1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 54 #include <asm/uaccess.h> 55 #include <asm/unistd.h> 56 #include <asm/pgtable.h> 57 #include <asm/mmu_context.h> 58 #include "cred-internals.h" 59 60 static void exit_mm(struct task_struct * tsk); 61 62 static void __unhash_process(struct task_struct *p) 63 { 64 nr_threads--; 65 detach_pid(p, PIDTYPE_PID); 66 if (thread_group_leader(p)) { 67 detach_pid(p, PIDTYPE_PGID); 68 detach_pid(p, PIDTYPE_SID); 69 70 list_del_rcu(&p->tasks); 71 list_del_init(&p->sibling); 72 __get_cpu_var(process_counts)--; 73 } 74 list_del_rcu(&p->thread_group); 75 } 76 77 /* 78 * This function expects the tasklist_lock write-locked. 79 */ 80 static void __exit_signal(struct task_struct *tsk) 81 { 82 struct signal_struct *sig = tsk->signal; 83 struct sighand_struct *sighand; 84 85 BUG_ON(!sig); 86 BUG_ON(!atomic_read(&sig->count)); 87 88 sighand = rcu_dereference_check(tsk->sighand, 89 rcu_read_lock_held() || 90 lockdep_is_held(&tasklist_lock)); 91 spin_lock(&sighand->siglock); 92 93 posix_cpu_timers_exit(tsk); 94 if (atomic_dec_and_test(&sig->count)) 95 posix_cpu_timers_exit_group(tsk); 96 else { 97 /* 98 * If there is any task waiting for the group exit 99 * then notify it: 100 */ 101 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 102 wake_up_process(sig->group_exit_task); 103 104 if (tsk == sig->curr_target) 105 sig->curr_target = next_thread(tsk); 106 /* 107 * Accumulate here the counters for all threads but the 108 * group leader as they die, so they can be added into 109 * the process-wide totals when those are taken. 110 * The group leader stays around as a zombie as long 111 * as there are other threads. When it gets reaped, 112 * the exit.c code will add its counts into these totals. 113 * We won't ever get here for the group leader, since it 114 * will have been the last reference on the signal_struct. 115 */ 116 sig->utime = cputime_add(sig->utime, tsk->utime); 117 sig->stime = cputime_add(sig->stime, tsk->stime); 118 sig->gtime = cputime_add(sig->gtime, tsk->gtime); 119 sig->min_flt += tsk->min_flt; 120 sig->maj_flt += tsk->maj_flt; 121 sig->nvcsw += tsk->nvcsw; 122 sig->nivcsw += tsk->nivcsw; 123 sig->inblock += task_io_get_inblock(tsk); 124 sig->oublock += task_io_get_oublock(tsk); 125 task_io_accounting_add(&sig->ioac, &tsk->ioac); 126 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 127 sig = NULL; /* Marker for below. */ 128 } 129 130 __unhash_process(tsk); 131 132 /* 133 * Do this under ->siglock, we can race with another thread 134 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 135 */ 136 flush_sigqueue(&tsk->pending); 137 138 tsk->signal = NULL; 139 tsk->sighand = NULL; 140 spin_unlock(&sighand->siglock); 141 142 __cleanup_sighand(sighand); 143 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 144 if (sig) { 145 flush_sigqueue(&sig->shared_pending); 146 taskstats_tgid_free(sig); 147 /* 148 * Make sure ->signal can't go away under rq->lock, 149 * see account_group_exec_runtime(). 150 */ 151 task_rq_unlock_wait(tsk); 152 __cleanup_signal(sig); 153 } 154 } 155 156 static void delayed_put_task_struct(struct rcu_head *rhp) 157 { 158 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 159 160 #ifdef CONFIG_PERF_EVENTS 161 WARN_ON_ONCE(tsk->perf_event_ctxp); 162 #endif 163 trace_sched_process_free(tsk); 164 put_task_struct(tsk); 165 } 166 167 168 void release_task(struct task_struct * p) 169 { 170 struct task_struct *leader; 171 int zap_leader; 172 repeat: 173 tracehook_prepare_release_task(p); 174 /* don't need to get the RCU readlock here - the process is dead and 175 * can't be modifying its own credentials. But shut RCU-lockdep up */ 176 rcu_read_lock(); 177 atomic_dec(&__task_cred(p)->user->processes); 178 rcu_read_unlock(); 179 180 proc_flush_task(p); 181 182 write_lock_irq(&tasklist_lock); 183 tracehook_finish_release_task(p); 184 __exit_signal(p); 185 186 /* 187 * If we are the last non-leader member of the thread 188 * group, and the leader is zombie, then notify the 189 * group leader's parent process. (if it wants notification.) 190 */ 191 zap_leader = 0; 192 leader = p->group_leader; 193 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 194 BUG_ON(task_detached(leader)); 195 do_notify_parent(leader, leader->exit_signal); 196 /* 197 * If we were the last child thread and the leader has 198 * exited already, and the leader's parent ignores SIGCHLD, 199 * then we are the one who should release the leader. 200 * 201 * do_notify_parent() will have marked it self-reaping in 202 * that case. 203 */ 204 zap_leader = task_detached(leader); 205 206 /* 207 * This maintains the invariant that release_task() 208 * only runs on a task in EXIT_DEAD, just for sanity. 209 */ 210 if (zap_leader) 211 leader->exit_state = EXIT_DEAD; 212 } 213 214 write_unlock_irq(&tasklist_lock); 215 release_thread(p); 216 call_rcu(&p->rcu, delayed_put_task_struct); 217 218 p = leader; 219 if (unlikely(zap_leader)) 220 goto repeat; 221 } 222 223 /* 224 * This checks not only the pgrp, but falls back on the pid if no 225 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 226 * without this... 227 * 228 * The caller must hold rcu lock or the tasklist lock. 229 */ 230 struct pid *session_of_pgrp(struct pid *pgrp) 231 { 232 struct task_struct *p; 233 struct pid *sid = NULL; 234 235 p = pid_task(pgrp, PIDTYPE_PGID); 236 if (p == NULL) 237 p = pid_task(pgrp, PIDTYPE_PID); 238 if (p != NULL) 239 sid = task_session(p); 240 241 return sid; 242 } 243 244 /* 245 * Determine if a process group is "orphaned", according to the POSIX 246 * definition in 2.2.2.52. Orphaned process groups are not to be affected 247 * by terminal-generated stop signals. Newly orphaned process groups are 248 * to receive a SIGHUP and a SIGCONT. 249 * 250 * "I ask you, have you ever known what it is to be an orphan?" 