1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/blkdev.h> 53 #include <linux/task_work.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/kmsan.h> 64 #include <linux/random.h> 65 #include <linux/rcuwait.h> 66 #include <linux/compat.h> 67 #include <linux/io_uring.h> 68 #include <linux/kprobes.h> 69 #include <linux/rethook.h> 70 #include <linux/sysfs.h> 71 #include <linux/user_events.h> 72 #include <linux/uaccess.h> 73 74 #include <uapi/linux/wait.h> 75 76 #include <asm/unistd.h> 77 #include <asm/mmu_context.h> 78 79 #include "exit.h" 80 81 /* 82 * The default value should be high enough to not crash a system that randomly 83 * crashes its kernel from time to time, but low enough to at least not permit 84 * overflowing 32-bit refcounts or the ldsem writer count. 85 */ 86 static unsigned int oops_limit = 10000; 87 88 #ifdef CONFIG_SYSCTL 89 static struct ctl_table kern_exit_table[] = { 90 { 91 .procname = "oops_limit", 92 .data = &oops_limit, 93 .maxlen = sizeof(oops_limit), 94 .mode = 0644, 95 .proc_handler = proc_douintvec, 96 }, 97 }; 98 99 static __init int kernel_exit_sysctls_init(void) 100 { 101 register_sysctl_init("kernel", kern_exit_table); 102 return 0; 103 } 104 late_initcall(kernel_exit_sysctls_init); 105 #endif 106 107 static atomic_t oops_count = ATOMIC_INIT(0); 108 109 #ifdef CONFIG_SYSFS 110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr, 111 char *page) 112 { 113 return sysfs_emit(page, "%d\n", atomic_read(&oops_count)); 114 } 115 116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count); 117 118 static __init int kernel_exit_sysfs_init(void) 119 { 120 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL); 121 return 0; 122 } 123 late_initcall(kernel_exit_sysfs_init); 124 #endif 125 126 static void __unhash_process(struct task_struct *p, bool group_dead) 127 { 128 nr_threads--; 129 detach_pid(p, PIDTYPE_PID); 130 if (group_dead) { 131 detach_pid(p, PIDTYPE_TGID); 132 detach_pid(p, PIDTYPE_PGID); 133 detach_pid(p, PIDTYPE_SID); 134 135 list_del_rcu(&p->tasks); 136 list_del_init(&p->sibling); 137 __this_cpu_dec(process_counts); 138 } 139 list_del_rcu(&p->thread_node); 140 } 141 142 /* 143 * This function expects the tasklist_lock write-locked. 144 */ 145 static void __exit_signal(struct task_struct *tsk) 146 { 147 struct signal_struct *sig = tsk->signal; 148 bool group_dead = thread_group_leader(tsk); 149 struct sighand_struct *sighand; 150 struct tty_struct *tty; 151 u64 utime, stime; 152 153 sighand = rcu_dereference_check(tsk->sighand, 154 lockdep_tasklist_lock_is_held()); 155 spin_lock(&sighand->siglock); 156 157 #ifdef CONFIG_POSIX_TIMERS 158 posix_cpu_timers_exit(tsk); 159 if (group_dead) 160 posix_cpu_timers_exit_group(tsk); 161 #endif 162 163 if (group_dead) { 164 tty = sig->tty; 165 sig->tty = NULL; 166 } else { 167 /* 168 * If there is any task waiting for the group exit 169 * then notify it: 170 */ 171 if (sig->notify_count > 0 && !--sig->notify_count) 172 wake_up_process(sig->group_exec_task); 173 174 if (tsk == sig->curr_target) 175 sig->curr_target = next_thread(tsk); 176 } 177 178 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 179 sizeof(unsigned long long)); 180 181 /* 182 * Accumulate here the counters for all threads as they die. We could 183 * skip the group leader because it is the last user of signal_struct, 184 * but we want to avoid the race with thread_group_cputime() which can 185 * see the empty ->thread_head list. 186 */ 187 task_cputime(tsk, &utime, &stime); 188 write_seqlock(&sig->stats_lock); 189 sig->utime += utime; 190 sig->stime += stime; 191 sig->gtime += task_gtime(tsk); 192 sig->min_flt += tsk->min_flt; 193 sig->maj_flt += tsk->maj_flt; 194 sig->nvcsw += tsk->nvcsw; 195 sig->nivcsw += tsk->nivcsw; 196 sig->inblock += task_io_get_inblock(tsk); 197 sig->oublock += task_io_get_oublock(tsk); 198 task_io_accounting_add(&sig->ioac, &tsk->ioac); 199 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 200 sig->nr_threads--; 201 __unhash_process(tsk, group_dead); 202 write_sequnlock(&sig->stats_lock); 203 204 /* 205 * Do this under ->siglock, we can race with another thread 206 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 207 */ 208 flush_sigqueue(&tsk->pending); 209 tsk->sighand = NULL; 210 spin_unlock(&sighand->siglock); 211 212 __cleanup_sighand(sighand); 213 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 214 if (group_dead) { 215 flush_sigqueue(&sig->shared_pending); 216 tty_kref_put(tty); 217 } 218 } 219 220 static void delayed_put_task_struct(struct rcu_head *rhp) 221 { 222 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 223 224 kprobe_flush_task(tsk); 225 rethook_flush_task(tsk); 226 perf_event_delayed_put(tsk); 227 trace_sched_process_free(tsk); 228 put_task_struct(tsk); 229 } 230 231 void put_task_struct_rcu_user(struct task_struct *task) 232 { 233 if (refcount_dec_and_test(&task->rcu_users)) 234 call_rcu(&task->rcu, delayed_put_task_struct); 235 } 236 237 void __weak release_thread(struct task_struct *dead_task) 238 { 239 } 240 241 void release_task(struct task_struct *p) 242 { 243 struct task_struct *leader; 244 struct pid *thread_pid; 245 int zap_leader; 246 repeat: 247 /* don't need to get the RCU readlock here - the process is dead and 248 * can't be modifying its own credentials. But shut RCU-lockdep up */ 249 rcu_read_lock(); 250 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 251 rcu_read_unlock(); 252 253 cgroup_release(p); 254 255 write_lock_irq(&tasklist_lock); 256 ptrace_release_task(p); 257 thread_pid = get_pid(p->thread_pid); 258 __exit_signal(p); 259 260 /* 261 * If we are the last non-leader member of the thread 262 * group, and the leader is zombie, then notify the 263 * group leader's parent process. (if it wants notification.) 264 */ 265 zap_leader = 0; 266 leader = p->group_leader; 267 if (leader != p && thread_group_empty(leader) 268 && leader->exit_state == EXIT_ZOMBIE) { 269 /* 270 * If we were the last child thread and the leader has 271 * exited already, and the leader's parent ignores SIGCHLD, 272 * then we are the one who should release the leader. 273 */ 274 zap_leader = do_notify_parent(leader, leader->exit_signal); 275 if (zap_leader) 276 leader->exit_state = EXIT_DEAD; 277 } 278 279 write_unlock_irq(&tasklist_lock); 280 proc_flush_pid(thread_pid); 281 put_pid(thread_pid); 282 release_thread(p); 283 put_task_struct_rcu_user(p); 284 285 p = leader; 286 if (unlikely(zap_leader)) 287 goto repeat; 288 } 289 290 int rcuwait_wake_up(struct rcuwait *w) 291 { 292 int ret = 0; 293 struct task_struct *task; 294 295 rcu_read_lock(); 296 297 /* 298 * Order condition vs @task, such that everything prior to the load 299 * of @task is visible. This is the condition as to why the user called 300 * rcuwait_wake() in the first place. Pairs with set_current_state() 301 * barrier (A) in rcuwait_wait_event(). 