourn us.. 814 */ 815 static void exit_notify(struct task_struct *tsk, int group_dead) 816 { 817 int signal; 818 void *cookie; 819 820 /* 821 * This does two things: 822 * 823 * A. Make init inherit all the child processes 824 * B. Check to see if any process groups have become orphaned 825 * as a result of our exiting, and if they have any stopped 826 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 827 */ 828 forget_original_parent(tsk); 829 exit_task_namespaces(tsk); 830 831 write_lock_irq(&tasklist_lock); 832 if (group_dead) 833 kill_orphaned_pgrp(tsk->group_leader, NULL); 834 835 /* Let father know we died 836 * 837 * Thread signals are configurable, but you aren't going to use 838 * that to send signals to arbitary processes. 839 * That stops right now. 840 * 841 * If the parent exec id doesn't match the exec id we saved 842 * when we started then we know the parent has changed security 843 * domain. 844 * 845 * If our self_exec id doesn't match our parent_exec_id then 846 * we have changed execution domain as these two values started 847 * the same after a fork. 848 */ 849 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 850 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 851 tsk->self_exec_id != tsk->parent_exec_id)) 852 tsk->exit_signal = SIGCHLD; 853 854 signal = tracehook_notify_death(tsk, &cookie, group_dead); 855 if (signal >= 0) 856 signal = do_notify_parent(tsk, signal); 857 858 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 859 860 /* mt-exec, de_thread() is waiting for us */ 861 if (thread_group_leader(tsk) && 862 tsk->signal->group_exit_task && 863 tsk->signal->notify_count < 0) 864 wake_up_process(tsk->signal->group_exit_task); 865 866 write_unlock_irq(&tasklist_lock); 867 868 tracehook_report_death(tsk, signal, cookie, group_dead); 869 870 /* If the process is dead, release it - nobody will wait for it */ 871 if (signal == DEATH_REAP) 872 release_task(tsk); 873 } 874 875 #ifdef CONFIG_DEBUG_STACK_USAGE 876 static void check_stack_usage(void) 877 { 878 static DEFINE_SPINLOCK(low_water_lock); 879 static int lowest_to_date = THREAD_SIZE; 880 unsigned long free; 881 882 free = stack_not_used(current); 883 884 if (free >= lowest_to_date) 885 return; 886 887 spin_lock(&low_water_lock); 888 if (free < lowest_to_date) { 889 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 890 "left\n", 891 current->comm, free); 892 lowest_to_date = free; 893 } 894 spin_unlock(&low_water_lock); 895 } 896 #else 897 static inline void check_stack_usage(void) {} 898 #endif 899 900 NORET_TYPE void do_exit(long code) 901 { 902 struct task_struct *tsk = current; 903 int group_dead; 904 905 profile_task_exit(tsk); 906 907 WARN_ON(atomic_read(&tsk->fs_excl)); 908 909 if (unlikely(in_interrupt())) 910 panic("Aiee, killing interrupt handler!"); 911 if (unlikely(!tsk->pid)) 912 panic("Attempted to kill the idle task!"); 913 914 tracehook_report_exit(&code); 915 916 validate_creds_for_do_exit(tsk); 917 918 /* 919 * We're taking recursive faults here in do_exit. Safest is to just 920 * leave this task alone and wait for reboot. 921 */ 922 if (unlikely(tsk->flags & PF_EXITING)) { 923 printk(KERN_ALERT 924 "Fixing recursive fault but reboot is needed!\n"); 925 /* 926 * We can do this unlocked here. The futex code uses 927 * this flag just to verify whether the pi state 928 * cleanup has been done or not. In the worst case it 929 * loops once more. We pretend that the cleanup was 930 * done as there is no way to return. Either the 931 * OWNER_DIED bit is set by now or we push the blocked 932 * task into the wait for ever nirwana as well. 933 */ 934 tsk->flags |= PF_EXITPIDONE; 935 set_current_state(TASK_UNINTERRUPTIBLE); 936 schedule(); 937 } 938 939 exit_irq_thread(); 940 941 exit_signals(tsk); /* sets PF_EXITING */ 942 /* 943 * tsk->flags are checked in the futex code to protect against 944 * an exiting task cleaning up the robust pi futexes. 