251 */ 252 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 253 { 254 struct task_struct *p; 255 256 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 257 if ((p == ignored_task) || 258 (p->exit_state && thread_group_empty(p)) || 259 is_global_init(p->real_parent)) 260 continue; 261 262 if (task_pgrp(p->real_parent) != pgrp && 263 task_session(p->real_parent) == task_session(p)) 264 return 0; 265 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 266 267 return 1; 268 } 269 270 int is_current_pgrp_orphaned(void) 271 { 272 int retval; 273 274 read_lock(&tasklist_lock); 275 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 276 read_unlock(&tasklist_lock); 277 278 return retval; 279 } 280 281 static int has_stopped_jobs(struct pid *pgrp) 282 { 283 int retval = 0; 284 struct task_struct *p; 285 286 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 287 if (!task_is_stopped(p)) 288 continue; 289 retval = 1; 290 break; 291 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 292 return retval; 293 } 294 295 /* 296 * Check to see if any process groups have become orphaned as 297 * a result of our exiting, and if they have any stopped jobs, 298 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 299 */ 300 static void 301 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 302 { 303 struct pid *pgrp = task_pgrp(tsk); 304 struct task_struct *ignored_task = tsk; 305 306 if (!parent) 307 /* exit: our father is in a different pgrp than 308 * we are and we were the only connection outside. 309 */ 310 parent = tsk->real_parent; 311 else 312 /* reparent: our child is in a different pgrp than 313 * we are, and it was the only connection outside. 314 */ 315 ignored_task = NULL; 316 317 if (task_pgrp(parent) != pgrp && 318 task_session(parent) == task_session(tsk) && 319 will_become_orphaned_pgrp(pgrp, ignored_task) && 320 has_stopped_jobs(pgrp)) { 321 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 322 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 323 } 324 } 325 326 /** 327 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 328 * 329 * If a kernel thread is launched as a result of a system call, or if 330 * it ever exits, it should generally reparent itself to kthreadd so it 331 * isn't in the way of other processes and is correctly cleaned up on exit. 332 * 333 * The various task state such as scheduling policy and priority may have 334 * been inherited from a user process, so we reset them to sane values here. 335 * 336 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 337 */ 338 static void reparent_to_kthreadd(void) 339 { 340 write_lock_irq(&tasklist_lock); 341 342 ptrace_unlink(current); 343 /* Reparent to init */ 344 current->real_parent = current->parent = kthreadd_task; 345 list_move_tail(¤t->sibling, ¤t->real_parent->children); 346 347 /* Set the exit signal to SIGCHLD so we signal init on exit */ 348 current->exit_signal = SIGCHLD; 349 350 if (task_nice(current) < 0) 351 set_user_nice(current, 0); 352 /* cpus_allowed? */ 353 /* rt_priority? */ 354 /* signals? */ 355 memcpy(current->signal->rlim, init_task.signal->rlim, 356 sizeof(current->signal->rlim)); 357 358 atomic_inc(&init_cred.usage); 359 commit_creds(&init_cred); 360 write_unlock_irq(&tasklist_lock); 361 } 362 363 void __set_special_pids(struct pid *pid) 364 { 365 struct task_struct *curr = current->group_leader; 366 367 if (task_session(curr) != pid) 368 change_pid(curr, PIDTYPE_SID, pid); 369 370 if (task_pgrp(curr) != pid) 371 change_pid(curr, PIDTYPE_PGID, pid); 372 } 373 374 static void set_special_pids(struct pid *pid) 375 { 376 write_lock_irq(&tasklist_lock); 377 __set_special_pids(pid); 378 write_unlock_irq(&tasklist_lock); 379 } 380 381 /* 382 * Let kernel threads use this to say that they allow a certain signal. 383 * Must not be used if kthread was cloned with CLONE_SIGHAND. 384 */ 385 int allow_signal(int sig) 386 { 387 if (!valid_signal(sig) || sig < 1) 388 return -EINVAL; 389 390 spin_lock_irq(¤t->sighand->siglock); 391 /* This is only needed for daemonize()'ed kthreads */ 392 sigdelset(¤t->blocked, sig); 393 /* 394 * Kernel threads handle their own signals. Let the signal code 395 * know it'll be handled, so that they don't get converted to 396 * SIGKILL or just silently dropped. 397 */ 398 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 399 recalc_sigpending(); 400 spin_unlock_irq(¤t->sighand->siglock); 401 return 0; 402 } 403 404 EXPORT_SYMBOL(allow_signal); 405 406 int disallow_signal(int sig) 407 { 408 if (!valid_signal(sig) || sig < 1) 409 return -EINVAL; 410 411 spin_lock_irq(¤t->sighand->siglock); 412 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 413 recalc_sigpending(); 414 spin_unlock_irq(¤t->sighand->siglock); 415 return 0; 416 } 417 418 EXPORT_SYMBOL(disallow_signal); 419 420 /* 421 * Put all the gunge required to become a kernel thread without 422 * attached user resources in one place where it belongs. 423 */ 424 425 void daemonize(const char *name, ...) 426 { 427 va_list args; 428 sigset_t blocked; 429 430 va_start(args, name); 431 vsnprintf(current->comm, sizeof(current->comm), name, args); 432 va_end(args); 433 434 /* 435 * If we were started as result of loading a module, close all of the 436 * user space pages. We don't need them, and if we didn't close them 437 * they would be locked into memory. 