xref: /linux/kernel/exit.c (revision 48c36c8f9a3e881953bb72deb55623a53795a684)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 
55 #include <asm/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/pgtable.h>
58 #include <asm/mmu_context.h>
59 
60 static void exit_mm(struct task_struct * tsk);
61 
62 static void __unhash_process(struct task_struct *p, bool group_dead)
63 {
64 	nr_threads--;
65 	detach_pid(p, PIDTYPE_PID);
66 	if (group_dead) {
67 		detach_pid(p, PIDTYPE_PGID);
68 		detach_pid(p, PIDTYPE_SID);
69 
70 		list_del_rcu(&p->tasks);
71 		list_del_init(&p->sibling);
72 		__get_cpu_var(process_counts)--;
73 	}
74 	list_del_rcu(&p->thread_group);
75 }
76 
77 /*
78  * This function expects the tasklist_lock write-locked.
79  */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82 	struct signal_struct *sig = tsk->signal;
83 	bool group_dead = thread_group_leader(tsk);
84 	struct sighand_struct *sighand;
85 	struct tty_struct *uninitialized_var(tty);
86 
87 	sighand = rcu_dereference_check(tsk->sighand,
88 					rcu_read_lock_held() ||
89 					lockdep_tasklist_lock_is_held());
90 	spin_lock(&sighand->siglock);
91 
92 	posix_cpu_timers_exit(tsk);
93 	if (group_dead) {
94 		posix_cpu_timers_exit_group(tsk);
95 		tty = sig->tty;
96 		sig->tty = NULL;
97 	} else {
98 		/*
99 		 * This can only happen if the caller is de_thread().
100 		 * FIXME: this is the temporary hack, we should teach
101 		 * posix-cpu-timers to handle this case correctly.
102 		 */
103 		if (unlikely(has_group_leader_pid(tsk)))
104 			posix_cpu_timers_exit_group(tsk);
105 
106 		/*
107 		 * If there is any task waiting for the group exit
108 		 * then notify it:
109 		 */
110 		if (sig->notify_count > 0 && !--sig->notify_count)
111 			wake_up_process(sig->group_exit_task);
112 
113 		if (tsk == sig->curr_target)
114 			sig->curr_target = next_thread(tsk);
115 		/*
116 		 * Accumulate here the counters for all threads but the
117 		 * group leader as they die, so they can be added into
118 		 * the process-wide totals when those are taken.
119 		 * The group leader stays around as a zombie as long
120 		 * as there are other threads.  When it gets reaped,
121 		 * the exit.c code will add its counts into these totals.
122 		 * We won't ever get here for the group leader, since it
123 		 * will have been the last reference on the signal_struct.
124 		 */
125 		sig->utime = cputime_add(sig->utime, tsk->utime);
126 		sig->stime = cputime_add(sig->stime, tsk->stime);
127 		sig->gtime = cputime_add(sig->gtime, tsk->gtime);
128 		sig->min_flt += tsk->min_flt;
129 		sig->maj_flt += tsk->maj_flt;
130 		sig->nvcsw += tsk->nvcsw;
131 		sig->nivcsw += tsk->nivcsw;
132 		sig->inblock += task_io_get_inblock(tsk);
133 		sig->oublock += task_io_get_oublock(tsk);
134 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
135 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
136 	}
137 
138 	sig->nr_threads--;
139 	__unhash_process(tsk, group_dead);
140 
141 	/*
142 	 * Do this under ->siglock, we can race with another thread
143 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
144 	 */
145 	flush_sigqueue(&tsk->pending);
146 	tsk->sighand = NULL;
147 	spin_unlock(&sighand->siglock);
148 
149 	__cleanup_sighand(sighand);
150 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
151 	if (group_dead) {
152 		flush_sigqueue(&sig->shared_pending);
153 		tty_kref_put(tty);
154 	}
155 }
156 
157 static void delayed_put_task_struct(struct rcu_head *rhp)
158 {
159 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
160 
161 	perf_event_delayed_put(tsk);
162 	trace_sched_process_free(tsk);
163 	put_task_struct(tsk);
164 }
165 
166 
167 void release_task(struct task_struct * p)
168 {
169 	struct task_struct *leader;
170 	int zap_leader;
171 repeat:
172 	tracehook_prepare_release_task(p);
173 	/* don't need to get the RCU readlock here - the process is dead and
174 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
175 	rcu_read_lock();
176 	atomic_dec(&__task_cred(p)->user->processes);
177 	rcu_read_unlock();
178 
179 	proc_flush_task(p);
180 
181 	write_lock_irq(&tasklist_lock);
182 	tracehook_finish_release_task(p);
183 	__exit_signal(p);
184 
185 	/*
186 	 * If we are the last non-leader member of the thread
187 	 * group, and the leader is zombie, then notify the
188 	 * group leader's parent process. (if it wants notification.)
189 	 */
190 	zap_leader = 0;
191 	leader = p->group_leader;
192 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193 		BUG_ON(task_detached(leader));
194 		do_notify_parent(leader, leader->exit_signal);
195 		/*
196 		 * If we were the last child thread and the leader has
197 		 * exited already, and the leader's parent ignores SIGCHLD,
198 		 * then we are the one who should release the leader.
199 		 *
200 		 * do_notify_parent() will have marked it self-reaping in
201 		 * that case.
202 		 */
203 		zap_leader = task_detached(leader);
204 
205 		/*
206 		 * This maintains the invariant that release_task()
207 		 * only runs on a task in EXIT_DEAD, just for sanity.
208 		 */
209 		if (zap_leader)
210 			leader->exit_state = EXIT_DEAD;
211 	}
212 
213 	write_unlock_irq(&tasklist_lock);
214 	release_thread(p);
215 	call_rcu(&p->rcu, delayed_put_task_struct);
216 
217 	p = leader;
218 	if (unlikely(zap_leader))
219 		goto repeat;
220 }
221 
222 /*
223  * This checks not only the pgrp, but falls back on the pid if no
224  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
225  * without this...
226  *
227  * The caller must hold rcu lock or the tasklist lock.
228  */
229 struct pid *session_of_pgrp(struct pid *pgrp)
230 {
231 	struct task_struct *p;
232 	struct pid *sid = NULL;
233 
234 	p = pid_task(pgrp, PIDTYPE_PGID);
235 	if (p == NULL)
236 		p = pid_task(pgrp, PIDTYPE_PID);
237 	if (p != NULL)
238 		sid = task_session(p);
239 
240 	return sid;
241 }
242 
243 /*
244  * Determine if a process group is "orphaned", according to the POSIX
245  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
246  * by terminal-generated stop signals.  Newly orphaned process groups are
247  * to receive a SIGHUP and a SIGCONT.
248  *
249  * "I ask you, have you ever known what it is to be an orphan?"