945 */ 946 smp_mb(); 947 raw_spin_unlock_wait(&tsk->pi_lock); 948 949 if (unlikely(in_atomic())) 950 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 951 current->comm, task_pid_nr(current), 952 preempt_count()); 953 954 acct_update_integrals(tsk); 955 /* sync mm's RSS info before statistics gathering */ 956 sync_mm_rss(tsk, tsk->mm); 957 group_dead = atomic_dec_and_test(&tsk->signal->live); 958 if (group_dead) { 959 hrtimer_cancel(&tsk->signal->real_timer); 960 exit_itimers(tsk->signal); 961 if (tsk->mm) 962 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 963 } 964 acct_collect(code, group_dead); 965 if (group_dead) 966 tty_audit_exit(); 967 if (unlikely(tsk->audit_context)) 968 audit_free(tsk); 969 970 tsk->exit_code = code; 971 taskstats_exit(tsk, group_dead); 972 973 exit_mm(tsk); 974 975 if (group_dead) 976 acct_process(); 977 trace_sched_process_exit(tsk); 978 979 exit_sem(tsk); 980 exit_files(tsk); 981 exit_fs(tsk); 982 check_stack_usage(); 983 exit_thread(); 984 cgroup_exit(tsk, 1); 985 986 if (group_dead) 987 disassociate_ctty(1); 988 989 module_put(task_thread_info(tsk)->exec_domain->module); 990 991 proc_exit_connector(tsk); 992 993 /* 994 * FIXME: do that only when needed, using sched_exit tracepoint 995 */ 996 flush_ptrace_hw_breakpoint(tsk); 997 /* 998 * Flush inherited counters to the parent - before the parent 999 * gets woken up by child-exit notifications. 1000 */ 1001 perf_event_exit_task(tsk); 1002 1003 exit_notify(tsk, group_dead); 1004 #ifdef CONFIG_NUMA 1005 mpol_put(tsk->mempolicy); 1006 tsk->mempolicy = NULL; 1007 #endif 1008 #ifdef CONFIG_FUTEX 1009 if (unlikely(current->pi_state_cache)) 1010 kfree(current->pi_state_cache); 1011 #endif 1012 /* 1013 * Make sure we are holding no locks: 1014 */ 1015 debug_check_no_locks_held(tsk); 1016 /* 1017 * We can do this unlocked here. The futex code uses this flag 1018 * just to verify whether the pi state cleanup has been done 1019 * or not. In the worst case it loops once more. 1020 */ 1021 tsk->flags |= PF_EXITPIDONE; 1022 1023 if (tsk->io_context) 1024 exit_io_context(tsk); 1025 1026 if (tsk->splice_pipe) 1027 __free_pipe_info(tsk->splice_pipe); 1028 1029 validate_creds_for_do_exit(tsk); 1030 1031 preempt_disable(); 1032 exit_rcu(); 1033 /* causes final put_task_struct in finish_task_switch(). */ 1034 tsk->state = TASK_DEAD; 1035 schedule(); 1036 BUG(); 1037 /* Avoid "noreturn function does return". */ 1038 for (;;) 1039 cpu_relax(); /* For when BUG is null */ 1040 } 1041 1042 EXPORT_SYMBOL_GPL(do_exit); 1043 1044 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1045 { 1046 if (comp) 1047 complete(comp); 1048 1049 do_exit(code); 1050 } 1051 1052 EXPORT_SYMBOL(complete_and_exit); 1053 1054 SYSCALL_DEFINE1(exit, int, error_code) 1055 { 1056 do_exit((error_code&0xff)<<8); 1057 } 1058 1059 /* 1060 * Take down every thread in the group. This is called by fatal signals 1061 * as well as by sys_exit_group (below). 1062 */ 1063 NORET_TYPE void 1064 do_group_exit(int exit_code) 1065 { 1066 struct signal_struct *sig = current->signal; 1067 1068 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1069 1070 if (signal_group_exit(sig)) 1071 exit_code = sig->group_exit_code; 1072 else if (!thread_group_empty(current)) { 1073 struct sighand_struct *const sighand = current->sighand; 1074 spin_lock_irq(&sighand->siglock); 1075 if (signal_group_exit(sig)) 1076 /* Another thread got here before we took the lock. */ 1077 exit_code = sig->group_exit_code; 1078 else { 1079 sig->group_exit_code = exit_code; 1080 sig->flags = SIGNAL_GROUP_EXIT; 1081 zap_other_threads(current); 1082 } 1083 spin_unlock_irq(&sighand->siglock); 1084 } 1085 1086 do_exit(exit_code); 1087 /* NOTREACHED */ 1088 } 1089 1090 /* 1091 * this kills every thread in the thread group. Note that any externally 1092 * wait4()-ing process will get the correct exit code - even if this 1093 * thread is not the thread group leader. 