xref: /linux/kernel/exit.c (revision 512b6fb1c14d4c34f23a3419b0789ad01914a899)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cpuset.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/freezer.h>
48 
49 #include <asm/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/pgtable.h>
52 #include <asm/mmu_context.h>
53 
54 extern void sem_exit (void);
55 
56 static void exit_mm(struct task_struct * tsk);
57 
58 static void __unhash_process(struct task_struct *p)
59 {
60 	nr_threads--;
61 	detach_pid(p, PIDTYPE_PID);
62 	if (thread_group_leader(p)) {
63 		detach_pid(p, PIDTYPE_PGID);
64 		detach_pid(p, PIDTYPE_SID);
65 
66 		list_del_rcu(&p->tasks);
67 		__get_cpu_var(process_counts)--;
68 	}
69 	list_del_rcu(&p->thread_group);
70 	remove_parent(p);
71 }
72 
73 /*
74  * This function expects the tasklist_lock write-locked.
75  */
76 static void __exit_signal(struct task_struct *tsk)
77 {
78 	struct signal_struct *sig = tsk->signal;
79 	struct sighand_struct *sighand;
80 
81 	BUG_ON(!sig);
82 	BUG_ON(!atomic_read(&sig->count));
83 
84 	rcu_read_lock();
85 	sighand = rcu_dereference(tsk->sighand);
86 	spin_lock(&sighand->siglock);
87 
88 	posix_cpu_timers_exit(tsk);
89 	if (atomic_dec_and_test(&sig->count))
90 		posix_cpu_timers_exit_group(tsk);
91 	else {
92 		/*
93 		 * If there is any task waiting for the group exit
94 		 * then notify it:
95 		 */
96 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
97 			wake_up_process(sig->group_exit_task);
98 			sig->group_exit_task = NULL;
99 		}
100 		if (tsk == sig->curr_target)
101 			sig->curr_target = next_thread(tsk);
102 		/*
103 		 * Accumulate here the counters for all threads but the
104 		 * group leader as they die, so they can be added into
105 		 * the process-wide totals when those are taken.
106 		 * The group leader stays around as a zombie as long
107 		 * as there are other threads.  When it gets reaped,
108 		 * the exit.c code will add its counts into these totals.
109 		 * We won't ever get here for the group leader, since it
110 		 * will have been the last reference on the signal_struct.
111 		 */
112 		sig->utime = cputime_add(sig->utime, tsk->utime);
113 		sig->stime = cputime_add(sig->stime, tsk->stime);
114 		sig->gtime = cputime_add(sig->gtime, tsk->gtime);
115 		sig->min_flt += tsk->min_flt;
116 		sig->maj_flt += tsk->maj_flt;
117 		sig->nvcsw += tsk->nvcsw;
118 		sig->nivcsw += tsk->nivcsw;
119 		sig->inblock += task_io_get_inblock(tsk);
120 		sig->oublock += task_io_get_oublock(tsk);
121 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
122 		sig = NULL; /* Marker for below. */
123 	}
124 
125 	__unhash_process(tsk);
126 
127 	tsk->signal = NULL;
128 	tsk->sighand = NULL;
129 	spin_unlock(&sighand->siglock);
130 	rcu_read_unlock();
131 
132 	__cleanup_sighand(sighand);
133 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
134 	flush_sigqueue(&tsk->pending);
135 	if (sig) {
136 		flush_sigqueue(&sig->shared_pending);
137 		taskstats_tgid_free(sig);
138 		__cleanup_signal(sig);
139 	}
140 }
141 
142 static void delayed_put_task_struct(struct rcu_head *rhp)
143 {
144 	put_task_struct(container_of(rhp, struct task_struct, rcu));
145 }
146 
147 void release_task(struct task_struct * p)
148 {
149 	struct task_struct *leader;
150 	int zap_leader;
151 repeat:
152 	atomic_dec(&p->user->processes);
153 	write_lock_irq(&tasklist_lock);
154 	ptrace_unlink(p);
155 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
156 	__exit_signal(p);
157 
158 	/*
159 	 * If we are the last non-leader member of the thread
160 	 * group, and the leader is zombie, then notify the
161 	 * group leader's parent process. (if it wants notification.)
162 	 */
163 	zap_leader = 0;
164 	leader = p->group_leader;
165 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
166 		BUG_ON(leader->exit_signal == -1);
167 		do_notify_parent(leader, leader->exit_signal);
168 		/*
169 		 * If we were the last child thread and the leader has
170 		 * exited already, and the leader's parent ignores SIGCHLD,
171 		 * then we are the one who should release the leader.
172 		 *
173 		 * do_notify_parent() will have marked it self-reaping in
174 		 * that case.
175 		 */
176 		zap_leader = (leader->exit_signal == -1);
177 	}
178 
179 	write_unlock_irq(&tasklist_lock);
180 	proc_flush_task(p);
181 	release_thread(p);
182 	call_rcu(&p->rcu, delayed_put_task_struct);
183 
184 	p = leader;
185 	if (unlikely(zap_leader))
186 		goto repeat;
187 }
188 
189 /*
190  * This checks not only the pgrp, but falls back on the pid if no
191  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
192  * without this...
193  *
194  * The caller must hold rcu lock or the tasklist lock.
195  */
196 struct pid *session_of_pgrp(struct pid *pgrp)
197 {
198 	struct task_struct *p;
199 	struct pid *sid = NULL;
200 
201 	p = pid_task(pgrp, PIDTYPE_PGID);
202 	if (p == NULL)
203 		p = pid_task(pgrp, PIDTYPE_PID);
204 	if (p != NULL)
205 		sid = task_session(p);
206 
207 	return sid;
208 }
209 
210 /*
211  * Determine if a process group is "orphaned", according to the POSIX
212  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
213  * by terminal-generated stop signals.  Newly orphaned process groups are
214  * to receive a SIGHUP and a SIGCONT.
215  *
216  * "I ask you, have you ever known what it is to be an orphan?"
217  */
218 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
219 {
220 	struct task_struct *p;
221 	int ret = 1;
222 
223 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
224 		if (p == ignored_task
225 				|| p->exit_state
226 				|| is_init(p->real_parent))
227 			continue;
228 		if (task_pgrp(p->real_parent) != pgrp &&
229 		    task_session(p->real_parent) == task_session(p)) {
230 			ret = 0;
231 			break;
232 		}
233 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
234 	return ret;	/* (sighing) "Often!" */
235 }
236 
237 int is_current_pgrp_orphaned(void)
238 {
239 	int retval;
240 
241 	read_lock(&tasklist_lock);
242 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
243 	read_unlock(&tasklist_lock);
244 
245 	return retval;
246 }
247 
248 static int has_stopped_jobs(struct pid *pgrp)
249 {
250 	int retval = 0;
251 	struct task_struct *p;
252 
253 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
254 		if (p->state != TASK_STOPPED)
255 			continue;
256 		retval = 1;
257 		break;
258 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
259 	return retval;
260 }
261 
262 /**
263  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
264  *
265  * If a kernel thread is launched as a result of a system call, or if
266  * it ever exits, it should generally reparent itself to kthreadd so it
267  * isn't in the way of other processes and is correctly cleaned up on exit.