438 */ 439 exit_mm(current); 440 /* 441 * We don't want to have TIF_FREEZE set if the system-wide hibernation 442 * or suspend transition begins right now. 443 */ 444 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 445 446 if (current->nsproxy != &init_nsproxy) { 447 get_nsproxy(&init_nsproxy); 448 switch_task_namespaces(current, &init_nsproxy); 449 } 450 set_special_pids(&init_struct_pid); 451 proc_clear_tty(current); 452 453 /* Block and flush all signals */ 454 sigfillset(&blocked); 455 sigprocmask(SIG_BLOCK, &blocked, NULL); 456 flush_signals(current); 457 458 /* Become as one with the init task */ 459 460 daemonize_fs_struct(); 461 exit_files(current); 462 current->files = init_task.files; 463 atomic_inc(¤t->files->count); 464 465 reparent_to_kthreadd(); 466 } 467 468 EXPORT_SYMBOL(daemonize); 469 470 static void close_files(struct files_struct * files) 471 { 472 int i, j; 473 struct fdtable *fdt; 474 475 j = 0; 476 477 /* 478 * It is safe to dereference the fd table without RCU or 479 * ->file_lock because this is the last reference to the 480 * files structure. But use RCU to shut RCU-lockdep up. 481 */ 482 rcu_read_lock(); 483 fdt = files_fdtable(files); 484 rcu_read_unlock(); 485 for (;;) { 486 unsigned long set; 487 i = j * __NFDBITS; 488 if (i >= fdt->max_fds) 489 break; 490 set = fdt->open_fds->fds_bits[j++]; 491 while (set) { 492 if (set & 1) { 493 struct file * file = xchg(&fdt->fd[i], NULL); 494 if (file) { 495 filp_close(file, files); 496 cond_resched(); 497 } 498 } 499 i++; 500 set >>= 1; 501 } 502 } 503 } 504 505 struct files_struct *get_files_struct(struct task_struct *task) 506 { 507 struct files_struct *files; 508 509 task_lock(task); 510 files = task->files; 511 if (files) 512 atomic_inc(&files->count); 513 task_unlock(task); 514 515 return files; 516 } 517 518 void put_files_struct(struct files_struct *files) 519 { 520 struct fdtable *fdt; 521 522 if (atomic_dec_and_test(&files->count)) { 523 close_files(files); 524 /* 525 * Free the fd and fdset arrays if we expanded them. 526 * If the fdtable was embedded, pass files for freeing 527 * at the end of the RCU grace period. Otherwise, 528 * you can free files immediately. 529 */ 530 rcu_read_lock(); 531 fdt = files_fdtable(files); 532 if (fdt != &files->fdtab) 533 kmem_cache_free(files_cachep, files); 534 free_fdtable(fdt); 535 rcu_read_unlock(); 536 } 537 } 538 539 void reset_files_struct(struct files_struct *files) 540 { 541 struct task_struct *tsk = current; 542 struct files_struct *old; 543 544 old = tsk->files; 545 task_lock(tsk); 546 tsk->files = files; 547 task_unlock(tsk); 548 put_files_struct(old); 549 } 550 551 void exit_files(struct task_struct *tsk) 552 { 553 struct files_struct * files = tsk->files; 554 555 if (files) { 556 task_lock(tsk); 557 tsk->files = NULL; 558 task_unlock(tsk); 559 put_files_struct(files); 560 } 561 } 562 563 #ifdef CONFIG_MM_OWNER 564 /* 565 * Task p is exiting and it owned mm, lets find a new owner for it 566 */ 567 static inline int 568 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 569 { 570 /* 571 * If there are other users of the mm and the owner (us) is exiting 572 * we need to find a new owner to take on the responsibility. 573 */ 574 if (atomic_read(&mm->mm_users) <= 1) 575 return 0; 576 if (mm->owner != p) 577 return 0; 578 return 1; 579 } 580 581 void mm_update_next_owner(struct mm_struct *mm) 582 { 583 struct task_struct *c, *g, *p = current; 584 585 retry: 586 if (!mm_need_new_owner(mm, p)) 587 return; 588 589 read_lock(&tasklist_lock); 590 /* 591 * Search in the children 592 */ 593 list_for_each_entry(c, &p->children, sibling) { 594 if (c->mm == mm) 595 goto assign_new_owner; 596 } 597 598 /* 599 * Search in the siblings 600 */ 601 list_for_each_entry(c, &p->real_parent->children, sibling) { 602 if (c->mm == mm) 603 goto assign_new_owner; 604 } 605 606 /* 607 * Search through everything else. We should not get 608 * here often 609 */ 610 do_each_thread(g, c) { 611 if (c->mm == mm) 612 goto assign_new_owner; 613 } while_each_thread(g, c); 614 615 read_unlock(&tasklist_lock); 616 /* 617 * We found no owner yet mm_users > 1: this implies that we are 618 * most likely racing with swapoff (try_to_unuse()) or /proc or 619 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 620 */ 621 mm->owner = NULL; 622 return; 623 624 assign_new_owner: 625 BUG_ON(c == p); 626 get_task_struct(c); 627 /* 628 * The task_lock protects c->mm from changing. 629 * We always want mm->owner->mm == mm 630 */ 631 task_lock(c); 632 /* 633 * Delay read_unlock() till we have the task_lock() 634 * to ensure that c does not slip away underneath us 635 */ 636 read_unlock(&tasklist_lock); 637 if (c->mm != mm) { 638 task_unlock(c); 639 put_task_struct(c); 640 goto retry; 641 } 642 mm->owner = c; 643 task_unlock(c); 644 put_task_struct(c); 645 } 646 #endif /* CONFIG_MM_OWNER */ 647 648 /* 649 * Turn us into a lazy TLB process if we 650 * aren't already.. 651 */ 652 static void exit_mm(struct task_struct * tsk) 653 { 654 struct mm_struct *mm = tsk->mm; 655 struct core_state *core_state; 656 657 mm_release(tsk, mm); 658 if (!mm) 659 return; 660 /* 661 * Serialize with any possible pending coredump. 662 * We must hold mmap_sem around checking core_state 663 * and clearing tsk->mm. The core-inducing thread 664 * will increment ->nr_threads for each thread in the 665 * group with ->mm != NULL. 666 */ 667 down_read(&mm->mmap_sem); 668 core_state = mm->core_state; 669 if (core_state) { 670 struct core_thread self; 671 up_read(&mm->mmap_sem); 672 673 self.task = tsk; 674 self.next = xchg(&core_state->dumper.next, &self); 675 /* 676 * Implies mb(), the result of xchg() must be visible 677 * to core_state->dumper. 678 */ 679 if (atomic_dec_and_test(&core_state->nr_threads)) 680 complete(&core_state->startup); 681 682 for (;;) { 683 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 684 if (!self.task) /* see coredump_finish() */ 685 break; 686 schedule(); 687 } 688 __set_task_state(tsk, TASK_RUNNING); 689 down_read(&mm->mmap_sem); 690 } 691 atomic_inc(&mm->mm_count); 692 BUG_ON(mm != tsk->active_mm); 693 /* more a memory barrier than a real lock */ 694 task_lock(tsk); 695 tsk->mm = NULL; 696 up_read(&mm->mmap_sem); 697 enter_lazy_tlb(mm, current); 698 /* We don't want this task to be frozen prematurely */ 699 clear_freeze_flag(tsk); 700 task_unlock(tsk); 701 mm_update_next_owner(mm); 702 mmput(mm); 703 } 704 705 /* 706 * When we die, we re-parent all our children. 707 * Try to give them to another thread in our thread 708 * group, and if no such member exists, give it to 709 * the child reaper process (ie "init") in our pid 710 * space. 