1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/iocontext.h> 17 #include <linux/key.h> 18 #include <linux/security.h> 19 #include <linux/cpu.h> 20 #include <linux/acct.h> 21 #include <linux/tsacct_kern.h> 22 #include <linux/file.h> 23 #include <linux/fdtable.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/freezer.h> 36 #include <linux/cgroup.h> 37 #include <linux/syscalls.h> 38 #include <linux/signal.h> 39 #include <linux/posix-timers.h> 40 #include <linux/cn_proc.h> 41 #include <linux/mutex.h> 42 #include <linux/futex.h> 43 #include <linux/compat.h> 44 #include <linux/pipe_fs_i.h> 45 #include <linux/audit.h> /* for audit_free() */ 46 #include <linux/resource.h> 47 #include <linux/blkdev.h> 48 #include <linux/task_io_accounting_ops.h> 49 #include <linux/tracehook.h> 50 51 #include <asm/uaccess.h> 52 #include <asm/unistd.h> 53 #include <asm/pgtable.h> 54 #include <asm/mmu_context.h> 55 56 static void exit_mm(struct task_struct * tsk); 57 58 static inline int task_detached(struct task_struct *p) 59 { 60 return p->exit_signal == -1; 61 } 62 63 static void __unhash_process(struct task_struct *p) 64 { 65 nr_threads--; 66 detach_pid(p, PIDTYPE_PID); 67 if (thread_group_leader(p)) { 68 detach_pid(p, PIDTYPE_PGID); 69 detach_pid(p, PIDTYPE_SID); 70 71 list_del_rcu(&p->tasks); 72 __get_cpu_var(process_counts)--; 73 } 74 list_del_rcu(&p->thread_group); 75 list_del_init(&p->sibling); 76 } 77 78 /* 79 * This function expects the tasklist_lock write-locked. 80 */ 81 static void __exit_signal(struct task_struct *tsk) 82 { 83 struct signal_struct *sig = tsk->signal; 84 struct sighand_struct *sighand; 85 86 BUG_ON(!sig); 87 BUG_ON(!atomic_read(&sig->count)); 88 89 sighand = rcu_dereference(tsk->sighand); 90 spin_lock(&sighand->siglock); 91 92 posix_cpu_timers_exit(tsk); 93 if (atomic_dec_and_test(&sig->count)) 94 posix_cpu_timers_exit_group(tsk); 95 else { 96 /* 97 * If there is any task waiting for the group exit 98 * then notify it: 99 */ 100 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 101 wake_up_process(sig->group_exit_task); 102 103 if (tsk == sig->curr_target) 104 sig->curr_target = next_thread(tsk); 105 /* 106 * Accumulate here the counters for all threads but the 107 * group leader as they die, so they can be added into 108 * the process-wide totals when those are taken. 109 * The group leader stays around as a zombie as long 110 * as there are other threads. When it gets reaped, 111 * the exit.c code will add its counts into these totals. 112 * We won't ever get here for the group leader, since it 113 * will have been the last reference on the signal_struct. 114 */ 115 sig->utime = cputime_add(sig->utime, task_utime(tsk)); 116 sig->stime = cputime_add(sig->stime, task_stime(tsk)); 117 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); 118 sig->min_flt += tsk->min_flt; 119 sig->maj_flt += tsk->maj_flt; 120 sig->nvcsw += tsk->nvcsw; 121 sig->nivcsw += tsk->nivcsw; 122 sig->inblock += task_io_get_inblock(tsk); 123 sig->oublock += task_io_get_oublock(tsk); 124 task_io_accounting_add(&sig->ioac, &tsk->ioac); 125 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 126 sig = NULL; /* Marker for below. */ 127 } 128 129 __unhash_process(tsk); 130 131 /* 132 * Do this under ->siglock, we can race with another thread 133 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 134 */ 135 flush_sigqueue(&tsk->pending); 136 137 tsk->signal = NULL; 138 tsk->sighand = NULL; 139 spin_unlock(&sighand->siglock); 140 141 __cleanup_sighand(sighand); 142 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 143 if (sig) { 144 flush_sigqueue(&sig->shared_pending); 145 taskstats_tgid_free(sig); 146 __cleanup_signal(sig); 147 } 148 } 149 150 static void delayed_put_task_struct(struct rcu_head *rhp) 151 { 152 put_task_struct(container_of(rhp, struct task_struct, rcu)); 153 } 154 155 156 void release_task(struct task_struct * p) 157 { 158 struct task_struct *leader; 159 int zap_leader; 160 repeat: 161 tracehook_prepare_release_task(p); 162 atomic_dec(&p->user->processes); 163 proc_flush_task(p); 164 write_lock_irq(&tasklist_lock); 165 tracehook_finish_release_task(p); 166 __exit_signal(p); 167 168 /* 169 * If we are the last non-leader member of the thread 170 * group, and the leader is zombie, then notify the 171 * group leader's parent process. (if it wants notification.) 172 */ 173 zap_leader = 0; 174 leader = p->group_leader; 175 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 176 BUG_ON(task_detached(leader)); 177 do_notify_parent(leader, leader->exit_signal); 178 /* 179 * If we were the last child thread and the leader has 180 * exited already, and the leader's parent ignores SIGCHLD, 181 * then we are the one who should release the leader. 182 * 183 * do_notify_parent() will have marked it self-reaping in 184 * that case. 185 */ 186 zap_leader = task_detached(leader); 187 188 /* 189 * This maintains the invariant that release_task() 190 * only runs on a task in EXIT_DEAD, just for sanity. 191 */ 192 if (zap_leader) 193 leader->exit_state = EXIT_DEAD; 194 } 195 196 write_unlock_irq(&tasklist_lock); 197 release_thread(p); 198 call_rcu(&p->rcu, delayed_put_task_struct); 199 200 p = leader; 201 if (unlikely(zap_leader)) 202 goto repeat; 203 } 204 205 /* 206 * This checks not only the pgrp, but falls back on the pid if no 207 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 208 * without this... 209 * 210 * The caller must hold rcu lock or the tasklist lock. 211 */ 212 struct pid *session_of_pgrp(struct pid *pgrp) 213 { 214 struct task_struct *p; 215 struct pid *sid = NULL; 216 217 p = pid_task(pgrp, PIDTYPE_PGID); 218 if (p == NULL) 219 p = pid_task(pgrp, PIDTYPE_PID); 220 if (p != NULL) 221 sid = task_session(p); 222 223 return sid; 224 } 225 226 /* 227 * Determine if a process group is "orphaned", according to the POSIX 228 * definition in 2.2.2.52. Orphaned process groups are not to be affected 229 * by terminal-generated stop signals. Newly orphaned process groups are 230 * to receive a SIGHUP and a SIGCONT. 231 * 232 * "I ask you, have you ever known what it is to be an orphan?" 