302 * 303 * WAIT WAKE 304 * [S] tsk = current [S] cond = true 305 * MB (A) MB (B) 306 * [L] cond [L] tsk 307 */ 308 smp_mb(); /* (B) */ 309 310 task = rcu_dereference(w->task); 311 if (task) 312 ret = wake_up_process(task); 313 rcu_read_unlock(); 314 315 return ret; 316 } 317 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 318 319 /* 320 * Determine if a process group is "orphaned", according to the POSIX 321 * definition in 2.2.2.52. Orphaned process groups are not to be affected 322 * by terminal-generated stop signals. Newly orphaned process groups are 323 * to receive a SIGHUP and a SIGCONT. 324 * 325 * "I ask you, have you ever known what it is to be an orphan?" 326 */ 327 static int will_become_orphaned_pgrp(struct pid *pgrp, 328 struct task_struct *ignored_task) 329 { 330 struct task_struct *p; 331 332 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 333 if ((p == ignored_task) || 334 (p->exit_state && thread_group_empty(p)) || 335 is_global_init(p->real_parent)) 336 continue; 337 338 if (task_pgrp(p->real_parent) != pgrp && 339 task_session(p->real_parent) == task_session(p)) 340 return 0; 341 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 342 343 return 1; 344 } 345 346 int is_current_pgrp_orphaned(void) 347 { 348 int retval; 349 350 read_lock(&tasklist_lock); 351 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 352 read_unlock(&tasklist_lock); 353 354 return retval; 355 } 356 357 static bool has_stopped_jobs(struct pid *pgrp) 358 { 359 struct task_struct *p; 360 361 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 362 if (p->signal->flags & SIGNAL_STOP_STOPPED) 363 return true; 364 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 365 366 return false; 367 } 368 369 /* 370 * Check to see if any process groups have become orphaned as 371 * a result of our exiting, and if they have any stopped jobs, 372 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 373 */ 374 static void 375 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 376 { 377 struct pid *pgrp = task_pgrp(tsk); 378 struct task_struct *ignored_task = tsk; 379 380 if (!parent) 381 /* exit: our father is in a different pgrp than 382 * we are and we were the only connection outside. 383 */ 384 parent = tsk->real_parent; 385 else 386 /* reparent: our child is in a different pgrp than 387 * we are, and it was the only connection outside. 388 */ 389 ignored_task = NULL; 390 391 if (task_pgrp(parent) != pgrp && 392 task_session(parent) == task_session(tsk) && 393 will_become_orphaned_pgrp(pgrp, ignored_task) && 394 has_stopped_jobs(pgrp)) { 395 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 396 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 397 } 398 } 399 400 static void coredump_task_exit(struct task_struct *tsk) 401 { 402 struct core_state *core_state; 403 404 /* 405 * Serialize with any possible pending coredump. 406 * We must hold siglock around checking core_state 407 * and setting PF_POSTCOREDUMP. The core-inducing thread 408 * will increment ->nr_threads for each thread in the 409 * group without PF_POSTCOREDUMP set. 410 */ 411 spin_lock_irq(&tsk->sighand->siglock); 412 tsk->flags |= PF_POSTCOREDUMP; 413 core_state = tsk->signal->core_state; 414 spin_unlock_irq(&tsk->sighand->siglock); 415 if (core_state) { 416 struct core_thread self; 417 418 self.task = current; 419 if (self.task->flags & PF_SIGNALED) 420 self.next = xchg(&core_state->dumper.next, &self); 421 else 422 self.task = NULL; 423 /* 424 * Implies mb(), the result of xchg() must be visible 425 * to core_state->dumper. 426 */ 427 if (atomic_dec_and_test(&core_state->nr_threads)) 428 complete(&core_state->startup); 429 430 for (;;) { 431 set_current_state(TASK_IDLE|TASK_FREEZABLE); 432 if (!self.task) /* see coredump_finish() */ 433 break; 434 schedule(); 435 } 436 __set_current_state(TASK_RUNNING); 437 } 438 } 439 440 #ifdef CONFIG_MEMCG 441 /* drops tasklist_lock if succeeds */ 442 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm) 443 { 444 bool ret = false; 445 446 task_lock(tsk); 447 if (likely(tsk->mm == mm)) { 448 /* tsk can't pass exit_mm/exec_mmap and exit */ 449 read_unlock(&tasklist_lock); 450 WRITE_ONCE(mm->owner, tsk); 451 lru_gen_migrate_mm(mm); 452 ret = true; 453 } 454 task_unlock(tsk); 455 return ret; 456 } 457 458 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm) 459 { 460 struct task_struct *t; 461 462 for_each_thread(g, t) { 463 struct mm_struct *t_mm = READ_ONCE(t->mm); 464 if (t_mm == mm) { 465 if (__try_to_set_owner(t, mm)) 466 return true; 467 } else if (t_mm) 468 break; 469 } 470 471 return false; 472 } 473 474 /* 475 * A task is exiting. If it owned this mm, find a new owner for the mm. 476 */ 477 void mm_update_next_owner(struct mm_struct *mm) 478 { 479 struct task_struct *g, *p = current; 480 481 /* 482 * If the exiting or execing task is not the owner, it's 483 * someone else's problem. 484 */ 485 if (mm->owner != p) 486 return; 487 /* 488 * The current owner is exiting/execing and there are no other 489 * candidates. Do not leave the mm pointing to a possibly 490 * freed task structure. 491 */ 492 if (atomic_read(&mm->mm_users) <= 1) { 493 WRITE_ONCE(mm->owner, NULL); 494 return; 495 } 496 497 read_lock(&tasklist_lock); 498 /* 499 * Search in the children 500 */ 501 list_for_each_entry(g, &p->children, sibling) { 502 if (try_to_set_owner(g, mm)) 503 goto ret; 504 } 505 /* 506 * Search in the siblings 507 */ 508 list_for_each_entry(g, &p->real_parent->children, sibling) { 509 if (try_to_set_owner(g, mm)) 510 goto ret; 511 } 512 /* 513 * Search through everything else, we should not get here often. 514 */ 515 for_each_process(g) { 516 if (atomic_read(&mm->mm_users) <= 1) 517 break; 518 if (g->flags & PF_KTHREAD) 519 continue; 520 if (try_to_set_owner(g, mm)) 521 goto ret; 522 } 523 read_unlock(&tasklist_lock); 524 /* 525 * We found no owner yet mm_users > 1: this implies that we are 526 * most likely racing with swapoff (try_to_unuse()) or /proc or 527 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 528 */ 529 WRITE_ONCE(mm->owner, NULL); 530 ret: 531 return; 532 533 } 534 #endif /* CONFIG_MEMCG */ 535 536 /* 537 * Turn us into a lazy TLB process if we 538 * aren't already.. 