711 */ 712 static struct task_struct *find_new_reaper(struct task_struct *father) 713 { 714 struct pid_namespace *pid_ns = task_active_pid_ns(father); 715 struct task_struct *thread; 716 717 thread = father; 718 while_each_thread(father, thread) { 719 if (thread->flags & PF_EXITING) 720 continue; 721 if (unlikely(pid_ns->child_reaper == father)) 722 pid_ns->child_reaper = thread; 723 return thread; 724 } 725 726 if (unlikely(pid_ns->child_reaper == father)) { 727 write_unlock_irq(&tasklist_lock); 728 if (unlikely(pid_ns == &init_pid_ns)) 729 panic("Attempted to kill init!"); 730 731 zap_pid_ns_processes(pid_ns); 732 write_lock_irq(&tasklist_lock); 733 /* 734 * We can not clear ->child_reaper or leave it alone. 735 * There may by stealth EXIT_DEAD tasks on ->children, 736 * forget_original_parent() must move them somewhere. 737 */ 738 pid_ns->child_reaper = init_pid_ns.child_reaper; 739 } 740 741 return pid_ns->child_reaper; 742 } 743 744 /* 745 * Any that need to be release_task'd are put on the @dead list. 746 */ 747 static void reparent_leader(struct task_struct *father, struct task_struct *p, 748 struct list_head *dead) 749 { 750 list_move_tail(&p->sibling, &p->real_parent->children); 751 752 if (task_detached(p)) 753 return; 754 /* 755 * If this is a threaded reparent there is no need to 756 * notify anyone anything has happened. 757 */ 758 if (same_thread_group(p->real_parent, father)) 759 return; 760 761 /* We don't want people slaying init. */ 762 p->exit_signal = SIGCHLD; 763 764 /* If it has exited notify the new parent about this child's death. */ 765 if (!task_ptrace(p) && 766 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 767 do_notify_parent(p, p->exit_signal); 768 if (task_detached(p)) { 769 p->exit_state = EXIT_DEAD; 770 list_move_tail(&p->sibling, dead); 771 } 772 } 773 774 kill_orphaned_pgrp(p, father); 775 } 776 777 static void forget_original_parent(struct task_struct *father) 778 { 779 struct task_struct *p, *n, *reaper; 780 LIST_HEAD(dead_children); 781 782 exit_ptrace(father); 783 784 write_lock_irq(&tasklist_lock); 785 reaper = find_new_reaper(father); 786 787 list_for_each_entry_safe(p, n, &father->children, sibling) { 788 struct task_struct *t = p; 789 do { 790 t->real_parent = reaper; 791 if (t->parent == father) { 792 BUG_ON(task_ptrace(t)); 793 t->parent = t->real_parent; 794 } 795 if (t->pdeath_signal) 796 group_send_sig_info(t->pdeath_signal, 797 SEND_SIG_NOINFO, t); 798 } while_each_thread(p, t); 799 reparent_leader(father, p, &dead_children); 800 } 801 write_unlock_irq(&tasklist_lock); 802 803 BUG_ON(!list_empty(&father->children)); 804 805 list_for_each_entry_safe(p, n, &dead_children, sibling) { 806 list_del_init(&p->sibling); 807 release_task(p); 808 } 809 } 810 811 /* 812 * Send signals to all our closest relatives so that they know 813 * to properly mourn us.. 814 */ 815 static void exit_notify(struct task_struct *tsk, int group_dead) 816 { 817 int signal; 818 void *cookie; 819 820 /* 821 * This does two things: 822 * 823 * A. Make init inherit all the child processes 824 * B. Check to see if any process groups have become orphaned 825 * as a result of our exiting, and if they have any stopped 826 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 827 */ 828 forget_original_parent(tsk); 829 exit_task_namespaces(tsk); 830 831 write_lock_irq(&tasklist_lock); 832 if (group_dead) 833 kill_orphaned_pgrp(tsk->group_leader, NULL); 834 835 /* Let father know we died 836 * 837 * Thread signals are configurable, but you aren't going to use 838 * that to send signals to arbitary processes. 839 * That stops right now. 840 * 841 * If the parent exec id doesn't match the exec id we saved 842 * when we started then we know the parent has changed security 843 * domain. 844 * 845 * If our self_exec id doesn't match our parent_exec_id then 846 * we have changed execution domain as these two values started 847 * the same after a fork. 848 */ 849 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 850 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 851 tsk->self_exec_id != tsk->parent_exec_id)) 852 tsk->exit_signal = SIGCHLD; 853 854 signal = tracehook_notify_death(tsk, &cookie, group_dead); 855 if (signal >= 0) 856 signal = do_notify_parent(tsk, signal); 857 858 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 859 860 /* mt-exec, de_thread() is waiting for us */ 861 if (thread_group_leader(tsk) && 862 tsk->signal->group_exit_task && 863 tsk->signal->notify_count < 0) 864 wake_up_process(tsk->signal->group_exit_task); 865 866 write_unlock_irq(&tasklist_lock); 867 868 tracehook_report_death(tsk, signal, cookie, group_dead); 869 870 /* If the process is dead, release it - nobody will wait for it */ 871 if (signal == DEATH_REAP) 872 release_task(tsk); 873 } 874 875 #ifdef CONFIG_DEBUG_STACK_USAGE 876 static void check_stack_usage(void) 877 { 878 static DEFINE_SPINLOCK(low_water_lock); 879 static int lowest_to_date = THREAD_SIZE; 880 unsigned long free; 881 882 free = stack_not_used(current); 883 884 if (free >= lowest_to_date) 885 return; 886 887 spin_lock(&low_water_lock); 888 if (free < lowest_to_date) { 889 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 890 "left\n", 891 current->comm, free); 892 lowest_to_date = free; 893 } 894 spin_unlock(&low_water_lock); 895 } 896 #else 897 static inline void check_stack_usage(void) {} 898 #endif 899 900 NORET_TYPE void do_exit(long code) 901 { 902 struct task_struct *tsk = current; 903 int group_dead; 904 905 profile_task_exit(tsk); 906 907 WARN_ON(atomic_read(&tsk->fs_excl)); 908 909 if (unlikely(in_interrupt())) 910 panic("Aiee, killing interrupt handler!"); 911 if (unlikely(!tsk->pid)) 912 panic("Attempted to kill the idle task!"); 913 914 tracehook_report_exit(&code); 915 916 validate_creds_for_do_exit(tsk); 917 918 /* 919 * We're taking recursive faults here in do_exit. Safest is to just 920 * leave this task alone and wait for reboot. 921 */ 922 if (unlikely(tsk->flags & PF_EXITING)) { 923 printk(KERN_ALERT 924 "Fixing recursive fault but reboot is needed!