1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/freezer.h> 29 #include <linux/binfmts.h> 30 #include <linux/nsproxy.h> 31 #include <linux/pid_namespace.h> 32 #include <linux/ptrace.h> 33 #include <linux/profile.h> 34 #include <linux/mount.h> 35 #include <linux/proc_fs.h> 36 #include <linux/kthread.h> 37 #include <linux/mempolicy.h> 38 #include <linux/taskstats_kern.h> 39 #include <linux/delayacct.h> 40 #include <linux/cgroup.h> 41 #include <linux/syscalls.h> 42 #include <linux/signal.h> 43 #include <linux/posix-timers.h> 44 #include <linux/cn_proc.h> 45 #include <linux/mutex.h> 46 #include <linux/futex.h> 47 #include <linux/pipe_fs_i.h> 48 #include <linux/audit.h> /* for audit_free() */ 49 #include <linux/resource.h> 50 #include <linux/task_io_accounting_ops.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_work.h> 53 #include <linux/fs_struct.h> 54 #include <linux/init_task.h> 55 #include <linux/perf_event.h> 56 #include <trace/events/sched.h> 57 #include <linux/hw_breakpoint.h> 58 #include <linux/oom.h> 59 #include <linux/writeback.h> 60 #include <linux/shm.h> 61 #include <linux/kcov.h> 62 #include <linux/kmsan.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 #include <linux/io_uring.h> 67 #include <linux/kprobes.h> 68 #include <linux/rethook.h> 69 #include <linux/sysfs.h> 70 #include <linux/user_events.h> 71 #include <linux/uaccess.h> 72 #include <linux/pidfs.h> 73 74 #include <uapi/linux/wait.h> 75 76 #include <asm/unistd.h> 77 #include <asm/mmu_context.h> 78 79 #include "exit.h" 80 81 /* 82 * The default value should be high enough to not crash a system that randomly 83 * crashes its kernel from time to time, but low enough to at least not permit 84 * overflowing 32-bit refcounts or the ldsem writer count. 85 */ 86 static unsigned int oops_limit = 10000; 87 88 #ifdef CONFIG_SYSCTL 89 static const struct ctl_table kern_exit_table[] = { 90 { 91 .procname = "oops_limit", 92 .data = &oops_limit, 93 .maxlen = sizeof(oops_limit), 94 .mode = 0644, 95 .proc_handler = proc_douintvec, 96 }, 97 }; 98 99 static __init int kernel_exit_sysctls_init(void) 100 { 101 register_sysctl_init("kernel", kern_exit_table); 102 return 0; 103 } 104 late_initcall(kernel_exit_sysctls_init); 105 #endif 106 107 static atomic_t oops_count = ATOMIC_INIT(0); 108 109 #ifdef CONFIG_SYSFS 110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr, 111 char *page) 112 { 113 return sysfs_emit(page, "%d\n", atomic_read(&oops_count)); 114 } 115 116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count); 117 118 static __init int kernel_exit_sysfs_init(void) 119 { 120 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL); 121 return 0; 122 } 123 late_initcall(kernel_exit_sysfs_init); 124 #endif 125 126 /* 127 * For things release_task() would like to do *after* tasklist_lock is released. 128 */ 129 struct release_task_post { 130 struct pid *pids[PIDTYPE_MAX]; 131 }; 132 133 static void __unhash_process(struct release_task_post *post, struct task_struct *p, 134 bool group_dead) 135 { 136 struct pid *pid = task_pid(p); 137 138 nr_threads--; 139 140 detach_pid(post->pids, p, PIDTYPE_PID); 141 wake_up_all(&pid->wait_pidfd); 142 143 if (group_dead) { 144 detach_pid(post->pids, p, PIDTYPE_TGID); 145 detach_pid(post->pids, p, PIDTYPE_PGID); 146 detach_pid(post->pids, p, PIDTYPE_SID); 147 148 list_del_rcu(&p->tasks); 149 list_del_init(&p->sibling); 150 __this_cpu_dec(process_counts); 151 } 152 list_del_rcu(&p->thread_node); 153 } 154 155 /* 156 * This function expects the tasklist_lock write-locked. 157 */ 158 static void __exit_signal(struct release_task_post *post, struct task_struct *tsk) 159 { 160 struct signal_struct *sig = tsk->signal; 161 bool group_dead = thread_group_leader(tsk); 162 struct sighand_struct *sighand; 163 struct tty_struct *tty; 164 u64 utime, stime; 165 166 sighand = rcu_dereference_check(tsk->sighand, 167 lockdep_tasklist_lock_is_held()); 168 spin_lock(&sighand->siglock); 169 170 #ifdef CONFIG_POSIX_TIMERS 171 posix_cpu_timers_exit(tsk); 172 if (group_dead) 173 posix_cpu_timers_exit_group(tsk); 174 #endif 175 176 if (group_dead) { 177 tty = sig->tty; 178 sig->tty = NULL; 179 } else { 180 /* 181 * If there is any task waiting for the group exit 182 * then notify it: 183 */ 184 if (sig->notify_count > 0 && !