233 */ 234 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 235 { 236 struct task_struct *p; 237 238 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 239 if ((p == ignored_task) || 240 (p->exit_state && thread_group_empty(p)) || 241 is_global_init(p->real_parent)) 242 continue; 243 244 if (task_pgrp(p->real_parent) != pgrp && 245 task_session(p->real_parent) == task_session(p)) 246 return 0; 247 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 248 249 return 1; 250 } 251 252 int is_current_pgrp_orphaned(void) 253 { 254 int retval; 255 256 read_lock(&tasklist_lock); 257 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 258 read_unlock(&tasklist_lock); 259 260 return retval; 261 } 262 263 static int has_stopped_jobs(struct pid *pgrp) 264 { 265 int retval = 0; 266 struct task_struct *p; 267 268 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 269 if (!task_is_stopped(p)) 270 continue; 271 retval = 1; 272 break; 273 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 274 return retval; 275 } 276 277 /* 278 * Check to see if any process groups have become orphaned as 279 * a result of our exiting, and if they have any stopped jobs, 280 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 281 */ 282 static void 283 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 284 { 285 struct pid *pgrp = task_pgrp(tsk); 286 struct task_struct *ignored_task = tsk; 287 288 if (!parent) 289 /* exit: our father is in a different pgrp than 290 * we are and we were the only connection outside. 291 */ 292 parent = tsk->real_parent; 293 else 294 /* reparent: our child is in a different pgrp than 295 * we are, and it was the only connection outside. 296 */ 297 ignored_task = NULL; 298 299 if (task_pgrp(parent) != pgrp && 300 task_session(parent) == task_session(tsk) && 301 will_become_orphaned_pgrp(pgrp, ignored_task) && 302 has_stopped_jobs(pgrp)) { 303 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 304 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 305 } 306 } 307 308 /** 309 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 310 * 311 * If a kernel thread is launched as a result of a system call, or if 312 * it ever exits, it should generally reparent itself to kthreadd so it 313 * isn't in the way of other processes and is correctly cleaned up on exit. 314 * 315 * The various task state such as scheduling policy and priority may have 316 * been inherited from a user process, so we reset them to sane values here. 317 * 318 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 319 */ 320 static void reparent_to_kthreadd(void) 321 { 322 write_lock_irq(&tasklist_lock); 323 324 ptrace_unlink(current); 325 /* Reparent to init */ 326 current->real_parent = current->parent = kthreadd_task; 327 list_move_tail(¤t->sibling, ¤t->real_parent->children); 328 329 /* Set the exit signal to SIGCHLD so we signal init on exit */ 330 current->exit_signal = SIGCHLD; 331 332 if (task_nice(current) < 0) 333 set_user_nice(current, 0); 334 /* cpus_allowed? */ 335 /* rt_priority? */ 336 /* signals? */ 337 security_task_reparent_to_init(current); 338 memcpy(current->signal->rlim, init_task.signal->rlim, 339 sizeof(current->signal->rlim)); 340 atomic_inc(&(INIT_USER->__count)); 341 write_unlock_irq(&tasklist_lock); 342 switch_uid(INIT_USER); 343 } 344 345 void __set_special_pids(struct pid *pid) 346 { 347 struct task_struct *curr = current->group_leader; 348 pid_t nr = pid_nr(pid); 349 350 if (task_session(curr) != pid) { 351 change_pid(curr, PIDTYPE_SID, pid); 352 set_task_session(curr, nr); 353 } 354 if (task_pgrp(curr) != pid) { 355 change_pid(curr, PIDTYPE_PGID, pid); 356 set_task_pgrp(curr, nr); 357 } 358 } 359 360 static void set_special_pids(struct pid *pid) 361 { 362 write_lock_irq(&tasklist_lock); 363 __set_special_pids(pid); 364 write_unlock_irq(&tasklist_lock); 365 } 366 367 /* 368 * Let kernel threads use this to say that they 369 * allow a certain signal (since daemonize() will 370 * have disabled all of them by default). 371 */ 372 int allow_signal(int sig) 373 { 374 if (!valid_signal(sig) || sig < 1) 375 return -EINVAL; 376 377 spin_lock_irq(¤t->sighand->siglock); 378 sigdelset(¤t->blocked, sig); 379 if (!current->mm) { 380 /* Kernel threads handle their own signals. 381 Let the signal code know it'll be handled, so 382 that they don't get converted to SIGKILL or 383 just silently dropped */ 384 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 385 } 386 recalc_sigpending(); 387 spin_unlock_irq(¤t->sighand->siglock); 388 return 0; 389 } 390 391 EXPORT_SYMBOL(allow_signal); 392 393 int disallow_signal(int sig) 394 { 395 if (!valid_signal(sig) || sig < 1) 396 return -EINVAL; 397 398 spin_lock_irq(¤t->sighand->siglock); 399 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 400 recalc_sigpending(); 401 spin_unlock_irq(¤t->sighand->siglock); 402 return 0; 403 } 404 405 EXPORT_SYMBOL(disallow_signal); 406 407 /* 408 * Put all the gunge required to become a kernel thread without 409 * attached user resources in one place where it belongs. 410 */ 411 412 void daemonize(const char *name, ...) 413 { 414 va_list args; 415 struct fs_struct *fs; 416 sigset_t blocked; 417 418 va_start(args, name); 419 vsnprintf(current->comm, sizeof(current->comm), name, args); 420 va_end(args); 421 422 /* 423 * If we were started as result of loading a module, close all of the 424 * user space pages. We don't need them, and if we didn't close them 425 * they would be locked into memory. 426 */ 427 exit_mm(current); 428 /* 429 * We don't want to have TIF_FREEZE set if the system-wide hibernation 430 * or suspend transition begins right now. 431 */ 432 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 433 434 if (current->nsproxy != &init_nsproxy) { 435 get_nsproxy(&init_nsproxy); 436 switch_task_namespaces(current, &init_nsproxy); 437 } 438 set_special_pids(&init_struct_pid); 439 proc_clear_tty(current); 440 441 /* Block and flush all signals */ 442 sigfillset(&blocked); 443 sigprocmask(SIG_BLOCK, &blocked, NULL); 444 flush_signals(current); 445 446 /* Become as one with the init task */ 447 448 exit_fs(current); /* current->fs->count--; */ 449 fs = init_task.fs; 450 current->fs = fs; 451 atomic_inc(&fs->count); 452 453 exit_files(current); 454 current->files = init_task.files; 455 atomic_inc(¤t->files->count); 456 457 reparent_to_kthreadd(); 458 } 459 460 EXPORT_SYMBOL(daemonize); 461 462 static void close_files(struct files_struct * files) 463 { 464 int i, j; 465 struct fdtable *fdt; 466 467 j = 0; 468 469 /* 470 * It is safe to dereference the fd table without RCU or 471 * ->file_lock because this is the last reference to the 472 * files structure. 