\n"); 925 /* 926 * We can do this unlocked here. The futex code uses 927 * this flag just to verify whether the pi state 928 * cleanup has been done or not. In the worst case it 929 * loops once more. We pretend that the cleanup was 930 * done as there is no way to return. Either the 931 * OWNER_DIED bit is set by now or we push the blocked 932 * task into the wait for ever nirwana as well. 933 */ 934 tsk->flags |= PF_EXITPIDONE; 935 set_current_state(TASK_UNINTERRUPTIBLE); 936 schedule(); 937 } 938 939 exit_irq_thread(); 940 941 exit_signals(tsk); /* sets PF_EXITING */ 942 /* 943 * tsk->flags are checked in the futex code to protect against 944 * an exiting task cleaning up the robust pi futexes. 945 */ 946 smp_mb(); 947 raw_spin_unlock_wait(&tsk->pi_lock); 948 949 if (unlikely(in_atomic())) 950 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 951 current->comm, task_pid_nr(current), 952 preempt_count()); 953 954 acct_update_integrals(tsk); 955 956 group_dead = atomic_dec_and_test(&tsk->signal->live); 957 if (group_dead) { 958 hrtimer_cancel(&tsk->signal->real_timer); 959 exit_itimers(tsk->signal); 960 if (tsk->mm) 961 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 962 } 963 acct_collect(code, group_dead); 964 if (group_dead) 965 tty_audit_exit(); 966 if (unlikely(tsk->audit_context)) 967 audit_free(tsk); 968 969 tsk->exit_code = code; 970 taskstats_exit(tsk, group_dead); 971 972 exit_mm(tsk); 973 974 if (group_dead) 975 acct_process(); 976 trace_sched_process_exit(tsk); 977 978 exit_sem(tsk); 979 exit_files(tsk); 980 exit_fs(tsk); 981 check_stack_usage(); 982 exit_thread(); 983 cgroup_exit(tsk, 1); 984 985 if (group_dead) 986 disassociate_ctty(1); 987 988 module_put(task_thread_info(tsk)->exec_domain->module); 989 990 proc_exit_connector(tsk); 991 992 /* 993 * FIXME: do that only when needed, using sched_exit tracepoint 994 */ 995 flush_ptrace_hw_breakpoint(tsk); 996 /* 997 * Flush inherited counters to the parent - before the parent 998 * gets woken up by child-exit notifications. 999 */ 1000 perf_event_exit_task(tsk); 1001 1002 exit_notify(tsk, group_dead); 1003 #ifdef CONFIG_NUMA 1004 mpol_put(tsk->mempolicy); 1005 tsk->mempolicy = NULL; 1006 #endif 1007 #ifdef CONFIG_FUTEX 1008 if (unlikely(current->pi_state_cache)) 1009 kfree(current->pi_state_cache); 1010 #endif 1011 /* 1012 * Make sure we are holding no locks: 1013 */ 1014 debug_check_no_locks_held(tsk); 1015 /* 1016 * We can do this unlocked here. The futex code uses this flag 1017 * just to verify whether the pi state cleanup has been done 1018 * or not. In the worst case it loops once more. 1019 */ 1020 tsk->flags |= PF_EXITPIDONE; 1021 1022 if (tsk->io_context) 1023 exit_io_context(tsk); 1024 1025 if (tsk->splice_pipe) 1026 __free_pipe_info(tsk->splice_pipe); 1027 1028 validate_creds_for_do_exit(tsk); 1029 1030 preempt_disable(); 1031 exit_rcu(); 1032 /* causes final put_task_struct in finish_task_switch(). */ 1033 tsk->state = TASK_DEAD; 1034 schedule(); 1035 BUG(); 1036 /* Avoid "noreturn function does return". */ 1037 for (;;) 1038 cpu_relax(); /* For when BUG is null */ 1039 } 1040 1041 EXPORT_SYMBOL_GPL(do_exit); 1042 1043 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1044 { 1045 if (comp) 1046 complete(comp); 1047 1048 do_exit(code); 1049 } 1050 1051 EXPORT_SYMBOL(complete_and_exit); 1052 1053 SYSCALL_DEFINE1(exit, int, error_code) 1054 { 1055 do_exit((error_code&0xff)<<8); 1056 } 1057 1058 /* 1059 * Take down every thread in the group. This is called by fatal signals 1060 * as well as by sys_exit_group (below). 1061 */ 1062 NORET_TYPE void 1063 do_group_exit(int exit_code) 1064 { 1065 struct signal_struct *sig = current->signal; 1066 1067 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1068 1069 if (signal_group_exit(sig)) 1070 exit_code = sig->group_exit_code; 1071 else if (!thread_group_empty(current)) { 1072 struct sighand_struct *const sighand = current->sighand; 1073 spin_lock_irq(&sighand->siglock); 1074 if (signal_group_exit(sig)) 1075 /* Another thread got here before we took the lock. */ 1076 exit_code = sig->group_exit_code; 1077 else { 1078 sig->group_exit_code = exit_code; 1079 sig->flags = SIGNAL_GROUP_EXIT; 1080 zap_other_threads(current); 1081 } 1082 spin_unlock_irq(&sighand->siglock); 1083 } 1084 1085 do_exit(exit_code); 1086 /* NOTREACHED */ 1087 } 1088 1089 /* 1090 * this kills every thread in the thread group. Note that any externally 1091 * wait4()-ing process will get the correct exit code - even if this 1092 * thread is not the thread group leader. 1093 */ 1094 SYSCALL_DEFINE1(exit_group, int, error_code) 1095 { 1096 do_group_exit((error_code & 0xff) << 8); 1097 /* NOTREACHED */ 1098 return 0; 1099 } 1100 1101 struct wait_opts { 1102 enum pid_type wo_type; 1103 int wo_flags; 1104 struct pid *wo_pid; 1105 1106 struct siginfo __user *wo_info; 1107 int __user *wo_stat; 1108 struct rusage __user *wo_rusage; 1109 1110 wait_queue_t child_wait; 1111 int notask_error; 1112 }; 1113 1114 static inline 1115 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1116 { 1117 if (type != PIDTYPE_PID) 1118 task = task->group_leader; 1119 return task->pids[type].pid; 1120 } 1121 1122 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1123 { 1124 return wo->wo_type == PIDTYPE_MAX || 1125 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1126 } 1127 1128 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 1129 { 1130 if (!eligible_pid(wo, p)) 1131 return 0; 1132 /* Wait for all children (clone and not) if __WALL is set; 1133 * otherwise, wait for clone children *only* if __WCLONE is 1134 * set; otherwise, wait for non-clone children *only*. (Note: 1135 * A "clone" child here is one that reports to its parent 1136 * using a signal other than SIGCHLD.) */ 1137 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1138 && !