1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 55 #include <asm/uaccess.h> 56 #include <asm/unistd.h> 57 #include <asm/pgtable.h> 58 #include <asm/mmu_context.h> 59 60 static void exit_mm(struct task_struct * tsk); 61 62 static void __unhash_process(struct task_struct *p, bool group_dead) 63 { 64 nr_threads--; 65 detach_pid(p, PIDTYPE_PID); 66 if (group_dead) { 67 detach_pid(p, PIDTYPE_PGID); 68 detach_pid(p, PIDTYPE_SID); 69 70 list_del_rcu(&p->tasks); 71 list_del_init(&p->sibling); 72 __get_cpu_var(process_counts)--; 73 } 74 list_del_rcu(&p->thread_group); 75 } 76 77 /* 78 * This function expects the tasklist_lock write-locked. 79 */ 80 static void __exit_signal(struct task_struct *tsk) 81 { 82 struct signal_struct *sig = tsk->signal; 83 bool group_dead = thread_group_leader(tsk); 84 struct sighand_struct *sighand; 85 struct tty_struct *uninitialized_var(tty); 86 87 sighand = rcu_dereference_check(tsk->sighand, 88 rcu_read_lock_held() || 89 lockdep_tasklist_lock_is_held()); 90 spin_lock(&sighand->siglock); 91 92 posix_cpu_timers_exit(tsk); 93 if (group_dead) { 94 posix_cpu_timers_exit_group(tsk); 95 tty = sig->tty; 96 sig->tty = NULL; 97 } else { 98 /* 99 * If there is any task waiting for the group exit 100 * then notify it: 101 */ 102 if (sig->notify_count > 0 && !--sig->notify_count) 103 wake_up_process(sig->group_exit_task); 104 105 if (tsk == sig->curr_target) 106 sig->curr_target = next_thread(tsk); 107 /* 108 * Accumulate here the counters for all threads but the 109 * group leader as they die, so they can be added into 110 * the process-wide totals when those are taken. 111 * The group leader stays around as a zombie as long 112 * as there are other threads. When it gets reaped, 113 * the exit.c code will add its counts into these totals. 114 * We won't ever get here for the group leader, since it 115 * will have been the last reference on the signal_struct. 116 */ 117 sig->utime = cputime_add(sig->utime, tsk->utime); 118 sig->stime = cputime_add(sig->stime, tsk->stime); 119 sig->gtime = cputime_add(sig->gtime, tsk->gtime); 120 sig->min_flt += tsk->min_flt; 121 sig->maj_flt += tsk->maj_flt; 122 sig->nvcsw += tsk->nvcsw; 123 sig->nivcsw += tsk->nivcsw; 124 sig->inblock += task_io_get_inblock(tsk); 125 sig->oublock += task_io_get_oublock(tsk); 126 task_io_accounting_add(&sig->ioac, &tsk->ioac); 127 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 128 } 129 130 sig->nr_threads--; 131 __unhash_process(tsk, group_dead); 132 133 /* 134 * Do this under ->siglock, we can race with another thread 135 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 136 */ 137 flush_sigqueue(&tsk->pending); 138 tsk->sighand = NULL; 139 spin_unlock(&sighand->siglock); 140 141 __cleanup_sighand(sighand); 142 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 143 if (group_dead) { 144 flush_sigqueue(&sig->shared_pending); 145 tty_kref_put(tty); 146 } 147 } 148 149 static void delayed_put_task_struct(struct rcu_head *rhp) 150 { 151 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 152 153 perf_event_delayed_put(tsk); 154 trace_sched_process_free(tsk); 155 put_task_struct(tsk); 156 } 157 158 159 void release_task(struct task_struct * p) 160 { 161 struct task_struct *leader; 162 int zap_leader; 163 repeat: 164 tracehook_prepare_release_task(p); 165 /* don't need to get the RCU readlock here - the process is dead and 166 * can't be modifying its own credentials. But shut RCU-lockdep up */ 167 rcu_read_lock(); 168 atomic_dec(&__task_cred(p)->user->processes); 169 rcu_read_unlock(); 170 171 proc_flush_task(p); 172 173 write_lock_irq(&tasklist_lock); 174 tracehook_finish_release_task(p); 175 __exit_signal(p); 176 177 /* 178 * If we are the last non-leader member of the thread 179 * group, and the leader is zombie, then notify the 180 * group leader's parent process. (if it wants notification.) 181 */ 182 zap_leader = 0; 183 leader = p->group_leader; 184 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 185 BUG_ON(task_detached(leader)); 186 do_notify_parent(leader, leader->exit_signal); 187 /* 188 * If we were the last child thread and the leader has 189 * exited already, and the leader's parent ignores SIGCHLD, 190 * then we are the one who should release the leader. 191 * 192 * do_notify_parent() will have marked it self-reaping in 193 * that case. 194 */ 195 zap_leader = task_detached(leader); 196 197 /* 198 * This maintains the invariant that release_task() 199 * only runs on a task in EXIT_DEAD, just for sanity. 200 */ 201 if (zap_leader) 202 leader->exit_state = EXIT_DEAD; 203 } 204 205 write_unlock_irq(&tasklist_lock); 206 release_thread(p); 207 call_rcu(&p->rcu, delayed_put_task_struct); 208 209 p = leader; 210 if (unlikely(zap_leader)) 211 goto repeat; 212 } 213 214 /* 215 * This checks not only the pgrp, but falls back on the pid if no 216 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 217 * without this... 218 * 219 * The caller must hold rcu lock or the tasklist lock. 220 */ 221 struct pid *session_of_pgrp(struct pid *pgrp) 222 { 223 struct task_struct *p; 224 struct pid *sid = NULL; 225 226 p = pid_task(pgrp, PIDTYPE_PGID); 227 if (p == NULL) 228 p = pid_task(pgrp, PIDTYPE_PID); 229 if (p != NULL) 230 sid = task_session(p); 231 232 return sid; 233 } 234 235 /* 236 * Determine if a process group is "orphaned", according to the POSIX 237 * definition in 2.2.2.52. Orphaned process groups are not to be affected 238 * by terminal-generated stop signals. Newly orphaned process groups are 239 * to receive a SIGHUP and a SIGCONT. 240 * 241 * "I ask you, have you ever known what it is to be an orphan?" 