473 */ 474 fdt = files_fdtable(files); 475 for (;;) { 476 unsigned long set; 477 i = j * __NFDBITS; 478 if (i >= fdt->max_fds) 479 break; 480 set = fdt->open_fds->fds_bits[j++]; 481 while (set) { 482 if (set & 1) { 483 struct file * file = xchg(&fdt->fd[i], NULL); 484 if (file) { 485 filp_close(file, files); 486 cond_resched(); 487 } 488 } 489 i++; 490 set >>= 1; 491 } 492 } 493 } 494 495 struct files_struct *get_files_struct(struct task_struct *task) 496 { 497 struct files_struct *files; 498 499 task_lock(task); 500 files = task->files; 501 if (files) 502 atomic_inc(&files->count); 503 task_unlock(task); 504 505 return files; 506 } 507 508 void put_files_struct(struct files_struct *files) 509 { 510 struct fdtable *fdt; 511 512 if (atomic_dec_and_test(&files->count)) { 513 close_files(files); 514 /* 515 * Free the fd and fdset arrays if we expanded them. 516 * If the fdtable was embedded, pass files for freeing 517 * at the end of the RCU grace period. Otherwise, 518 * you can free files immediately. 519 */ 520 fdt = files_fdtable(files); 521 if (fdt != &files->fdtab) 522 kmem_cache_free(files_cachep, files); 523 free_fdtable(fdt); 524 } 525 } 526 527 void reset_files_struct(struct files_struct *files) 528 { 529 struct task_struct *tsk = current; 530 struct files_struct *old; 531 532 old = tsk->files; 533 task_lock(tsk); 534 tsk->files = files; 535 task_unlock(tsk); 536 put_files_struct(old); 537 } 538 539 void exit_files(struct task_struct *tsk) 540 { 541 struct files_struct * files = tsk->files; 542 543 if (files) { 544 task_lock(tsk); 545 tsk->files = NULL; 546 task_unlock(tsk); 547 put_files_struct(files); 548 } 549 } 550 551 void put_fs_struct(struct fs_struct *fs) 552 { 553 /* No need to hold fs->lock if we are killing it */ 554 if (atomic_dec_and_test(&fs->count)) { 555 path_put(&fs->root); 556 path_put(&fs->pwd); 557 kmem_cache_free(fs_cachep, fs); 558 } 559 } 560 561 void exit_fs(struct task_struct *tsk) 562 { 563 struct fs_struct * fs = tsk->fs; 564 565 if (fs) { 566 task_lock(tsk); 567 tsk->fs = NULL; 568 task_unlock(tsk); 569 put_fs_struct(fs); 570 } 571 } 572 573 EXPORT_SYMBOL_GPL(exit_fs); 574 575 #ifdef CONFIG_MM_OWNER 576 /* 577 * Task p is exiting and it owned mm, lets find a new owner for it 578 */ 579 static inline int 580 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 581 { 582 /* 583 * If there are other users of the mm and the owner (us) is exiting 584 * we need to find a new owner to take on the responsibility. 585 */ 586 if (!mm) 587 return 0; 588 if (atomic_read(&mm->mm_users) <= 1) 589 return 0; 590 if (mm->owner != p) 591 return 0; 592 return 1; 593 } 594 595 void mm_update_next_owner(struct mm_struct *mm) 596 { 597 struct task_struct *c, *g, *p = current; 598 599 retry: 600 if (!mm_need_new_owner(mm, p)) 601 return; 602 603 read_lock(&tasklist_lock); 604 /* 605 * Search in the children 606 */ 607 list_for_each_entry(c, &p->children, sibling) { 608 if (c->mm == mm) 609 goto assign_new_owner; 610 } 611 612 /* 613 * Search in the siblings 614 */ 615 list_for_each_entry(c, &p->parent->children, sibling) { 616 if (c->mm == mm) 617 goto assign_new_owner; 618 } 619 620 /* 621 * Search through everything else. We should not get 622 * here often 623 */ 624 do_each_thread(g, c) { 625 if (c->mm == mm) 626 goto assign_new_owner; 627 } while_each_thread(g, c); 628 629 read_unlock(&tasklist_lock); 630 return; 631 632 assign_new_owner: 633 BUG_ON(c == p); 634 get_task_struct(c); 635 /* 636 * The task_lock protects c->mm from changing. 637 * We always want mm->owner->mm == mm 638 */ 639 task_lock(c); 640 /* 641 * Delay read_unlock() till we have the task_lock() 642 * to ensure that c does not slip away underneath us 643 */ 644 read_unlock(&tasklist_lock); 645 if (c->mm != mm) { 646 task_unlock(c); 647 put_task_struct(c); 648 goto retry; 649 } 650 cgroup_mm_owner_callbacks(mm->owner, c); 651 mm->owner = c; 652 task_unlock(c); 653 put_task_struct(c); 654 } 655 #endif /* CONFIG_MM_OWNER */ 656 657 /* 658 * Turn us into a lazy TLB process if we 659 * aren't already.. 660 */ 661 static void exit_mm(struct task_struct * tsk) 662 { 663 struct mm_struct *mm = tsk->mm; 664 struct core_state *core_state; 665 666 mm_release(tsk, mm); 667 if (!mm) 668 return; 669 /* 670 * Serialize with any possible pending coredump. 671 * We must hold mmap_sem around checking core_state 672 * and clearing tsk->mm. The core-inducing thread 673 * will increment ->nr_threads for each thread in the 674 * group with ->mm != NULL. 675 */ 676 down_read(&mm->mmap_sem); 677 core_state = mm->core_state; 678 if (core_state) { 679 struct core_thread self; 680 up_read(&mm->mmap_sem); 681 682 self.task = tsk; 683 self.next = xchg(&core_state->dumper.next, &self); 684 /* 685 * Implies mb(), the result of xchg() must be visible 686 * to core_state->dumper. 687 */ 688 if (atomic_dec_and_test(&core_state->nr_threads)) 689 complete(&core_state->startup); 690 691 for (;;) { 692 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 693 if (!self.task) /* see coredump_finish() */ 694 break; 695 schedule(); 696 } 697 __set_task_state(tsk, TASK_RUNNING); 698 down_read(&mm->mmap_sem); 699 } 700 atomic_inc(&mm->mm_count); 701 BUG_ON(mm != tsk->active_mm); 702 /* more a memory barrier than a real lock */ 703 task_lock(tsk); 704 tsk->mm = NULL; 705 up_read(&mm->mmap_sem); 706 enter_lazy_tlb(mm, current); 707 /* We don't want this task to be frozen prematurely */ 708 clear_freeze_flag(tsk); 709 task_unlock(tsk); 710 mm_update_next_owner(mm); 711 mmput(mm); 712 } 713 714 /* 715 * Return nonzero if @parent's children should reap themselves. 