268  *
269  * The various task state such as scheduling policy and priority may have
270  * been inherited from a user process, so we reset them to sane values here.
271  *
272  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
273  */
274 static void reparent_to_kthreadd(void)
275 {
276 	write_lock_irq(&tasklist_lock);
277 
278 	ptrace_unlink(current);
279 	/* Reparent to init */
280 	remove_parent(current);
281 	current->real_parent = current->parent = kthreadd_task;
282 	add_parent(current);
283 
284 	/* Set the exit signal to SIGCHLD so we signal init on exit */
285 	current->exit_signal = SIGCHLD;
286 
287 	if (task_nice(current) < 0)
288 		set_user_nice(current, 0);
289 	/* cpus_allowed? */
290 	/* rt_priority? */
291 	/* signals? */
292 	security_task_reparent_to_init(current);
293 	memcpy(current->signal->rlim, init_task.signal->rlim,
294 	       sizeof(current->signal->rlim));
295 	atomic_inc(&(INIT_USER->__count));
296 	write_unlock_irq(&tasklist_lock);
297 	switch_uid(INIT_USER);
298 }
299 
300 void __set_special_pids(pid_t session, pid_t pgrp)
301 {
302 	struct task_struct *curr = current->group_leader;
303 
304 	if (process_session(curr) != session) {
305 		detach_pid(curr, PIDTYPE_SID);
306 		set_signal_session(curr->signal, session);
307 		attach_pid(curr, PIDTYPE_SID, find_pid(session));
308 	}
309 	if (process_group(curr) != pgrp) {
310 		detach_pid(curr, PIDTYPE_PGID);
311 		curr->signal->pgrp = pgrp;
312 		attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp));
313 	}
314 }
315 
316 static void set_special_pids(pid_t session, pid_t pgrp)
317 {
318 	write_lock_irq(&tasklist_lock);
319 	__set_special_pids(session, pgrp);
320 	write_unlock_irq(&tasklist_lock);
321 }
322 
323 /*
324  * Let kernel threads use this to say that they
325  * allow a certain signal (since daemonize() will
326  * have disabled all of them by default).
327  */
328 int allow_signal(int sig)
329 {
330 	if (!valid_signal(sig) || sig < 1)
331 		return -EINVAL;
332 
333 	spin_lock_irq(&current->sighand->siglock);
334 	sigdelset(&current->blocked, sig);
335 	if (!current->mm) {
336 		/* Kernel threads handle their own signals.
337 		   Let the signal code know it'll be handled, so
338 		   that they don't get converted to SIGKILL or
339 		   just silently dropped */
340 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
341 	}
342 	recalc_sigpending();
343 	spin_unlock_irq(&current->sighand->siglock);
344 	return 0;
345 }
346 
347 EXPORT_SYMBOL(allow_signal);
348 
349 int disallow_signal(int sig)
350 {
351 	if (!valid_signal(sig) || sig < 1)
352 		return -EINVAL;
353 
354 	spin_lock_irq(&current->sighand->siglock);
355 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
356 	recalc_sigpending();
357 	spin_unlock_irq(&current->sighand->siglock);
358 	return 0;
359 }
360 
361 EXPORT_SYMBOL(disallow_signal);
362 
363 /*
364  *	Put all the gunge required to become a kernel thread without
365  *	attached user resources in one place where it belongs.
366  */
367 
368 void daemonize(const char *name, ...)
369 {
370 	va_list args;
371 	struct fs_struct *fs;
372 	sigset_t blocked;
373 
374 	va_start(args, name);
375 	vsnprintf(current->comm, sizeof(current->comm), name, args);
376 	va_end(args);
377 
378 	/*
379 	 * If we were started as result of loading a module, close all of the
380 	 * user space pages.  We don't need them, and if we didn't close them
381 	 * they would be locked into memory.
382 	 */
383 	exit_mm(current);
384 	/*
385 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
386 	 * or suspend transition begins right now.
387 	 */
388 	current->flags |= PF_NOFREEZE;
389 
390 	set_special_pids(1, 1);
391 	proc_clear_tty(current);
392 
393 	/* Block and flush all signals */
394 	sigfillset(&blocked);
395 	sigprocmask(SIG_BLOCK, &blocked, NULL);
396 	flush_signals(current);
397 
398 	/* Become as one with the init task */
399 
400 	exit_fs(current);	/* current->fs->count--; */
401 	fs = init_task.fs;
402 	current->fs = fs;
403 	atomic_inc(&fs->count);
404 
405 	exit_task_namespaces(current);
406 	current->nsproxy = init_task.nsproxy;
407 	get_task_namespaces(current);
408 
409  	exit_files(current);
410 	current->files = init_task.files;
411 	atomic_inc(&current->files->count);
412 
413 	reparent_to_kthreadd();
414 }
415 
416 EXPORT_SYMBOL(daemonize);
417 
418 static void close_files(struct files_struct * files)
419 {
420 	int i, j;
421 	struct fdtable *fdt;
422 
423 	j = 0;
424 
425 	/*
426 	 * It is safe to dereference the fd table without RCU or
427 	 * ->file_lock because this is the last reference to the
428 	 * files structure.
429 	 */
430 	fdt = files_fdtable(files);
431 	for (;;) {
432 		unsigned long set;
433 		i = j * __NFDBITS;
434 		if (i >= fdt->max_fds)
435 			break;
436 		set = fdt->open_fds->fds_bits[j++];
437 		while (set) {
438 			if (set & 1) {
439 				struct file * file = xchg(&fdt->fd[i], NULL);
440 				if (file) {
441 					filp_close(file, files);
442 					cond_resched();
443 				}
444 			}
445 			i++;
446 			set >>= 1;
447 		}
448 	}
449 }
450 
451 struct files_struct *get_files_struct(struct task_struct *task)
452 {
453 	struct files_struct *files;
454 
455 	task_lock(task);
456 	files = task->files;
457 	if (files)
458 		atomic_inc(&files->count);
459 	task_unlock(task);
460 
461 	return files;
462 }
463 
464 void fastcall put_files_struct(struct files_struct *files)
465 {
466 	struct fdtable *fdt;
467 
468 	if (atomic_dec_and_test(&files->count)) {
469 		close_files(files);
470 		/*
471 		 * Free the fd and fdset arrays if we expanded them.
472 		 * If the fdtable was embedded, pass files for freeing
473 		 * at the end of the RCU grace period. Otherwise,
474 		 * you can free files immediately.