(wo->wo_flags & __WALL)) 1139 return 0; 1140 1141 return 1; 1142 } 1143 1144 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1145 pid_t pid, uid_t uid, int why, int status) 1146 { 1147 struct siginfo __user *infop; 1148 int retval = wo->wo_rusage 1149 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1150 1151 put_task_struct(p); 1152 infop = wo->wo_info; 1153 if (infop) { 1154 if (!retval) 1155 retval = put_user(SIGCHLD, &infop->si_signo); 1156 if (!retval) 1157 retval = put_user(0, &infop->si_errno); 1158 if (!retval) 1159 retval = put_user((short)why, &infop->si_code); 1160 if (!retval) 1161 retval = put_user(pid, &infop->si_pid); 1162 if (!retval) 1163 retval = put_user(uid, &infop->si_uid); 1164 if (!retval) 1165 retval = put_user(status, &infop->si_status); 1166 } 1167 if (!retval) 1168 retval = pid; 1169 return retval; 1170 } 1171 1172 /* 1173 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1174 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1175 * the lock and this task is uninteresting. If we return nonzero, we have 1176 * released the lock and the system call should return. 1177 */ 1178 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1179 { 1180 unsigned long state; 1181 int retval, status, traced; 1182 pid_t pid = task_pid_vnr(p); 1183 uid_t uid = __task_cred(p)->uid; 1184 struct siginfo __user *infop; 1185 1186 if (!likely(wo->wo_flags & WEXITED)) 1187 return 0; 1188 1189 if (unlikely(wo->wo_flags & WNOWAIT)) { 1190 int exit_code = p->exit_code; 1191 int why, status; 1192 1193 get_task_struct(p); 1194 read_unlock(&tasklist_lock); 1195 if ((exit_code & 0x7f) == 0) { 1196 why = CLD_EXITED; 1197 status = exit_code >> 8; 1198 } else { 1199 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1200 status = exit_code & 0x7f; 1201 } 1202 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1203 } 1204 1205 /* 1206 * Try to move the task's state to DEAD 1207 * only one thread is allowed to do this: 1208 */ 1209 state = xchg(&p->exit_state, EXIT_DEAD); 1210 if (state != EXIT_ZOMBIE) { 1211 BUG_ON(state != EXIT_DEAD); 1212 return 0; 1213 } 1214 1215 traced = ptrace_reparented(p); 1216 /* 1217 * It can be ptraced but not reparented, check 1218 * !task_detached() to filter out sub-threads. 1219 */ 1220 if (likely(!traced) && likely(!task_detached(p))) { 1221 struct signal_struct *psig; 1222 struct signal_struct *sig; 1223 unsigned long maxrss; 1224 cputime_t tgutime, tgstime; 1225 1226 /* 1227 * The resource counters for the group leader are in its 1228 * own task_struct. Those for dead threads in the group 1229 * are in its signal_struct, as are those for the child 1230 * processes it has previously reaped. All these 1231 * accumulate in the parent's signal_struct c* fields. 1232 * 1233 * We don't bother to take a lock here to protect these 1234 * p->signal fields, because they are only touched by 1235 * __exit_signal, which runs with tasklist_lock 1236 * write-locked anyway, and so is excluded here. We do 1237 * need to protect the access to parent->signal fields, 1238 * as other threads in the parent group can be right 1239 * here reaping other children at the same time. 1240 * 1241 * We use thread_group_times() to get times for the thread 1242 * group, which consolidates times for all threads in the 1243 * group including the group leader. 1244 */ 1245 thread_group_times(p, &tgutime, &tgstime); 1246 spin_lock_irq(&p->real_parent->sighand->siglock); 1247 psig = p->real_parent->signal; 1248 sig = p->signal; 1249 psig->cutime = 1250 cputime_add(psig->cutime, 1251 cputime_add(tgutime, 1252 sig->cutime)); 1253 psig->cstime = 1254 cputime_add(psig->cstime, 1255 cputime_add(tgstime, 1256 sig->cstime)); 1257 psig->cgtime = 1258 cputime_add(psig->cgtime, 1259 cputime_add(p->gtime, 1260 cputime_add(sig->gtime, 1261 sig->cgtime))); 1262 psig->cmin_flt += 1263 p->min_flt + sig->min_flt + sig->cmin_flt; 1264 psig->cmaj_flt += 1265 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1266 psig->cnvcsw += 1267 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1268 psig->cnivcsw += 1269 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1270 psig->cinblock += 1271 task_io_get_inblock(p) + 1272 sig->inblock + sig->cinblock; 1273 psig->coublock += 1274 task_io_get_oublock(p) + 1275 sig->oublock + sig->coublock; 1276 maxrss = max(sig->maxrss, sig->cmaxrss); 1277 if (psig->cmaxrss < maxrss) 1278 psig->cmaxrss = maxrss; 1279 task_io_accounting_add(&psig->ioac, &p->ioac); 1280 task_io_accounting_add(&psig->ioac, &sig->ioac); 1281 spin_unlock_irq(&p->real_parent->sighand->siglock); 1282 } 1283 1284 /* 1285 * Now we are sure this task is interesting, and no other 1286 * thread can reap it because we set its state to EXIT_DEAD. 1287 */ 1288 read_unlock(&tasklist_lock); 1289 1290 retval = wo->wo_rusage 1291 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1292 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1293 ? p->signal->group_exit_code : p->exit_code; 1294 if (!retval && wo->wo_stat) 1295 retval = put_user(status, wo->wo_stat); 1296 1297 infop = wo->wo_info; 1298 if (!retval && infop) 1299 retval = put_user(SIGCHLD, &infop->si_signo); 1300 if (!retval && infop) 1301 retval = put_user(0, &infop->si_errno); 1302 if (!retval && infop) { 1303 int why; 1304 1305 if ((status & 0x7f) == 0) { 1306 why = CLD_EXITED; 1307 status >>= 8; 1308 } else { 1309 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1310 status &= 0x7f; 1311 } 1312 retval = put_user((short)why, &infop->si_code); 1313 if (!retval) 1314 retval = put_user(status, &infop->si_status); 1315 } 1316 if (!retval && infop) 1317 retval = put_user(pid, &infop->si_pid); 1318 if (!retval && infop) 1319 retval = put_user(uid, &infop->si_uid); 1320 if (!retval) 1321 retval = pid; 1322 1323 if (traced) { 1324 write_lock_irq(&tasklist_lock); 1325 /* We dropped tasklist, ptracer could die and untrace */ 1326 ptrace_unlink(p); 1327 /* 1328 * If this is not a detached task, notify the parent. 