716 * 717 * Called with write_lock_irq(&tasklist_lock) held. 718 */ 719 static int ignoring_children(struct task_struct *parent) 720 { 721 int ret; 722 struct sighand_struct *psig = parent->sighand; 723 unsigned long flags; 724 spin_lock_irqsave(&psig->siglock, flags); 725 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 726 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT)); 727 spin_unlock_irqrestore(&psig->siglock, flags); 728 return ret; 729 } 730 731 /* 732 * Detach all tasks we were using ptrace on. 733 * Any that need to be release_task'd are put on the @dead list. 734 * 735 * Called with write_lock(&tasklist_lock) held. 736 */ 737 static void ptrace_exit(struct task_struct *parent, struct list_head *dead) 738 { 739 struct task_struct *p, *n; 740 int ign = -1; 741 742 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) { 743 __ptrace_unlink(p); 744 745 if (p->exit_state != EXIT_ZOMBIE) 746 continue; 747 748 /* 749 * If it's a zombie, our attachedness prevented normal 750 * parent notification or self-reaping. Do notification 751 * now if it would have happened earlier. If it should 752 * reap itself, add it to the @dead list. We can't call 753 * release_task() here because we already hold tasklist_lock. 754 * 755 * If it's our own child, there is no notification to do. 756 * But if our normal children self-reap, then this child 757 * was prevented by ptrace and we must reap it now. 758 */ 759 if (!task_detached(p) && thread_group_empty(p)) { 760 if (!same_thread_group(p->real_parent, parent)) 761 do_notify_parent(p, p->exit_signal); 762 else { 763 if (ign < 0) 764 ign = ignoring_children(parent); 765 if (ign) 766 p->exit_signal = -1; 767 } 768 } 769 770 if (task_detached(p)) { 771 /* 772 * Mark it as in the process of being reaped. 773 */ 774 p->exit_state = EXIT_DEAD; 775 list_add(&p->ptrace_entry, dead); 776 } 777 } 778 } 779 780 /* 781 * Finish up exit-time ptrace cleanup. 782 * 783 * Called without locks. 784 */ 785 static void ptrace_exit_finish(struct task_struct *parent, 786 struct list_head *dead) 787 { 788 struct task_struct *p, *n; 789 790 BUG_ON(!list_empty(&parent->ptraced)); 791 792 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 793 list_del_init(&p->ptrace_entry); 794 release_task(p); 795 } 796 } 797 798 static void reparent_thread(struct task_struct *p, struct task_struct *father) 799 { 800 if (p->pdeath_signal) 801 /* We already hold the tasklist_lock here. */ 802 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 803 804 list_move_tail(&p->sibling, &p->real_parent->children); 805 806 /* If this is a threaded reparent there is no need to 807 * notify anyone anything has happened. 808 */ 809 if (same_thread_group(p->real_parent, father)) 810 return; 811 812 /* We don't want people slaying init. */ 813 if (!task_detached(p)) 814 p->exit_signal = SIGCHLD; 815 816 /* If we'd notified the old parent about this child's death, 817 * also notify the new parent. 818 */ 819 if (!ptrace_reparented(p) && 820 p->exit_state == EXIT_ZOMBIE && 821 !task_detached(p) && thread_group_empty(p)) 822 do_notify_parent(p, p->exit_signal); 823 824 kill_orphaned_pgrp(p, father); 825 } 826 827 /* 828 * When we die, we re-parent all our children. 829 * Try to give them to another thread in our thread 830 * group, and if no such member exists, give it to 831 * the child reaper process (ie "init") in our pid 832 * space. 833 */ 834 static struct task_struct *find_new_reaper(struct task_struct *father) 835 { 836 struct pid_namespace *pid_ns = task_active_pid_ns(father); 837 struct task_struct *thread; 838 839 thread = father; 840 while_each_thread(father, thread) { 841 if (thread->flags & PF_EXITING) 842 continue; 843 if (unlikely(pid_ns->child_reaper == father)) 844 pid_ns->child_reaper = thread; 845 return thread; 846 } 847 848 if (unlikely(pid_ns->child_reaper == father)) { 849 write_unlock_irq(&tasklist_lock); 850 if (unlikely(pid_ns == &init_pid_ns)) 851 panic("Attempted to kill init!"); 852 853 zap_pid_ns_processes(pid_ns); 854 write_lock_irq(&tasklist_lock); 855 /* 856 * We can not clear ->child_reaper or leave it alone. 857 * There may by stealth EXIT_DEAD tasks on ->children, 858 * forget_original_parent() must move them somewhere. 859 */ 860 pid_ns->child_reaper = init_pid_ns.child_reaper; 861 } 862 863 return pid_ns->child_reaper; 864 } 865 866 static void forget_original_parent(struct task_struct *father) 867 { 868 struct task_struct *p, *n, *reaper; 869 LIST_HEAD(ptrace_dead); 870 871 write_lock_irq(&tasklist_lock); 872 reaper = find_new_reaper(father); 873 /* 874 * First clean up ptrace if we were using it. 875 */ 876 ptrace_exit(father, &ptrace_dead); 877 878 list_for_each_entry_safe(p, n, &father->children, sibling) { 879 p->real_parent = reaper; 880 if (p->parent == father) { 881 BUG_ON(p->ptrace); 882 p->parent = p->real_parent; 883 } 884 reparent_thread(p, father); 885 } 886 887 write_unlock_irq(&tasklist_lock); 888 BUG_ON(!list_empty(&father->children)); 889 890 ptrace_exit_finish(father, &ptrace_dead); 891 } 892 893 /* 894 * Send signals to all our closest relatives so that they know 895 * to properly mourn us.. 896 */ 897 static void exit_notify(struct task_struct *tsk, int group_dead) 898 { 899 int signal; 900 void *cookie; 901 902 /* 903 * This does two things: 904 * 905 * A. Make init inherit all the child processes 906 * B. Check to see if any process groups have become orphaned 907 * as a result of our exiting, and if they have any stopped 908 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 909 */ 910 forget_original_parent(tsk); 911 exit_task_namespaces(tsk); 912 913 write_lock_irq(&tasklist_lock); 914 if (group_dead) 915 kill_orphaned_pgrp(tsk->group_leader, NULL); 916 917 /* Let father know we died 918 * 919 * Thread signals are configurable, but you aren't going to use 920 * that to send signals to arbitary processes. 921 * That stops right now. 922 * 923 * If the parent exec id doesn't match the exec id we saved 924 * when we started then we know the parent has changed security 925 * domain. 