475 		 */
476 		fdt = files_fdtable(files);
477 		if (fdt != &files->fdtab)
478 			kmem_cache_free(files_cachep, files);
479 		free_fdtable(fdt);
480 	}
481 }
482 
483 EXPORT_SYMBOL(put_files_struct);
484 
485 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
486 {
487 	struct files_struct *old;
488 
489 	old = tsk->files;
490 	task_lock(tsk);
491 	tsk->files = files;
492 	task_unlock(tsk);
493 	put_files_struct(old);
494 }
495 EXPORT_SYMBOL(reset_files_struct);
496 
497 static inline void __exit_files(struct task_struct *tsk)
498 {
499 	struct files_struct * files = tsk->files;
500 
501 	if (files) {
502 		task_lock(tsk);
503 		tsk->files = NULL;
504 		task_unlock(tsk);
505 		put_files_struct(files);
506 	}
507 }
508 
509 void exit_files(struct task_struct *tsk)
510 {
511 	__exit_files(tsk);
512 }
513 
514 static inline void __put_fs_struct(struct fs_struct *fs)
515 {
516 	/* No need to hold fs->lock if we are killing it */
517 	if (atomic_dec_and_test(&fs->count)) {
518 		dput(fs->root);
519 		mntput(fs->rootmnt);
520 		dput(fs->pwd);
521 		mntput(fs->pwdmnt);
522 		if (fs->altroot) {
523 			dput(fs->altroot);
524 			mntput(fs->altrootmnt);
525 		}
526 		kmem_cache_free(fs_cachep, fs);
527 	}
528 }
529 
530 void put_fs_struct(struct fs_struct *fs)
531 {
532 	__put_fs_struct(fs);
533 }
534 
535 static inline void __exit_fs(struct task_struct *tsk)
536 {
537 	struct fs_struct * fs = tsk->fs;
538 
539 	if (fs) {
540 		task_lock(tsk);
541 		tsk->fs = NULL;
542 		task_unlock(tsk);
543 		__put_fs_struct(fs);
544 	}
545 }
546 
547 void exit_fs(struct task_struct *tsk)
548 {
549 	__exit_fs(tsk);
550 }
551 
552 EXPORT_SYMBOL_GPL(exit_fs);
553 
554 /*
555  * Turn us into a lazy TLB process if we
556  * aren't already..
557  */
558 static void exit_mm(struct task_struct * tsk)
559 {
560 	struct mm_struct *mm = tsk->mm;
561 
562 	mm_release(tsk, mm);
563 	if (!mm)
564 		return;
565 	/*
566 	 * Serialize with any possible pending coredump.
567 	 * We must hold mmap_sem around checking core_waiters
568 	 * and clearing tsk->mm.  The core-inducing thread
569 	 * will increment core_waiters for each thread in the
570 	 * group with ->mm != NULL.
571 	 */
572 	down_read(&mm->mmap_sem);
573 	if (mm->core_waiters) {
574 		up_read(&mm->mmap_sem);
575 		down_write(&mm->mmap_sem);
576 		if (!--mm->core_waiters)
577 			complete(mm->core_startup_done);
578 		up_write(&mm->mmap_sem);
579 
580 		wait_for_completion(&mm->core_done);
581 		down_read(&mm->mmap_sem);
582 	}
583 	atomic_inc(&mm->mm_count);
584 	BUG_ON(mm != tsk->active_mm);
585 	/* more a memory barrier than a real lock */
586 	task_lock(tsk);
587 	tsk->mm = NULL;
588 	up_read(&mm->mmap_sem);
589 	enter_lazy_tlb(mm, current);
590 	/* We don't want this task to be frozen prematurely */
591 	clear_freeze_flag(tsk);
592 	task_unlock(tsk);
593 	mmput(mm);
594 }
595 
596 static inline void
597 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
598 {
599 	/*
600 	 * Make sure we're not reparenting to ourselves and that
601 	 * the parent is not a zombie.
602 	 */
603 	BUG_ON(p == reaper || reaper->exit_state);
604 	p->real_parent = reaper;
605 }
606 
607 static void
608 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
609 {
610 	if (p->pdeath_signal)
611 		/* We already hold the tasklist_lock here.  */
612 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
613 
614 	/* Move the child from its dying parent to the new one.  */
615 	if (unlikely(traced)) {
616 		/* Preserve ptrace links if someone else is tracing this child.  */
617 		list_del_init(&p->ptrace_list);
618 		if (p->parent != p->real_parent)
619 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
620 	} else {
621 		/* If this child is being traced, then we're the one tracing it
622 		 * anyway, so let go of it.
623 		 */
624 		p->ptrace = 0;
625 		remove_parent(p);
626 		p->parent = p->real_parent;
627 		add_parent(p);
628 
629 		if (p->state == TASK_TRACED) {
630 			/*
631 			 * If it was at a trace stop, turn it into
632 			 * a normal stop since it's no longer being
633 			 * traced.
634 			 */
635 			ptrace_untrace(p);
636 		}
637 	}
638 
639 	/* If this is a threaded reparent there is no need to
640 	 * notify anyone anything has happened.
641 	 */
642 	if (p->real_parent->group_leader == father->group_leader)
643 		return;
644 
645 	/* We don't want people slaying init.  */
646 	if (p->exit_signal != -1)
647 		p->exit_signal = SIGCHLD;
648 
649 	/* If we'd notified the old parent about this child's death,
650 	 * also notify the new parent.
651 	 */
652 	if (!traced && p->exit_state == EXIT_ZOMBIE &&
653 	    p->exit_signal != -1 && thread_group_empty(p))
654 		do_notify_parent(p, p->exit_signal);
655 
656 	/*
657 	 * process group orphan check
658 	 * Case ii: Our child is in a different pgrp
659 	 * than we are, and it was the only connection
660 	 * outside, so the child pgrp is now orphaned.
661 	 */
662 	if ((task_pgrp(p) != task_pgrp(father)) &&
663 	    (task_session(p) == task_session(father))) {
664 		struct pid *pgrp = task_pgrp(p);
665 
666 		if (will_become_orphaned_pgrp(pgrp, NULL) &&
667 		    has_stopped_jobs(pgrp)) {
668 			__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
669 			__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
670 		}
671 	}
672 }
673 
674 /*
675  * When we die, we re-parent all our children.
676  * Try to give them to another thread in our thread
677  * group, and if no such member exists, give it to
678  * the child reaper process (ie "init") in our pid
679  * space.
680  */
681 static void
682 forget_original_parent(struct task_struct *father, struct list_head *to_release)
683 {
684 	struct task_struct *p, *reaper = father;
685 	struct list_head *_p, *_n;
686 
687 	do {
688 		reaper = next_thread(reaper);
689 		if (reaper == father) {
690 			reaper = child_reaper(father);
691 			break;
692 		}
693 	} while (reaper->exit_state);
694 
695 	/*
696 	 * There are only two places where our children can be:
697 	 *
698 	 * - in our child list
699 	 * - in our ptraced child list
700 	 *
701 	 * Search them and reparent children.