250  */
251 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
252 {
253 	struct task_struct *p;
254 
255 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
256 		if ((p == ignored_task) ||
257 		    (p->exit_state && thread_group_empty(p)) ||
258 		    is_global_init(p->real_parent))
259 			continue;
260 
261 		if (task_pgrp(p->real_parent) != pgrp &&
262 		    task_session(p->real_parent) == task_session(p))
263 			return 0;
264 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
265 
266 	return 1;
267 }
268 
269 int is_current_pgrp_orphaned(void)
270 {
271 	int retval;
272 
273 	read_lock(&tasklist_lock);
274 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
275 	read_unlock(&tasklist_lock);
276 
277 	return retval;
278 }
279 
280 static int has_stopped_jobs(struct pid *pgrp)
281 {
282 	int retval = 0;
283 	struct task_struct *p;
284 
285 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
286 		if (!task_is_stopped(p))
287 			continue;
288 		retval = 1;
289 		break;
290 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
291 	return retval;
292 }
293 
294 /*
295  * Check to see if any process groups have become orphaned as
296  * a result of our exiting, and if they have any stopped jobs,
297  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
298  */
299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
301 {
302 	struct pid *pgrp = task_pgrp(tsk);
303 	struct task_struct *ignored_task = tsk;
304 
305 	if (!parent)
306 		 /* exit: our father is in a different pgrp than
307 		  * we are and we were the only connection outside.
308 		  */
309 		parent = tsk->real_parent;
310 	else
311 		/* reparent: our child is in a different pgrp than
312 		 * we are, and it was the only connection outside.
313 		 */
314 		ignored_task = NULL;
315 
316 	if (task_pgrp(parent) != pgrp &&
317 	    task_session(parent) == task_session(tsk) &&
318 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
319 	    has_stopped_jobs(pgrp)) {
320 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
322 	}
323 }
324 
325 /**
326  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
327  *
328  * If a kernel thread is launched as a result of a system call, or if
329  * it ever exits, it should generally reparent itself to kthreadd so it
330  * isn't in the way of other processes and is correctly cleaned up on exit.
331  *
332  * The various task state such as scheduling policy and priority may have
333  * been inherited from a user process, so we reset them to sane values here.
334  *
335  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
336  */
337 static void reparent_to_kthreadd(void)
338 {
339 	write_lock_irq(&tasklist_lock);
340 
341 	ptrace_unlink(current);
342 	/* Reparent to init */
343 	current->real_parent = current->parent = kthreadd_task;
344 	list_move_tail(&current->sibling, &current->real_parent->children);
345 
346 	/* Set the exit signal to SIGCHLD so we signal init on exit */
347 	current->exit_signal = SIGCHLD;
348 
349 	if (task_nice(current) < 0)
350 		set_user_nice(current, 0);
351 	/* cpus_allowed? */
352 	/* rt_priority? */
353 	/* signals? */
354 	memcpy(current->signal->rlim, init_task.signal->rlim,
355 	       sizeof(current->signal->rlim));
356 
357 	atomic_inc(&init_cred.usage);
358 	commit_creds(&init_cred);
359 	write_unlock_irq(&tasklist_lock);
360 }
361 
362 void __set_special_pids(struct pid *pid)
363 {
364 	struct task_struct *curr = current->group_leader;
365 
366 	if (task_session(curr) != pid)
367 		change_pid(curr, PIDTYPE_SID, pid);
368 
369 	if (task_pgrp(curr) != pid)
370 		change_pid(curr, PIDTYPE_PGID, pid);
371 }
372 
373 static void set_special_pids(struct pid *pid)
374 {
375 	write_lock_irq(&tasklist_lock);
376 	__set_special_pids(pid);
377 	write_unlock_irq(&tasklist_lock);
378 }
379 
380 /*
381  * Let kernel threads use this to say that they allow a certain signal.
382  * Must not be used if kthread was cloned with CLONE_SIGHAND.
383  */
384 int allow_signal(int sig)
385 {
386 	if (!valid_signal(sig) || sig < 1)
387 		return -EINVAL;
388 
389 	spin_lock_irq(&current->sighand->siglock);
390 	/* This is only needed for daemonize()'ed kthreads */
391 	sigdelset(&current->blocked, sig);
392 	/*
393 	 * Kernel threads handle their own signals. Let the signal code
394 	 * know it'll be handled, so that they don't get converted to
395 	 * SIGKILL or just silently dropped.
396 	 */
397 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
398 	recalc_sigpending();
399 	spin_unlock_irq(&current->sighand->siglock);
400 	return 0;
401 }
402 
403 EXPORT_SYMBOL(allow_signal);
404 
405 int disallow_signal(int sig)
406 {
407 	if (!valid_signal(sig) || sig < 1)
408 		return -EINVAL;
409 
410 	spin_lock_irq(&current->sighand->siglock);
411 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
412 	recalc_sigpending();
413 	spin_unlock_irq(&current->sighand->siglock);
414 	return 0;
415 }
416 
417 EXPORT_SYMBOL(disallow_signal);
418 
419 /*
420  *	Put all the gunge required to become a kernel thread without
421  *	attached user resources in one place where it belongs.
422  */
423 
424 void daemonize(const char *name, ...)
425 {
426 	va_list args;
427 	sigset_t blocked;
428 
429 	va_start(args, name);
430 	vsnprintf(current->comm, sizeof(current->comm), name, args);
431 	va_end(args);
432 
433 	/*
434 	 * If we were started as result of loading a module, close all of the
435 	 * user space pages.  We don't need them, and if we didn't close them
436 	 * they would be locked into memory.
437 	 */
438 	exit_mm(current);
439 	/*
440 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
441 	 * or suspend transition begins right now.
442 	 */
443 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
444 
445 	if (current->nsproxy != &init_nsproxy) {
446 		get_nsproxy(&init_nsproxy);
447 		switch_task_namespaces(current, &init_nsproxy);
448 	}
449 	set_special_pids(&init_struct_pid);
450 	proc_clear_tty(current);
451 
452 	/* Block and flush all signals */
453 	sigfillset(&blocked);
454 	sigprocmask(SIG_BLOCK, &blocked, NULL);
455 	flush_signals(current);
456 
457 	/* Become as one with the init task */
458 
459 	daemonize_fs_struct();
460 	exit_files(current);
461 	current->files = init_task.files;
462 	atomic_inc(&current->files->count);
463 
464 	reparent_to_kthreadd();
465 }
466 
467 EXPORT_SYMBOL(daemonize);
468 
469 static void close_files(struct files_struct * files)
470 {
471 	int i, j;
472 	struct fdtable *fdt;
473 
474 	j = 0;
475 
476 	/*
477 	 * It is safe to dereference the fd table without RCU or
478 	 * ->file_lock because this is the last reference to the
479 	 * files structure.  But use RCU to shut RCU-lockdep up.