1094 */ 1095 SYSCALL_DEFINE1(exit_group, int, error_code) 1096 { 1097 do_group_exit((error_code & 0xff) << 8); 1098 /* NOTREACHED */ 1099 return 0; 1100 } 1101 1102 struct wait_opts { 1103 enum pid_type wo_type; 1104 int wo_flags; 1105 struct pid *wo_pid; 1106 1107 struct siginfo __user *wo_info; 1108 int __user *wo_stat; 1109 struct rusage __user *wo_rusage; 1110 1111 wait_queue_t child_wait; 1112 int notask_error; 1113 }; 1114 1115 static inline 1116 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1117 { 1118 if (type != PIDTYPE_PID) 1119 task = task->group_leader; 1120 return task->pids[type].pid; 1121 } 1122 1123 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1124 { 1125 return wo->wo_type == PIDTYPE_MAX || 1126 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1127 } 1128 1129 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 1130 { 1131 if (!eligible_pid(wo, p)) 1132 return 0; 1133 /* Wait for all children (clone and not) if __WALL is set; 1134 * otherwise, wait for clone children *only* if __WCLONE is 1135 * set; otherwise, wait for non-clone children *only*. (Note: 1136 * A "clone" child here is one that reports to its parent 1137 * using a signal other than SIGCHLD.) */ 1138 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1139 && !(wo->wo_flags & __WALL)) 1140 return 0; 1141 1142 return 1; 1143 } 1144 1145 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1146 pid_t pid, uid_t uid, int why, int status) 1147 { 1148 struct siginfo __user *infop; 1149 int retval = wo->wo_rusage 1150 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1151 1152 put_task_struct(p); 1153 infop = wo->wo_info; 1154 if (infop) { 1155 if (!retval) 1156 retval = put_user(SIGCHLD, &infop->si_signo); 1157 if (!retval) 1158 retval = put_user(0, &infop->si_errno); 1159 if (!retval) 1160 retval = put_user((short)why, &infop->si_code); 1161 if (!retval) 1162 retval = put_user(pid, &infop->si_pid); 1163 if (!retval) 1164 retval = put_user(uid, &infop->si_uid); 1165 if (!retval) 1166 retval = put_user(status, &infop->si_status); 1167 } 1168 if (!retval) 1169 retval = pid; 1170 return retval; 1171 } 1172 1173 /* 1174 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1175 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1176 * the lock and this task is uninteresting. If we return nonzero, we have 1177 * released the lock and the system call should return. 1178 */ 1179 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1180 { 1181 unsigned long state; 1182 int retval, status, traced; 1183 pid_t pid = task_pid_vnr(p); 1184 uid_t uid = __task_cred(p)->uid; 1185 struct siginfo __user *infop; 1186 1187 if (!likely(wo->wo_flags & WEXITED)) 1188 return 0; 1189 1190 if (unlikely(wo->wo_flags & WNOWAIT)) { 1191 int exit_code = p->exit_code; 1192 int why; 1193 1194 get_task_struct(p); 1195 read_unlock(&tasklist_lock); 1196 if ((exit_code & 0x7f) == 0) { 1197 why = CLD_EXITED; 1198 status = exit_code >> 8; 1199 } else { 1200 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1201 status = exit_code & 0x7f; 1202 } 1203 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1204 } 1205 1206 /* 1207 * Try to move the task's state to DEAD 1208 * only one thread is allowed to do this: 1209 */ 1210 state = xchg(&p->exit_state, EXIT_DEAD); 1211 if (state != EXIT_ZOMBIE) { 1212 BUG_ON(state != EXIT_DEAD); 1213 return 0; 1214 } 1215 1216 traced = ptrace_reparented(p); 1217 /* 1218 * It can be ptraced but not reparented, check 1219 * !task_detached() to filter out sub-threads. 1220 */ 1221 if (likely(!traced) && likely(!task_detached(p))) { 1222 struct signal_struct *psig; 1223 struct signal_struct *sig; 1224 unsigned long maxrss; 1225 cputime_t tgutime, tgstime; 1226 1227 /* 1228 * The resource counters for the group leader are in its 1229 * own task_struct. Those for dead threads in the group 1230 * are in its signal_struct, as are those for the child 1231 * processes it has previously reaped. All these 1232 * accumulate in the parent's signal_struct c* fields. 