702 	 */
703 	list_for_each_safe(_p, _n, &father->children) {
704 		int ptrace;
705 		p = list_entry(_p, struct task_struct, sibling);
706 
707 		ptrace = p->ptrace;
708 
709 		/* if father isn't the real parent, then ptrace must be enabled */
710 		BUG_ON(father != p->real_parent && !ptrace);
711 
712 		if (father == p->real_parent) {
713 			/* reparent with a reaper, real father it's us */
714 			choose_new_parent(p, reaper);
715 			reparent_thread(p, father, 0);
716 		} else {
717 			/* reparent ptraced task to its real parent */
718 			__ptrace_unlink (p);
719 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
720 			    thread_group_empty(p))
721 				do_notify_parent(p, p->exit_signal);
722 		}
723 
724 		/*
725 		 * if the ptraced child is a zombie with exit_signal == -1
726 		 * we must collect it before we exit, or it will remain
727 		 * zombie forever since we prevented it from self-reap itself
728 		 * while it was being traced by us, to be able to see it in wait4.
729 		 */
730 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
731 			list_add(&p->ptrace_list, to_release);
732 	}
733 	list_for_each_safe(_p, _n, &father->ptrace_children) {
734 		p = list_entry(_p, struct task_struct, ptrace_list);
735 		choose_new_parent(p, reaper);
736 		reparent_thread(p, father, 1);
737 	}
738 }
739 
740 /*
741  * Send signals to all our closest relatives so that they know
742  * to properly mourn us..
743  */
744 static void exit_notify(struct task_struct *tsk)
745 {
746 	int state;
747 	struct task_struct *t;
748 	struct list_head ptrace_dead, *_p, *_n;
749 	struct pid *pgrp;
750 
751 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
752 	    && !thread_group_empty(tsk)) {
753 		/*
754 		 * This occurs when there was a race between our exit
755 		 * syscall and a group signal choosing us as the one to
756 		 * wake up.  It could be that we are the only thread
757 		 * alerted to check for pending signals, but another thread
758 		 * should be woken now to take the signal since we will not.
759 		 * Now we'll wake all the threads in the group just to make
760 		 * sure someone gets all the pending signals.
761 		 */
762 		read_lock(&tasklist_lock);
763 		spin_lock_irq(&tsk->sighand->siglock);
764 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
765 			if (!signal_pending(t) && !(t->flags & PF_EXITING))
766 				recalc_sigpending_and_wake(t);
767 		spin_unlock_irq(&tsk->sighand->siglock);
768 		read_unlock(&tasklist_lock);
769 	}
770 
771 	write_lock_irq(&tasklist_lock);
772 
773 	/*
774 	 * This does two things:
775 	 *
776   	 * A.  Make init inherit all the child processes
777 	 * B.  Check to see if any process groups have become orphaned
778 	 *	as a result of our exiting, and if they have any stopped
779 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
780 	 */
781 
782 	INIT_LIST_HEAD(&ptrace_dead);
783 	forget_original_parent(tsk, &ptrace_dead);
784 	BUG_ON(!list_empty(&tsk->children));
785 	BUG_ON(!list_empty(&tsk->ptrace_children));
786 
787 	/*
788 	 * Check to see if any process groups have become orphaned
789 	 * as a result of our exiting, and if they have any stopped
790 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
791 	 *
792 	 * Case i: Our father is in a different pgrp than we are
793 	 * and we were the only connection outside, so our pgrp
794 	 * is about to become orphaned.
795 	 */
796 
797 	t = tsk->real_parent;
798 
799 	pgrp = task_pgrp(tsk);
800 	if ((task_pgrp(t) != pgrp) &&
801 	    (task_session(t) == task_session(tsk)) &&
802 	    will_become_orphaned_pgrp(pgrp, tsk) &&
803 	    has_stopped_jobs(pgrp)) {
804 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
805 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
806 	}
807 
808 	/* Let father know we died
809 	 *
810 	 * Thread signals are configurable, but you aren't going to use
811 	 * that to send signals to arbitary processes.
812 	 * That stops right now.
813 	 *
814 	 * If the parent exec id doesn't match the exec id we saved
815 	 * when we started then we know the parent has changed security
816 	 * domain.
817 	 *
818 	 * If our self_exec id doesn't match our parent_exec_id then
819 	 * we have changed execution domain as these two values started
820 	 * the same after a fork.
821 	 */
822 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
823 	    ( tsk->parent_exec_id != t->self_exec_id  ||
824 	      tsk->self_exec_id != tsk->parent_exec_id)
825 	    && !capable(CAP_KILL))
826 		tsk->exit_signal = SIGCHLD;
827 
828 
829 	/* If something other than our normal parent is ptracing us, then
830 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
831 	 * only has special meaning to our real parent.
832 	 */
833 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
834 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
835 		do_notify_parent(tsk, signal);
836 	} else if (tsk->ptrace) {
837 		do_notify_parent(tsk, SIGCHLD);
838 	}
839 
840 	state = EXIT_ZOMBIE;
841 	if (tsk->exit_signal == -1 && likely(!tsk->ptrace))
842 		state = EXIT_DEAD;
843 	tsk->exit_state = state;
844 
845 	write_unlock_irq(&tasklist_lock);
846 
847 	list_for_each_safe(_p, _n, &ptrace_dead) {
848 		list_del_init(_p);
849 		t = list_entry(_p, struct task_struct, ptrace_list);
850 		release_task(t);
851 	}
852 
853 	/* If the process is dead, release it - nobody will wait for it */
854 	if (state == EXIT_DEAD)
855 		release_task(tsk);
856 }
857 
858 #ifdef CONFIG_DEBUG_STACK_USAGE
859 static void check_stack_usage(void)
860 {
861 	static DEFINE_SPINLOCK(low_water_lock);
862 	static int lowest_to_date = THREAD_SIZE;
863 	unsigned long *n = end_of_stack(current);
864 	unsigned long free;
865 
866 	while (*n == 0)
867 		n++;
868 	free = (unsigned long)n - (unsigned long)end_of_stack(current);
869 
870 	if (free >= lowest_to_date)
871 		return;
872 
873 	spin_lock(&low_water_lock);
874 	if (free < lowest_to_date) {
875 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
876 				"left\n",
877 				current->comm, free);
878 		lowest_to_date = free;
879 	}
880 	spin_unlock(&low_water_lock);
881 }
882 #else
883 static inline void check_stack_usage(void) {}
884 #endif
885 
886 fastcall NORET_TYPE void do_exit(long code)
887 {
888 	struct task_struct *tsk = current;
889 	int group_dead;
890 
891 	profile_task_exit(tsk);
892 
893 	WARN_ON(atomic_read(&tsk->fs_excl));
894 
895 	if (unlikely(in_interrupt()))
896 		panic("Aiee, killing interrupt handler!");
897 	if (unlikely(!tsk->pid))
898 		panic("Attempted to kill the idle task!");
899 	if (unlikely(tsk == child_reaper(tsk))) {
900 		if (tsk->nsproxy->pid_ns != &init_pid_ns)
901 			tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper;
902 		else
903 			panic("Attempted to kill init!");
904 	}
905 
906 
907 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
908 		current->ptrace_message = code;
909 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
910 	}
911 
912 	/*
913 	 * We're taking recursive faults here in do_exit. Safest is to just
914 	 * leave this task alone and wait for reboot.