480 	 */
481 	rcu_read_lock();
482 	fdt = files_fdtable(files);
483 	rcu_read_unlock();
484 	for (;;) {
485 		unsigned long set;
486 		i = j * __NFDBITS;
487 		if (i >= fdt->max_fds)
488 			break;
489 		set = fdt->open_fds->fds_bits[j++];
490 		while (set) {
491 			if (set & 1) {
492 				struct file * file = xchg(&fdt->fd[i], NULL);
493 				if (file) {
494 					filp_close(file, files);
495 					cond_resched();
496 				}
497 			}
498 			i++;
499 			set >>= 1;
500 		}
501 	}
502 }
503 
504 struct files_struct *get_files_struct(struct task_struct *task)
505 {
506 	struct files_struct *files;
507 
508 	task_lock(task);
509 	files = task->files;
510 	if (files)
511 		atomic_inc(&files->count);
512 	task_unlock(task);
513 
514 	return files;
515 }
516 
517 void put_files_struct(struct files_struct *files)
518 {
519 	struct fdtable *fdt;
520 
521 	if (atomic_dec_and_test(&files->count)) {
522 		close_files(files);
523 		/*
524 		 * Free the fd and fdset arrays if we expanded them.
525 		 * If the fdtable was embedded, pass files for freeing
526 		 * at the end of the RCU grace period. Otherwise,
527 		 * you can free files immediately.
528 		 */
529 		rcu_read_lock();
530 		fdt = files_fdtable(files);
531 		if (fdt != &files->fdtab)
532 			kmem_cache_free(files_cachep, files);
533 		free_fdtable(fdt);
534 		rcu_read_unlock();
535 	}
536 }
537 
538 void reset_files_struct(struct files_struct *files)
539 {
540 	struct task_struct *tsk = current;
541 	struct files_struct *old;
542 
543 	old = tsk->files;
544 	task_lock(tsk);
545 	tsk->files = files;
546 	task_unlock(tsk);
547 	put_files_struct(old);
548 }
549 
550 void exit_files(struct task_struct *tsk)
551 {
552 	struct files_struct * files = tsk->files;
553 
554 	if (files) {
555 		task_lock(tsk);
556 		tsk->files = NULL;
557 		task_unlock(tsk);
558 		put_files_struct(files);
559 	}
560 }
561 
562 #ifdef CONFIG_MM_OWNER
563 /*
564  * Task p is exiting and it owned mm, lets find a new owner for it
565  */
566 static inline int
567 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
568 {
569 	/*
570 	 * If there are other users of the mm and the owner (us) is exiting
571 	 * we need to find a new owner to take on the responsibility.
572 	 */
573 	if (atomic_read(&mm->mm_users) <= 1)
574 		return 0;
575 	if (mm->owner != p)
576 		return 0;
577 	return 1;
578 }
579 
580 void mm_update_next_owner(struct mm_struct *mm)
581 {
582 	struct task_struct *c, *g, *p = current;
583 
584 retry:
585 	if (!mm_need_new_owner(mm, p))
586 		return;
587 
588 	read_lock(&tasklist_lock);
589 	/*
590 	 * Search in the children
591 	 */
592 	list_for_each_entry(c, &p->children, sibling) {
593 		if (c->mm == mm)
594 			goto assign_new_owner;
595 	}
596 
597 	/*
598 	 * Search in the siblings
599 	 */
600 	list_for_each_entry(c, &p->real_parent->children, sibling) {
601 		if (c->mm == mm)
602 			goto assign_new_owner;
603 	}
604 
605 	/*
606 	 * Search through everything else. We should not get
607 	 * here often
608 	 */
609 	do_each_thread(g, c) {
610 		if (c->mm == mm)
611 			goto assign_new_owner;
612 	} while_each_thread(g, c);
613 
614 	read_unlock(&tasklist_lock);
615 	/*
616 	 * We found no owner yet mm_users > 1: this implies that we are
617 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
618 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
619 	 */
620 	mm->owner = NULL;
621 	return;
622 
623 assign_new_owner:
624 	BUG_ON(c == p);
625 	get_task_struct(c);
626 	/*
627 	 * The task_lock protects c->mm from changing.
628 	 * We always want mm->owner->mm == mm
629 	 */
630 	task_lock(c);
631 	/*
632 	 * Delay read_unlock() till we have the task_lock()
633 	 * to ensure that c does not slip away underneath us
634 	 */
635 	read_unlock(&tasklist_lock);
636 	if (c->mm != mm) {
637 		task_unlock(c);
638 		put_task_struct(c);
639 		goto retry;
640 	}
641 	mm->owner = c;
642 	task_unlock(c);
643 	put_task_struct(c);
644 }
645 #endif /* CONFIG_MM_OWNER */
646 
647 /*
648  * Turn us into a lazy TLB process if we
649  * aren't already..
650  */
651 static void exit_mm(struct task_struct * tsk)
652 {
653 	struct mm_struct *mm = tsk->mm;
654 	struct core_state *core_state;
655 
656 	mm_release(tsk, mm);
657 	if (!mm)
658 		return;
659 	/*
660 	 * Serialize with any possible pending coredump.
661 	 * We must hold mmap_sem around checking core_state
662 	 * and clearing tsk->mm.  The core-inducing thread
663 	 * will increment ->nr_threads for each thread in the
664 	 * group with ->mm != NULL.
665 	 */
666 	down_read(&mm->mmap_sem);
667 	core_state = mm->core_state;
668 	if (core_state) {
669 		struct core_thread self;
670 		up_read(&mm->mmap_sem);
671 
672 		self.task = tsk;
673 		self.next = xchg(&core_state->dumper.next, &self);
674 		/*
675 		 * Implies mb(), the result of xchg() must be visible
676 		 * to core_state->dumper.
677 		 */
678 		if (atomic_dec_and_test(&core_state->nr_threads))
679 			complete(&core_state->startup);
680 
681 		for (;;) {
682 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
683 			if (!self.task) /* see coredump_finish() */
684 				break;
685 			schedule();
686 		}
687 		__set_task_state(tsk, TASK_RUNNING);
688 		down_read(&mm->mmap_sem);
689 	}
690 	atomic_inc(&mm->mm_count);
691 	BUG_ON(mm != tsk->active_mm);
692 	/* more a memory barrier than a real lock */
693 	task_lock(tsk);
694 	tsk->mm = NULL;
695 	up_read(&mm->mmap_sem);
696 	enter_lazy_tlb(mm, current);
697 	/* We don't want this task to be frozen prematurely */
698 	clear_freeze_flag(tsk);
699 	if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
700 		atomic_dec(&mm->oom_disable_count);
701 	task_unlock(tsk);
702 	mm_update_next_owner(mm);
703 	mmput(mm);
704 }
705 
706 /*
707  * When we die, we re-parent all our children.
708  * Try to give them to another thread in our thread
709  * group, and if no such member exists, give it to
710  * the child reaper process (ie "init") in our pid
711  * space.