1233 * 1234 * We don't bother to take a lock here to protect these 1235 * p->signal fields, because they are only touched by 1236 * __exit_signal, which runs with tasklist_lock 1237 * write-locked anyway, and so is excluded here. We do 1238 * need to protect the access to parent->signal fields, 1239 * as other threads in the parent group can be right 1240 * here reaping other children at the same time. 1241 * 1242 * We use thread_group_times() to get times for the thread 1243 * group, which consolidates times for all threads in the 1244 * group including the group leader. 1245 */ 1246 thread_group_times(p, &tgutime, &tgstime); 1247 spin_lock_irq(&p->real_parent->sighand->siglock); 1248 psig = p->real_parent->signal; 1249 sig = p->signal; 1250 psig->cutime = 1251 cputime_add(psig->cutime, 1252 cputime_add(tgutime, 1253 sig->cutime)); 1254 psig->cstime = 1255 cputime_add(psig->cstime, 1256 cputime_add(tgstime, 1257 sig->cstime)); 1258 psig->cgtime = 1259 cputime_add(psig->cgtime, 1260 cputime_add(p->gtime, 1261 cputime_add(sig->gtime, 1262 sig->cgtime))); 1263 psig->cmin_flt += 1264 p->min_flt + sig->min_flt + sig->cmin_flt; 1265 psig->cmaj_flt += 1266 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1267 psig->cnvcsw += 1268 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1269 psig->cnivcsw += 1270 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1271 psig->cinblock += 1272 task_io_get_inblock(p) + 1273 sig->inblock + sig->cinblock; 1274 psig->coublock += 1275 task_io_get_oublock(p) + 1276 sig->oublock + sig->coublock; 1277 maxrss = max(sig->maxrss, sig->cmaxrss); 1278 if (psig->cmaxrss < maxrss) 1279 psig->cmaxrss = maxrss; 1280 task_io_accounting_add(&psig->ioac, &p->ioac); 1281 task_io_accounting_add(&psig->ioac, &sig->ioac); 1282 spin_unlock_irq(&p->real_parent->sighand->siglock); 1283 } 1284 1285 /* 1286 * Now we are sure this task is interesting, and no other 1287 * thread can reap it because we set its state to EXIT_DEAD. 1288 */ 1289 read_unlock(&tasklist_lock); 1290 1291 retval = wo->wo_rusage 1292 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1293 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1294 ? p->signal->group_exit_code : p->exit_code; 1295 if (!retval && wo->wo_stat) 1296 retval = put_user(status, wo->wo_stat); 1297 1298 infop = wo->wo_info; 1299 if (!retval && infop) 1300 retval = put_user(SIGCHLD, &infop->si_signo); 1301 if (!retval && infop) 1302 retval = put_user(0, &infop->si_errno); 1303 if (!retval && infop) { 1304 int why; 1305 1306 if ((status & 0x7f) == 0) { 1307 why = CLD_EXITED; 1308 status >>= 8; 1309 } else { 1310 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1311 status &= 0x7f; 1312 } 1313 retval = put_user((short)why, &infop->si_code); 1314 if (!retval) 1315 retval = put_user(status, &infop->si_status); 1316 } 1317 if (!retval && infop) 1318 retval = put_user(pid, &infop->si_pid); 1319 if (!retval && infop) 1320 retval = put_user(uid, &infop->si_uid); 1321 if (!retval) 1322 retval = pid; 1323 1324 if (traced) { 1325 write_lock_irq(&tasklist_lock); 1326 /* We dropped tasklist, ptracer could die and untrace */ 1327 ptrace_unlink(p); 1328 /* 1329 * If this is not a detached task, notify the parent. 1330 * If it's still not detached after that, don't release 1331 * it now. 1332 */ 1333 if (!task_detached(p)) { 1334 do_notify_parent(p, p->exit_signal); 1335 if (!task_detached(p)) { 1336 p->exit_state = EXIT_ZOMBIE; 1337 p = NULL; 1338 } 1339 } 1340 write_unlock_irq(&tasklist_lock); 1341 } 1342 if (p != NULL) 1343 release_task(p); 1344 1345 return retval; 1346 } 1347 1348 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1349 { 1350 if (ptrace) { 1351 if (task_is_stopped_or_traced(p)) 1352 return &p->exit_code; 1353 } else { 1354 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1355 return &p->signal->group_exit_code; 1356 } 1357 return NULL; 1358 } 1359 1360 /* 1361 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1362 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1363 * the lock and this task is uninteresting. If we return nonzero, we have 1364 * released the lock and the system call should return. 