915 	 */
916 	if (unlikely(tsk->flags & PF_EXITING)) {
917 		printk(KERN_ALERT
918 			"Fixing recursive fault but reboot is needed!\n");
919 		/*
920 		 * We can do this unlocked here. The futex code uses
921 		 * this flag just to verify whether the pi state
922 		 * cleanup has been done or not. In the worst case it
923 		 * loops once more. We pretend that the cleanup was
924 		 * done as there is no way to return. Either the
925 		 * OWNER_DIED bit is set by now or we push the blocked
926 		 * task into the wait for ever nirwana as well.
927 		 */
928 		tsk->flags |= PF_EXITPIDONE;
929 		if (tsk->io_context)
930 			exit_io_context();
931 		set_current_state(TASK_UNINTERRUPTIBLE);
932 		schedule();
933 	}
934 
935 	/*
936 	 * tsk->flags are checked in the futex code to protect against
937 	 * an exiting task cleaning up the robust pi futexes.
938 	 */
939 	spin_lock_irq(&tsk->pi_lock);
940 	tsk->flags |= PF_EXITING;
941 	spin_unlock_irq(&tsk->pi_lock);
942 
943 	if (unlikely(in_atomic()))
944 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
945 				current->comm, current->pid,
946 				preempt_count());
947 
948 	acct_update_integrals(tsk);
949 	if (tsk->mm) {
950 		update_hiwater_rss(tsk->mm);
951 		update_hiwater_vm(tsk->mm);
952 	}
953 	group_dead = atomic_dec_and_test(&tsk->signal->live);
954 	if (group_dead) {
955 		hrtimer_cancel(&tsk->signal->real_timer);
956 		exit_itimers(tsk->signal);
957 	}
958 	acct_collect(code, group_dead);
959 	if (unlikely(tsk->robust_list))
960 		exit_robust_list(tsk);
961 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
962 	if (unlikely(tsk->compat_robust_list))
963 		compat_exit_robust_list(tsk);
964 #endif
965 	if (group_dead)
966 		tty_audit_exit();
967 	if (unlikely(tsk->audit_context))
968 		audit_free(tsk);
969 
970 	tsk->exit_code = code;
971 	taskstats_exit(tsk, group_dead);
972 
973 	exit_mm(tsk);
974 
975 	if (group_dead)
976 		acct_process();
977 	exit_sem(tsk);
978 	__exit_files(tsk);
979 	__exit_fs(tsk);
980 	check_stack_usage();
981 	exit_thread();
982 	cpuset_exit(tsk);
983 	exit_keys(tsk);
984 
985 	if (group_dead && tsk->signal->leader)
986 		disassociate_ctty(1);
987 
988 	module_put(task_thread_info(tsk)->exec_domain->module);
989 	if (tsk->binfmt)
990 		module_put(tsk->binfmt->module);
991 
992 	proc_exit_connector(tsk);
993 	exit_task_namespaces(tsk);
994 	exit_notify(tsk);
995 #ifdef CONFIG_NUMA
996 	mpol_free(tsk->mempolicy);
997 	tsk->mempolicy = NULL;
998 #endif
999 	/*
1000 	 * This must happen late, after the PID is not
1001 	 * hashed anymore:
1002 	 */
1003 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1004 		exit_pi_state_list(tsk);
1005 	if (unlikely(current->pi_state_cache))
1006 		kfree(current->pi_state_cache);
1007 	/*
1008 	 * Make sure we are holding no locks:
1009 	 */
1010 	debug_check_no_locks_held(tsk);
1011 	/*
1012 	 * We can do this unlocked here. The futex code uses this flag
1013 	 * just to verify whether the pi state cleanup has been done
1014 	 * or not. In the worst case it loops once more.
1015 	 */
1016 	tsk->flags |= PF_EXITPIDONE;
1017 
1018 	if (tsk->io_context)
1019 		exit_io_context();
1020 
1021 	if (tsk->splice_pipe)
1022 		__free_pipe_info(tsk->splice_pipe);
1023 
1024 	preempt_disable();
1025 	/* causes final put_task_struct in finish_task_switch(). */
1026 	tsk->state = TASK_DEAD;
1027 
1028 	schedule();
1029 	BUG();
1030 	/* Avoid "noreturn function does return".  */
1031 	for (;;)
1032 		cpu_relax();	/* For when BUG is null */
1033 }
1034 
1035 EXPORT_SYMBOL_GPL(do_exit);
1036 
1037 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1038 {
1039 	if (comp)
1040 		complete(comp);
1041 
1042 	do_exit(code);
1043 }
1044 
1045 EXPORT_SYMBOL(complete_and_exit);
1046 
1047 asmlinkage long sys_exit(int error_code)
1048 {
1049 	do_exit((error_code&0xff)<<8);
1050 }
1051 
1052 /*
1053  * Take down every thread in the group.  This is called by fatal signals
1054  * as well as by sys_exit_group (below).
1055  */
1056 NORET_TYPE void
1057 do_group_exit(int exit_code)
1058 {
1059 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1060 
1061 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1062 		exit_code = current->signal->group_exit_code;
1063 	else if (!thread_group_empty(current)) {
1064 		struct signal_struct *const sig = current->signal;
1065 		struct sighand_struct *const sighand = current->sighand;
1066 		spin_lock_irq(&sighand->siglock);
1067 		if (sig->flags & SIGNAL_GROUP_EXIT)
1068 			/* Another thread got here before we took the lock.  */
1069 			exit_code = sig->group_exit_code;
1070 		else {
1071 			sig->group_exit_code = exit_code;
1072 			zap_other_threads(current);
1073 		}
1074 		spin_unlock_irq(&sighand->siglock);
1075 	}
1076 
1077 	do_exit(exit_code);
1078 	/* NOTREACHED */
1079 }
1080 
1081 /*
1082  * this kills every thread in the thread group. Note that any externally
1083  * wait4()-ing process will get the correct exit code - even if this
1084  * thread is not the thread group leader.