712  */
713 static struct task_struct *find_new_reaper(struct task_struct *father)
714 	__releases(&tasklist_lock)
715 	__acquires(&tasklist_lock)
716 {
717 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
718 	struct task_struct *thread;
719 
720 	thread = father;
721 	while_each_thread(father, thread) {
722 		if (thread->flags & PF_EXITING)
723 			continue;
724 		if (unlikely(pid_ns->child_reaper == father))
725 			pid_ns->child_reaper = thread;
726 		return thread;
727 	}
728 
729 	if (unlikely(pid_ns->child_reaper == father)) {
730 		write_unlock_irq(&tasklist_lock);
731 		if (unlikely(pid_ns == &init_pid_ns))
732 			panic("Attempted to kill init!");
733 
734 		zap_pid_ns_processes(pid_ns);
735 		write_lock_irq(&tasklist_lock);
736 		/*
737 		 * We can not clear ->child_reaper or leave it alone.
738 		 * There may by stealth EXIT_DEAD tasks on ->children,
739 		 * forget_original_parent() must move them somewhere.
740 		 */
741 		pid_ns->child_reaper = init_pid_ns.child_reaper;
742 	}
743 
744 	return pid_ns->child_reaper;
745 }
746 
747 /*
748 * Any that need to be release_task'd are put on the @dead list.
749  */
750 static void reparent_leader(struct task_struct *father, struct task_struct *p,
751 				struct list_head *dead)
752 {
753 	list_move_tail(&p->sibling, &p->real_parent->children);
754 
755 	if (task_detached(p))
756 		return;
757 	/*
758 	 * If this is a threaded reparent there is no need to
759 	 * notify anyone anything has happened.
760 	 */
761 	if (same_thread_group(p->real_parent, father))
762 		return;
763 
764 	/* We don't want people slaying init.  */
765 	p->exit_signal = SIGCHLD;
766 
767 	/* If it has exited notify the new parent about this child's death. */
768 	if (!task_ptrace(p) &&
769 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
770 		do_notify_parent(p, p->exit_signal);
771 		if (task_detached(p)) {
772 			p->exit_state = EXIT_DEAD;
773 			list_move_tail(&p->sibling, dead);
774 		}
775 	}
776 
777 	kill_orphaned_pgrp(p, father);
778 }
779 
780 static void forget_original_parent(struct task_struct *father)
781 {
782 	struct task_struct *p, *n, *reaper;
783 	LIST_HEAD(dead_children);
784 
785 	write_lock_irq(&tasklist_lock);
786 	/*
787 	 * Note that exit_ptrace() and find_new_reaper() might
788 	 * drop tasklist_lock and reacquire it.
789 	 */
790 	exit_ptrace(father);
791 	reaper = find_new_reaper(father);
792 
793 	list_for_each_entry_safe(p, n, &father->children, sibling) {
794 		struct task_struct *t = p;
795 		do {
796 			t->real_parent = reaper;
797 			if (t->parent == father) {
798 				BUG_ON(task_ptrace(t));
799 				t->parent = t->real_parent;
800 			}
801 			if (t->pdeath_signal)
802 				group_send_sig_info(t->pdeath_signal,
803 						    SEND_SIG_NOINFO, t);
804 		} while_each_thread(p, t);
805 		reparent_leader(father, p, &dead_children);
806 	}
807 	write_unlock_irq(&tasklist_lock);
808 
809 	BUG_ON(!list_empty(&father->children));
810 
811 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
812 		list_del_init(&p->sibling);
813 		release_task(p);
814 	}
815 }
816 
817 /*
818  * Send signals to all our closest relatives so that they know
819  * to properly mourn us..
820  */
821 static void exit_notify(struct task_struct *tsk, int group_dead)
822 {
823 	int signal;
824 	void *cookie;
825 
826 	/*
827 	 * This does two things:
828 	 *
829   	 * A.  Make init inherit all the child processes
830 	 * B.  Check to see if any process groups have become orphaned
831 	 *	as a result of our exiting, and if they have any stopped
832 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
833 	 */
834 	forget_original_parent(tsk);
835 	exit_task_namespaces(tsk);
836 
837 	write_lock_irq(&tasklist_lock);
838 	if (group_dead)
839 		kill_orphaned_pgrp(tsk->group_leader, NULL);
840 
841 	/* Let father know we died
842 	 *
843 	 * Thread signals are configurable, but you aren't going to use
844 	 * that to send signals to arbitary processes.
845 	 * That stops right now.
846 	 *
847 	 * If the parent exec id doesn't match the exec id we saved
848 	 * when we started then we know the parent has changed security
849 	 * domain.
850 	 *
851 	 * If our self_exec id doesn't match our parent_exec_id then
852 	 * we have changed execution domain as these two values started
853 	 * the same after a fork.
854 	 */
855 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
856 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
857 	     tsk->self_exec_id != tsk->parent_exec_id))
858 		tsk->exit_signal = SIGCHLD;
859 
860 	signal = tracehook_notify_death(tsk, &cookie, group_dead);
861 	if (signal >= 0)
862 		signal = do_notify_parent(tsk, signal);
863 
864 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
865 
866 	/* mt-exec, de_thread() is waiting for group leader */
867 	if (unlikely(tsk->signal->notify_count < 0))
868 		wake_up_process(tsk->signal->group_exit_task);
869 	write_unlock_irq(&tasklist_lock);
870 
871 	tracehook_report_death(tsk, signal, cookie, group_dead);
872 
873 	/* If the process is dead, release it - nobody will wait for it */
874 	if (signal == DEATH_REAP)
875 		release_task(tsk);
876 }
877 
878 #ifdef CONFIG_DEBUG_STACK_USAGE
879 static void check_stack_usage(void)
880 {
881 	static DEFINE_SPINLOCK(low_water_lock);
882 	static int lowest_to_date = THREAD_SIZE;
883 	unsigned long free;
884 
885 	free = stack_not_used(current);
886 
887 	if (free >= lowest_to_date)
888 		return;
889 
890 	spin_lock(&low_water_lock);
891 	if (free < lowest_to_date) {
892 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
893 				"left\n",
894 				current->comm, free);
895 		lowest_to_date = free;
896 	}
897 	spin_unlock(&low_water_lock);
898 }
899 #else
900 static inline void check_stack_usage(void) {}
901 #endif
902 
903 NORET_TYPE void do_exit(long code)
904 {
905 	struct task_struct *tsk = current;
906 	int group_dead;
907 
908 	profile_task_exit(tsk);
909 
910 	WARN_ON(atomic_read(&tsk->fs_excl));
911 
912 	if (unlikely(in_interrupt()))
913 		panic("Aiee, killing interrupt handler!");
914 	if (unlikely(!tsk->pid))
915 		panic("Attempted to kill the idle task!");
916 
917 	tracehook_report_exit(&code);
918 
919 	validate_creds_for_do_exit(tsk);
920 
921 	/*
922 	 * We're taking recursive faults here in do_exit. Safest is to just
923 	 * leave this task alone and wait for reboot.
924 	 */
925 	if (unlikely(tsk->flags & PF_EXITING)) {
926 		printk(KERN_ALERT
927 			"Fixing recursive fault but reboot is needed!\n");
928 		/*
929 		 * We can do this unlocked here. The futex code uses
930 		 * this flag just to verify whether the pi state
931 		 * cleanup has been done or not. In the worst case it
932 		 * loops once more. We pretend that the cleanup was
933 		 * done as there is no way to return. Either the
934 		 * OWNER_DIED bit is set by now or we push the blocked
935 		 * task into the wait for ever nirwana as well.