242 */ 243 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 244 { 245 struct task_struct *p; 246 247 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 248 if ((p == ignored_task) || 249 (p->exit_state && thread_group_empty(p)) || 250 is_global_init(p->real_parent)) 251 continue; 252 253 if (task_pgrp(p->real_parent) != pgrp && 254 task_session(p->real_parent) == task_session(p)) 255 return 0; 256 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 257 258 return 1; 259 } 260 261 int is_current_pgrp_orphaned(void) 262 { 263 int retval; 264 265 read_lock(&tasklist_lock); 266 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 267 read_unlock(&tasklist_lock); 268 269 return retval; 270 } 271 272 static int has_stopped_jobs(struct pid *pgrp) 273 { 274 int retval = 0; 275 struct task_struct *p; 276 277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 278 if (!task_is_stopped(p)) 279 continue; 280 retval = 1; 281 break; 282 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 283 return retval; 284 } 285 286 /* 287 * Check to see if any process groups have become orphaned as 288 * a result of our exiting, and if they have any stopped jobs, 289 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 290 */ 291 static void 292 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 293 { 294 struct pid *pgrp = task_pgrp(tsk); 295 struct task_struct *ignored_task = tsk; 296 297 if (!parent) 298 /* exit: our father is in a different pgrp than 299 * we are and we were the only connection outside. 300 */ 301 parent = tsk->real_parent; 302 else 303 /* reparent: our child is in a different pgrp than 304 * we are, and it was the only connection outside. 305 */ 306 ignored_task = NULL; 307 308 if (task_pgrp(parent) != pgrp && 309 task_session(parent) == task_session(tsk) && 310 will_become_orphaned_pgrp(pgrp, ignored_task) && 311 has_stopped_jobs(pgrp)) { 312 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 313 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 314 } 315 } 316 317 /** 318 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 319 * 320 * If a kernel thread is launched as a result of a system call, or if 321 * it ever exits, it should generally reparent itself to kthreadd so it 322 * isn't in the way of other processes and is correctly cleaned up on exit. 323 * 324 * The various task state such as scheduling policy and priority may have 325 * been inherited from a user process, so we reset them to sane values here. 326 * 327 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 328 */ 329 static void reparent_to_kthreadd(void) 330 { 331 write_lock_irq(&tasklist_lock); 332 333 ptrace_unlink(current); 334 /* Reparent to init */ 335 current->real_parent = current->parent = kthreadd_task; 336 list_move_tail(¤t->sibling, ¤t->real_parent->children); 337 338 /* Set the exit signal to SIGCHLD so we signal init on exit */ 339 current->exit_signal = SIGCHLD; 340 341 if (task_nice(current) < 0) 342 set_user_nice(current, 0); 343 /* cpus_allowed? */ 344 /* rt_priority? */ 345 /* signals? */ 346 memcpy(current->signal->rlim, init_task.signal->rlim, 347 sizeof(current->signal->rlim)); 348 349 atomic_inc(&init_cred.usage); 350 commit_creds(&init_cred); 351 write_unlock_irq(&tasklist_lock); 352 } 353 354 void __set_special_pids(struct pid *pid) 355 { 356 struct task_struct *curr = current->group_leader; 357 358 if (task_session(curr) != pid) 359 change_pid(curr, PIDTYPE_SID, pid); 360 361 if (task_pgrp(curr) != pid) 362 change_pid(curr, PIDTYPE_PGID, pid); 363 } 364 365 static void set_special_pids(struct pid *pid) 366 { 367 write_lock_irq(&tasklist_lock); 368 __set_special_pids(pid); 369 write_unlock_irq(&tasklist_lock); 370 } 371 372 /* 373 * Let kernel threads use this to say that they allow a certain signal. 374 * Must not be used if kthread was cloned with CLONE_SIGHAND. 375 */ 376 int allow_signal(int sig) 377 { 378 if (!valid_signal(sig) || sig < 1) 379 return -EINVAL; 380 381 spin_lock_irq(¤t->sighand->siglock); 382 /* This is only needed for daemonize()'ed kthreads */ 383 sigdelset(¤t->blocked, sig); 384 /* 385 * Kernel threads handle their own signals. Let the signal code 386 * know it'll be handled, so that they don't get converted to 387 * SIGKILL or just silently dropped. 388 */ 389 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 390 recalc_sigpending(); 391 spin_unlock_irq(¤t->sighand->siglock); 392 return 0; 393 } 394 395 EXPORT_SYMBOL(allow_signal); 396 397 int disallow_signal(int sig) 398 { 399 if (!valid_signal(sig) || sig < 1) 400 return -EINVAL; 401 402 spin_lock_irq(¤t->sighand->siglock); 403 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 404 recalc_sigpending(); 405 spin_unlock_irq(¤t->sighand->siglock); 406 return 0; 407 } 408 409 EXPORT_SYMBOL(disallow_signal); 410 411 /* 412 * Put all the gunge required to become a kernel thread without 413 * attached user resources in one place where it belongs. 414 */ 415 416 void daemonize(const char *name, ...) 417 { 418 va_list args; 419 sigset_t blocked; 420 421 va_start(args, name); 422 vsnprintf(current->comm, sizeof(current->comm), name, args); 423 va_end(args); 424 425 /* 426 * If we were started as result of loading a module, close all of the 427 * user space pages. We don't need them, and if we didn't close them 428 * they would be locked into memory. 429 */ 430 exit_mm(current); 431 /* 432 * We don't want to have TIF_FREEZE set if the system-wide hibernation 433 * or suspend transition begins right now. 434 */ 435 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 436 437 if (current->nsproxy != &init_nsproxy) { 438 get_nsproxy(&init_nsproxy); 439 switch_task_namespaces(current, &init_nsproxy); 440 } 441 set_special_pids(&init_struct_pid); 442 proc_clear_tty(current); 443 444 /* Block and flush all signals */ 445 sigfillset(&blocked); 446 sigprocmask(SIG_BLOCK, &blocked, NULL); 447 flush_signals(current); 448 449 /* Become as one with the init task */ 450 451 daemonize_fs_struct(); 452 exit_files(current); 453 current->files = init_task.files; 454 atomic_inc(¤t->files->count); 455 456 reparent_to_kthreadd(); 457 } 458 459 EXPORT_SYMBOL(daemonize); 460 461 static void close_files(struct files_struct * files) 462 { 463 int i, j; 464 struct fdtable *fdt; 465 466 j = 0; 467 468 /* 469 * It is safe to dereference the fd table without RCU or 470 * ->file_lock because this is