1085  */
1086 asmlinkage void sys_exit_group(int error_code)
1087 {
1088 	do_group_exit((error_code & 0xff) << 8);
1089 }
1090 
1091 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1092 {
1093 	int err;
1094 
1095 	if (pid > 0) {
1096 		if (p->pid != pid)
1097 			return 0;
1098 	} else if (!pid) {
1099 		if (process_group(p) != process_group(current))
1100 			return 0;
1101 	} else if (pid != -1) {
1102 		if (process_group(p) != -pid)
1103 			return 0;
1104 	}
1105 
1106 	/*
1107 	 * Do not consider detached threads that are
1108 	 * not ptraced:
1109 	 */
1110 	if (p->exit_signal == -1 && !p->ptrace)
1111 		return 0;
1112 
1113 	/* Wait for all children (clone and not) if __WALL is set;
1114 	 * otherwise, wait for clone children *only* if __WCLONE is
1115 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1116 	 * A "clone" child here is one that reports to its parent
1117 	 * using a signal other than SIGCHLD.) */
1118 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1119 	    && !(options & __WALL))
1120 		return 0;
1121 	/*
1122 	 * Do not consider thread group leaders that are
1123 	 * in a non-empty thread group:
1124 	 */
1125 	if (delay_group_leader(p))
1126 		return 2;
1127 
1128 	err = security_task_wait(p);
1129 	if (err)
1130 		return err;
1131 
1132 	return 1;
1133 }
1134 
1135 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1136 			       int why, int status,
1137 			       struct siginfo __user *infop,
1138 			       struct rusage __user *rusagep)
1139 {
1140 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1141 
1142 	put_task_struct(p);
1143 	if (!retval)
1144 		retval = put_user(SIGCHLD, &infop->si_signo);
1145 	if (!retval)
1146 		retval = put_user(0, &infop->si_errno);
1147 	if (!retval)
1148 		retval = put_user((short)why, &infop->si_code);
1149 	if (!retval)
1150 		retval = put_user(pid, &infop->si_pid);
1151 	if (!retval)
1152 		retval = put_user(uid, &infop->si_uid);
1153 	if (!retval)
1154 		retval = put_user(status, &infop->si_status);
1155 	if (!retval)
1156 		retval = pid;
1157 	return retval;
1158 }
1159 
1160 /*
1161  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1162  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1163  * the lock and this task is uninteresting.  If we return nonzero, we have
1164  * released the lock and the system call should return.
1165  */
1166 static int wait_task_zombie(struct task_struct *p, int noreap,
1167 			    struct siginfo __user *infop,
1168 			    int __user *stat_addr, struct rusage __user *ru)
1169 {
1170 	unsigned long state;
1171 	int retval;
1172 	int status;
1173 
1174 	if (unlikely(noreap)) {
1175 		pid_t pid = p->pid;
1176 		uid_t uid = p->uid;
1177 		int exit_code = p->exit_code;
1178 		int why, status;
1179 
1180 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1181 			return 0;
1182 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1183 			return 0;
1184 		get_task_struct(p);
1185 		read_unlock(&tasklist_lock);
1186 		if ((exit_code & 0x7f) == 0) {
1187 			why = CLD_EXITED;
1188 			status = exit_code >> 8;
1189 		} else {
1190 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1191 			status = exit_code & 0x7f;
1192 		}
1193 		return wait_noreap_copyout(p, pid, uid, why,
1194 					   status, infop, ru);
1195 	}
1196 
1197 	/*
1198 	 * Try to move the task's state to DEAD
1199 	 * only one thread is allowed to do this:
1200 	 */
1201 	state = xchg(&p->exit_state, EXIT_DEAD);
1202 	if (state != EXIT_ZOMBIE) {
1203 		BUG_ON(state != EXIT_DEAD);
1204 		return 0;
1205 	}
1206 	if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1207 		/*
1208 		 * This can only happen in a race with a ptraced thread
1209 		 * dying on another processor.
1210 		 */
1211 		return 0;
1212 	}
1213 
1214 	if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1215 		struct signal_struct *psig;
1216 		struct signal_struct *sig;
1217 
1218 		/*
1219 		 * The resource counters for the group leader are in its
1220 		 * own task_struct.  Those for dead threads in the group
1221 		 * are in its signal_struct, as are those for the child
1222 		 * processes it has previously reaped.  All these
1223 		 * accumulate in the parent's signal_struct c* fields.
1224 		 *
1225 		 * We don't bother to take a lock here to protect these
1226 		 * p->signal fields, because they are only touched by
1227 		 * __exit_signal, which runs with tasklist_lock
1228 		 * write-locked anyway, and so is excluded here.  We do
1229 		 * need to protect the access to p->parent->signal fields,
1230 		 * as other threads in the parent group can be right
1231 		 * here reaping other children at the same time.
1232 		 */
1233 		spin_lock_irq(&p->parent->sighand->siglock);
1234 		psig = p->parent->signal;
1235 		sig = p->signal;
1236 		psig->cutime =
1237 			cputime_add(psig->cutime,
1238 			cputime_add(p->utime,
1239 			cputime_add(sig->utime,
1240 				    sig->cutime)));
1241 		psig->cstime =
1242 			cputime_add(psig->cstime,
1243 			cputime_add(p->stime,
1244 			cputime_add(sig->stime,
1245 				    sig->cstime)));
1246 		psig->cgtime =
1247 			cputime_add(psig->cgtime,
1248 			cputime_add(p->gtime,
1249 			cputime_add(sig->gtime,
1250 				    sig->cgtime)));
1251 		psig->cmin_flt +=
1252 			p->min_flt + sig->min_flt + sig->cmin_flt;
1253 		psig->cmaj_flt +=
1254 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1255 		psig->cnvcsw +=
1256 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1257 		psig->cnivcsw +=
1258 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1259 		psig->cinblock +=
1260 			task_io_get_inblock(p) +
1261 			sig->inblock + sig->cinblock;
1262 		psig->coublock +=
1263 			task_io_get_oublock(p) +
1264 			sig->oublock + sig->coublock;
1265 		spin_unlock_irq(&p->parent->sighand->siglock);
1266 	}
1267 
1268 	/*
1269 	 * Now we are sure this task is interesting, and no other
1270 	 * thread can reap it because we set its state to EXIT_DEAD.
1271 	 */
1272 	read_unlock(&tasklist_lock);
1273 
1274 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1275 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1276 		? p->signal->group_exit_code : p->exit_code;
1277 	if (!retval && stat_addr)
1278 		retval = put_user(status, stat_addr);
1279 	if (!retval && infop)
1280 		retval = put_user(SIGCHLD, &infop->si_signo);
1281 	if (!retval && infop)
1282 		retval = put_user(0, &infop->si_errno);
1283 	if (!retval && infop) {
1284 		int why;
1285 
1286 		if ((status & 0x7f) == 0) {
1287 			why = CLD_EXITED;
1288 			status >>= 8;
1289 		} else {
1290 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1291 			status &= 0x7f;
1292 		}
1293 		retval = put_user((short)why, &infop->si_code);
1294 		if (!retval)
1295 			retval = put_user(status, &infop->si_status);
1296 	}
1297 	if (!retval && infop)
1298 		retval = put_user(p->pid, &infop->si_pid);
1299 	if (!retval && infop)
1300 		retval = put_user(p->uid, &infop->si_uid);
1301 	if (retval) {
1302 		// TODO: is this safe?
1303 		p->exit_state = EXIT_ZOMBIE;
1304 		return retval;
1305 	}
1306 	retval = p->pid;
1307 	if (p->real_parent != p->parent) {
1308 		write_lock_irq(&tasklist_lock);
1309 		/* Double-check with lock held.  */
1310 		if (p->real_parent != p->parent) {
1311 			__ptrace_unlink(p);
1312 			// TODO: is this safe?
1313 			p->exit_state = EXIT_ZOMBIE;
1314 			/*
1315 			 * If this is not a detached task, notify the parent.
1316 			 * If it's still not detached after that, don't release
1317 			 * it now.