1329 * If it's still not detached after that, don't release 1330 * it now. 1331 */ 1332 if (!task_detached(p)) { 1333 do_notify_parent(p, p->exit_signal); 1334 if (!task_detached(p)) { 1335 p->exit_state = EXIT_ZOMBIE; 1336 p = NULL; 1337 } 1338 } 1339 write_unlock_irq(&tasklist_lock); 1340 } 1341 if (p != NULL) 1342 release_task(p); 1343 1344 return retval; 1345 } 1346 1347 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1348 { 1349 if (ptrace) { 1350 if (task_is_stopped_or_traced(p)) 1351 return &p->exit_code; 1352 } else { 1353 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1354 return &p->signal->group_exit_code; 1355 } 1356 return NULL; 1357 } 1358 1359 /* 1360 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1361 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1362 * the lock and this task is uninteresting. If we return nonzero, we have 1363 * released the lock and the system call should return. 1364 */ 1365 static int wait_task_stopped(struct wait_opts *wo, 1366 int ptrace, struct task_struct *p) 1367 { 1368 struct siginfo __user *infop; 1369 int retval, exit_code, *p_code, why; 1370 uid_t uid = 0; /* unneeded, required by compiler */ 1371 pid_t pid; 1372 1373 /* 1374 * Traditionally we see ptrace'd stopped tasks regardless of options. 1375 */ 1376 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1377 return 0; 1378 1379 exit_code = 0; 1380 spin_lock_irq(&p->sighand->siglock); 1381 1382 p_code = task_stopped_code(p, ptrace); 1383 if (unlikely(!p_code)) 1384 goto unlock_sig; 1385 1386 exit_code = *p_code; 1387 if (!exit_code) 1388 goto unlock_sig; 1389 1390 if (!unlikely(wo->wo_flags & WNOWAIT)) 1391 *p_code = 0; 1392 1393 /* don't need the RCU readlock here as we're holding a spinlock */ 1394 uid = __task_cred(p)->uid; 1395 unlock_sig: 1396 spin_unlock_irq(&p->sighand->siglock); 1397 if (!exit_code) 1398 return 0; 1399 1400 /* 1401 * Now we are pretty sure this task is interesting. 1402 * Make sure it doesn't get reaped out from under us while we 1403 * give up the lock and then examine it below. We don't want to 1404 * keep holding onto the tasklist_lock while we call getrusage and 1405 * possibly take page faults for user memory. 1406 */ 1407 get_task_struct(p); 1408 pid = task_pid_vnr(p); 1409 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1410 read_unlock(&tasklist_lock); 1411 1412 if (unlikely(wo->wo_flags & WNOWAIT)) 1413 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1414 1415 retval = wo->wo_rusage 1416 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1417 if (!retval && wo->wo_stat) 1418 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1419 1420 infop = wo->wo_info; 1421 if (!retval && infop) 1422 retval = put_user(SIGCHLD, &infop->si_signo); 1423 if (!retval && infop) 1424 retval = put_user(0, &infop->si_errno); 1425 if (!retval && infop) 1426 retval = put_user((short)why, &infop->si_code); 1427 if (!retval && infop) 1428 retval = put_user(exit_code, &infop->si_status); 1429 if (!retval && infop) 1430 retval = put_user(pid, &infop->si_pid); 1431 if (!retval && infop) 1432 retval = put_user(uid, &infop->si_uid); 1433 if (!retval) 1434 retval = pid; 1435 put_task_struct(p); 1436 1437 BUG_ON(!retval); 1438 return retval; 1439 } 1440 1441 /* 1442 * Handle do_wait work for one task in a live, non-stopped state. 1443 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1444 * the lock and this task is uninteresting. If we return nonzero, we have 1445 * released the lock and the system call should return. 1446 */ 1447 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1448 { 1449 int retval; 1450 pid_t pid; 1451 uid_t uid; 1452 1453 if (!unlikely(wo->wo_flags & WCONTINUED)) 1454 return 0; 1455 1456 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1457 return 0; 1458 1459 spin_lock_irq(&p->sighand->siglock); 1460 /* Re-check with the lock held. */ 1461 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1462 spin_unlock_irq(&p->sighand->siglock); 1463 return 0; 1464 } 1465 if (!unlikely(wo->wo_flags & WNOWAIT)) 1466 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1467 uid = __task_cred(p)->uid; 1468 spin_unlock_irq(&p->sighand->siglock); 1469 1470 pid = task_pid_vnr(p); 1471 get_task_struct(p); 1472 read_unlock(&tasklist_lock); 1473 1474 if (!wo->wo_info) { 1475 retval = wo->wo_rusage 1476 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1477 put_task_struct(p); 1478 if (!retval && wo->wo_stat) 1479 retval = put_user(0xffff, wo->wo_stat); 1480 if (!retval) 1481 retval = pid; 1482 } else { 1483 retval = wait_noreap_copyout(wo, p, pid, uid, 1484 CLD_CONTINUED, SIGCONT); 1485 BUG_ON(retval == 0); 1486 } 1487 1488 return retval; 1489 } 1490 1491 /* 1492 * Consider @p for a wait by @parent. 1493 * 1494 * -ECHILD should be in ->notask_error before the first call. 1495 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1496 * Returns zero if the search for a child should continue; 1497 * then ->notask_error is 0 if @p is an eligible child, 1498 * or another error from security_task_wait(), or still -ECHILD. 1499 */ 1500 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1501 struct task_struct *p) 1502 { 1503 int ret = eligible_child(wo, p); 1504 if (!ret) 1505 return ret; 1506 1507 ret = security_task_wait(p); 1508 if (unlikely(ret < 0)) { 1509 /* 1510 * If we have not yet seen any eligible child, 1511 * then let this error code replace -ECHILD. 1512 * A permission error will give the user a clue 1513 * to look for security policy problems, rather 1514 * than for mysterious wait bugs. 1515 */ 1516 if (wo->notask_error) 1517 wo->notask_error = ret; 1518 return 0; 1519 } 1520 1521 if (likely(!ptrace) && unlikely(task_ptrace(p))) { 1522 /* 1523 * This child is hidden by ptrace. 1524 * We aren't allowed to see it now, but eventually we will. 1525 */ 1526 wo->notask_error = 0; 1527 return 0; 1528 } 1529 1530 if (p->exit_state == EXIT_DEAD) 1531 return 0; 1532 1533 /* 1534 * We don't reap group leaders with subthreads. 1535 */ 1536 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1537 return wait_task_zombie(wo, p); 1538 1539 /* 1540 * It's stopped or running now, so it might 1541 * later continue, exit, or stop again. 