1365 */ 1366 static int wait_task_stopped(struct wait_opts *wo, 1367 int ptrace, struct task_struct *p) 1368 { 1369 struct siginfo __user *infop; 1370 int retval, exit_code, *p_code, why; 1371 uid_t uid = 0; /* unneeded, required by compiler */ 1372 pid_t pid; 1373 1374 /* 1375 * Traditionally we see ptrace'd stopped tasks regardless of options. 1376 */ 1377 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1378 return 0; 1379 1380 exit_code = 0; 1381 spin_lock_irq(&p->sighand->siglock); 1382 1383 p_code = task_stopped_code(p, ptrace); 1384 if (unlikely(!p_code)) 1385 goto unlock_sig; 1386 1387 exit_code = *p_code; 1388 if (!exit_code) 1389 goto unlock_sig; 1390 1391 if (!unlikely(wo->wo_flags & WNOWAIT)) 1392 *p_code = 0; 1393 1394 /* don't need the RCU readlock here as we're holding a spinlock */ 1395 uid = __task_cred(p)->uid; 1396 unlock_sig: 1397 spin_unlock_irq(&p->sighand->siglock); 1398 if (!exit_code) 1399 return 0; 1400 1401 /* 1402 * Now we are pretty sure this task is interesting. 1403 * Make sure it doesn't get reaped out from under us while we 1404 * give up the lock and then examine it below. We don't want to 1405 * keep holding onto the tasklist_lock while we call getrusage and 1406 * possibly take page faults for user memory. 1407 */ 1408 get_task_struct(p); 1409 pid = task_pid_vnr(p); 1410 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1411 read_unlock(&tasklist_lock); 1412 1413 if (unlikely(wo->wo_flags & WNOWAIT)) 1414 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1415 1416 retval = wo->wo_rusage 1417 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1418 if (!retval && wo->wo_stat) 1419 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1420 1421 infop = wo->wo_info; 1422 if (!retval && infop) 1423 retval = put_user(SIGCHLD, &infop->si_signo); 1424 if (!retval && infop) 1425 retval = put_user(0, &infop->si_errno); 1426 if (!retval && infop) 1427 retval = put_user((short)why, &infop->si_code); 1428 if (!retval && infop) 1429 retval = put_user(exit_code, &infop->si_status); 1430 if (!retval && infop) 1431 retval = put_user(pid, &infop->si_pid); 1432 if (!retval && infop) 1433 retval = put_user(uid, &infop->si_uid); 1434 if (!retval) 1435 retval = pid; 1436 put_task_struct(p); 1437 1438 BUG_ON(!retval); 1439 return retval; 1440 } 1441 1442 /* 1443 * Handle do_wait work for one task in a live, non-stopped state. 1444 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1445 * the lock and this task is uninteresting. If we return nonzero, we have 1446 * released the lock and the system call should return. 1447 */ 1448 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1449 { 1450 int retval; 1451 pid_t pid; 1452 uid_t uid; 1453 1454 if (!unlikely(wo->wo_flags & WCONTINUED)) 1455 return 0; 1456 1457 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1458 return 0; 1459 1460 spin_lock_irq(&p->sighand->siglock); 1461 /* Re-check with the lock held. */ 1462 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1463 spin_unlock_irq(&p->sighand->siglock); 1464 return 0; 1465 } 1466 if (!unlikely(wo->wo_flags & WNOWAIT)) 1467 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1468 uid = __task_cred(p)->uid; 1469 spin_unlock_irq(&p->sighand->siglock); 1470 1471 pid = task_pid_vnr(p); 1472 get_task_struct(p); 1473 read_unlock(&tasklist_lock); 1474 1475 if (!wo->wo_info) { 1476 retval = wo->wo_rusage 1477 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1478 put_task_struct(p); 1479 if (!retval && wo->wo_stat) 1480 retval = put_user(0xffff, wo->wo_stat); 1481 if (!retval) 1482 retval = pid; 1483 } else { 1484 retval = wait_noreap_copyout(wo, p, pid, uid, 1485 CLD_CONTINUED, SIGCONT); 1486 BUG_ON(retval == 0); 1487 } 1488 1489 return retval; 1490 } 1491 1492 /* 1493 * Consider @p for a wait by @parent. 