936 		 */
937 		tsk->flags |= PF_EXITPIDONE;
938 		set_current_state(TASK_UNINTERRUPTIBLE);
939 		schedule();
940 	}
941 
942 	exit_irq_thread();
943 
944 	exit_signals(tsk);  /* sets PF_EXITING */
945 	/*
946 	 * tsk->flags are checked in the futex code to protect against
947 	 * an exiting task cleaning up the robust pi futexes.
948 	 */
949 	smp_mb();
950 	raw_spin_unlock_wait(&tsk->pi_lock);
951 
952 	if (unlikely(in_atomic()))
953 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
954 				current->comm, task_pid_nr(current),
955 				preempt_count());
956 
957 	acct_update_integrals(tsk);
958 	/* sync mm's RSS info before statistics gathering */
959 	if (tsk->mm)
960 		sync_mm_rss(tsk, tsk->mm);
961 	group_dead = atomic_dec_and_test(&tsk->signal->live);
962 	if (group_dead) {
963 		hrtimer_cancel(&tsk->signal->real_timer);
964 		exit_itimers(tsk->signal);
965 		if (tsk->mm)
966 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
967 	}
968 	acct_collect(code, group_dead);
969 	if (group_dead)
970 		tty_audit_exit();
971 	if (unlikely(tsk->audit_context))
972 		audit_free(tsk);
973 
974 	tsk->exit_code = code;
975 	taskstats_exit(tsk, group_dead);
976 
977 	exit_mm(tsk);
978 
979 	if (group_dead)
980 		acct_process();
981 	trace_sched_process_exit(tsk);
982 
983 	exit_sem(tsk);
984 	exit_files(tsk);
985 	exit_fs(tsk);
986 	check_stack_usage();
987 	exit_thread();
988 	cgroup_exit(tsk, 1);
989 
990 	if (group_dead)
991 		disassociate_ctty(1);
992 
993 	module_put(task_thread_info(tsk)->exec_domain->module);
994 
995 	proc_exit_connector(tsk);
996 
997 	/*
998 	 * FIXME: do that only when needed, using sched_exit tracepoint
999 	 */
1000 	flush_ptrace_hw_breakpoint(tsk);
1001 	/*
1002 	 * Flush inherited counters to the parent - before the parent
1003 	 * gets woken up by child-exit notifications.
1004 	 */
1005 	perf_event_exit_task(tsk);
1006 
1007 	exit_notify(tsk, group_dead);
1008 #ifdef CONFIG_NUMA
1009 	task_lock(tsk);
1010 	mpol_put(tsk->mempolicy);
1011 	tsk->mempolicy = NULL;
1012 	task_unlock(tsk);
1013 #endif
1014 #ifdef CONFIG_FUTEX
1015 	if (unlikely(current->pi_state_cache))
1016 		kfree(current->pi_state_cache);
1017 #endif
1018 	/*
1019 	 * Make sure we are holding no locks:
1020 	 */
1021 	debug_check_no_locks_held(tsk);
1022 	/*
1023 	 * We can do this unlocked here. The futex code uses this flag
1024 	 * just to verify whether the pi state cleanup has been done
1025 	 * or not. In the worst case it loops once more.
1026 	 */
1027 	tsk->flags |= PF_EXITPIDONE;
1028 
1029 	if (tsk->io_context)
1030 		exit_io_context(tsk);
1031 
1032 	if (tsk->splice_pipe)
1033 		__free_pipe_info(tsk->splice_pipe);
1034 
1035 	validate_creds_for_do_exit(tsk);
1036 
1037 	preempt_disable();
1038 	exit_rcu();
1039 	/* causes final put_task_struct in finish_task_switch(). */
1040 	tsk->state = TASK_DEAD;
1041 	schedule();
1042 	BUG();
1043 	/* Avoid "noreturn function does return".  */
1044 	for (;;)
1045 		cpu_relax();	/* For when BUG is null */
1046 }
1047 
1048 EXPORT_SYMBOL_GPL(do_exit);
1049 
1050 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1051 {
1052 	if (comp)
1053 		complete(comp);
1054 
1055 	do_exit(code);
1056 }
1057 
1058 EXPORT_SYMBOL(complete_and_exit);
1059 
1060 SYSCALL_DEFINE1(exit, int, error_code)
1061 {
1062 	do_exit((error_code&0xff)<<8);
1063 }
1064 
1065 /*
1066  * Take down every thread in the group.  This is called by fatal signals
1067  * as well as by sys_exit_group (below).
1068  */
1069 NORET_TYPE void
1070 do_group_exit(int exit_code)
1071 {
1072 	struct signal_struct *sig = current->signal;
1073 
1074 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1075 
1076 	if (signal_group_exit(sig))
1077 		exit_code = sig->group_exit_code;
1078 	else if (!thread_group_empty(current)) {
1079 		struct sighand_struct *const sighand = current->sighand;
1080 		spin_lock_irq(&sighand->siglock);
1081 		if (signal_group_exit(sig))
1082 			/* Another thread got here before we took the lock.  */
1083 			exit_code = sig->group_exit_code;
1084 		else {
1085 			sig->group_exit_code = exit_code;
1086 			sig->flags = SIGNAL_GROUP_EXIT;
1087 			zap_other_threads(current);
1088 		}
1089 		spin_unlock_irq(&sighand->siglock);
1090 	}
1091 
1092 	do_exit(exit_code);
1093 	/* NOTREACHED */
1094 }
1095 
1096 /*
1097  * this kills every thread in the thread group. Note that any externally
1098  * wait4()-ing process will get the correct exit code - even if this
1099  * thread is not the thread group leader.