the last reference to the 471 * files structure. But use RCU to shut RCU-lockdep up. 472 */ 473 rcu_read_lock(); 474 fdt = files_fdtable(files); 475 rcu_read_unlock(); 476 for (;;) { 477 unsigned long set; 478 i = j * __NFDBITS; 479 if (i >= fdt->max_fds) 480 break; 481 set = fdt->open_fds->fds_bits[j++]; 482 while (set) { 483 if (set & 1) { 484 struct file * file = xchg(&fdt->fd[i], NULL); 485 if (file) { 486 filp_close(file, files); 487 cond_resched(); 488 } 489 } 490 i++; 491 set >>= 1; 492 } 493 } 494 } 495 496 struct files_struct *get_files_struct(struct task_struct *task) 497 { 498 struct files_struct *files; 499 500 task_lock(task); 501 files = task->files; 502 if (files) 503 atomic_inc(&files->count); 504 task_unlock(task); 505 506 return files; 507 } 508 509 void put_files_struct(struct files_struct *files) 510 { 511 struct fdtable *fdt; 512 513 if (atomic_dec_and_test(&files->count)) { 514 close_files(files); 515 /* 516 * Free the fd and fdset arrays if we expanded them. 517 * If the fdtable was embedded, pass files for freeing 518 * at the end of the RCU grace period. Otherwise, 519 * you can free files immediately. 520 */ 521 rcu_read_lock(); 522 fdt = files_fdtable(files); 523 if (fdt != &files->fdtab) 524 kmem_cache_free(files_cachep, files); 525 free_fdtable(fdt); 526 rcu_read_unlock(); 527 } 528 } 529 530 void reset_files_struct(struct files_struct *files) 531 { 532 struct task_struct *tsk = current; 533 struct files_struct *old; 534 535 old = tsk->files; 536 task_lock(tsk); 537 tsk->files = files; 538 task_unlock(tsk); 539 put_files_struct(old); 540 } 541 542 void exit_files(struct task_struct *tsk) 543 { 544 struct files_struct * files = tsk->files; 545 546 if (files) { 547 task_lock(tsk); 548 tsk->files = NULL; 549 task_unlock(tsk); 550 put_files_struct(files); 551 } 552 } 553 554 #ifdef CONFIG_MM_OWNER 555 /* 556 * Task p is exiting and it owned mm, lets find a new owner for it 557 */ 558 static inline int 559 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 560 { 561 /* 562 * If there are other users of the mm and the owner (us) is exiting 563 * we need to find a new owner to take on the responsibility. 564 */ 565 if (atomic_read(&mm->mm_users) <= 1) 566 return 0; 567 if (mm->owner != p) 568 return 0; 569 return 1; 570 } 571 572 void mm_update_next_owner(struct mm_struct *mm) 573 { 574 struct task_struct *c, *g, *p = current; 575 576 retry: 577 if (!mm_need_new_owner(mm, p)) 578 return; 579 580 read_lock(&tasklist_lock); 581 /* 582 * Search in the children 583 */ 584 list_for_each_entry(c, &p->children, sibling) { 585 if (c->mm == mm) 586 goto assign_new_owner; 587 } 588 589 /* 590 * Search in the siblings 591 */ 592 list_for_each_entry(c, &p->real_parent->children, sibling) { 593 if (c->mm == mm) 594 goto assign_new_owner; 595 } 596 597 /* 598 * Search through everything else. We should not get 599 * here often 600 */ 601 do_each_thread(g, c) { 602 if (c->mm == mm) 603 goto assign_new_owner; 604 } while_each_thread(g, c); 605 606 read_unlock(&tasklist_lock); 607 /* 608 * We found no owner yet mm_users > 1: this implies that we are 609 * most likely racing with swapoff (try_to_unuse()) or /proc or 610 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 611 */ 612 mm->owner = NULL; 613 return; 614 615 assign_new_owner: 616 BUG_ON(c == p); 617 get_task_struct(c); 618 /* 619 * The task_lock protects c->mm from changing. 620 * We always want mm->owner->mm == mm 621 */ 622 task_lock(c); 623 /* 624 * Delay read_unlock() till we have the task_lock() 625 * to ensure that c does not slip away underneath us 626 */ 627 read_unlock(&tasklist_lock); 628 if (c->mm != mm) { 629 task_unlock(c); 630 put_task_struct(c); 631 goto retry; 632 } 633 mm->owner = c; 634 task_unlock(c); 635 put_task_struct(c); 636 } 637 #endif /* CONFIG_MM_OWNER */ 638 639 /* 640 * Turn us into a lazy TLB process if we 641 * aren't already.. 642 */ 643 static void exit_mm(struct task_struct * tsk) 644 { 645 struct mm_struct *mm = tsk->mm; 646 struct core_state *core_state; 647 648 mm_release(tsk, mm); 649 if (!mm) 650 return; 651 /* 652 * Serialize with any possible pending coredump. 653 * We must hold mmap_sem around checking core_state 654 * and clearing tsk->mm. The core-inducing thread 655 * will increment ->nr_threads for each thread in the 656 * group with ->mm != NULL. 657 */ 658 down_read(&mm->mmap_sem); 659 core_state = mm->core_state; 660 if (core_state) { 661 struct core_thread self; 662 up_read(&mm->mmap_sem); 663 664 self.task = tsk; 665 self.next = xchg(&core_state->dumper.next, &self); 666 /* 667 * Implies mb(), the result of xchg() must be visible 668 * to core_state->dumper. 669 */ 670 if (atomic_dec_and_test(&core_state->nr_threads)) 671 complete(&core_state->startup); 672 673 for (;;) { 674 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 675 if (!self.task) /* see coredump_finish() */ 676 break; 677 schedule(); 678 } 679 __set_task_state(tsk, TASK_RUNNING); 680 down_read(&mm->mmap_sem); 681 } 682 atomic_inc(&mm->mm_count); 683 BUG_ON(mm != tsk->active_mm); 684 /* more a memory barrier than a real lock */ 685 task_lock(tsk); 686 tsk->mm = NULL; 687 up_read(&mm->mmap_sem); 688 enter_lazy_tlb(mm, current); 689 /* We don't want this task to be frozen prematurely */ 690 clear_freeze_flag(tsk); 691 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 692 atomic_dec(&mm->oom_disable_count); 693 task_unlock(tsk); 694 mm_update_next_owner(mm); 695 mmput(mm); 696 } 697 698 /* 699 * When we die, we re-parent all our children. 700 * Try to give them to another thread in our thread 701 * group, and if no such member exists, give it to 702 * the child reaper process (ie "init") in our pid 703 * space. 