1494 * 1495 * -ECHILD should be in ->notask_error before the first call. 1496 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1497 * Returns zero if the search for a child should continue; 1498 * then ->notask_error is 0 if @p is an eligible child, 1499 * or another error from security_task_wait(), or still -ECHILD. 1500 */ 1501 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1502 struct task_struct *p) 1503 { 1504 int ret = eligible_child(wo, p); 1505 if (!ret) 1506 return ret; 1507 1508 ret = security_task_wait(p); 1509 if (unlikely(ret < 0)) { 1510 /* 1511 * If we have not yet seen any eligible child, 1512 * then let this error code replace -ECHILD. 1513 * A permission error will give the user a clue 1514 * to look for security policy problems, rather 1515 * than for mysterious wait bugs. 1516 */ 1517 if (wo->notask_error) 1518 wo->notask_error = ret; 1519 return 0; 1520 } 1521 1522 if (likely(!ptrace) && unlikely(task_ptrace(p))) { 1523 /* 1524 * This child is hidden by ptrace. 1525 * We aren't allowed to see it now, but eventually we will. 1526 */ 1527 wo->notask_error = 0; 1528 return 0; 1529 } 1530 1531 if (p->exit_state == EXIT_DEAD) 1532 return 0; 1533 1534 /* 1535 * We don't reap group leaders with subthreads. 1536 */ 1537 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1538 return wait_task_zombie(wo, p); 1539 1540 /* 1541 * It's stopped or running now, so it might 1542 * later continue, exit, or stop again. 1543 */ 1544 wo->notask_error = 0; 1545 1546 if (task_stopped_code(p, ptrace)) 1547 return wait_task_stopped(wo, ptrace, p); 1548 1549 return wait_task_continued(wo, p); 1550 } 1551 1552 /* 1553 * Do the work of do_wait() for one thread in the group, @tsk. 1554 * 1555 * -ECHILD should be in ->notask_error before the first call. 1556 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1557 * Returns zero if the search for a child should continue; then 1558 * ->notask_error is 0 if there were any eligible children, 1559 * or another error from security_task_wait(), or still -ECHILD. 1560 */ 1561 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1562 { 1563 struct task_struct *p; 1564 1565 list_for_each_entry(p, &tsk->children, sibling) { 1566 int ret = wait_consider_task(wo, 0, p); 1567 if (ret) 1568 return ret; 1569 } 1570 1571 return 0; 1572 } 1573 1574 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1575 { 1576 struct task_struct *p; 1577 1578 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1579 int ret = wait_consider_task(wo, 1, p); 1580 if (ret) 1581 return ret; 1582 } 1583 1584 return 0; 1585 } 1586 1587 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1588 int sync, void *key) 1589 { 1590 struct wait_opts *wo = container_of(wait, struct wait_opts, 1591 child_wait); 1592 struct task_struct *p = key; 1593 1594 if (!eligible_pid(wo, p)) 1595 return 0; 1596 1597 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1598 return 0; 1599 1600 return default_wake_function(wait, mode, sync, key); 1601 } 1602 1603 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1604 { 1605 __wake_up_sync_key(&parent->signal->wait_chldexit, 1606 TASK_INTERRUPTIBLE, 1, p); 1607 } 1608 1609 static long do_wait(struct wait_opts *wo) 1610 { 1611 struct task_struct *tsk; 1612 int retval; 1613 1614 trace_sched_process_wait(wo->wo_pid); 1615 1616 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1617 wo->child_wait.private = current; 1618 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1619 repeat: 1620 /* 1621 * If there is nothing that can match our critiera just get out. 1622 * We will clear ->notask_error to zero if we see any child that 1623 * might later match our