539 */ 540 static void exit_mm(void) 541 { 542 struct mm_struct *mm = current->mm; 543 544 exit_mm_release(current, mm); 545 if (!mm) 546 return; 547 mmap_read_lock(mm); 548 mmgrab_lazy_tlb(mm); 549 BUG_ON(mm != current->active_mm); 550 /* more a memory barrier than a real lock */ 551 task_lock(current); 552 /* 553 * When a thread stops operating on an address space, the loop 554 * in membarrier_private_expedited() may not observe that 555 * tsk->mm, and the loop in membarrier_global_expedited() may 556 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 557 * rq->membarrier_state, so those would not issue an IPI. 558 * Membarrier requires a memory barrier after accessing 559 * user-space memory, before clearing tsk->mm or the 560 * rq->membarrier_state. 561 */ 562 smp_mb__after_spinlock(); 563 local_irq_disable(); 564 current->mm = NULL; 565 membarrier_update_current_mm(NULL); 566 enter_lazy_tlb(mm, current); 567 local_irq_enable(); 568 task_unlock(current); 569 mmap_read_unlock(mm); 570 mm_update_next_owner(mm); 571 mmput(mm); 572 if (test_thread_flag(TIF_MEMDIE)) 573 exit_oom_victim(); 574 } 575 576 static struct task_struct *find_alive_thread(struct task_struct *p) 577 { 578 struct task_struct *t; 579 580 for_each_thread(p, t) { 581 if (!(t->flags & PF_EXITING)) 582 return t; 583 } 584 return NULL; 585 } 586 587 static struct task_struct *find_child_reaper(struct task_struct *father, 588 struct list_head *dead) 589 __releases(&tasklist_lock) 590 __acquires(&tasklist_lock) 591 { 592 struct pid_namespace *pid_ns = task_active_pid_ns(father); 593 struct task_struct *reaper = pid_ns->child_reaper; 594 struct task_struct *p, *n; 595 596 if (likely(reaper != father)) 597 return reaper; 598 599 reaper = find_alive_thread(father); 600 if (reaper) { 601 pid_ns->child_reaper = reaper; 602 return reaper; 603 } 604 605 write_unlock_irq(&tasklist_lock); 606 607 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 608 list_del_init(&p->ptrace_entry); 609 release_task(p); 610 } 611 612 zap_pid_ns_processes(pid_ns); 613 write_lock_irq(&tasklist_lock); 614 615 return father; 616 } 617 618 /* 619 * When we die, we re-parent all our children, and try to: 620 * 1. give them to another thread in our thread group, if such a member exists 621 * 2. give it to the first ancestor process which prctl'd itself as a 622 * child_subreaper for its children (like a service manager) 623 * 3. give it to the init process (PID 1) in our pid namespace 624 */ 625 static struct task_struct *find_new_reaper(struct task_struct *father, 626 struct task_struct *child_reaper) 627 { 628 struct task_struct *thread, *reaper; 629 630 thread = find_alive_thread(father); 631 if (thread) 632 return thread; 633 634 if (father->signal->has_child_subreaper) { 635 unsigned int ns_level = task_pid(father)->level; 636 /* 637 * Find the first ->is_child_subreaper ancestor in our pid_ns. 638 * We can't check reaper != child_reaper to ensure we do not 639 * cross the namespaces, the exiting parent could be injected 640 * by setns() + fork(). 641 * We check pid->level, this is slightly more efficient than 642 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 643 */ 644 for (reaper = father->real_parent; 645 task_pid(reaper)->level == ns_level; 646 reaper = reaper->real_parent) { 647 if (reaper == &init_task) 648 break; 649 if (!reaper->signal->is_child_subreaper) 650 continue; 651 thread = find_alive_thread(reaper); 652 if (thread) 653 return thread; 654 } 655 } 656 657 return child_reaper; 658 } 659 660 /* 661 * Any that need to be release_task'd are put on the @dead list. 662 */ 663 static void reparent_leader(struct task_struct *father, struct task_struct *p, 664 struct list_head *dead) 665 { 666 if (unlikely(p->exit_state == EXIT_DEAD)) 667 return; 668 669 /* We don't want people slaying init. */ 670 p->exit_signal = SIGCHLD; 671 672 /* If it has exited notify the new parent about this child's death. */ 673 if (!p->ptrace && 674 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 675 if (do_notify_parent(p, p->exit_signal)) { 676 p->exit_state = EXIT_DEAD; 677 list_add(&p->ptrace_entry, dead); 678 } 679 } 680 681 kill_orphaned_pgrp(p, father); 682 } 683 684 /* 685 * This does two things: 686 * 687 * A. Make init inherit all the child processes 688 * B. Check to see if any process groups have become orphaned 689 * as a result of our exiting, and if they have any stopped 690 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 691 */ 692 static void forget_original_parent(struct task_struct *father, 693 struct list_head *dead) 694 { 695 struct task_struct *p, *t, *reaper; 696 697 if (unlikely(!list_empty(&father->ptraced))) 698 exit_ptrace(father, dead); 699 700 /* Can drop and reacquire tasklist_lock */ 701 reaper = find_child_reaper(father, dead); 702 if (list_empty(&father->children)) 703 return; 704 705 reaper = find_new_reaper(father, reaper); 706 list_for_each_entry(p, &father->children, sibling) { 707 for_each_thread(p, t) { 708 RCU_INIT_POINTER(t->real_parent, reaper); 709 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 710 if (likely(!t->ptrace)) 711 t->parent = t->real_parent; 712 if (t->pdeath_signal) 713 group_send_sig_info(t->pdeath_signal, 714 SEND_SIG_NOINFO, t, 715 PIDTYPE_TGID); 716 } 717 /* 718 * If this is a threaded reparent there is no need to 719 * notify anyone anything has happened. 720 */ 721 if (!same_thread_group(reaper, father)) 722 reparent_leader(father, p, dead); 723 } 724 list_splice_tail_init(&father->children, &reaper->children); 725 } 726 727 /* 728 * Send signals to all our closest relatives so that they know 729 * to properly mourn us.. 730 */ 731 static void exit_notify(struct task_struct *tsk, int group_dead) 732 { 733 bool autoreap; 734 struct task_struct *p, *n; 735 LIST_HEAD(dead); 736 737 write_lock_irq(&tasklist_lock); 738 forget_original_parent(tsk, &dead); 739 740 if (group_dead) 741 kill_orphaned_pgrp(tsk->group_leader, NULL); 742 743 tsk->exit_state = EXIT_ZOMBIE; 744 /* 745 * sub-thread or delay_group_leader(), wake up the 746 * PIDFD_THREAD waiters. 747 */ 748 if (!thread_group_empty(tsk)) 749 do_notify_pidfd(tsk); 750 751 if (unlikely(tsk->ptrace)) { 752 int sig = thread_group_leader(tsk) && 753 thread_group_empty(tsk) && 754 !ptrace_reparented(tsk) ? 755 tsk->exit_signal : SIGCHLD; 756 autoreap = do_notify_parent(tsk, sig); 757 } else if (thread_group_leader(tsk)) { 758 autoreap = thread_group_empty(tsk) && 759 do_notify_parent(tsk, tsk->exit_signal); 760 } else { 761 autoreap = true; 762 } 763 764 if (autoreap) { 765 tsk->exit_state = EXIT_DEAD; 766 list_add(&tsk->ptrace_entry, &dead); 767 } 768 769 /* mt-exec, de_thread() is waiting for group leader */ 770 if (unlikely(tsk->signal->notify_count < 0)) 771 wake_up_process(tsk->signal->group_exec_task); 772 write_unlock_irq(&tasklist_lock); 773 774 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 775 list_del_init(&p->ptrace_entry); 776 release_task(p); 777 } 778 } 779 780 #ifdef CONFIG_DEBUG_STACK_USAGE 781 unsigned long stack_not_used(struct task_struct *p) 782 { 783 unsigned long *n = end_of_stack(p); 784 785 do { /* Skip over canary */ 786 # ifdef CONFIG_STACK_GROWSUP 787 n--; 788 # else 789 n++; 790 # endif 791 } while (!