704 */ 705 static struct task_struct *find_new_reaper(struct task_struct *father) 706 { 707 struct pid_namespace *pid_ns = task_active_pid_ns(father); 708 struct task_struct *thread; 709 710 thread = father; 711 while_each_thread(father, thread) { 712 if (thread->flags & PF_EXITING) 713 continue; 714 if (unlikely(pid_ns->child_reaper == father)) 715 pid_ns->child_reaper = thread; 716 return thread; 717 } 718 719 if (unlikely(pid_ns->child_reaper == father)) { 720 write_unlock_irq(&tasklist_lock); 721 if (unlikely(pid_ns == &init_pid_ns)) 722 panic("Attempted to kill init!"); 723 724 zap_pid_ns_processes(pid_ns); 725 write_lock_irq(&tasklist_lock); 726 /* 727 * We can not clear ->child_reaper or leave it alone. 728 * There may by stealth EXIT_DEAD tasks on ->children, 729 * forget_original_parent() must move them somewhere. 730 */ 731 pid_ns->child_reaper = init_pid_ns.child_reaper; 732 } 733 734 return pid_ns->child_reaper; 735 } 736 737 /* 738 * Any that need to be release_task'd are put on the @dead list. 739 */ 740 static void reparent_leader(struct task_struct *father, struct task_struct *p, 741 struct list_head *dead) 742 { 743 list_move_tail(&p->sibling, &p->real_parent->children); 744 745 if (task_detached(p)) 746 return; 747 /* 748 * If this is a threaded reparent there is no need to 749 * notify anyone anything has happened. 750 */ 751 if (same_thread_group(p->real_parent, father)) 752 return; 753 754 /* We don't want people slaying init. */ 755 p->exit_signal = SIGCHLD; 756 757 /* If it has exited notify the new parent about this child's death. */ 758 if (!task_ptrace(p) && 759 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 760 do_notify_parent(p, p->exit_signal); 761 if (task_detached(p)) { 762 p->exit_state = EXIT_DEAD; 763 list_move_tail(&p->sibling, dead); 764 } 765 } 766 767 kill_orphaned_pgrp(p, father); 768 } 769 770 static void forget_original_parent(struct task_struct *father) 771 { 772 struct task_struct *p, *n, *reaper; 773 LIST_HEAD(dead_children); 774 775 write_lock_irq(&tasklist_lock); 776 /* 777 * Note that exit_ptrace() and find_new_reaper() might 778 * drop tasklist_lock and reacquire it. 779 */ 780 exit_ptrace(father); 781 reaper = find_new_reaper(father); 782 783 list_for_each_entry_safe(p, n, &father->children, sibling) { 784 struct task_struct *t = p; 785 do { 786 t->real_parent = reaper; 787 if (t->parent == father) { 788 BUG_ON(task_ptrace(t)); 789 t->parent = t->real_parent; 790 } 791 if (t->pdeath_signal) 792 group_send_sig_info(t->pdeath_signal, 793 SEND_SIG_NOINFO, t); 794 } while_each_thread(p, t); 795 reparent_leader(father, p, &dead_children); 796 } 797 write_unlock_irq(&tasklist_lock); 798 799 BUG_ON(!list_empty(&father->children)); 800 801 list_for_each_entry_safe(p, n, &dead_children, sibling) { 802 list_del_init(&p->sibling); 803 release_task(p); 804 } 805 } 806 807 /* 808 * Send signals to all our closest relatives so that they know 809 * to properly mourn us.. 810 */ 811 static void exit_notify(struct task_struct *tsk, int group_dead) 812 { 813 int signal; 814 void *cookie; 815 816 /* 817 * This does two things: 818 * 819 * A. Make init inherit all the child processes 820 * B. Check to see if any process groups have become orphaned 821 * as a result of our exiting, and if they have any stopped 822 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 823 */ 824 forget_original_parent(tsk); 825 exit_task_namespaces(tsk); 826 827 write_lock_irq(&tasklist_lock); 828 if (group_dead) 829 kill_orphaned_pgrp(tsk->group_leader, NULL); 830 831 /* Let father know we died 832 * 833 * Thread signals are configurable, but you aren't going to use 834 * that to send signals to arbitary processes. 835 * That stops right now. 836 * 837 * If the parent exec id doesn't match the exec id we saved 838 * when we started then we know the parent has changed security 839 * domain. 840 * 841 * If our self_exec id doesn't match our parent_exec_id then 842 * we have changed execution domain as these two values started 843 * the same after a fork. 844 */ 845 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 846 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 847 tsk->self_exec_id != tsk->parent_exec_id)) 848 tsk->exit_signal = SIGCHLD; 849 850 signal = tracehook_notify_death(tsk, &cookie, group_dead); 851 if (signal >= 0) 852 signal = do_notify_parent(tsk, signal); 853 854 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 855 856 /* mt-exec, de_thread() is waiting for group leader */ 857 if (unlikely(tsk->signal->notify_count < 0)) 858 wake_up_process(tsk->signal->group_exit_task); 859 write_unlock_irq(&tasklist_lock); 860 861 tracehook_report_death(tsk, signal, cookie, group_dead); 862 863 /* If the process is dead, release it - nobody will wait for it */ 864 if (signal == DEATH_REAP) 865 release_task(tsk); 866 } 867 868 #ifdef CONFIG_DEBUG_STACK_USAGE 869 static void check_stack_usage(void) 870 { 871 static DEFINE_SPINLOCK(low_water_lock); 872 static int lowest_to_date = THREAD_SIZE; 873 unsigned long free; 874 875 free = stack_not_used(current); 876 877 if (free >= lowest_to_date) 878 return; 879 880 spin_lock(&low_water_lock); 881 if (free < lowest_to_date) { 882 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 883 "left\n", 884 current->comm, free); 885 lowest_to_date = free; 886 } 887 spin_unlock(&low_water_lock); 888 } 889 #else 890 static inline void check_stack_usage(void) {} 891 #endif 892 893 NORET_TYPE void do_exit(long code) 894 { 895 struct task_struct *tsk = current; 896 int group_dead; 897 898 profile_task_exit(tsk); 899 900 WARN_ON(atomic_read(&tsk->fs_excl)); 901 902 if (unlikely(in_interrupt())) 903 panic("Aiee, killing interrupt handler!"); 904 if (unlikely(!tsk->pid)) 905 panic("Attempted to kill the idle task!"); 906 907 tracehook_report_exit(&code); 908 909 validate_creds_for_do_exit(tsk); 910 911 /* 912 * We're taking recursive faults here in do_exit. Safest is to just 913 * leave this task alone and wait for reboot. 914 */ 915 if (unlikely(tsk->flags & PF_EXITING)) { 916 printk(KERN_ALERT 917 "Fixing recursive fault but reboot is needed!