1100  */
1101 SYSCALL_DEFINE1(exit_group, int, error_code)
1102 {
1103 	do_group_exit((error_code & 0xff) << 8);
1104 	/* NOTREACHED */
1105 	return 0;
1106 }
1107 
1108 struct wait_opts {
1109 	enum pid_type		wo_type;
1110 	int			wo_flags;
1111 	struct pid		*wo_pid;
1112 
1113 	struct siginfo __user	*wo_info;
1114 	int __user		*wo_stat;
1115 	struct rusage __user	*wo_rusage;
1116 
1117 	wait_queue_t		child_wait;
1118 	int			notask_error;
1119 };
1120 
1121 static inline
1122 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1123 {
1124 	if (type != PIDTYPE_PID)
1125 		task = task->group_leader;
1126 	return task->pids[type].pid;
1127 }
1128 
1129 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1130 {
1131 	return	wo->wo_type == PIDTYPE_MAX ||
1132 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1133 }
1134 
1135 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1136 {
1137 	if (!eligible_pid(wo, p))
1138 		return 0;
1139 	/* Wait for all children (clone and not) if __WALL is set;
1140 	 * otherwise, wait for clone children *only* if __WCLONE is
1141 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1142 	 * A "clone" child here is one that reports to its parent
1143 	 * using a signal other than SIGCHLD.) */
1144 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1145 	    && !(wo->wo_flags & __WALL))
1146 		return 0;
1147 
1148 	return 1;
1149 }
1150 
1151 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1152 				pid_t pid, uid_t uid, int why, int status)
1153 {
1154 	struct siginfo __user *infop;
1155 	int retval = wo->wo_rusage
1156 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1157 
1158 	put_task_struct(p);
1159 	infop = wo->wo_info;
1160 	if (infop) {
1161 		if (!retval)
1162 			retval = put_user(SIGCHLD, &infop->si_signo);
1163 		if (!retval)
1164 			retval = put_user(0, &infop->si_errno);
1165 		if (!retval)
1166 			retval = put_user((short)why, &infop->si_code);
1167 		if (!retval)
1168 			retval = put_user(pid, &infop->si_pid);
1169 		if (!retval)
1170 			retval = put_user(uid, &infop->si_uid);
1171 		if (!retval)
1172 			retval = put_user(status, &infop->si_status);
1173 	}
1174 	if (!retval)
1175 		retval = pid;
1176 	return retval;
1177 }
1178 
1179 /*
1180  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1181  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1182  * the lock and this task is uninteresting.  If we return nonzero, we have
1183  * released the lock and the system call should return.
1184  */
1185 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1186 {
1187 	unsigned long state;
1188 	int retval, status, traced;
1189 	pid_t pid = task_pid_vnr(p);
1190 	uid_t uid = __task_cred(p)->uid;
1191 	struct siginfo __user *infop;
1192 
1193 	if (!likely(wo->wo_flags & WEXITED))
1194 		return 0;
1195 
1196 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1197 		int exit_code = p->exit_code;
1198 		int why;
1199 
1200 		get_task_struct(p);
1201 		read_unlock(&tasklist_lock);
1202 		if ((exit_code & 0x7f) == 0) {
1203 			why = CLD_EXITED;
1204 			status = exit_code >> 8;
1205 		} else {
1206 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1207 			status = exit_code & 0x7f;
1208 		}
1209 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1210 	}
1211 
1212 	/*
1213 	 * Try to move the task's state to DEAD
1214 	 * only one thread is allowed to do this:
1215 	 */
1216 	state = xchg(&p->exit_state, EXIT_DEAD);
1217 	if (state != EXIT_ZOMBIE) {
1218 		BUG_ON(state != EXIT_DEAD);
1219 		return 0;
1220 	}
1221 
1222 	traced = ptrace_reparented(p);
1223 	/*
1224 	 * It can be ptraced but not reparented, check
1225 	 * !task_detached() to filter out sub-threads.
1226 	 */
1227 	if (likely(!traced) && likely(!task_detached(p))) {
1228 		struct signal_struct *psig;
1229 		struct signal_struct *sig;
1230 		unsigned long maxrss;
1231 		cputime_t tgutime, tgstime;
1232 
1233 		/*
1234 		 * The resource counters for the group leader are in its
1235 		 * own task_struct.  Those for dead threads in the group
1236 		 * are in its signal_struct, as are those for the child
1237 		 * processes it has previously reaped.  All these
1238 		 * accumulate in the parent's signal_struct c* fields.
1239 		 *
1240 		 * We don't bother to take a lock here to protect these
1241 		 * p->signal fields, because they are only touched by
1242 		 * __exit_signal, which runs with tasklist_lock
1243 		 * write-locked anyway, and so is excluded here.  We do
1244 		 * need to protect the access to parent->signal fields,
1245 		 * as other threads in the parent group can be right
1246 		 * here reaping other children at the same time.
1247 		 *
1248 		 * We use thread_group_times() to get times for the thread
1249 		 * group, which consolidates times for all threads in the
1250 		 * group including the group leader.
1251 		 */
1252 		thread_group_times(p, &tgutime, &tgstime);
1253 		spin_lock_irq(&p->real_parent->sighand->siglock);
1254 		psig = p->real_parent->signal;
1255 		sig = p->signal;
1256 		psig->cutime =
1257 			cputime_add(psig->cutime,
1258 			cputime_add(tgutime,
1259 				    sig->cutime));
1260 		psig->cstime =
1261 			cputime_add(psig->cstime,
1262 			cputime_add(tgstime,
1263 				    sig->cstime));
1264 		psig->cgtime =
1265 			cputime_add(psig->cgtime,
1266 			cputime_add(p->gtime,
1267 			cputime_add(sig->gtime,
1268 				    sig->cgtime)));
1269 		psig->cmin_flt +=
1270 			p->min_flt + sig->min_flt + sig->cmin_flt;
1271 		psig->cmaj_flt +=
1272 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1273 		psig->cnvcsw +=
1274 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1275 		psig->cnivcsw +=
1276 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1277 		psig->cinblock +=
1278 			task_io_get_inblock(p) +
1279 			sig->inblock + sig->cinblock;
1280 		psig->coublock +=
1281 			task_io_get_oublock(p) +
1282 			sig->oublock + sig->coublock;
1283 		maxrss = max(sig->maxrss, sig->cmaxrss);
1284 		if (psig->cmaxrss < maxrss)
1285 			psig->cmaxrss = maxrss;
1286 		task_io_accounting_add(&psig->ioac, &p->ioac);
1287 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1288 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1289 	}
1290 
1291 	/*
1292 	 * Now we are sure this task is interesting, and no other
1293 	 * thread can reap it because we set its state to EXIT_DEAD.
1294 	 */
1295 	read_unlock(&tasklist_lock);
1296 
1297 	retval = wo->wo_rusage
1298 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1299 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1300 		? p->signal->group_exit_code : p->exit_code;
1301 	if (!retval && wo->wo_stat)
1302 		retval = put_user(status, wo->wo_stat);
1303 
1304 	infop = wo->wo_info;
1305 	if (!retval && infop)
1306 		retval = put_user(SIGCHLD, &infop->si_signo);
1307 	if (!retval && infop)
1308 		retval = put_user(0, &infop->si_errno);
1309 	if (!retval && infop) {
1310 		int why;
1311 
1312 		if ((status & 0x7f) == 0) {
1313 			why = CLD_EXITED;
1314 			status >>= 8;
1315 		} else {
1316 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1317 			status &= 0x7f;
1318 		}
1319 		retval = put_user((short)why, &infop->si_code);
1320 		if (!retval)
1321 			retval = put_user(status, &infop->si_status);
1322 	}
1323 	if (!retval && infop)
1324 		retval = put_user(pid, &infop->si_pid);
1325 	if (!retval && infop)
1326 		retval = put_user(uid, &infop->si_uid);
1327 	if (!retval)
1328 		retval = pid;
1329 
1330 	if (traced) {
1331 		write_lock_irq(&tasklist_lock);
1332 		/* We dropped tasklist, ptracer could die and untrace */
1333 		ptrace_unlink(p);
1334 		/*
1335 		 * If this is not a detached task, notify the parent.
1336 		 * If it's still not detached after that, don't release
1337 		 * it now.