*n); 792 793 # ifdef CONFIG_STACK_GROWSUP 794 return (unsigned long)end_of_stack(p) - (unsigned long)n; 795 # else 796 return (unsigned long)n - (unsigned long)end_of_stack(p); 797 # endif 798 } 799 800 /* Count the maximum pages reached in kernel stacks */ 801 static inline void kstack_histogram(unsigned long used_stack) 802 { 803 #ifdef CONFIG_VM_EVENT_COUNTERS 804 if (used_stack <= 1024) 805 count_vm_event(KSTACK_1K); 806 #if THREAD_SIZE > 1024 807 else if (used_stack <= 2048) 808 count_vm_event(KSTACK_2K); 809 #endif 810 #if THREAD_SIZE > 2048 811 else if (used_stack <= 4096) 812 count_vm_event(KSTACK_4K); 813 #endif 814 #if THREAD_SIZE > 4096 815 else if (used_stack <= 8192) 816 count_vm_event(KSTACK_8K); 817 #endif 818 #if THREAD_SIZE > 8192 819 else if (used_stack <= 16384) 820 count_vm_event(KSTACK_16K); 821 #endif 822 #if THREAD_SIZE > 16384 823 else if (used_stack <= 32768) 824 count_vm_event(KSTACK_32K); 825 #endif 826 #if THREAD_SIZE > 32768 827 else if (used_stack <= 65536) 828 count_vm_event(KSTACK_64K); 829 #endif 830 #if THREAD_SIZE > 65536 831 else 832 count_vm_event(KSTACK_REST); 833 #endif 834 #endif /* CONFIG_VM_EVENT_COUNTERS */ 835 } 836 837 static void check_stack_usage(void) 838 { 839 static DEFINE_SPINLOCK(low_water_lock); 840 static int lowest_to_date = THREAD_SIZE; 841 unsigned long free; 842 843 free = stack_not_used(current); 844 kstack_histogram(THREAD_SIZE - free); 845 846 if (free >= lowest_to_date) 847 return; 848 849 spin_lock(&low_water_lock); 850 if (free < lowest_to_date) { 851 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 852 current->comm, task_pid_nr(current), free); 853 lowest_to_date = free; 854 } 855 spin_unlock(&low_water_lock); 856 } 857 #else 858 static inline void check_stack_usage(void) {} 859 #endif 860 861 static void synchronize_group_exit(struct task_struct *tsk, long code) 862 { 863 struct sighand_struct *sighand = tsk->sighand; 864 struct signal_struct *signal = tsk->signal; 865 866 spin_lock_irq(&sighand->siglock); 867 signal->quick_threads--; 868 if ((signal->quick_threads == 0) && 869 !(signal->flags & SIGNAL_GROUP_EXIT)) { 870 signal->flags = SIGNAL_GROUP_EXIT; 871 signal->group_exit_code = code; 872 signal->group_stop_count = 0; 873 } 874 spin_unlock_irq(&sighand->siglock); 875 } 876 877 void __noreturn do_exit(long code) 878 { 879 struct task_struct *tsk = current; 880 int group_dead; 881 882 WARN_ON(irqs_disabled()); 883 884 synchronize_group_exit(tsk, code); 885 886 WARN_ON(tsk->plug); 887 888 kcov_task_exit(tsk); 889 kmsan_task_exit(tsk); 890 891 coredump_task_exit(tsk); 892 ptrace_event(PTRACE_EVENT_EXIT, code); 893 user_events_exit(tsk); 894 895 io_uring_files_cancel(); 896 exit_signals(tsk); /* sets PF_EXITING */ 897 898 seccomp_filter_release(tsk); 899 900 acct_update_integrals(tsk); 901 group_dead = atomic_dec_and_test(&tsk->signal->live); 902 if (group_dead) { 903 /* 904 * If the last thread of global init has exited, panic 905 * immediately to get a useable coredump. 906 */ 907 if (unlikely(is_global_init(tsk))) 908 panic("Attempted to kill init! exitcode=0x%08x\n", 909 tsk->signal->group_exit_code ?: (int)code); 910 911 #ifdef CONFIG_POSIX_TIMERS 912 hrtimer_cancel(&tsk->signal->real_timer); 913 exit_itimers(tsk); 914 #endif 915 if (tsk->mm) 916 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 917 } 918 acct_collect(code, group_dead); 919 if (group_dead) 920 tty_audit_exit(); 921 audit_free(tsk); 922 923 tsk->exit_code = code; 924 taskstats_exit(tsk, group_dead); 925 926 exit_mm(); 927 928 if (group_dead) 929 acct_process(); 930 trace_sched_process_exit(tsk); 931 932 exit_sem(tsk); 933 exit_shm(tsk); 934 exit_files(tsk); 935 exit_fs(tsk); 936 if (group_dead) 937 disassociate_ctty(1); 938 exit_task_namespaces(tsk); 939 exit_task_work(tsk); 940 exit_thread(tsk); 941 942 /* 943 * Flush inherited counters to the parent - before the parent 944 * gets woken up by child-exit notifications. 945 * 946 * because of cgroup mode, must be called before cgroup_exit() 947 */ 948 perf_event_exit_task(tsk); 949 950 sched_autogroup_exit_task(tsk); 951 cgroup_exit(tsk); 952 953 /* 954 * FIXME: do that only when needed, using sched_exit tracepoint 955 */ 956 flush_ptrace_hw_breakpoint(tsk); 957 958 exit_tasks_rcu_start(); 959 exit_notify(tsk, group_dead); 960 proc_exit_connector(tsk); 961 mpol_put_task_policy(tsk); 962 #ifdef CONFIG_FUTEX 963 if (unlikely(current->pi_state_cache)) 964 kfree(current->pi_state_cache); 965 #endif 966 /* 967 * Make sure we are holding no locks: 968 */ 969 debug_check_no_locks_held(); 970 971 if (tsk->io_context) 972 exit_io_context(tsk); 973 974 if (tsk->splice_pipe) 975 free_pipe_info(tsk->splice_pipe); 976 977 if (tsk->task_frag.page) 978 put_page(tsk->task_frag.page); 979 980 exit_task_stack_account(tsk); 981 982 check_stack_usage(); 983 preempt_disable(); 984 if (tsk->nr_dirtied) 985 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 986 exit_rcu(); 987 exit_tasks_rcu_finish(); 988 989 lockdep_free_task(tsk); 990 do_task_dead(); 991 } 992 993 void __noreturn make_task_dead(int signr) 994 { 995 /* 996 * Take the task off the cpu after something catastrophic has 997 * happened. 998 * 999 * We can get here from a kernel oops, sometimes with preemption off. 1000 * Start by checking for critical errors. 1001 * Then fix up important state like USER_DS and preemption. 1002 * Then do everything else. 1003 */ 1004 struct task_struct *tsk = current; 1005 unsigned int limit; 1006 1007 if (unlikely(in_interrupt())) 1008 panic("Aiee, killing interrupt handler!"); 1009 if (unlikely(!tsk->pid)) 1010 panic("Attempted to kill the idle task!"); 1011 1012 if (unlikely(irqs_disabled())) { 1013 pr_info("note: %s[%d] exited with irqs disabled\n", 1014 current->comm, task_pid_nr(current)); 1015 local_irq_enable(); 1016 } 1017 if (unlikely(in_atomic())) { 1018 pr_info("note: %s[%d] exited with preempt_count %d\n", 1019 current->comm, task_pid_nr(current), 1020 preempt_count()); 1021 preempt_count_set(PREEMPT_ENABLED); 1022 } 1023 1024 /* 1025 * Every time the system oopses, if the oops happens while a reference 1026 * to an object was held, the reference leaks. 1027 * If the oops doesn't also leak memory, repeated oopsing can cause 1028 * reference counters to wrap around (if they're not using refcount_t). 1029 * This means that repeated oopsing can make unexploitable-looking bugs 1030 * exploitable through repeated oopsing. 