926 * 927 * If our self_exec id doesn't match our parent_exec_id then 928 * we have changed execution domain as these two values started 929 * the same after a fork. 930 */ 931 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 932 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 933 tsk->self_exec_id != tsk->parent_exec_id) && 934 !capable(CAP_KILL)) 935 tsk->exit_signal = SIGCHLD; 936 937 signal = tracehook_notify_death(tsk, &cookie, group_dead); 938 if (signal >= 0) 939 signal = do_notify_parent(tsk, signal); 940 941 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 942 943 /* mt-exec, de_thread() is waiting for us */ 944 if (thread_group_leader(tsk) && 945 tsk->signal->group_exit_task && 946 tsk->signal->notify_count < 0) 947 wake_up_process(tsk->signal->group_exit_task); 948 949 write_unlock_irq(&tasklist_lock); 950 951 tracehook_report_death(tsk, signal, cookie, group_dead); 952 953 /* If the process is dead, release it - nobody will wait for it */ 954 if (signal == DEATH_REAP) 955 release_task(tsk); 956 } 957 958 #ifdef CONFIG_DEBUG_STACK_USAGE 959 static void check_stack_usage(void) 960 { 961 static DEFINE_SPINLOCK(low_water_lock); 962 static int lowest_to_date = THREAD_SIZE; 963 unsigned long *n = end_of_stack(current); 964 unsigned long free; 965 966 while (*n == 0) 967 n++; 968 free = (unsigned long)n - (unsigned long)end_of_stack(current); 969 970 if (free >= lowest_to_date) 971 return; 972 973 spin_lock(&low_water_lock); 974 if (free < lowest_to_date) { 975 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 976 "left\n", 977 current->comm, free); 978 lowest_to_date = free; 979 } 980 spin_unlock(&low_water_lock); 981 } 982 #else 983 static inline void check_stack_usage(void) {} 984 #endif 985 986 NORET_TYPE void do_exit(long code) 987 { 988 struct task_struct *tsk = current; 989 int group_dead; 990 991 profile_task_exit(tsk); 992 993 WARN_ON(atomic_read(&tsk->fs_excl)); 994 995 if (unlikely(in_interrupt())) 996 panic("Aiee, killing interrupt handler!"); 997 if (unlikely(!tsk->pid)) 998 panic("Attempted to kill the idle task!"); 999 1000 tracehook_report_exit(&code); 1001 1002 /* 1003 * We're taking recursive faults here in do_exit. Safest is to just 1004 * leave this task alone and wait for reboot. 1005 */ 1006 if (unlikely(tsk->flags & PF_EXITING)) { 1007 printk(KERN_ALERT 1008 "Fixing recursive fault but reboot is needed!\n"); 1009 /* 1010 * We can do this unlocked here. The futex code uses 1011 * this flag just to verify whether the pi state 1012 * cleanup has been done or not. In the worst case it 1013 * loops once more. We pretend that the cleanup was 1014 * done as there is no way to return. Either the 1015 * OWNER_DIED bit is set by now or we push the blocked 1016 * task into the wait for ever nirwana as well. 1017 */ 1018 tsk->flags |= PF_EXITPIDONE; 1019 if (tsk->io_context) 1020 exit_io_context(); 1021 set_current_state(TASK_UNINTERRUPTIBLE); 1022 schedule(); 1023 } 1024 1025 exit_signals(tsk); /* sets PF_EXITING */ 1026 /* 1027 * tsk->flags are checked in the futex code to protect against 1028 * an exiting task cleaning up the robust pi futexes. 1029 */ 1030 smp_mb(); 1031 spin_unlock_wait(&tsk->pi_lock); 1032 1033 if (unlikely(in_atomic())) 1034 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 1035 current->comm, task_pid_nr(current), 1036 preempt_count()); 1037 1038 acct_update_integrals(tsk); 1039 if (tsk->mm) { 1040 update_hiwater_rss(tsk->mm); 1041 update_hiwater_vm(tsk->mm); 1042 } 1043 group_dead = atomic_dec_and_test(&tsk->signal->live); 1044 if (group_dead) { 1045 hrtimer_cancel(&tsk->signal->real_timer); 1046 exit_itimers(tsk->signal); 1047 } 1048 acct_collect(code, group_dead); 1049 #ifdef CONFIG_FUTEX 1050 if (unlikely(tsk->robust_list)) 1051 exit_robust_list(tsk); 1052 #ifdef CONFIG_COMPAT 1053 if (unlikely(tsk->compat_robust_list)) 1054 compat_exit_robust_list(tsk); 1055 #endif 1056 #endif 1057 if (group_dead) 1058 tty_audit_exit(); 1059 if (unlikely(tsk->audit_context)) 1060 audit_free(tsk); 1061 1062 tsk->exit_code = code; 1063 taskstats_exit(tsk, group_dead); 1064 1065 exit_mm(tsk); 1066 1067 if (group_dead) 1068 acct_process(); 1069 exit_sem(tsk); 1070 exit_files(tsk); 1071 exit_fs(tsk); 1072 check_stack_usage(); 1073 exit_thread(); 1074 cgroup_exit(tsk, 1); 1075 exit_keys(tsk); 1076 1077 if (group_dead && tsk->signal->leader) 1078 disassociate_ctty(1); 1079 1080 module_put(task_thread_info(tsk)->exec_domain->module); 1081 if (tsk->binfmt) 1082 module_put(tsk->binfmt->module); 1083 1084 proc_exit_connector(tsk); 1085 exit_notify(tsk, group_dead); 1086 #ifdef CONFIG_NUMA 1087 mpol_put(tsk->mempolicy); 1088 tsk->mempolicy = NULL; 1089 #endif 1090 #ifdef CONFIG_FUTEX 1091 /* 1092 * This must happen late, after the PID is not 1093 * hashed anymore: 1094 */ 1095 if (unlikely(!list_empty(&tsk->pi_state_list))) 1096 exit_pi_state_list(tsk); 1097 if (unlikely(current->pi_state_cache)) 1098 kfree(current->pi_state_cache); 1099 #endif 1100 /* 1101 * Make sure we are holding no locks: 1102 */ 1103 debug_check_no_locks_held(tsk); 1104 /* 1105 * We can do this unlocked here. The futex code uses this flag 1106 * just to verify whether the pi state cleanup has been done 1107 * or not. In the worst case it loops once more. 1108 */ 1109 tsk->flags |= PF_EXITPIDONE; 1110 1111 if (tsk->io_context) 1112 exit_io_context(); 1113 1114 if (tsk->splice_pipe) 1115 __free_pipe_info(tsk->splice_pipe); 1116 1117 preempt_disable(); 1118 /* causes final put_task_struct in finish_task_switch(). */ 1119 tsk->state = TASK_DEAD; 1120 1121 schedule(); 1122 BUG(); 1123 /* Avoid "noreturn function does return". */ 1124 for (;;) 1125 cpu_relax(); /* For when BUG is null */ 1126 } 1127 1128 EXPORT_SYMBOL_GPL(do_exit); 1129 1130 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1131 { 1132 if (comp) 1133 complete(comp); 1134 1135 do_exit(code); 1136 } 1137 1138 EXPORT_SYMBOL(complete_and_exit); 1139 1140 asmlinkage long sys_exit(int error_code) 1141 { 1142 do_exit((error_code&0xff)<<8); 1143 } 1144 1145 /* 1146 * Take down every thread in the group. This is called by fatal signals 1147 * as well as by sys_exit_group (below). 1148 */ 1149 NORET_TYPE void 1150 do_group_exit(int exit_code) 1151 { 1152 struct signal_struct *sig = current->signal; 1153 1154 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1155 1156 if (signal_group_exit(sig)) 1157 exit_code = sig->group_exit_code; 1158 else if (!thread_group_empty(current)) { 1159 struct sighand_struct *const sighand = current->sighand; 1160 spin_lock_irq(&sighand->siglock); 1161 if (signal_group_exit(sig)) 1162 /* Another thread got here before we took the lock. */ 1163 exit_code = sig->group_exit_code; 1164 else { 1165 sig->group_exit_code = exit_code; 1166 sig->flags = SIGNAL_GROUP_EXIT; 1167 zap_other_threads(current); 1168 } 1169 spin_unlock_irq(&sighand->siglock); 1170 } 1171 1172 do_exit(exit_code); 1173 /* NOTREACHED */ 1174 } 1175 1176 /* 1177 * this kills every thread in the thread group. Note that any externally 1178 * wait4()-ing process will get the correct exit code - even if this 1179 * thread is not the thread group leader. 