\n"); 918 /* 919 * We can do this unlocked here. The futex code uses 920 * this flag just to verify whether the pi state 921 * cleanup has been done or not. In the worst case it 922 * loops once more. We pretend that the cleanup was 923 * done as there is no way to return. Either the 924 * OWNER_DIED bit is set by now or we push the blocked 925 * task into the wait for ever nirwana as well. 926 */ 927 tsk->flags |= PF_EXITPIDONE; 928 set_current_state(TASK_UNINTERRUPTIBLE); 929 schedule(); 930 } 931 932 exit_irq_thread(); 933 934 exit_signals(tsk); /* sets PF_EXITING */ 935 /* 936 * tsk->flags are checked in the futex code to protect against 937 * an exiting task cleaning up the robust pi futexes. 938 */ 939 smp_mb(); 940 raw_spin_unlock_wait(&tsk->pi_lock); 941 942 if (unlikely(in_atomic())) 943 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 944 current->comm, task_pid_nr(current), 945 preempt_count()); 946 947 acct_update_integrals(tsk); 948 /* sync mm's RSS info before statistics gathering */ 949 if (tsk->mm) 950 sync_mm_rss(tsk, tsk->mm); 951 group_dead = atomic_dec_and_test(&tsk->signal->live); 952 if (group_dead) { 953 hrtimer_cancel(&tsk->signal->real_timer); 954 exit_itimers(tsk->signal); 955 if (tsk->mm) 956 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 957 } 958 acct_collect(code, group_dead); 959 if (group_dead) 960 tty_audit_exit(); 961 if (unlikely(tsk->audit_context)) 962 audit_free(tsk); 963 964 tsk->exit_code = code; 965 taskstats_exit(tsk, group_dead); 966 967 exit_mm(tsk); 968 969 if (group_dead) 970 acct_process(); 971 trace_sched_process_exit(tsk); 972 973 exit_sem(tsk); 974 exit_files(tsk); 975 exit_fs(tsk); 976 check_stack_usage(); 977 exit_thread(); 978 cgroup_exit(tsk, 1); 979 980 if (group_dead) 981 disassociate_ctty(1); 982 983 module_put(task_thread_info(tsk)->exec_domain->module); 984 985 proc_exit_connector(tsk); 986 987 /* 988 * FIXME: do that only when needed, using sched_exit tracepoint 989 */ 990 flush_ptrace_hw_breakpoint(tsk); 991 /* 992 * Flush inherited counters to the parent - before the parent 993 * gets woken up by child-exit notifications. 994 */ 995 perf_event_exit_task(tsk); 996 997 exit_notify(tsk, group_dead); 998 #ifdef CONFIG_NUMA 999 task_lock(tsk); 1000 mpol_put(tsk->mempolicy); 1001 tsk->mempolicy = NULL; 1002 task_unlock(tsk); 1003 #endif 1004 #ifdef CONFIG_FUTEX 1005 if (unlikely(current->pi_state_cache)) 1006 kfree(current->pi_state_cache); 1007 #endif 1008 /* 1009 * Make sure we are holding no locks: 1010 */ 1011 debug_check_no_locks_held(tsk); 1012 /* 1013 * We can do this unlocked here. The futex code uses this flag 1014 * just to verify whether the pi state cleanup has been done 1015 * or not. In the worst case it loops once more. 1016 */ 1017 tsk->flags |= PF_EXITPIDONE; 1018 1019 if (tsk->io_context) 1020 exit_io_context(tsk); 1021 1022 if (tsk->splice_pipe) 1023 __free_pipe_info(tsk->splice_pipe); 1024 1025 validate_creds_for_do_exit(tsk); 1026 1027 preempt_disable(); 1028 exit_rcu(); 1029 /* causes final put_task_struct in finish_task_switch(). */ 1030 tsk->state = TASK_DEAD; 1031 schedule(); 1032 BUG(); 1033 /* Avoid "noreturn function does return". */ 1034 for (;;) 1035 cpu_relax(); /* For when BUG is null */ 1036 } 1037 1038 EXPORT_SYMBOL_GPL(do_exit); 1039 1040 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1041 { 1042 if (comp) 1043 complete(comp); 1044 1045 do_exit(code); 1046 } 1047 1048 EXPORT_SYMBOL(complete_and_exit); 1049 1050 SYSCALL_DEFINE1(exit, int, error_code) 1051 { 1052 do_exit((error_code&0xff)<<8); 1053 } 1054 1055 /* 1056 * Take down every thread in the group. This is called by fatal signals 1057 * as well as by sys_exit_group (below). 1058 */ 1059 NORET_TYPE void 1060 do_group_exit(int exit_code) 1061 { 1062 struct signal_struct *sig = current->signal; 1063 1064 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1065 1066 if (signal_group_exit(sig)) 1067 exit_code = sig->group_exit_code; 1068 else if (!thread_group_empty(current)) { 1069 struct sighand_struct *const sighand = current->sighand; 1070 spin_lock_irq(&sighand->siglock); 1071 if (signal_group_exit(sig)) 1072 /* Another thread got here before we took the lock. */ 1073 exit_code = sig->group_exit_code; 1074 else { 1075 sig->group_exit_code = exit_code; 1076 sig->flags = SIGNAL_GROUP_EXIT; 1077 zap_other_threads(current); 1078 } 1079 spin_unlock_irq(&sighand->siglock); 1080 } 1081 1082 do_exit(exit_code); 1083 /* NOTREACHED */ 1084 } 1085 1086 /* 1087 * this kills every thread in the thread group. Note that any externally 1088 * wait4()-ing process will get the correct exit code - even if this 1089 * thread is not the thread group leader. 1090 */ 1091 SYSCALL_DEFINE1(exit_group, int, error_code) 1092 { 1093 do_group_exit((error_code & 0xff) << 8); 1094 /* NOTREACHED */ 1095 return 0; 1096 } 1097 1098 struct wait_opts { 1099 enum pid_type wo_type; 1100 int wo_flags; 1101 struct pid *wo_pid; 1102 1103 struct siginfo __user *wo_info; 1104 int __user *wo_stat; 1105 struct rusage __user *wo_rusage; 1106 1107 wait_queue_t child_wait; 1108 int notask_error; 1109 }; 1110 1111 static inline 1112 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1113 { 1114 if (type != PIDTYPE_PID) 1115 task = task->group_leader; 1116 return task->pids[type].pid; 1117 } 1118 1119 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1120 { 1121 return wo->wo_type == PIDTYPE_MAX || 1122 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1123 } 1124 1125 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 1126 { 1127 if (!eligible_pid(wo, p)) 1128 return 0; 1129 /* Wait for all children (clone and not) if __WALL is set; 1130 * otherwise, wait for clone children *only* if __WCLONE is 1131 * set; otherwise, wait for non-clone children *only*. (Note: 1132 * A "clone" child here is one that reports to its parent 1133 * using a signal other than SIGCHLD.) */ 1134 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1135 && !