1031 * To make sure this can't happen, place an upper bound on how often the 1032 * kernel may oops without panic(). 1033 */ 1034 limit = READ_ONCE(oops_limit); 1035 if (atomic_inc_return(&oops_count) >= limit && limit) 1036 panic("Oopsed too often (kernel.oops_limit is %d)", limit); 1037 1038 /* 1039 * We're taking recursive faults here in make_task_dead. Safest is to just 1040 * leave this task alone and wait for reboot. 1041 */ 1042 if (unlikely(tsk->flags & PF_EXITING)) { 1043 pr_alert("Fixing recursive fault but reboot is needed!\n"); 1044 futex_exit_recursive(tsk); 1045 tsk->exit_state = EXIT_DEAD; 1046 refcount_inc(&tsk->rcu_users); 1047 do_task_dead(); 1048 } 1049 1050 do_exit(signr); 1051 } 1052 1053 SYSCALL_DEFINE1(exit, int, error_code) 1054 { 1055 do_exit((error_code&0xff)<<8); 1056 } 1057 1058 /* 1059 * Take down every thread in the group. This is called by fatal signals 1060 * as well as by sys_exit_group (below). 1061 */ 1062 void __noreturn 1063 do_group_exit(int exit_code) 1064 { 1065 struct signal_struct *sig = current->signal; 1066 1067 if (sig->flags & SIGNAL_GROUP_EXIT) 1068 exit_code = sig->group_exit_code; 1069 else if (sig->group_exec_task) 1070 exit_code = 0; 1071 else { 1072 struct sighand_struct *const sighand = current->sighand; 1073 1074 spin_lock_irq(&sighand->siglock); 1075 if (sig->flags & SIGNAL_GROUP_EXIT) 1076 /* Another thread got here before we took the lock. */ 1077 exit_code = sig->group_exit_code; 1078 else if (sig->group_exec_task) 1079 exit_code = 0; 1080 else { 1081 sig->group_exit_code = exit_code; 1082 sig->flags = SIGNAL_GROUP_EXIT; 1083 zap_other_threads(current); 1084 } 1085 spin_unlock_irq(&sighand->siglock); 1086 } 1087 1088 do_exit(exit_code); 1089 /* NOTREACHED */ 1090 } 1091 1092 /* 1093 * this kills every thread in the thread group. Note that any externally 1094 * wait4()-ing process will get the correct exit code - even if this 1095 * thread is not the thread group leader. 1096 */ 1097 SYSCALL_DEFINE1(exit_group, int, error_code) 1098 { 1099 do_group_exit((error_code & 0xff) << 8); 1100 /* NOTREACHED */ 1101 return 0; 1102 } 1103 1104 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1105 { 1106 return wo->wo_type == PIDTYPE_MAX || 1107 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1108 } 1109 1110 static int 1111 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1112 { 1113 if (!eligible_pid(wo, p)) 1114 return 0; 1115 1116 /* 1117 * Wait for all children (clone and not) if __WALL is set or 1118 * if it is traced by us. 1119 */ 1120 if (ptrace || (wo->wo_flags & __WALL)) 1121 return 1; 1122 1123 /* 1124 * Otherwise, wait for clone children *only* if __WCLONE is set; 1125 * otherwise, wait for non-clone children *only*. 1126 * 1127 * Note: a "clone" child here is one that reports to its parent 1128 * using a signal other than SIGCHLD, or a non-leader thread which 1129 * we can only see if it is traced by us. 1130 */ 1131 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1132 return 0; 1133 1134 return 1; 1135 } 1136 1137 /* 1138 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1139 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1140 * the lock and this task is uninteresting. If we return nonzero, we have 1141 * released the lock and the system call should return. 1142 */ 1143 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1144 { 1145 int state, status; 1146 pid_t pid = task_pid_vnr(p); 1147 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1148 struct waitid_info *infop; 1149 1150 if (!likely(wo->wo_flags & WEXITED)) 1151 return 0; 1152 1153 if (unlikely(wo->wo_flags & WNOWAIT)) { 1154 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1155 ? p->signal->group_exit_code : p->exit_code; 1156 get_task_struct(p); 1157 read_unlock(&tasklist_lock); 1158 sched_annotate_sleep(); 1159 if (wo->wo_rusage) 1160 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1161 put_task_struct(p); 1162 goto out_info; 1163 } 1164 /* 1165 * Move the task's state to DEAD/TRACE, only one thread can do this. 1166 */ 1167 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1168 EXIT_TRACE : EXIT_DEAD; 1169 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1170 return 0; 1171 /* 1172 * We own this thread, nobody else can reap it. 1173 */ 1174 read_unlock(&tasklist_lock); 1175 sched_annotate_sleep(); 1176 1177 /* 1178 * Check thread_group_leader() to exclude the traced sub-threads. 1179 */ 1180 if (state == EXIT_DEAD && thread_group_leader(p)) { 1181 struct signal_struct *sig = p->signal; 1182 struct signal_struct *psig = current->signal; 1183 unsigned long maxrss; 1184 u64 tgutime, tgstime; 1185 1186 /* 1187 * The resource counters for the group leader are in its 1188 * own task_struct. Those for dead threads in the group 1189 * are in its signal_struct, as are those for the child 1190 * processes it has previously reaped. All these 1191 * accumulate in the parent's signal_struct c* fields. 1192 * 1193 * We don't bother to take a lock here to protect these 1194 * p->signal fields because the whole thread group is dead 1195 * and nobody can change them. 1196 * 1197 * psig->stats_lock also protects us from our sub-threads 1198 * which can reap other children at the same time. 1199 * 1200 * We use thread_group_cputime_adjusted() to get times for 1201 * the thread group, which consolidates times for all threads 1202 * in the group including the group leader. 1203 */ 1204 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1205 write_seqlock_irq(&psig->stats_lock); 1206 psig->cutime += tgutime + sig->cutime; 1207 psig->cstime += tgstime + sig->cstime; 1208 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1209 psig->cmin_flt += 1210 p->min_flt + sig->min_flt + sig->cmin_flt; 1211 psig->cmaj_flt += 1212 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1213 psig->cnvcsw += 1214 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1215 psig->cnivcsw += 1216 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1217 psig->cinblock += 1218 task_io_get_inblock(p) + 1219 sig->inblock + sig->cinblock; 1220 psig->coublock += 1221 task_io_get_oublock(p) + 1222 sig->oublock + sig->coublock; 1223 maxrss = max(sig->maxrss, sig->cmaxrss); 1224 if (psig->cmaxrss < maxrss) 1225 psig->cmaxrss = maxrss; 1226 task_io_accounting_add(&psig->ioac, &p->ioac); 1227 task_io_accounting_add(&psig->ioac, &sig->ioac); 1228 write_sequnlock_irq(&psig->stats_lock); 1229 } 1230 1231 if (wo->wo_rusage) 1232 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1233 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1234 ? p->signal->group_exit_code : p->exit_code; 1235 wo->wo_stat = status; 1236 1237 if (state == EXIT_TRACE) { 1238 write_lock_irq(&tasklist_lock); 1239 /* We dropped tasklist, ptracer could die and untrace */ 1240 ptrace_unlink(p); 1241 1242 /* If parent wants a zombie, don't release it now */ 1243 state = EXIT_ZOMBIE; 1244 if (do_notify_parent(p, p->exit_signal)) 1245 state = EXIT_DEAD; 1246 p->exit_state = state; 1247 write_unlock_irq(&tasklist_lock); 1248 } 1249 if (state == EXIT_DEAD) 1250 release_task(p); 1251 1252 out_info: 1253 infop = wo->wo_info; 1254 if (infop) { 1255 if ((status & 0x7f) == 0) { 1256 infop->cause = CLD_EXITED; 1257 infop->status = status >> 8; 1258 } else { 1259 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1260 infop->status = status & 0x7f; 1261 } 1262 infop->pid = pid; 1263 infop->uid = uid; 1264 } 1265 1266 return pid; 1267 } 1268 1269 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1270 { 1271 if (ptrace) { 1272 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1273 return &p->exit_code; 1274 } else { 1275 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1276 return &p->signal->group_exit_code; 1277 } 1278 return NULL; 1279 } 1280 1281 /** 1282 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1283 * @wo: wait options 1284 * @ptrace: is the wait for ptrace 1285 * @p: task to wait for 1286 * 1287 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1288 * 1289 * CONTEXT: 1290 * read_lock(&tasklist_lock), which is released if return value is 1291 * non-zero. Also, grabs and releases @p->sighand->siglock. 1292 * 1293 * RETURNS: 1294 * 0 if wait condition didn't exist and search for other wait conditions 1295 * should continue. Non-zero return, -errno on failure and @p's pid on 1296 * success, implies that tasklist_lock is released and wait condition 1297 * search should terminate. 1298 */ 1299 static int wait_task_stopped(struct wait_opts *wo, 1300 int ptrace, struct task_struct *p) 1301 { 1302 struct waitid_info *infop; 1303 int exit_code, *p_code, why; 1304 uid_t uid = 0; /* unneeded, required by compiler */ 1305 pid_t pid; 1306 1307 /* 1308 * Traditionally we see ptrace'd stopped tasks regardless of options. 1309 */ 1310 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1311 return 0; 1312 1313 if (!task_stopped_code(p, ptrace)) 1314 return 0; 1315 1316 exit_code = 0; 1317 spin_lock_irq(&p->sighand->siglock); 1318 1319 p_code = task_stopped_code(p, ptrace); 1320 if (unlikely(!p_code)) 1321 goto unlock_sig; 1322 1323 exit_code = *p_code; 1324 if (!exit_code) 1325 goto unlock_sig; 1326 1327 if (!unlikely(wo->wo_flags & WNOWAIT)) 1328 *p_code = 0; 1329 1330 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1331 unlock_sig: 1332 spin_unlock_irq(&p->sighand->siglock); 1333 if (!exit_code) 1334 return 0; 1335 1336 /* 1337 * Now we are pretty sure this task is interesting. 1338 * Make sure it doesn't get reaped out from under us while we 1339 * give up the lock and then examine it below. We don't want to 1340 * keep holding onto the tasklist_lock while we call getrusage and 1341 * possibly take page faults for user memory. 1342 */ 1343 get_task_struct(p); 1344 pid = task_pid_vnr(p); 1345 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1346 read_unlock(&tasklist_lock); 1347 sched_annotate_sleep(); 1348 if (wo->wo_rusage) 1349 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1350 put_task_struct(p); 1351 1352 if (likely(!(wo->wo_flags & WNOWAIT))) 1353 wo->wo_stat = (exit_code << 8) | 0x7f; 1354 1355 infop = wo->wo_info; 1356 if (infop) { 1357 infop->cause = why; 1358 infop->status = exit_code; 1359 infop->pid = pid; 1360 infop->uid = uid; 1361 } 1362 return pid; 1363 } 1364 1365 /* 1366 * Handle do_wait work for one task in a live, non-stopped state. 1367 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1368 * the lock and this task is uninteresting. If we return nonzero, we have 1369 * released the lock and the system call should return. 1370 */ 1371 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1372 { 1373 struct waitid_info *infop; 1374 pid_t pid; 1375 uid_t uid; 1376 1377 if (!unlikely(wo->wo_flags & WCONTINUED)) 1378 return 0; 1379 1380 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1381 return 0; 1382 1383 spin_lock_irq(&p->sighand->siglock); 1384 /* Re-check with the lock held. */ 1385 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1386 spin_unlock_irq(&p->sighand->siglock); 1387 return 0; 1388 } 1389 if (!unlikely(wo->wo_flags & WNOWAIT)) 1390 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1391 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1392 spin_unlock_irq(&p->sighand->siglock); 1393 1394 pid = task_pid_vnr(p); 1395 get_task_struct(p); 1396 read_unlock(&tasklist_lock); 1397 sched_annotate_sleep(); 1398 if (wo->wo_rusage) 1399 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1400 put_task_struct(p); 1401 1402 infop = wo->wo_info; 1403 if (!infop) { 1404 wo->wo_stat = 0xffff; 1405 } else { 1406 infop->cause = CLD_CONTINUED; 1407 infop->pid = pid; 1408 infop->uid = uid; 1409 infop->status = SIGCONT; 1410 } 1411 return pid; 1412 } 1413 1414 /* 1415 * Consider @p for a wait by @parent. 1416 * 1417 * -ECHILD should be in ->notask_error before the first call. 1418 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1419 * Returns zero if the search for a child should continue; 1420 * then ->notask_error is 0 if @p is an eligible child, 1421 * or still -ECHILD. 1422 */ 1423 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1424 struct task_struct *p) 1425 { 1426 /* 1427 * We can race with wait_task_zombie() from another thread. 1428 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1429 * can't confuse the checks below. 1430 */ 1431 int exit_state = READ_ONCE(p->exit_state); 1432 int ret; 1433 1434 if (unlikely(exit_state == EXIT_DEAD)) 1435 return 0; 1436 1437 ret = eligible_child(wo, ptrace, p); 1438 if (!ret) 1439 return ret; 1440 1441 if (unlikely(exit_state == EXIT_TRACE)) { 1442 /* 1443 * ptrace == 0 means we are the natural parent. In this case 1444 * we should clear notask_error, debugger will notify us. 1445 */ 1446 if (likely(!ptrace)) 1447 wo->notask_error = 0; 1448 return 0; 1449 } 1450 1451 if (likely(!ptrace) && unlikely(p->ptrace)) { 1452 /* 1453 * If it is traced by its real parent's group, just pretend 1454 * the caller is ptrace_do_wait() and reap this child if it 1455 * is zombie. 1456 * 1457 * This also hides group stop state from real parent; otherwise 1458 * a single stop can be reported twice as group and ptrace stop. 1459 * If a ptracer wants to distinguish these two events for its 1460 * own children it should create a separate process which takes 1461 * the role of real parent. 