1180 */ 1181 asmlinkage void sys_exit_group(int error_code) 1182 { 1183 do_group_exit((error_code & 0xff) << 8); 1184 } 1185 1186 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1187 { 1188 struct pid *pid = NULL; 1189 if (type == PIDTYPE_PID) 1190 pid = task->pids[type].pid; 1191 else if (type < PIDTYPE_MAX) 1192 pid = task->group_leader->pids[type].pid; 1193 return pid; 1194 } 1195 1196 static int eligible_child(enum pid_type type, struct pid *pid, int options, 1197 struct task_struct *p) 1198 { 1199 int err; 1200 1201 if (type < PIDTYPE_MAX) { 1202 if (task_pid_type(p, type) != pid) 1203 return 0; 1204 } 1205 1206 /* Wait for all children (clone and not) if __WALL is set; 1207 * otherwise, wait for clone children *only* if __WCLONE is 1208 * set; otherwise, wait for non-clone children *only*. (Note: 1209 * A "clone" child here is one that reports to its parent 1210 * using a signal other than SIGCHLD.) */ 1211 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1212 && !(options & __WALL)) 1213 return 0; 1214 1215 err = security_task_wait(p); 1216 if (err) 1217 return err; 1218 1219 return 1; 1220 } 1221 1222 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1223 int why, int status, 1224 struct siginfo __user *infop, 1225 struct rusage __user *rusagep) 1226 { 1227 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1228 1229 put_task_struct(p); 1230 if (!retval) 1231 retval = put_user(SIGCHLD, &infop->si_signo); 1232 if (!retval) 1233 retval = put_user(0, &infop->si_errno); 1234 if (!retval) 1235 retval = put_user((short)why, &infop->si_code); 1236 if (!retval) 1237 retval = put_user(pid, &infop->si_pid); 1238 if (!retval) 1239 retval = put_user(uid, &infop->si_uid); 1240 if (!retval) 1241 retval = put_user(status, &infop->si_status); 1242 if (!retval) 1243 retval = pid; 1244 return retval; 1245 } 1246 1247 /* 1248 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1249 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1250 * the lock and this task is uninteresting. If we return nonzero, we have 1251 * released the lock and the system call should return. 1252 */ 1253 static int wait_task_zombie(struct task_struct *p, int options, 1254 struct siginfo __user *infop, 1255 int __user *stat_addr, struct rusage __user *ru) 1256 { 1257 unsigned long state; 1258 int retval, status, traced; 1259 pid_t pid = task_pid_vnr(p); 1260 1261 if (!likely(options & WEXITED)) 1262 return 0; 1263 1264 if (unlikely(options & WNOWAIT)) { 1265 uid_t uid = p->uid; 1266 int exit_code = p->exit_code; 1267 int why, status; 1268 1269 get_task_struct(p); 1270 read_unlock(&tasklist_lock); 1271 if ((exit_code & 0x7f) == 0) { 1272 why = CLD_EXITED; 1273 status = exit_code >> 8; 1274 } else { 1275 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1276 status = exit_code & 0x7f; 1277 } 1278 return wait_noreap_copyout(p, pid, uid, why, 1279 status, infop, ru); 1280 } 1281 1282 /* 1283 * Try to move the task's state to DEAD 1284 * only one thread is allowed to do this: 1285 */ 1286 state = xchg(&p->exit_state, EXIT_DEAD); 1287 if (state != EXIT_ZOMBIE) { 1288 BUG_ON(state != EXIT_DEAD); 1289 return 0; 1290 } 1291 1292 traced = ptrace_reparented(p); 1293 1294 if (likely(!traced)) { 1295 struct signal_struct *psig; 1296 struct signal_struct *sig; 1297 1298 /* 1299 * The resource counters for the group leader are in its 1300 * own task_struct. Those for dead threads in the group 1301 * are in its signal_struct, as are those for the child 1302 * processes it has previously reaped. All these 1303 * accumulate in the parent's signal_struct c* fields. 1304 * 1305 * We don't bother to take a lock here to protect these 1306 * p->signal fields, because they are only touched by 1307 * __exit_signal, which runs with tasklist_lock 1308 * write-locked anyway, and so is excluded here. We do 1309 * need to protect the access to p->parent->signal fields, 1310 * as other threads in the parent group can be right 1311 * here reaping other children at the same time. 1312 */ 1313 spin_lock_irq(&p->parent->sighand->siglock); 1314 psig = p->parent->signal; 1315 sig = p->signal; 1316 psig->cutime = 1317 cputime_add(psig->cutime, 1318 cputime_add(p->utime, 1319 cputime_add(sig->utime, 1320 sig->cutime))); 1321 psig->cstime = 1322 cputime_add(psig->cstime, 1323 cputime_add(p->stime, 1324 cputime_add(sig->stime, 1325 sig->cstime))); 1326 psig->cgtime = 1327 cputime_add(psig->cgtime, 1328 cputime_add(p->gtime, 1329 cputime_add(sig->gtime, 1330 sig->cgtime))); 1331 psig->cmin_flt += 1332 p->min_flt + sig->min_flt + sig->cmin_flt; 1333 psig->cmaj_flt += 1334 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1335 psig->cnvcsw += 1336 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1337 psig->cnivcsw += 1338 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1339 psig->cinblock += 1340 task_io_get_inblock(p) + 1341 sig->inblock + sig->cinblock; 1342 psig->coublock += 1343 task_io_get_oublock(p) + 1344 sig->oublock + sig->coublock; 1345 task_io_accounting_add(&psig->ioac, &p->ioac); 1346 task_io_accounting_add(&psig->ioac, &sig->ioac); 1347 spin_unlock_irq(&p->parent->sighand->siglock); 1348 } 1349 1350 /* 1351 * Now we are sure this task is interesting, and no other 1352 * thread can reap it because we set its state to EXIT_DEAD. 1353 */ 1354 read_unlock(&tasklist_lock); 1355 1356 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1357 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1358 ? p->signal->group_exit_code : p->exit_code; 1359 if (!retval && stat_addr) 1360 retval = put_user(status, stat_addr); 1361 if (!retval && infop) 1362 retval = put_user(SIGCHLD, &infop->si_signo); 1363 if (!retval && infop) 1364 retval = put_user(0, &infop->si_errno); 1365 if (!retval && infop) { 1366 int why; 1367 1368 if ((status & 0x7f) == 0) { 1369 why = CLD_EXITED; 1370 status >>= 8; 1371 } else { 1372 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1373 status &= 0x7f; 1374 } 1375 retval = put_user((short)why, &infop->si_code); 1376 if (!retval) 1377 retval = put_user(status, &infop->si_status); 1378 } 1379 if (!retval && infop) 1380 retval = put_user(pid, &infop->si_pid); 1381 if (!retval && infop) 1382 retval = put_user(p->uid, &infop->si_uid); 1383 if (!retval) 1384 retval = pid; 1385 1386 if (traced) { 1387 write_lock_irq(&tasklist_lock); 1388 /* We dropped tasklist, ptracer could die and untrace */ 1389 ptrace_unlink(p); 1390 /* 1391 * If this is not a detached task, notify the parent. 