(wo->wo_flags & __WALL)) 1136 return 0; 1137 1138 return 1; 1139 } 1140 1141 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1142 pid_t pid, uid_t uid, int why, int status) 1143 { 1144 struct siginfo __user *infop; 1145 int retval = wo->wo_rusage 1146 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1147 1148 put_task_struct(p); 1149 infop = wo->wo_info; 1150 if (infop) { 1151 if (!retval) 1152 retval = put_user(SIGCHLD, &infop->si_signo); 1153 if (!retval) 1154 retval = put_user(0, &infop->si_errno); 1155 if (!retval) 1156 retval = put_user((short)why, &infop->si_code); 1157 if (!retval) 1158 retval = put_user(pid, &infop->si_pid); 1159 if (!retval) 1160 retval = put_user(uid, &infop->si_uid); 1161 if (!retval) 1162 retval = put_user(status, &infop->si_status); 1163 } 1164 if (!retval) 1165 retval = pid; 1166 return retval; 1167 } 1168 1169 /* 1170 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1171 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1172 * the lock and this task is uninteresting. If we return nonzero, we have 1173 * released the lock and the system call should return. 1174 */ 1175 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1176 { 1177 unsigned long state; 1178 int retval, status, traced; 1179 pid_t pid = task_pid_vnr(p); 1180 uid_t uid = __task_cred(p)->uid; 1181 struct siginfo __user *infop; 1182 1183 if (!likely(wo->wo_flags & WEXITED)) 1184 return 0; 1185 1186 if (unlikely(wo->wo_flags & WNOWAIT)) { 1187 int exit_code = p->exit_code; 1188 int why; 1189 1190 get_task_struct(p); 1191 read_unlock(&tasklist_lock); 1192 if ((exit_code & 0x7f) == 0) { 1193 why = CLD_EXITED; 1194 status = exit_code >> 8; 1195 } else { 1196 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1197 status = exit_code & 0x7f; 1198 } 1199 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1200 } 1201 1202 /* 1203 * Try to move the task's state to DEAD 1204 * only one thread is allowed to do this: 1205 */ 1206 state = xchg(&p->exit_state, EXIT_DEAD); 1207 if (state != EXIT_ZOMBIE) { 1208 BUG_ON(state != EXIT_DEAD); 1209 return 0; 1210 } 1211 1212 traced = ptrace_reparented(p); 1213 /* 1214 * It can be ptraced but not reparented, check 1215 * !task_detached() to filter out sub-threads. 1216 */ 1217 if (likely(!traced) && likely(!task_detached(p))) { 1218 struct signal_struct *psig; 1219 struct signal_struct *sig; 1220 unsigned long maxrss; 1221 cputime_t tgutime, tgstime; 1222 1223 /* 1224 * The resource counters for the group leader are in its 1225 * own task_struct. Those for dead threads in the group 1226 * are in its signal_struct, as are those for the child 1227 * processes it has previously reaped. All these 1228 * accumulate in the parent's signal_struct c* fields. 1229 * 1230 * We don't bother to take a lock here to protect these 1231 * p->signal fields, because they are only touched by 1232 * __exit_signal, which runs with tasklist_lock 1233 * write-locked anyway, and so is excluded here. We do 1234 * need to protect the access to parent->signal fields, 1235 * as other threads in the parent group can be right 1236 * here reaping other children at the same time. 1237 * 1238 * We use thread_group_times() to get times for the thread 1239 * group, which consolidates times for all threads in the 1240 * group including the group leader. 1241 */ 1242 thread_group_times(p, &tgutime, &tgstime); 1243 spin_lock_irq(&p->real_parent->sighand->siglock); 1244 psig = p->real_parent->signal; 1245 sig = p->signal; 1246 psig->cutime = 1247 cputime_add(psig->cutime, 1248 cputime_add(tgutime, 1249 sig->cutime)); 1250 psig->cstime = 1251 cputime_add(psig->cstime, 1252 cputime_add(tgstime, 1253 sig->cstime)); 1254 psig->cgtime = 1255 cputime_add(psig->cgtime, 1256 cputime_add(p->gtime, 1257 cputime_add(sig->gtime, 1258 sig->cgtime))); 1259 psig->cmin_flt += 1260 p->min_flt + sig->min_flt + sig->cmin_flt; 1261 psig->cmaj_flt += 1262 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1263 psig->cnvcsw += 1264 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1265 psig->cnivcsw += 1266 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1267 psig->cinblock += 1268 task_io_get_inblock(p) + 1269 sig->inblock + sig->cinblock; 1270 psig->coublock += 1271 task_io_get_oublock(p) + 1272 sig->oublock + sig->coublock; 1273 maxrss = max(sig->maxrss, sig->cmaxrss); 1274 if (psig->cmaxrss < maxrss) 1275 psig->cmaxrss = maxrss; 1276 task_io_accounting_add(&psig->ioac, &p->ioac); 1277 task_io_accounting_add(&psig->ioac, &sig->ioac); 1278 spin_unlock_irq(&p->real_parent->sighand->siglock); 1279 } 1280 1281 /* 1282 * Now we are sure this task is interesting, and no other 1283 * thread can reap it because we set its state to EXIT_DEAD. 1284 */ 1285 read_unlock(&tasklist_lock); 1286 1287 retval = wo->wo_rusage 1288 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1289 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1290 ? p->signal->group_exit_code : p->exit_code; 1291 if (!retval && wo->wo_stat) 1292 retval = put_user(status, wo->wo_stat); 1293 1294 infop = wo->wo_info; 1295 if (!retval && infop) 1296 retval = put_user(SIGCHLD, &infop->si_signo); 1297 if (!retval && infop) 1298 retval = put_user(0, &infop->si_errno); 1299 if (!retval && infop) { 1300 int why; 1301 1302 if ((status & 0x7f) == 0) { 1303 why = CLD_EXITED; 1304 status >>= 8; 1305 } else { 1306 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1307 status &= 0x7f; 1308 } 1309 retval = put_user((short)why, &infop->si_code); 1310 if (!retval) 1311 retval = put_user(status, &infop->si_status); 1312 } 1313 if (!retval && infop) 1314 retval = put_user(pid, &infop->si_pid); 1315 if (!retval && infop) 1316 retval = put_user(uid, &infop->si_uid); 1317 if (!retval) 1318 retval = pid; 1319 1320 if (traced) { 1321 write_lock_irq(&tasklist_lock); 1322 /* We dropped tasklist, ptracer could die and untrace */ 1323 ptrace_unlink(p); 1324 /* 1325 * If this is not a detached task, notify the parent. 