1338 		 */
1339 		if (!task_detached(p)) {
1340 			do_notify_parent(p, p->exit_signal);
1341 			if (!task_detached(p)) {
1342 				p->exit_state = EXIT_ZOMBIE;
1343 				p = NULL;
1344 			}
1345 		}
1346 		write_unlock_irq(&tasklist_lock);
1347 	}
1348 	if (p != NULL)
1349 		release_task(p);
1350 
1351 	return retval;
1352 }
1353 
1354 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1355 {
1356 	if (ptrace) {
1357 		if (task_is_stopped_or_traced(p))
1358 			return &p->exit_code;
1359 	} else {
1360 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1361 			return &p->signal->group_exit_code;
1362 	}
1363 	return NULL;
1364 }
1365 
1366 /*
1367  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1368  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1369  * the lock and this task is uninteresting.  If we return nonzero, we have
1370  * released the lock and the system call should return.
1371  */
1372 static int wait_task_stopped(struct wait_opts *wo,
1373 				int ptrace, struct task_struct *p)
1374 {
1375 	struct siginfo __user *infop;
1376 	int retval, exit_code, *p_code, why;
1377 	uid_t uid = 0; /* unneeded, required by compiler */
1378 	pid_t pid;
1379 
1380 	/*
1381 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1382 	 */
1383 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1384 		return 0;
1385 
1386 	exit_code = 0;
1387 	spin_lock_irq(&p->sighand->siglock);
1388 
1389 	p_code = task_stopped_code(p, ptrace);
1390 	if (unlikely(!p_code))
1391 		goto unlock_sig;
1392 
1393 	exit_code = *p_code;
1394 	if (!exit_code)
1395 		goto unlock_sig;
1396 
1397 	if (!unlikely(wo->wo_flags & WNOWAIT))
1398 		*p_code = 0;
1399 
1400 	uid = task_uid(p);
1401 unlock_sig:
1402 	spin_unlock_irq(&p->sighand->siglock);
1403 	if (!exit_code)
1404 		return 0;
1405 
1406 	/*
1407 	 * Now we are pretty sure this task is interesting.
1408 	 * Make sure it doesn't get reaped out from under us while we
1409 	 * give up the lock and then examine it below.  We don't want to
1410 	 * keep holding onto the tasklist_lock while we call getrusage and
1411 	 * possibly take page faults for user memory.
1412 	 */
1413 	get_task_struct(p);
1414 	pid = task_pid_vnr(p);
1415 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1416 	read_unlock(&tasklist_lock);
1417 
1418 	if (unlikely(wo->wo_flags & WNOWAIT))
1419 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1420 
1421 	retval = wo->wo_rusage
1422 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1423 	if (!retval && wo->wo_stat)
1424 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1425 
1426 	infop = wo->wo_info;
1427 	if (!retval && infop)
1428 		retval = put_user(SIGCHLD, &infop->si_signo);
1429 	if (!retval && infop)
1430 		retval = put_user(0, &infop->si_errno);
1431 	if (!retval && infop)
1432 		retval = put_user((short)why, &infop->si_code);
1433 	if (!retval && infop)
1434 		retval = put_user(exit_code, &infop->si_status);
1435 	if (!retval && infop)
1436 		retval = put_user(pid, &infop->si_pid);
1437 	if (!retval && infop)
1438 		retval = put_user(uid, &infop->si_uid);
1439 	if (!retval)
1440 		retval = pid;
1441 	put_task_struct(p);
1442 
1443 	BUG_ON(!retval);
1444 	return retval;
1445 }
1446 
1447 /*
1448  * Handle do_wait work for one task in a live, non-stopped state.
1449  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1450  * the lock and this task is uninteresting.  If we return nonzero, we have
1451  * released the lock and the system call should return.
1452  */
1453 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1454 {
1455 	int retval;
1456 	pid_t pid;
1457 	uid_t uid;
1458 
1459 	if (!unlikely(wo->wo_flags & WCONTINUED))
1460 		return 0;
1461 
1462 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1463 		return 0;
1464 
1465 	spin_lock_irq(&p->sighand->siglock);
1466 	/* Re-check with the lock held.  */
1467 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1468 		spin_unlock_irq(&p->sighand->siglock);
1469 		return 0;
1470 	}
1471 	if (!unlikely(wo->wo_flags & WNOWAIT))
1472 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1473 	uid = task_uid(p);
1474 	spin_unlock_irq(&p->sighand->siglock);
1475 
1476 	pid = task_pid_vnr(p);
1477 	get_task_struct(p);
1478 	read_unlock(&tasklist_lock);
1479 
1480 	if (!wo->wo_info) {
1481 		retval = wo->wo_rusage
1482 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1483 		put_task_struct(p);
1484 		if (!retval && wo->wo_stat)
1485 			retval = put_user(0xffff, wo->wo_stat);
1486 		if (!retval)
1487 			retval = pid;
1488 	} else {
1489 		retval = wait_noreap_copyout(wo, p, pid, uid,
1490 					     CLD_CONTINUED, SIGCONT);
1491 		BUG_ON(retval == 0);
1492 	}
1493 
1494 	return retval;
1495 }
1496 
1497 /*
1498  * Consider @p for a wait by @parent.
1499  *
1500  * -ECHILD should be in ->notask_error before the first call.
1501  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1502  * Returns zero if the search for a child should continue;
1503  * then ->notask_error is 0 if @p is an eligible child,
1504  * or another error from security_task_wait(), or still -ECHILD.
1505  */
1506 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1507 				struct task_struct *p)
1508 {
1509 	int ret = eligible_child(wo, p);
1510 	if (!ret)
1511 		return ret;
1512 
1513 	ret = security_task_wait(p);
1514 	if (unlikely(ret < 0)) {
1515 		/*
1516 		 * If we have not yet seen any eligible child,
1517 		 * then let this error code replace -ECHILD.
1518 		 * A permission error will give the user a clue
1519 		 * to look for security policy problems, rather
1520 		 * than for mysterious wait bugs.
1521 		 */
1522 		if (wo->notask_error)
1523 			wo->notask_error = ret;
1524 		return 0;
1525 	}
1526 
1527 	if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1528 		/*
1529 		 * This child is hidden by ptrace.
1530 		 * We aren't allowed to see it now, but eventually we will.
1531 		 */
1532 		wo->notask_error = 0;
1533 		return 0;
1534 	}
1535 
1536 	if (p->exit_state == EXIT_DEAD)
1537 		return 0;
1538 
1539 	/*
1540 	 * We don't reap group leaders with subthreads.
1541 	 */
1542 	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1543 		return wait_task_zombie(wo, p);
1544 
1545 	/*
1546 	 * It's stopped or running now, so it might
1547 	 * later continue, exit, or stop again.
1548 	 */
1549 	wo->notask_error = 0;
1550 
1551 	if (task_stopped_code(p, ptrace))
1552 		return wait_task_stopped(wo, ptrace, p);
1553 
1554 	return wait_task_continued(wo, p);
1555 }
1556 
1557 /*
1558  * Do the work of do_wait() for one thread in the group, @tsk.