1318 			 */
1319 			if (p->exit_signal != -1) {
1320 				do_notify_parent(p, p->exit_signal);
1321 				if (p->exit_signal != -1)
1322 					p = NULL;
1323 			}
1324 		}
1325 		write_unlock_irq(&tasklist_lock);
1326 	}
1327 	if (p != NULL)
1328 		release_task(p);
1329 	BUG_ON(!retval);
1330 	return retval;
1331 }
1332 
1333 /*
1334  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1335  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1336  * the lock and this task is uninteresting.  If we return nonzero, we have
1337  * released the lock and the system call should return.
1338  */
1339 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1340 			     int noreap, struct siginfo __user *infop,
1341 			     int __user *stat_addr, struct rusage __user *ru)
1342 {
1343 	int retval, exit_code;
1344 
1345 	if (!p->exit_code)
1346 		return 0;
1347 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1348 	    p->signal && p->signal->group_stop_count > 0)
1349 		/*
1350 		 * A group stop is in progress and this is the group leader.
1351 		 * We won't report until all threads have stopped.
1352 		 */
1353 		return 0;
1354 
1355 	/*
1356 	 * Now we are pretty sure this task is interesting.
1357 	 * Make sure it doesn't get reaped out from under us while we
1358 	 * give up the lock and then examine it below.  We don't want to
1359 	 * keep holding onto the tasklist_lock while we call getrusage and
1360 	 * possibly take page faults for user memory.
1361 	 */
1362 	get_task_struct(p);
1363 	read_unlock(&tasklist_lock);
1364 
1365 	if (unlikely(noreap)) {
1366 		pid_t pid = p->pid;
1367 		uid_t uid = p->uid;
1368 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1369 
1370 		exit_code = p->exit_code;
1371 		if (unlikely(!exit_code) ||
1372 		    unlikely(p->state & TASK_TRACED))
1373 			goto bail_ref;
1374 		return wait_noreap_copyout(p, pid, uid,
1375 					   why, (exit_code << 8) | 0x7f,
1376 					   infop, ru);
1377 	}
1378 
1379 	write_lock_irq(&tasklist_lock);
1380 
1381 	/*
1382 	 * This uses xchg to be atomic with the thread resuming and setting
1383 	 * it.  It must also be done with the write lock held to prevent a
1384 	 * race with the EXIT_ZOMBIE case.
1385 	 */
1386 	exit_code = xchg(&p->exit_code, 0);
1387 	if (unlikely(p->exit_state)) {
1388 		/*
1389 		 * The task resumed and then died.  Let the next iteration
1390 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1391 		 * already be zero here if it resumed and did _exit(0).
1392 		 * The task itself is dead and won't touch exit_code again;
1393 		 * other processors in this function are locked out.
1394 		 */
1395 		p->exit_code = exit_code;
1396 		exit_code = 0;
1397 	}
1398 	if (unlikely(exit_code == 0)) {
1399 		/*
1400 		 * Another thread in this function got to it first, or it
1401 		 * resumed, or it resumed and then died.
1402 		 */
1403 		write_unlock_irq(&tasklist_lock);
1404 bail_ref:
1405 		put_task_struct(p);
1406 		/*
1407 		 * We are returning to the wait loop without having successfully
1408 		 * removed the process and having released the lock. We cannot
1409 		 * continue, since the "p" task pointer is potentially stale.
1410 		 *
1411 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1412 		 * beginning. Do _not_ re-acquire the lock.
1413 		 */
1414 		return -EAGAIN;
1415 	}
1416 
1417 	/* move to end of parent's list to avoid starvation */
1418 	remove_parent(p);
1419 	add_parent(p);
1420 
1421 	write_unlock_irq(&tasklist_lock);
1422 
1423 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1424 	if (!retval && stat_addr)
1425 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1426 	if (!retval && infop)
1427 		retval = put_user(SIGCHLD, &infop->si_signo);
1428 	if (!retval && infop)
1429 		retval = put_user(0, &infop->si_errno);
1430 	if (!retval && infop)
1431 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1432 					  ? CLD_TRAPPED : CLD_STOPPED),
1433 				  &infop->si_code);
1434 	if (!retval && infop)
1435 		retval = put_user(exit_code, &infop->si_status);
1436 	if (!retval && infop)
1437 		retval = put_user(p->pid, &infop->si_pid);
1438 	if (!retval && infop)
1439 		retval = put_user(p->uid, &infop->si_uid);
1440 	if (!retval)
1441 		retval = p->pid;
1442 	put_task_struct(p);
1443 
1444 	BUG_ON(!retval);
1445 	return retval;
1446 }
1447 
1448 /*
1449  * Handle do_wait work for one task in a live, non-stopped state.
1450  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1451  * the lock and this task is uninteresting.  If we return nonzero, we have
1452  * released the lock and the system call should return.
1453  */
1454 static int wait_task_continued(struct task_struct *p, int noreap,
1455 			       struct siginfo __user *infop,
1456 			       int __user *stat_addr, struct rusage __user *ru)
1457 {
1458 	int retval;
1459 	pid_t pid;
1460 	uid_t uid;
1461 
1462 	if (unlikely(!p->signal))
1463 		return 0;
1464 
1465 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1466 		return 0;
1467 
1468 	spin_lock_irq(&p->sighand->siglock);
1469 	/* Re-check with the lock held.  */
1470 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1471 		spin_unlock_irq(&p->sighand->siglock);
1472 		return 0;
1473 	}
1474 	if (!noreap)
1475 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1476 	spin_unlock_irq(&p->sighand->siglock);
1477 
1478 	pid = p->pid;
1479 	uid = p->uid;
1480 	get_task_struct(p);
1481 	read_unlock(&tasklist_lock);
1482 
1483 	if (!infop) {
1484 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1485 		put_task_struct(p);
1486 		if (!retval && stat_addr)
1487 			retval = put_user(0xffff, stat_addr);
1488 		if (!retval)
1489 			retval = p->pid;
1490 	} else {
1491 		retval = wait_noreap_copyout(p, pid, uid,
1492 					     CLD_CONTINUED, SIGCONT,
1493 					     infop, ru);
1494 		BUG_ON(retval == 0);
1495 	}
1496 
1497 	return retval;
1498 }
1499 
1500 
1501 static inline int my_ptrace_child(struct task_struct *p)
1502 {
1503 	if (!(p->ptrace & PT_PTRACED))
1504 		return 0;
1505 	if (!(p->ptrace & PT_ATTACHED))
1506 		return 1;
1507 	/*
1508 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1509 	 * we are the attacher.  If we are the real parent, this is a race
1510 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1511 	 * which we have to switch the parent links, but has already set
1512 	 * the flags in p->ptrace.
1513 	 */
1514 	return (p->parent != p->real_parent);
1515 }
1516 
1517 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1518 		    int __user *stat_addr, struct rusage __user *ru)
1519 {
1520 	DECLARE_WAITQUEUE(wait, current);
1521 	struct task_struct *tsk;
1522 	int flag, retval;
1523 	int allowed, denied;
1524 
1525 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1526 repeat:
1527 	/*
1528 	 * We will set this flag if we see any child that might later
1529 	 * match our criteria, even if we are not able to reap it yet.