1326 * If it's still not detached after that, don't release 1327 * it now. 1328 */ 1329 if (!task_detached(p)) { 1330 do_notify_parent(p, p->exit_signal); 1331 if (!task_detached(p)) { 1332 p->exit_state = EXIT_ZOMBIE; 1333 p = NULL; 1334 } 1335 } 1336 write_unlock_irq(&tasklist_lock); 1337 } 1338 if (p != NULL) 1339 release_task(p); 1340 1341 return retval; 1342 } 1343 1344 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1345 { 1346 if (ptrace) { 1347 if (task_is_stopped_or_traced(p)) 1348 return &p->exit_code; 1349 } else { 1350 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1351 return &p->signal->group_exit_code; 1352 } 1353 return NULL; 1354 } 1355 1356 /* 1357 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1358 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1359 * the lock and this task is uninteresting. If we return nonzero, we have 1360 * released the lock and the system call should return. 1361 */ 1362 static int wait_task_stopped(struct wait_opts *wo, 1363 int ptrace, struct task_struct *p) 1364 { 1365 struct siginfo __user *infop; 1366 int retval, exit_code, *p_code, why; 1367 uid_t uid = 0; /* unneeded, required by compiler */ 1368 pid_t pid; 1369 1370 /* 1371 * Traditionally we see ptrace'd stopped tasks regardless of options. 1372 */ 1373 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1374 return 0; 1375 1376 exit_code = 0; 1377 spin_lock_irq(&p->sighand->siglock); 1378 1379 p_code = task_stopped_code(p, ptrace); 1380 if (unlikely(!p_code)) 1381 goto unlock_sig; 1382 1383 exit_code = *p_code; 1384 if (!exit_code) 1385 goto unlock_sig; 1386 1387 if (!unlikely(wo->wo_flags & WNOWAIT)) 1388 *p_code = 0; 1389 1390 uid = task_uid(p); 1391 unlock_sig: 1392 spin_unlock_irq(&p->sighand->siglock); 1393 if (!exit_code) 1394 return 0; 1395 1396 /* 1397 * Now we are pretty sure this task is interesting. 1398 * Make sure it doesn't get reaped out from under us while we 1399 * give up the lock and then examine it below. We don't want to 1400 * keep holding onto the tasklist_lock while we call getrusage and 1401 * possibly take page faults for user memory. 1402 */ 1403 get_task_struct(p); 1404 pid = task_pid_vnr(p); 1405 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1406 read_unlock(&tasklist_lock); 1407 1408 if (unlikely(wo->wo_flags & WNOWAIT)) 1409 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1410 1411 retval = wo->wo_rusage 1412 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1413 if (!retval && wo->wo_stat) 1414 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1415 1416 infop = wo->wo_info; 1417 if (!retval && infop) 1418 retval = put_user(SIGCHLD, &infop->si_signo); 1419 if (!retval && infop) 1420 retval = put_user(0, &infop->si_errno); 1421 if (!retval && infop) 1422 retval = put_user((short)why, &infop->si_code); 1423 if (!retval && infop) 1424 retval = put_user(exit_code, &infop->si_status); 1425 if (!retval && infop) 1426 retval = put_user(pid, &infop->si_pid); 1427 if (!retval && infop) 1428 retval = put_user(uid, &infop->si_uid); 1429 if (!retval) 1430 retval = pid; 1431 put_task_struct(p); 1432 1433 BUG_ON(!retval); 1434 return retval; 1435 } 1436 1437 /* 1438 * Handle do_wait work for one task in a live, non-stopped state. 1439 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1440 * the lock and this task is uninteresting. If we return nonzero, we have 1441 * released the lock and the system call should return. 1442 */ 1443 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1444 { 1445 int retval; 1446 pid_t pid; 1447 uid_t uid; 1448 1449 if (!unlikely(wo->wo_flags & WCONTINUED)) 1450 return 0; 1451 1452 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1453 return 0; 1454 1455 spin_lock_irq(&p->sighand->siglock); 1456 /* Re-check with the lock held. */ 1457 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1458 spin_unlock_irq(&p->sighand->siglock); 1459 return 0; 1460 } 1461 if (!unlikely(wo->wo_flags & WNOWAIT)) 1462 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1463 uid = task_uid(p); 1464 spin_unlock_irq(&p->sighand->siglock); 1465 1466 pid = task_pid_vnr(p); 1467 get_task_struct(p); 1468 read_unlock(&tasklist_lock); 1469 1470 if (!wo->wo_info) { 1471 retval = wo->wo_rusage 1472 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1473 put_task_struct(p); 1474 if (!retval && wo->wo_stat) 1475 retval = put_user(0xffff, wo->wo_stat); 1476 if (!retval) 1477 retval = pid; 1478 } else { 1479 retval = wait_noreap_copyout(wo, p, pid, uid, 1480 CLD_CONTINUED, SIGCONT); 1481 BUG_ON(retval == 0); 1482 } 1483 1484 return retval; 1485 } 1486 1487 /* 1488 * Consider @p for a wait by @parent. 1489 * 1490 * -ECHILD should be in ->notask_error before the first call. 1491 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1492 * Returns zero if the search for a child should continue; 1493 * then ->notask_error is 0 if @p is an eligible child, 1494 * or another error from security_task_wait(), or still -ECHILD. 1495 */ 1496 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1497 struct task_struct *p) 1498 { 1499 int ret = eligible_child(wo, p); 1500 if (!ret) 1501 return ret; 1502 1503 ret = security_task_wait(p); 1504 if (unlikely(ret < 0)) { 1505 /* 1506 * If we have not yet seen any eligible child, 1507 * then let this error code replace -ECHILD. 1508 * A permission error will give the user a clue 1509 * to look for security policy problems, rather 1510 * than for mysterious wait bugs. 1511 */ 1512 if (wo->notask_error) 1513 wo->notask_error = ret; 1514 return 0; 1515 } 1516 1517 if (likely(!ptrace) && unlikely(task_ptrace(p))) { 1518 /* 1519 * This child is hidden by ptrace. 1520 * We aren't allowed to see it now, but eventually we will. 1521 */ 1522 wo->notask_error = 0; 1523 return 0; 1524 } 1525 1526 if (p->exit_state == EXIT_DEAD) 1527 return 0; 1528 1529 /* 1530 * We don't reap group leaders with subthreads. 1531 */ 1532 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1533 return wait_task_zombie(wo, p); 1534 1535 /* 1536 * It's stopped or running now, so it might 1537 * later continue, exit, or stop again. 