1462 */ 1463 if (!ptrace_reparented(p)) 1464 ptrace = 1; 1465 } 1466 1467 /* slay zombie? */ 1468 if (exit_state == EXIT_ZOMBIE) { 1469 /* we don't reap group leaders with subthreads */ 1470 if (!delay_group_leader(p)) { 1471 /* 1472 * A zombie ptracee is only visible to its ptracer. 1473 * Notification and reaping will be cascaded to the 1474 * real parent when the ptracer detaches. 1475 */ 1476 if (unlikely(ptrace) || likely(!p->ptrace)) 1477 return wait_task_zombie(wo, p); 1478 } 1479 1480 /* 1481 * Allow access to stopped/continued state via zombie by 1482 * falling through. Clearing of notask_error is complex. 1483 * 1484 * When !@ptrace: 1485 * 1486 * If WEXITED is set, notask_error should naturally be 1487 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1488 * so, if there are live subthreads, there are events to 1489 * wait for. If all subthreads are dead, it's still safe 1490 * to clear - this function will be called again in finite 1491 * amount time once all the subthreads are released and 1492 * will then return without clearing. 1493 * 1494 * When @ptrace: 1495 * 1496 * Stopped state is per-task and thus can't change once the 1497 * target task dies. Only continued and exited can happen. 1498 * Clear notask_error if WCONTINUED | WEXITED. 1499 */ 1500 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1501 wo->notask_error = 0; 1502 } else { 1503 /* 1504 * @p is alive and it's gonna stop, continue or exit, so 1505 * there always is something to wait for. 1506 */ 1507 wo->notask_error = 0; 1508 } 1509 1510 /* 1511 * Wait for stopped. Depending on @ptrace, different stopped state 1512 * is used and the two don't interact with each other. 1513 */ 1514 ret = wait_task_stopped(wo, ptrace, p); 1515 if (ret) 1516 return ret; 1517 1518 /* 1519 * Wait for continued. There's only one continued state and the 1520 * ptracer can consume it which can confuse the real parent. Don't 1521 * use WCONTINUED from ptracer. You don't need or want it. 1522 */ 1523 return wait_task_continued(wo, p); 1524 } 1525 1526 /* 1527 * Do the work of do_wait() for one thread in the group, @tsk. 1528 * 1529 * -ECHILD should be in ->notask_error before the first call. 1530 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1531 * Returns zero if the search for a child should continue; then 1532 * ->notask_error is 0 if there were any eligible children, 1533 * or still -ECHILD. 1534 */ 1535 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1536 { 1537 struct task_struct *p; 1538 1539 list_for_each_entry(p, &tsk->children, sibling) { 1540 int ret = wait_consider_task(wo, 0, p); 1541 1542 if (ret) 1543 return ret; 1544 } 1545 1546 return 0; 1547 } 1548 1549 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1550 { 1551 struct task_struct *p; 1552 1553 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1554 int ret = wait_consider_task(wo, 1, p); 1555 1556 if (ret) 1557 return ret; 1558 } 1559 1560 return 0; 1561 } 1562 1563 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p) 1564 { 1565 if (!eligible_pid(wo, p)) 1566 return false; 1567 1568 if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent) 1569 return false; 1570 1571 return true; 1572 } 1573 1574 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1575 int sync, void *key) 1576 { 1577 struct wait_opts *wo = container_of(wait, struct wait_opts, 1578 child_wait); 1579 struct task_struct *p = key; 1580 1581 if (pid_child_should_wake(wo, p)) 1582 return default_wake_function(wait, mode, sync, key); 1583 1584 return 0; 1585 } 1586 1587 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1588 { 1589 __wake_up_sync_key(&parent->signal->wait_chldexit, 1590 TASK_INTERRUPTIBLE, p); 1591 } 1592 1593 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1594 struct task_struct *target) 1595 { 1596 struct task_struct *parent = 1597 !ptrace ? target->real_parent : target->parent; 1598 1599 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1600 same_thread_group(current, parent)); 1601 } 1602 1603 /* 1604 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1605 * and tracee lists to find the target task. 1606 */ 1607 static int do_wait_pid(struct wait_opts *wo) 1608 { 1609 bool ptrace; 1610 struct task_struct *target; 1611 int retval; 1612 1613 ptrace = false; 1614 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1615 if (target && is_effectively_child(wo, ptrace, target)) { 1616 retval = wait_consider_task(wo, ptrace, target); 1617 if (retval) 1618 return retval; 1619 } 1620 1621 ptrace = true; 1622 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1623 if (target && target->ptrace && 1624 is_effectively_child(wo, ptrace, target)) { 1625 retval = wait_consider_task(wo, ptrace, target); 1626 if (retval) 1627 return retval; 1628 } 1629 1630 return 0; 1631 } 1632 1633 long __do_wait(struct wait_opts *wo) 1634 { 1635 long retval; 1636 1637 /* 1638 * If there is nothing that can match our criteria, just get out. 1639 * We will clear ->notask_error to zero if we see any child that 1640 * might later match our criteria, even if we are not able to reap 1641 * it yet. 1642 */ 1643 wo->notask_error = -ECHILD; 1644 if ((wo->wo_type < PIDTYPE_MAX) && 1645 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1646 goto notask; 1647 1648 read_lock(&tasklist_lock); 1649 1650 if (wo->wo_type == PIDTYPE_PID) { 1651 retval = do_wait_pid(wo); 1652 if (retval) 1653 return retval; 1654 } else { 1655 struct task_struct *tsk = current; 1656 1657 do { 1658 retval = do_wait_thread(wo, tsk); 1659 if (retval) 1660 return retval; 1661 1662 retval = ptrace_do_wait(wo, tsk); 1663 if (retval) 1664 return retval; 1665 1666 if (wo->wo_flags & __WNOTHREAD) 1667 break; 1668 } while_each_thread(current, tsk); 1669 } 1670 read_unlock(&tasklist_lock); 1671 1672 notask: 1673 retval = wo->notask_error; 1674 if (!retval && !