1542 */ 1543 wo->notask_error = 0; 1544 1545 if (task_stopped_code(p, ptrace)) 1546 return wait_task_stopped(wo, ptrace, p); 1547 1548 return wait_task_continued(wo, p); 1549 } 1550 1551 /* 1552 * Do the work of do_wait() for one thread in the group, @tsk. 1553 * 1554 * -ECHILD should be in ->notask_error before the first call. 1555 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1556 * Returns zero if the search for a child should continue; then 1557 * ->notask_error is 0 if there were any eligible children, 1558 * or another error from security_task_wait(), or still -ECHILD. 1559 */ 1560 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1561 { 1562 struct task_struct *p; 1563 1564 list_for_each_entry(p, &tsk->children, sibling) { 1565 int ret = wait_consider_task(wo, 0, p); 1566 if (ret) 1567 return ret; 1568 } 1569 1570 return 0; 1571 } 1572 1573 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1574 { 1575 struct task_struct *p; 1576 1577 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1578 int ret = wait_consider_task(wo, 1, p); 1579 if (ret) 1580 return ret; 1581 } 1582 1583 return 0; 1584 } 1585 1586 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1587 int sync, void *key) 1588 { 1589 struct wait_opts *wo = container_of(wait, struct wait_opts, 1590 child_wait); 1591 struct task_struct *p = key; 1592 1593 if (!eligible_pid(wo, p)) 1594 return 0; 1595 1596 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1597 return 0; 1598 1599 return default_wake_function(wait, mode, sync, key); 1600 } 1601 1602 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1603 { 1604 __wake_up_sync_key(&parent->signal->wait_chldexit, 1605 TASK_INTERRUPTIBLE, 1, p); 1606 } 1607 1608 static long do_wait(struct wait_opts *wo) 1609 { 1610 struct task_struct *tsk; 1611 int retval; 1612 1613 trace_sched_process_wait(wo->wo_pid); 1614 1615 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1616 wo->child_wait.private = current; 1617 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1618 repeat: 1619 /* 1620 * If there is nothing that can match our critiera just get out. 1621 * We will clear ->notask_error to zero if we see any child that 1622 * might later match our criteria, even if we are not able to reap 1623 * it yet. 1624 */ 1625 wo->notask_error = -ECHILD; 1626 if ((wo->wo_type < PIDTYPE_MAX) && 1627 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1628 goto notask; 1629 1630 set_current_state(TASK_INTERRUPTIBLE); 1631 read_lock(&tasklist_lock); 1632 tsk = current; 1633 do { 1634 retval = do_wait_thread(wo, tsk); 1635 if (retval) 1636 goto end; 1637 1638 retval = ptrace_do_wait(wo, tsk); 1639 if (retval) 1640 goto end; 1641 1642 if (wo->wo_flags & __WNOTHREAD) 1643 break; 1644 } while_each_thread(current, tsk); 1645 read_unlock(&tasklist_lock); 1646 1647 notask: 1648 retval = wo->notask_error; 1649 if (!retval && !(wo->wo_flags & WNOHANG)) { 1650 retval = -ERESTARTSYS; 1651 if (!signal_pending(current)) { 1652 schedule(); 1653 goto repeat; 1654 } 1655 } 1656 end: 1657 __set_current_state(TASK_RUNNING); 1658 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1659 return retval; 1660 } 1661 1662 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1663 infop, int, options, struct rusage __user *, ru) 1664 { 1665 struct wait_opts wo; 1666 struct pid *pid = NULL; 1667 enum pid_type type; 1668 long ret; 1669 1670 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1671 return -EINVAL; 1672 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1673 return -EINVAL; 1674 1675 switch (which) { 1676 case P_ALL: 1677 type = PIDTYPE_MAX; 1678 break; 1679 case P_PID: 1680 type = PIDTYPE_PID; 1681 if (upid <= 0) 1682 return -EINVAL; 1683 break; 1684 case P_PGID: 1685 type = PIDTYPE_PGID; 1686 if (upid <= 0) 1687 return -EINVAL; 1688 break; 1689 default: 1690 return -EINVAL; 1691 } 1692 1693 if (type < PIDTYPE_MAX) 1694 pid = find_get_pid(upid); 1695 1696 wo.wo_type = type; 1697 wo.wo_pid = pid; 1698 wo.wo_flags = options; 1699 wo.wo_info = infop; 1700 wo.wo_stat = NULL; 1701 wo.wo_rusage = ru; 1702 ret = do_wait(&wo); 1703 1704 if (ret > 0) { 1705 ret = 0; 1706 } else if (infop) { 1707 /* 1708 * For a WNOHANG return, clear out all the fields 1709 * we would set so the user can easily tell the 1710 * difference. 1711 */ 1712 if (!ret) 1713 ret = put_user(0, &infop->si_signo); 1714 if (!ret) 1715 ret = put_user(0, &infop->si_errno); 1716 if (!ret) 1717 ret = put_user(0, &infop->si_code); 1718 if (!ret) 1719 ret = put_user(0, &infop->si_pid); 1720 if (!ret) 1721 ret = put_user(0, &infop->si_uid); 1722 if (!ret) 1723 ret = put_user(0, &infop->si_status); 1724 } 1725 1726 put_pid(pid); 1727 1728 /* avoid REGPARM breakage on x86: */ 1729 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1730 return ret; 1731 } 1732 1733 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1734 int, options, struct rusage __user *, ru) 1735 { 1736 struct wait_opts wo; 1737 struct pid *pid = NULL; 1738 enum pid_type type; 1739 long ret; 1740 1741 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1742 __WNOTHREAD|__WCLONE|__WALL)) 1743 return -EINVAL; 1744 1745 if (upid == -1) 1746 type = PIDTYPE_MAX; 1747 else if (upid < 0) { 1748 type = PIDTYPE_PGID; 1749 pid = find_get_pid(-upid); 1750 } else if (upid == 0) { 1751 type = PIDTYPE_PGID; 1752 pid = get_task_pid(current, PIDTYPE_PGID); 1753 } else /* upid > 0 */ { 1754 type = PIDTYPE_PID; 1755 pid = find_get_pid(upid); 1756 } 1757 1758 wo.wo_type = type; 1759 wo.wo_pid = pid; 1760 wo.wo_flags = options | WEXITED; 1761 wo.wo_info = NULL; 1762 wo.wo_stat = stat_addr; 1763 wo.wo_rusage = ru; 1764 ret = do_wait(&wo); 1765 put_pid(pid); 1766 1767 /* avoid REGPARM breakage on x86: */ 1768 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1769 return ret; 1770 } 1771 1772 #ifdef __ARCH_WANT_SYS_WAITPID 1773 1774 /* 1775 * sys_waitpid() remains for compatibility. waitpid() should be 1776 * implemented by calling sys_wait4() from libc.a. 1777 */ 1778 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1779 { 1780 return sys_wait4(pid, stat_addr, options, NULL); 1781 } 1782 1783 #endif 1784