1538 */ 1539 wo->notask_error = 0; 1540 1541 if (task_stopped_code(p, ptrace)) 1542 return wait_task_stopped(wo, ptrace, p); 1543 1544 return wait_task_continued(wo, p); 1545 } 1546 1547 /* 1548 * Do the work of do_wait() for one thread in the group, @tsk. 1549 * 1550 * -ECHILD should be in ->notask_error before the first call. 1551 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1552 * Returns zero if the search for a child should continue; then 1553 * ->notask_error is 0 if there were any eligible children, 1554 * or another error from security_task_wait(), or still -ECHILD. 1555 */ 1556 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1557 { 1558 struct task_struct *p; 1559 1560 list_for_each_entry(p, &tsk->children, sibling) { 1561 int ret = wait_consider_task(wo, 0, p); 1562 if (ret) 1563 return ret; 1564 } 1565 1566 return 0; 1567 } 1568 1569 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1570 { 1571 struct task_struct *p; 1572 1573 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1574 int ret = wait_consider_task(wo, 1, p); 1575 if (ret) 1576 return ret; 1577 } 1578 1579 return 0; 1580 } 1581 1582 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1583 int sync, void *key) 1584 { 1585 struct wait_opts *wo = container_of(wait, struct wait_opts, 1586 child_wait); 1587 struct task_struct *p = key; 1588 1589 if (!eligible_pid(wo, p)) 1590 return 0; 1591 1592 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1593 return 0; 1594 1595 return default_wake_function(wait, mode, sync, key); 1596 } 1597 1598 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1599 { 1600 __wake_up_sync_key(&parent->signal->wait_chldexit, 1601 TASK_INTERRUPTIBLE, 1, p); 1602 } 1603 1604 static long do_wait(struct wait_opts *wo) 1605 { 1606 struct task_struct *tsk; 1607 int retval; 1608 1609 trace_sched_process_wait(wo->wo_pid); 1610 1611 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1612 wo->child_wait.private = current; 1613 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1614 repeat: 1615 /* 1616 * If there is nothing that can match our critiera just get out. 1617 * We will clear ->notask_error to zero if we see any child that 1618 * might later match our criteria, even if we are not able to reap 1619 * it yet. 1620 */ 1621 wo->notask_error = -ECHILD; 1622 if ((wo->wo_type < PIDTYPE_MAX) && 1623 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1624 goto notask; 1625 1626 set_current_state(TASK_INTERRUPTIBLE); 1627 read_lock(&tasklist_lock); 1628 tsk = current; 1629 do { 1630 retval = do_wait_thread(wo, tsk); 1631 if (retval) 1632 goto end; 1633 1634 retval = ptrace_do_wait(wo, tsk); 1635 if (retval) 1636 goto end; 1637 1638 if (wo->wo_flags & __WNOTHREAD) 1639 break; 1640 } while_each_thread(current, tsk); 1641 read_unlock(&tasklist_lock); 1642 1643 notask: 1644 retval = wo->notask_error; 1645 if (!retval && !(wo->wo_flags & WNOHANG)) { 1646 retval = -ERESTARTSYS; 1647 if (!signal_pending(current)) { 1648 schedule(); 1649 goto repeat; 1650 } 1651 } 1652 end: 1653 __set_current_state(TASK_RUNNING); 1654 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1655 return retval; 1656 } 1657 1658 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1659 infop, int, options, struct rusage __user *, ru) 1660 { 1661 struct wait_opts wo; 1662 struct pid *pid = NULL; 1663 enum pid_type type; 1664 long ret; 1665 1666 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1667 return -EINVAL; 1668 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1669 return -EINVAL; 1670 1671 switch (which) { 1672 case P_ALL: 1673 type = PIDTYPE_MAX; 1674 break; 1675 case P_PID: 1676 type = PIDTYPE_PID; 1677 if (upid <= 0) 1678 return -EINVAL; 1679 break; 1680 case P_PGID: 1681 type = PIDTYPE_PGID; 1682 if (upid <= 0) 1683 return -EINVAL; 1684 break; 1685 default: 1686 return -EINVAL; 1687 } 1688 1689 if (type < PIDTYPE_MAX) 1690 pid = find_get_pid(upid); 1691 1692 wo.wo_type = type; 1693 wo.wo_pid = pid; 1694 wo.wo_flags = options; 1695 wo.wo_info = infop; 1696 wo.wo_stat = NULL; 1697 wo.wo_rusage = ru; 1698 ret = do_wait(&wo); 1699 1700 if (ret > 0) { 1701 ret = 0; 1702 } else if (infop) { 1703 /* 1704 * For a WNOHANG return, clear out all the fields 1705 * we would set so the user can easily tell the 1706 * difference. 1707 */ 1708 if (!ret) 1709 ret = put_user(0, &infop->si_signo); 1710 if (!ret) 1711 ret = put_user(0, &infop->si_errno); 1712 if (!ret) 1713 ret = put_user(0, &infop->si_code); 1714 if (!ret) 1715 ret = put_user(0, &infop->si_pid); 1716 if (!ret) 1717 ret = put_user(0, &infop->si_uid); 1718 if (!ret) 1719 ret = put_user(0, &infop->si_status); 1720 } 1721 1722 put_pid(pid); 1723 1724 /* avoid REGPARM breakage on x86: */ 1725 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1726 return ret; 1727 } 1728 1729 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1730 int, options, struct rusage __user *, ru) 1731 { 1732 struct wait_opts wo; 1733 struct pid *pid = NULL; 1734 enum pid_type type; 1735 long ret; 1736 1737 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1738 __WNOTHREAD|__WCLONE|__WALL)) 1739 return -EINVAL; 1740 1741 if (upid == -1) 1742 type = PIDTYPE_MAX; 1743 else if (upid < 0) { 1744 type = PIDTYPE_PGID; 1745 pid = find_get_pid(-upid); 1746 } else if (upid == 0) { 1747 type = PIDTYPE_PGID; 1748 pid = get_task_pid(current, PIDTYPE_PGID); 1749 } else /* upid > 0 */ { 1750 type = PIDTYPE_PID; 1751 pid = find_get_pid(upid); 1752 } 1753 1754 wo.wo_type = type; 1755 wo.wo_pid = pid; 1756 wo.wo_flags = options | WEXITED; 1757 wo.wo_info = NULL; 1758 wo.wo_stat = stat_addr; 1759 wo.wo_rusage = ru; 1760 ret = do_wait(&wo); 1761 put_pid(pid); 1762 1763 /* avoid REGPARM breakage on x86: */ 1764 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1765 return ret; 1766 } 1767 1768 #ifdef __ARCH_WANT_SYS_WAITPID 1769 1770 /* 1771 * sys_waitpid() remains for compatibility. waitpid() should be 1772 * implemented by calling sys_wait4() from libc.a. 1773 */ 1774 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1775 { 1776 return sys_wait4(pid, stat_addr, options, NULL); 1777 } 1778 1779 #endif 1780