criteria, even if we are not able to reap 1624 * it yet. 1625 */ 1626 wo->notask_error = -ECHILD; 1627 if ((wo->wo_type < PIDTYPE_MAX) && 1628 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1629 goto notask; 1630 1631 set_current_state(TASK_INTERRUPTIBLE); 1632 read_lock(&tasklist_lock); 1633 tsk = current; 1634 do { 1635 retval = do_wait_thread(wo, tsk); 1636 if (retval) 1637 goto end; 1638 1639 retval = ptrace_do_wait(wo, tsk); 1640 if (retval) 1641 goto end; 1642 1643 if (wo->wo_flags & __WNOTHREAD) 1644 break; 1645 } while_each_thread(current, tsk); 1646 read_unlock(&tasklist_lock); 1647 1648 notask: 1649 retval = wo->notask_error; 1650 if (!retval && !(wo->wo_flags & WNOHANG)) { 1651 retval = -ERESTARTSYS; 1652 if (!signal_pending(current)) { 1653 schedule(); 1654 goto repeat; 1655 } 1656 } 1657 end: 1658 __set_current_state(TASK_RUNNING); 1659 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1660 return retval; 1661 } 1662 1663 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1664 infop, int, options, struct rusage __user *, ru) 1665 { 1666 struct wait_opts wo; 1667 struct pid *pid = NULL; 1668 enum pid_type type; 1669 long ret; 1670 1671 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1672 return -EINVAL; 1673 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1674 return -EINVAL; 1675 1676 switch (which) { 1677 case P_ALL: 1678 type = PIDTYPE_MAX; 1679 break; 1680 case P_PID: 1681 type = PIDTYPE_PID; 1682 if (upid <= 0) 1683 return -EINVAL; 1684 break; 1685 case P_PGID: 1686 type = PIDTYPE_PGID; 1687 if (upid <= 0) 1688 return -EINVAL; 1689 break; 1690 default: 1691 return -EINVAL; 1692 } 1693 1694 if (type < PIDTYPE_MAX) 1695 pid = find_get_pid(upid); 1696 1697 wo.wo_type = type; 1698 wo.wo_pid = pid; 1699 wo.wo_flags = options; 1700 wo.wo_info = infop; 1701 wo.wo_stat = NULL; 1702 wo.wo_rusage = ru; 1703 ret = do_wait(&wo); 1704 1705 if (ret > 0) { 1706 ret = 0; 1707 } else if (infop) { 1708 /* 1709 * For a WNOHANG return, clear out all the fields 1710 * we would set so the user can easily tell the 1711 * difference. 1712 */ 1713 if (!ret) 1714 ret = put_user(0, &infop->si_signo); 1715 if (!ret) 1716 ret = put_user(0, &infop->si_errno); 1717 if (!ret) 1718 ret = put_user(0, &infop->si_code); 1719 if (!ret) 1720 ret = put_user(0, &infop->si_pid); 1721 if (!ret) 1722 ret = put_user(0, &infop->si_uid); 1723 if (!ret) 1724 ret = put_user(0, &infop->si_status); 1725 } 1726 1727 put_pid(pid); 1728 1729 /* avoid REGPARM breakage on x86: */ 1730 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1731 return ret; 1732 } 1733 1734 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1735 int, options, struct rusage __user *, ru) 1736 { 1737 struct wait_opts wo; 1738 struct pid *pid = NULL; 1739 enum pid_type type; 1740 long ret; 1741 1742 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1743 __WNOTHREAD|__WCLONE|__WALL)) 1744 return -EINVAL; 1745 1746 if (upid == -1) 1747 type = PIDTYPE_MAX; 1748 else if (upid < 0) { 1749 type = PIDTYPE_PGID; 1750 pid = find_get_pid(-upid); 1751 } else if (upid == 0) { 1752 type = PIDTYPE_PGID; 1753 pid = get_task_pid(current, PIDTYPE_PGID); 1754 } else /* upid > 0 */ { 1755 type = PIDTYPE_PID; 1756 pid = find_get_pid(upid); 1757 } 1758 1759 wo.wo_type = type; 1760 wo.wo_pid = pid; 1761 wo.wo_flags = options | WEXITED; 1762 wo.wo_info = NULL; 1763 wo.wo_stat = stat_addr; 1764 wo.wo_rusage = ru; 1765 ret = do_wait(&wo); 1766 put_pid(pid); 1767 1768 /* avoid REGPARM breakage on x86: */ 1769 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1770 return ret; 1771 } 1772 1773 #ifdef __ARCH_WANT_SYS_WAITPID 1774 1775 /* 1776 * sys_waitpid() remains for compatibility. waitpid() should be 1777 * implemented by calling sys_wait4() from libc.a. 1778 */ 1779 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1780 { 1781 return sys_wait4(pid, stat_addr, options, NULL); 1782 } 1783 1784 #endif 1785