(wo->wo_flags & WNOHANG)) 1675 return -ERESTARTSYS; 1676 1677 return retval; 1678 } 1679 1680 static long do_wait(struct wait_opts *wo) 1681 { 1682 int retval; 1683 1684 trace_sched_process_wait(wo->wo_pid); 1685 1686 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1687 wo->child_wait.private = current; 1688 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1689 1690 do { 1691 set_current_state(TASK_INTERRUPTIBLE); 1692 retval = __do_wait(wo); 1693 if (retval != -ERESTARTSYS) 1694 break; 1695 if (signal_pending(current)) 1696 break; 1697 schedule(); 1698 } while (1); 1699 1700 __set_current_state(TASK_RUNNING); 1701 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1702 return retval; 1703 } 1704 1705 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid, 1706 struct waitid_info *infop, int options, 1707 struct rusage *ru) 1708 { 1709 unsigned int f_flags = 0; 1710 struct pid *pid = NULL; 1711 enum pid_type type; 1712 1713 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1714 __WNOTHREAD|__WCLONE|__WALL)) 1715 return -EINVAL; 1716 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1717 return -EINVAL; 1718 1719 switch (which) { 1720 case P_ALL: 1721 type = PIDTYPE_MAX; 1722 break; 1723 case P_PID: 1724 type = PIDTYPE_PID; 1725 if (upid <= 0) 1726 return -EINVAL; 1727 1728 pid = find_get_pid(upid); 1729 break; 1730 case P_PGID: 1731 type = PIDTYPE_PGID; 1732 if (upid < 0) 1733 return -EINVAL; 1734 1735 if (upid) 1736 pid = find_get_pid(upid); 1737 else 1738 pid = get_task_pid(current, PIDTYPE_PGID); 1739 break; 1740 case P_PIDFD: 1741 type = PIDTYPE_PID; 1742 if (upid < 0) 1743 return -EINVAL; 1744 1745 pid = pidfd_get_pid(upid, &f_flags); 1746 if (IS_ERR(pid)) 1747 return PTR_ERR(pid); 1748 1749 break; 1750 default: 1751 return -EINVAL; 1752 } 1753 1754 wo->wo_type = type; 1755 wo->wo_pid = pid; 1756 wo->wo_flags = options; 1757 wo->wo_info = infop; 1758 wo->wo_rusage = ru; 1759 if (f_flags & O_NONBLOCK) 1760 wo->wo_flags |= WNOHANG; 1761 1762 return 0; 1763 } 1764 1765 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1766 int options, struct rusage *ru) 1767 { 1768 struct wait_opts wo; 1769 long ret; 1770 1771 ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru); 1772 if (ret) 1773 return ret; 1774 1775 ret = do_wait(&wo); 1776 if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG)) 1777 ret = -EAGAIN; 1778 1779 put_pid(wo.wo_pid); 1780 return ret; 1781 } 1782 1783 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1784 infop, int, options, struct rusage __user *, ru) 1785 { 1786 struct rusage r; 1787 struct waitid_info info = {.status = 0}; 1788 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1789 int signo = 0; 1790 1791 if (err > 0) { 1792 signo = SIGCHLD; 1793 err = 0; 1794 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1795 return -EFAULT; 1796 } 1797 if (!infop) 1798 return err; 1799 1800 if (!user_write_access_begin(infop, sizeof(*infop))) 1801 return -EFAULT; 1802 1803 unsafe_put_user(signo, &infop->si_signo, Efault); 1804 unsafe_put_user(0, &infop->si_errno, Efault); 1805 unsafe_put_user(info.cause, &infop->si_code, Efault); 1806 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1807 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1808 unsafe_put_user(info.status, &infop->si_status, Efault); 1809 user_write_access_end(); 1810 return err; 1811 Efault: 1812 user_write_access_end(); 1813 return -EFAULT; 1814 } 1815 1816 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1817 struct rusage *ru) 1818 { 1819 struct wait_opts wo; 1820 struct pid *pid = NULL; 1821 enum pid_type type; 1822 long ret; 1823 1824 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1825 __WNOTHREAD|__WCLONE|__WALL)) 1826 return -EINVAL; 1827 1828 /* -INT_MIN is not defined */ 1829 if (upid == INT_MIN) 1830 return -ESRCH; 1831 1832 if (upid == -1) 1833 type = PIDTYPE_MAX; 1834 else if (upid < 0) { 1835 type = PIDTYPE_PGID; 1836 pid = find_get_pid(-upid); 1837 } else if (upid == 0) { 1838 type = PIDTYPE_PGID; 1839 pid = get_task_pid(current, PIDTYPE_PGID); 1840 } else /* upid > 0 */ { 1841 type = PIDTYPE_PID; 1842 pid = find_get_pid(upid); 1843 } 1844 1845 wo.wo_type = type; 1846 wo.wo_pid = pid; 1847 wo.wo_flags = options | WEXITED; 1848 wo.wo_info = NULL; 1849 wo.wo_stat = 0; 1850 wo.wo_rusage = ru; 1851 ret = do_wait(&wo); 1852 put_pid(pid); 1853 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1854 ret = -EFAULT; 1855 1856 return ret; 1857 } 1858 1859 int kernel_wait(pid_t pid, int *stat) 1860 { 1861 struct wait_opts wo = { 1862 .wo_type = PIDTYPE_PID, 1863 .wo_pid = find_get_pid(pid), 1864 .wo_flags = WEXITED, 1865 }; 1866 int ret; 1867 1868 ret = do_wait(&wo); 1869 if (ret > 0 && wo.wo_stat) 1870 *stat = wo.wo_stat; 1871 put_pid(wo.wo_pid); 1872 return ret; 1873 } 1874 1875 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1876 int, options, struct rusage __user *, ru) 1877 { 1878 struct rusage r; 1879 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1880 1881 if (err > 0) { 1882 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1883 return -EFAULT; 1884 } 1885 return err; 1886 } 1887 1888 #ifdef __ARCH_WANT_SYS_WAITPID 1889 1890 /* 1891 * sys_waitpid() remains for compatibility. waitpid() should be 1892 * implemented by calling sys_wait4() from libc.a. 1893 */ 1894 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1895 { 1896 return kernel_wait4(pid, stat_addr, options, NULL); 1897 } 1898 1899 #endif 1900 1901 #ifdef CONFIG_COMPAT 1902 COMPAT_SYSCALL_DEFINE4(wait4, 1903 compat_pid_t, pid, 1904 compat_uint_t __user *, stat_addr, 1905 int, options, 1906 struct compat_rusage __user *, ru) 1907 { 1908 struct rusage r; 1909 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1910 if (err > 0) { 1911 if (ru && put_compat_rusage(&r, ru)) 1912 return -EFAULT; 1913 } 1914 return err; 1915 } 1916 1917 COMPAT_SYSCALL_DEFINE5(waitid, 1918 int, which, compat_pid_t, pid, 1919 struct compat_siginfo __user *, infop, int, options, 1920 struct compat_rusage __user *, uru) 1921 { 1922 struct rusage ru; 1923 struct waitid_info info = {.status = 0}; 1924 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1925 int signo = 0; 1926 if (err > 0) { 1927 signo = SIGCHLD; 1928 err = 0; 1929 if (uru) { 1930 /* kernel_waitid() overwrites everything in ru */ 1931 if (COMPAT_USE_64BIT_TIME) 1932 err = copy_to_user(uru, &ru, sizeof(ru)); 1933 else 1934 err = put_compat_rusage(&ru, uru); 1935 if (err) 1936 return -EFAULT; 1937 } 1938 } 1939 1940 if (!infop) 1941 return err; 1942 1943 if (!user_write_access_begin(infop, sizeof(*infop))) 1944 return -EFAULT; 1945 1946 unsafe_put_user(signo, &infop->si_signo, Efault); 1947 unsafe_put_user(0, &infop->si_errno, Efault); 1948 unsafe_put_user(info.cause, &infop->si_code, Efault); 1949 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1950 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1951 unsafe_put_user(info.status, &infop->si_status, Efault); 1952 user_write_access_end(); 1953 return err; 1954 Efault: 1955 user_write_access_end(); 1956 return -EFAULT; 1957 } 1958 #endif 1959 1960 /* 1961 * This needs to be __function_aligned as GCC implicitly makes any 1962 * implementation of abort() cold and drops alignment specified by 1963 * -falign-functions=N. 1964 * 1965 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11 1966 */ 1967 __weak __function_aligned void abort(void) 1968 { 1969 BUG(); 1970 1971 /* if that doesn't kill us, halt */ 1972 panic("Oops failed to kill thread"); 1973 } 1974 EXPORT_SYMBOL(abort); 1975