1392 * If it's still not detached after that, don't release 1393 * it now. 1394 */ 1395 if (!task_detached(p)) { 1396 do_notify_parent(p, p->exit_signal); 1397 if (!task_detached(p)) { 1398 p->exit_state = EXIT_ZOMBIE; 1399 p = NULL; 1400 } 1401 } 1402 write_unlock_irq(&tasklist_lock); 1403 } 1404 if (p != NULL) 1405 release_task(p); 1406 1407 return retval; 1408 } 1409 1410 /* 1411 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1412 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1413 * the lock and this task is uninteresting. If we return nonzero, we have 1414 * released the lock and the system call should return. 1415 */ 1416 static int wait_task_stopped(int ptrace, struct task_struct *p, 1417 int options, struct siginfo __user *infop, 1418 int __user *stat_addr, struct rusage __user *ru) 1419 { 1420 int retval, exit_code, why; 1421 uid_t uid = 0; /* unneeded, required by compiler */ 1422 pid_t pid; 1423 1424 if (!(options & WUNTRACED)) 1425 return 0; 1426 1427 exit_code = 0; 1428 spin_lock_irq(&p->sighand->siglock); 1429 1430 if (unlikely(!task_is_stopped_or_traced(p))) 1431 goto unlock_sig; 1432 1433 if (!ptrace && p->signal->group_stop_count > 0) 1434 /* 1435 * A group stop is in progress and this is the group leader. 1436 * We won't report until all threads have stopped. 1437 */ 1438 goto unlock_sig; 1439 1440 exit_code = p->exit_code; 1441 if (!exit_code) 1442 goto unlock_sig; 1443 1444 if (!unlikely(options & WNOWAIT)) 1445 p->exit_code = 0; 1446 1447 uid = p->uid; 1448 unlock_sig: 1449 spin_unlock_irq(&p->sighand->siglock); 1450 if (!exit_code) 1451 return 0; 1452 1453 /* 1454 * Now we are pretty sure this task is interesting. 1455 * Make sure it doesn't get reaped out from under us while we 1456 * give up the lock and then examine it below. We don't want to 1457 * keep holding onto the tasklist_lock while we call getrusage and 1458 * possibly take page faults for user memory. 1459 */ 1460 get_task_struct(p); 1461 pid = task_pid_vnr(p); 1462 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1463 read_unlock(&tasklist_lock); 1464 1465 if (unlikely(options & WNOWAIT)) 1466 return wait_noreap_copyout(p, pid, uid, 1467 why, exit_code, 1468 infop, ru); 1469 1470 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1471 if (!retval && stat_addr) 1472 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1473 if (!retval && infop) 1474 retval = put_user(SIGCHLD, &infop->si_signo); 1475 if (!retval && infop) 1476 retval = put_user(0, &infop->si_errno); 1477 if (!retval && infop) 1478 retval = put_user((short)why, &infop->si_code); 1479 if (!retval && infop) 1480 retval = put_user(exit_code, &infop->si_status); 1481 if (!retval && infop) 1482 retval = put_user(pid, &infop->si_pid); 1483 if (!retval && infop) 1484 retval = put_user(uid, &infop->si_uid); 1485 if (!retval) 1486 retval = pid; 1487 put_task_struct(p); 1488 1489 BUG_ON(!retval); 1490 return retval; 1491 } 1492 1493 /* 1494 * Handle do_wait work for one task in a live, non-stopped state. 1495 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1496 * the lock and this task is uninteresting. If we return nonzero, we have 1497 * released the lock and the system call should return. 1498 */ 1499 static int wait_task_continued(struct task_struct *p, int options, 1500 struct siginfo __user *infop, 1501 int __user *stat_addr, struct rusage __user *ru) 1502 { 1503 int retval; 1504 pid_t pid; 1505 uid_t uid; 1506 1507 if (!unlikely(options & WCONTINUED)) 1508 return 0; 1509 1510 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1511 return 0; 1512 1513 spin_lock_irq(&p->sighand->siglock); 1514 /* Re-check with the lock held. */ 1515 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1516 spin_unlock_irq(&p->sighand->siglock); 1517 return 0; 1518 } 1519 if (!unlikely(options & WNOWAIT)) 1520 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1521 spin_unlock_irq(&p->sighand->siglock); 1522 1523 pid = task_pid_vnr(p); 1524 uid = p->uid; 1525 get_task_struct(p); 1526 read_unlock(&tasklist_lock); 1527 1528 if (!infop) { 1529 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1530 put_task_struct(p); 1531 if (!retval && stat_addr) 1532 retval = put_user(0xffff, stat_addr); 1533 if (!retval) 1534 retval = pid; 1535 } else { 1536 retval = wait_noreap_copyout(p, pid, uid, 1537 CLD_CONTINUED, SIGCONT, 1538 infop, ru); 1539 BUG_ON(retval == 0); 1540 } 1541 1542 return retval; 1543 } 1544 1545 /* 1546 * Consider @p for a wait by @parent. 1547 * 1548 * -ECHILD should be in *@notask_error before the first call. 1549 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1550 * Returns zero if the search for a child should continue; 1551 * then *@notask_error is 0 if @p is an eligible child, 1552 * or another error from security_task_wait(), or still -ECHILD. 1553 */ 1554 static int wait_consider_task(struct task_struct *parent, int ptrace, 1555 struct task_struct *p, int *notask_error, 1556 enum pid_type type, struct pid *pid, int options, 1557 struct siginfo __user *infop, 1558 int __user *stat_addr, struct rusage __user *ru) 1559 { 1560 int ret = eligible_child(type, pid, options, p); 1561 if (!ret) 1562 return ret; 1563 1564 if (unlikely(ret < 0)) { 1565 /* 1566 * If we have not yet seen any eligible child, 1567 * then let this error code replace -ECHILD. 1568 * A permission error will give the user a clue 1569 * to look for security policy problems, rather 1570 * than for mysterious wait bugs. 1571 */ 1572 if (*notask_error) 1573 *notask_error = ret; 1574 } 1575 1576 if (likely(!ptrace) && unlikely(p->ptrace)) { 1577 /* 1578 * This child is hidden by ptrace. 1579 * We aren't allowed to see it now, but eventually we will. 1580 */ 1581 *notask_error = 0; 1582 return 0; 1583 } 1584 1585 if (p->exit_state == EXIT_DEAD) 1586 return 0; 1587 1588 /* 1589 * We don't reap group leaders with subthreads. 1590 */ 1591 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1592 return wait_task_zombie(p, options, infop, stat_addr, ru); 1593 1594 /* 1595 * It's stopped or running now, so it might 1596 * later continue, exit, or stop again. 