1559  *
1560  * -ECHILD should be in ->notask_error before the first call.
1561  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1562  * Returns zero if the search for a child should continue; then
1563  * ->notask_error is 0 if there were any eligible children,
1564  * or another error from security_task_wait(), or still -ECHILD.
1565  */
1566 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1567 {
1568 	struct task_struct *p;
1569 
1570 	list_for_each_entry(p, &tsk->children, sibling) {
1571 		int ret = wait_consider_task(wo, 0, p);
1572 		if (ret)
1573 			return ret;
1574 	}
1575 
1576 	return 0;
1577 }
1578 
1579 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1580 {
1581 	struct task_struct *p;
1582 
1583 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1584 		int ret = wait_consider_task(wo, 1, p);
1585 		if (ret)
1586 			return ret;
1587 	}
1588 
1589 	return 0;
1590 }
1591 
1592 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1593 				int sync, void *key)
1594 {
1595 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1596 						child_wait);
1597 	struct task_struct *p = key;
1598 
1599 	if (!eligible_pid(wo, p))
1600 		return 0;
1601 
1602 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1603 		return 0;
1604 
1605 	return default_wake_function(wait, mode, sync, key);
1606 }
1607 
1608 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1609 {
1610 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1611 				TASK_INTERRUPTIBLE, 1, p);
1612 }
1613 
1614 static long do_wait(struct wait_opts *wo)
1615 {
1616 	struct task_struct *tsk;
1617 	int retval;
1618 
1619 	trace_sched_process_wait(wo->wo_pid);
1620 
1621 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1622 	wo->child_wait.private = current;
1623 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1624 repeat:
1625 	/*
1626 	 * If there is nothing that can match our critiera just get out.
1627 	 * We will clear ->notask_error to zero if we see any child that
1628 	 * might later match our criteria, even if we are not able to reap
1629 	 * it yet.
1630 	 */
1631 	wo->notask_error = -ECHILD;
1632 	if ((wo->wo_type < PIDTYPE_MAX) &&
1633 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1634 		goto notask;
1635 
1636 	set_current_state(TASK_INTERRUPTIBLE);
1637 	read_lock(&tasklist_lock);
1638 	tsk = current;
1639 	do {
1640 		retval = do_wait_thread(wo, tsk);
1641 		if (retval)
1642 			goto end;
1643 
1644 		retval = ptrace_do_wait(wo, tsk);
1645 		if (retval)
1646 			goto end;
1647 
1648 		if (wo->wo_flags & __WNOTHREAD)
1649 			break;
1650 	} while_each_thread(current, tsk);
1651 	read_unlock(&tasklist_lock);
1652 
1653 notask:
1654 	retval = wo->notask_error;
1655 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1656 		retval = -ERESTARTSYS;
1657 		if (!signal_pending(current)) {
1658 			schedule();
1659 			goto repeat;
1660 		}
1661 	}
1662 end:
1663 	__set_current_state(TASK_RUNNING);
1664 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1665 	return retval;
1666 }
1667 
1668 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1669 		infop, int, options, struct rusage __user *, ru)
1670 {
1671 	struct wait_opts wo;
1672 	struct pid *pid = NULL;
1673 	enum pid_type type;
1674 	long ret;
1675 
1676 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1677 		return -EINVAL;
1678 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1679 		return -EINVAL;
1680 
1681 	switch (which) {
1682 	case P_ALL:
1683 		type = PIDTYPE_MAX;
1684 		break;
1685 	case P_PID:
1686 		type = PIDTYPE_PID;
1687 		if (upid <= 0)
1688 			return -EINVAL;
1689 		break;
1690 	case P_PGID:
1691 		type = PIDTYPE_PGID;
1692 		if (upid <= 0)
1693 			return -EINVAL;
1694 		break;
1695 	default:
1696 		return -EINVAL;
1697 	}
1698 
1699 	if (type < PIDTYPE_MAX)
1700 		pid = find_get_pid(upid);
1701 
1702 	wo.wo_type	= type;
1703 	wo.wo_pid	= pid;
1704 	wo.wo_flags	= options;
1705 	wo.wo_info	= infop;
1706 	wo.wo_stat	= NULL;
1707 	wo.wo_rusage	= ru;
1708 	ret = do_wait(&wo);
1709 
1710 	if (ret > 0) {
1711 		ret = 0;
1712 	} else if (infop) {
1713 		/*
1714 		 * For a WNOHANG return, clear out all the fields
1715 		 * we would set so the user can easily tell the
1716 		 * difference.
1717 		 */
1718 		if (!ret)
1719 			ret = put_user(0, &infop->si_signo);
1720 		if (!ret)
1721 			ret = put_user(0, &infop->si_errno);
1722 		if (!ret)
1723 			ret = put_user(0, &infop->si_code);
1724 		if (!ret)
1725 			ret = put_user(0, &infop->si_pid);
1726 		if (!ret)
1727 			ret = put_user(0, &infop->si_uid);
1728 		if (!ret)
1729 			ret = put_user(0, &infop->si_status);
1730 	}
1731 
1732 	put_pid(pid);
1733 
1734 	/* avoid REGPARM breakage on x86: */
1735 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1736 	return ret;
1737 }
1738 
1739 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1740 		int, options, struct rusage __user *, ru)
1741 {
1742 	struct wait_opts wo;
1743 	struct pid *pid = NULL;
1744 	enum pid_type type;
1745 	long ret;
1746 
1747 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1748 			__WNOTHREAD|__WCLONE|__WALL))
1749 		return -EINVAL;
1750 
1751 	if (upid == -1)
1752 		type = PIDTYPE_MAX;
1753 	else if (upid < 0) {
1754 		type = PIDTYPE_PGID;
1755 		pid = find_get_pid(-upid);
1756 	} else if (upid == 0) {
1757 		type = PIDTYPE_PGID;
1758 		pid = get_task_pid(current, PIDTYPE_PGID);
1759 	} else /* upid > 0 */ {
1760 		type = PIDTYPE_PID;
1761 		pid = find_get_pid(upid);
1762 	}
1763 
1764 	wo.wo_type	= type;
1765 	wo.wo_pid	= pid;
1766 	wo.wo_flags	= options | WEXITED;
1767 	wo.wo_info	= NULL;
1768 	wo.wo_stat	= stat_addr;
1769 	wo.wo_rusage	= ru;
1770 	ret = do_wait(&wo);
1771 	put_pid(pid);
1772 
1773 	/* avoid REGPARM breakage on x86: */
1774 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1775 	return ret;
1776 }
1777 
1778 #ifdef __ARCH_WANT_SYS_WAITPID
1779 
1780 /*
1781  * sys_waitpid() remains for compatibility. waitpid() should be
1782  * implemented by calling sys_wait4() from libc.a.
1783  */
1784 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1785 {
1786 	return sys_wait4(pid, stat_addr, options, NULL);
1787 }
1788 
1789 #endif
1790