1530 	 */
1531 	flag = 0;
1532 	allowed = denied = 0;
1533 	current->state = TASK_INTERRUPTIBLE;
1534 	read_lock(&tasklist_lock);
1535 	tsk = current;
1536 	do {
1537 		struct task_struct *p;
1538 		struct list_head *_p;
1539 		int ret;
1540 
1541 		list_for_each(_p,&tsk->children) {
1542 			p = list_entry(_p, struct task_struct, sibling);
1543 
1544 			ret = eligible_child(pid, options, p);
1545 			if (!ret)
1546 				continue;
1547 
1548 			if (unlikely(ret < 0)) {
1549 				denied = ret;
1550 				continue;
1551 			}
1552 			allowed = 1;
1553 
1554 			switch (p->state) {
1555 			case TASK_TRACED:
1556 				/*
1557 				 * When we hit the race with PTRACE_ATTACH,
1558 				 * we will not report this child.  But the
1559 				 * race means it has not yet been moved to
1560 				 * our ptrace_children list, so we need to
1561 				 * set the flag here to avoid a spurious ECHILD
1562 				 * when the race happens with the only child.
1563 				 */
1564 				flag = 1;
1565 				if (!my_ptrace_child(p))
1566 					continue;
1567 				/*FALLTHROUGH*/
1568 			case TASK_STOPPED:
1569 				/*
1570 				 * It's stopped now, so it might later
1571 				 * continue, exit, or stop again.
1572 				 */
1573 				flag = 1;
1574 				if (!(options & WUNTRACED) &&
1575 				    !my_ptrace_child(p))
1576 					continue;
1577 				retval = wait_task_stopped(p, ret == 2,
1578 							   (options & WNOWAIT),
1579 							   infop,
1580 							   stat_addr, ru);
1581 				if (retval == -EAGAIN)
1582 					goto repeat;
1583 				if (retval != 0) /* He released the lock.  */
1584 					goto end;
1585 				break;
1586 			default:
1587 			// case EXIT_DEAD:
1588 				if (p->exit_state == EXIT_DEAD)
1589 					continue;
1590 			// case EXIT_ZOMBIE:
1591 				if (p->exit_state == EXIT_ZOMBIE) {
1592 					/*
1593 					 * Eligible but we cannot release
1594 					 * it yet:
1595 					 */
1596 					if (ret == 2)
1597 						goto check_continued;
1598 					if (!likely(options & WEXITED))
1599 						continue;
1600 					retval = wait_task_zombie(
1601 						p, (options & WNOWAIT),
1602 						infop, stat_addr, ru);
1603 					/* He released the lock.  */
1604 					if (retval != 0)
1605 						goto end;
1606 					break;
1607 				}
1608 check_continued:
1609 				/*
1610 				 * It's running now, so it might later
1611 				 * exit, stop, or stop and then continue.
1612 				 */
1613 				flag = 1;
1614 				if (!unlikely(options & WCONTINUED))
1615 					continue;
1616 				retval = wait_task_continued(
1617 					p, (options & WNOWAIT),
1618 					infop, stat_addr, ru);
1619 				if (retval != 0) /* He released the lock.  */
1620 					goto end;
1621 				break;
1622 			}
1623 		}
1624 		if (!flag) {
1625 			list_for_each(_p, &tsk->ptrace_children) {
1626 				p = list_entry(_p, struct task_struct,
1627 						ptrace_list);
1628 				if (!eligible_child(pid, options, p))
1629 					continue;
1630 				flag = 1;
1631 				break;
1632 			}
1633 		}
1634 		if (options & __WNOTHREAD)
1635 			break;
1636 		tsk = next_thread(tsk);
1637 		BUG_ON(tsk->signal != current->signal);
1638 	} while (tsk != current);
1639 
1640 	read_unlock(&tasklist_lock);
1641 	if (flag) {
1642 		retval = 0;
1643 		if (options & WNOHANG)
1644 			goto end;
1645 		retval = -ERESTARTSYS;
1646 		if (signal_pending(current))
1647 			goto end;
1648 		schedule();
1649 		goto repeat;
1650 	}
1651 	retval = -ECHILD;
1652 	if (unlikely(denied) && !allowed)
1653 		retval = denied;
1654 end:
1655 	current->state = TASK_RUNNING;
1656 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1657 	if (infop) {
1658 		if (retval > 0)
1659 		retval = 0;
1660 		else {
1661 			/*
1662 			 * For a WNOHANG return, clear out all the fields
1663 			 * we would set so the user can easily tell the
1664 			 * difference.
1665 			 */
1666 			if (!retval)
1667 				retval = put_user(0, &infop->si_signo);
1668 			if (!retval)
1669 				retval = put_user(0, &infop->si_errno);
1670 			if (!retval)
1671 				retval = put_user(0, &infop->si_code);
1672 			if (!retval)
1673 				retval = put_user(0, &infop->si_pid);
1674 			if (!retval)
1675 				retval = put_user(0, &infop->si_uid);
1676 			if (!retval)
1677 				retval = put_user(0, &infop->si_status);
1678 		}
1679 	}
1680 	return retval;
1681 }
1682 
1683 asmlinkage long sys_waitid(int which, pid_t pid,
1684 			   struct siginfo __user *infop, int options,
1685 			   struct rusage __user *ru)
1686 {
1687 	long ret;
1688 
1689 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1690 		return -EINVAL;
1691 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1692 		return -EINVAL;
1693 
1694 	switch (which) {
1695 	case P_ALL:
1696 		pid = -1;
1697 		break;
1698 	case P_PID:
1699 		if (pid <= 0)
1700 			return -EINVAL;
1701 		break;
1702 	case P_PGID:
1703 		if (pid <= 0)
1704 			return -EINVAL;
1705 		pid = -pid;
1706 		break;
1707 	default:
1708 		return -EINVAL;
1709 	}
1710 
1711 	ret = do_wait(pid, options, infop, NULL, ru);
1712 
1713 	/* avoid REGPARM breakage on x86: */
1714 	prevent_tail_call(ret);
1715 	return ret;
1716 }
1717 
1718 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1719 			  int options, struct rusage __user *ru)
1720 {
1721 	long ret;
1722 
1723 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1724 			__WNOTHREAD|__WCLONE|__WALL))
1725 		return -EINVAL;
1726 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1727 
1728 	/* avoid REGPARM breakage on x86: */
1729 	prevent_tail_call(ret);
1730 	return ret;
1731 }
1732 
1733 #ifdef __ARCH_WANT_SYS_WAITPID
1734 
1735 /*
1736  * sys_waitpid() remains for compatibility. waitpid() should be
1737  * implemented by calling sys_wait4() from libc.a.
1738  */
1739 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1740 {
1741 	return sys_wait4(pid, stat_addr, options, NULL);
1742 }
1743 
1744 #endif
1745