1597 */ 1598 *notask_error = 0; 1599 1600 if (task_is_stopped_or_traced(p)) 1601 return wait_task_stopped(ptrace, p, options, 1602 infop, stat_addr, ru); 1603 1604 return wait_task_continued(p, options, infop, stat_addr, ru); 1605 } 1606 1607 /* 1608 * Do the work of do_wait() for one thread in the group, @tsk. 1609 * 1610 * -ECHILD should be in *@notask_error before the first call. 1611 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1612 * Returns zero if the search for a child should continue; then 1613 * *@notask_error is 0 if there were any eligible children, 1614 * or another error from security_task_wait(), or still -ECHILD. 1615 */ 1616 static int do_wait_thread(struct task_struct *tsk, int *notask_error, 1617 enum pid_type type, struct pid *pid, int options, 1618 struct siginfo __user *infop, int __user *stat_addr, 1619 struct rusage __user *ru) 1620 { 1621 struct task_struct *p; 1622 1623 list_for_each_entry(p, &tsk->children, sibling) { 1624 /* 1625 * Do not consider detached threads. 1626 */ 1627 if (!task_detached(p)) { 1628 int ret = wait_consider_task(tsk, 0, p, notask_error, 1629 type, pid, options, 1630 infop, stat_addr, ru); 1631 if (ret) 1632 return ret; 1633 } 1634 } 1635 1636 return 0; 1637 } 1638 1639 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error, 1640 enum pid_type type, struct pid *pid, int options, 1641 struct siginfo __user *infop, int __user *stat_addr, 1642 struct rusage __user *ru) 1643 { 1644 struct task_struct *p; 1645 1646 /* 1647 * Traditionally we see ptrace'd stopped tasks regardless of options. 1648 */ 1649 options |= WUNTRACED; 1650 1651 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1652 int ret = wait_consider_task(tsk, 1, p, notask_error, 1653 type, pid, options, 1654 infop, stat_addr, ru); 1655 if (ret) 1656 return ret; 1657 } 1658 1659 return 0; 1660 } 1661 1662 static long do_wait(enum pid_type type, struct pid *pid, int options, 1663 struct siginfo __user *infop, int __user *stat_addr, 1664 struct rusage __user *ru) 1665 { 1666 DECLARE_WAITQUEUE(wait, current); 1667 struct task_struct *tsk; 1668 int retval; 1669 1670 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1671 repeat: 1672 /* 1673 * If there is nothing that can match our critiera just get out. 1674 * We will clear @retval to zero if we see any child that might later 1675 * match our criteria, even if we are not able to reap it yet. 1676 */ 1677 retval = -ECHILD; 1678 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type]))) 1679 goto end; 1680 1681 current->state = TASK_INTERRUPTIBLE; 1682 read_lock(&tasklist_lock); 1683 tsk = current; 1684 do { 1685 int tsk_result = do_wait_thread(tsk, &retval, 1686 type, pid, options, 1687 infop, stat_addr, ru); 1688 if (!tsk_result) 1689 tsk_result = ptrace_do_wait(tsk, &retval, 1690 type, pid, options, 1691 infop, stat_addr, ru); 1692 if (tsk_result) { 1693 /* 1694 * tasklist_lock is unlocked and we have a final result. 1695 */ 1696 retval = tsk_result; 1697 goto end; 1698 } 1699 1700 if (options & __WNOTHREAD) 1701 break; 1702 tsk = next_thread(tsk); 1703 BUG_ON(tsk->signal != current->signal); 1704 } while (tsk != current); 1705 read_unlock(&tasklist_lock); 1706 1707 if (!retval && !(options & WNOHANG)) { 1708 retval = -ERESTARTSYS; 1709 if (!signal_pending(current)) { 1710 schedule(); 1711 goto repeat; 1712 } 1713 } 1714 1715 end: 1716 current->state = TASK_RUNNING; 1717 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1718 if (infop) { 1719 if (retval > 0) 1720 retval = 0; 1721 else { 1722 /* 1723 * For a WNOHANG return, clear out all the fields 1724 * we would set so the user can easily tell the 1725 * difference. 1726 */ 1727 if (!retval) 1728 retval = put_user(0, &infop->si_signo); 1729 if (!retval) 1730 retval = put_user(0, &infop->si_errno); 1731 if (!retval) 1732 retval = put_user(0, &infop->si_code); 1733 if (!retval) 1734 retval = put_user(0, &infop->si_pid); 1735 if (!retval) 1736 retval = put_user(0, &infop->si_uid); 1737 if (!retval) 1738 retval = put_user(0, &infop->si_status); 1739 } 1740 } 1741 return retval; 1742 } 1743 1744 asmlinkage long sys_waitid(int which, pid_t upid, 1745 struct siginfo __user *infop, int options, 1746 struct rusage __user *ru) 1747 { 1748 struct pid *pid = NULL; 1749 enum pid_type type; 1750 long ret; 1751 1752 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1753 return -EINVAL; 1754 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1755 return -EINVAL; 1756 1757 switch (which) { 1758 case P_ALL: 1759 type = PIDTYPE_MAX; 1760 break; 1761 case P_PID: 1762 type = PIDTYPE_PID; 1763 if (upid <= 0) 1764 return -EINVAL; 1765 break; 1766 case P_PGID: 1767 type = PIDTYPE_PGID; 1768 if (upid <= 0) 1769 return -EINVAL; 1770 break; 1771 default: 1772 return -EINVAL; 1773 } 1774 1775 if (type < PIDTYPE_MAX) 1776 pid = find_get_pid(upid); 1777 ret = do_wait(type, pid, options, infop, NULL, ru); 1778 put_pid(pid); 1779 1780 /* avoid REGPARM breakage on x86: */ 1781 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1782 return ret; 1783 } 1784 1785 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr, 1786 int options, struct rusage __user *ru) 1787 { 1788 struct pid *pid = NULL; 1789 enum pid_type type; 1790 long ret; 1791 1792 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1793 __WNOTHREAD|__WCLONE|__WALL)) 1794 return -EINVAL; 1795 1796 if (upid == -1) 1797 type = PIDTYPE_MAX; 1798 else if (upid < 0) { 1799 type = PIDTYPE_PGID; 1800 pid = find_get_pid(-upid); 1801 } else if (upid == 0) { 1802 type = PIDTYPE_PGID; 1803 pid = get_pid(task_pgrp(current)); 1804 } else /* upid > 0 */ { 1805 type = PIDTYPE_PID; 1806 pid = find_get_pid(upid); 1807 } 1808 1809 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru); 1810 put_pid(pid); 1811 1812 /* avoid REGPARM breakage on x86: */ 1813 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1814 return ret; 1815 } 1816 1817 #ifdef __ARCH_WANT_SYS_WAITPID 1818 1819 /* 1820 * sys_waitpid() remains for compatibility. waitpid() should be 1821 * implemented by calling sys_wait4() from libc.a. 1822 */ 1823 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1824 { 1825 return sys_wait4(pid, stat_addr, options, NULL); 1826 } 1827 1828 #endif 1829