--sig->notify_count) 185 wake_up_process(sig->group_exec_task); 186 187 if (tsk == sig->curr_target) 188 sig->curr_target = next_thread(tsk); 189 } 190 191 /* 192 * Accumulate here the counters for all threads as they die. We could 193 * skip the group leader because it is the last user of signal_struct, 194 * but we want to avoid the race with thread_group_cputime() which can 195 * see the empty ->thread_head list. 196 */ 197 task_cputime(tsk, &utime, &stime); 198 write_seqlock(&sig->stats_lock); 199 sig->utime += utime; 200 sig->stime += stime; 201 sig->gtime += task_gtime(tsk); 202 sig->min_flt += tsk->min_flt; 203 sig->maj_flt += tsk->maj_flt; 204 sig->nvcsw += tsk->nvcsw; 205 sig->nivcsw += tsk->nivcsw; 206 sig->inblock += task_io_get_inblock(tsk); 207 sig->oublock += task_io_get_oublock(tsk); 208 task_io_accounting_add(&sig->ioac, &tsk->ioac); 209 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 210 sig->nr_threads--; 211 __unhash_process(post, tsk, group_dead); 212 write_sequnlock(&sig->stats_lock); 213 214 tsk->sighand = NULL; 215 spin_unlock(&sighand->siglock); 216 217 __cleanup_sighand(sighand); 218 if (group_dead) 219 tty_kref_put(tty); 220 } 221 222 static void delayed_put_task_struct(struct rcu_head *rhp) 223 { 224 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 225 226 kprobe_flush_task(tsk); 227 rethook_flush_task(tsk); 228 perf_event_delayed_put(tsk); 229 trace_sched_process_free(tsk); 230 put_task_struct(tsk); 231 } 232 233 void put_task_struct_rcu_user(struct task_struct *task) 234 { 235 if (refcount_dec_and_test(&task->rcu_users)) 236 call_rcu(&task->rcu, delayed_put_task_struct); 237 } 238 239 void __weak release_thread(struct task_struct *dead_task) 240 { 241 } 242 243 void release_task(struct task_struct *p) 244 { 245 struct release_task_post post; 246 struct task_struct *leader; 247 struct pid *thread_pid; 248 int zap_leader; 249 repeat: 250 memset(&post, 0, sizeof(post)); 251 252 /* don't need to get the RCU readlock here - the process is dead and 253 * can't be modifying its own credentials. But shut RCU-lockdep up */ 254 rcu_read_lock(); 255 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 256 rcu_read_unlock(); 257 258 pidfs_exit(p); 259 cgroup_release(p); 260 261 /* Retrieve @thread_pid before __unhash_process() may set it to NULL. */ 262 thread_pid = task_pid(p); 263 264 write_lock_irq(&tasklist_lock); 265 ptrace_release_task(p); 266 __exit_signal(&post, p); 267 268 /* 269 * If we are the last non-leader member of the thread 270 * group, and the leader is zombie, then notify the 271 * group leader's parent process. (if it wants notification.) 272 */ 273 zap_leader = 0; 274 leader = p->group_leader; 275 if (leader != p && thread_group_empty(leader) 276 && leader->exit_state == EXIT_ZOMBIE) { 277 /* for pidfs_exit() and do_notify_parent() */ 278 if (leader->signal->flags & SIGNAL_GROUP_EXIT) 279 leader->exit_code = leader->signal->group_exit_code; 280 /* 281 * If we were the last child thread and the leader has 282 * exited already, and the leader's parent ignores SIGCHLD, 283 * then we are the one who should release the leader. 284 */ 285 zap_leader = do_notify_parent(leader, leader->exit_signal); 286 if (zap_leader) 287 leader->exit_state = EXIT_DEAD; 288 } 289 290 write_unlock_irq(&tasklist_lock); 291 /* @thread_pid can't go away until free_pids() below */ 292 proc_flush_pid(thread_pid); 293 add_device_randomness(&p->se.sum_exec_runtime, 294 sizeof(p->se.sum_exec_runtime)); 295 free_pids(post.pids); 296 release_thread(p); 297 /* 298 * This task was already removed from the process/thread/pid lists 299 * and lock_task_sighand(p) can't succeed. Nobody else can touch 300 * ->pending or, if group dead, signal->shared_pending. We can call 301 * flush_sigqueue() lockless. 302 */ 303 flush_sigqueue(&p->pending); 304 if (thread_group_leader(p)) 305 flush_sigqueue(&p->signal->shared_pending); 306 307 put_task_struct_rcu_user(p); 308 309 p = leader; 310 if (unlikely(zap_leader)) 311 goto repeat; 312 } 313 314 int rcuwait_wake_up(struct rcuwait *w) 315 { 316 int ret = 0; 317 struct task_struct *task; 318 319 rcu_read_lock(); 320 321 /* 322 * Order condition vs @task, such that everything prior to the load 323 * of @task is visible. This is the condition as to why the user called 324 * rcuwait_wake() in the first place. Pairs with set_current_state() 325 * barrier (A) in rcuwait_wait_event(). 326 * 327 * WAIT WAKE 328 * [S] tsk = current [S] cond = true 329 * MB (A) MB (B) 330 * [L] cond [L] tsk 331 */ 332 smp_mb(); /* (B) */ 333 334 task = rcu_dereference(w->task); 335 if (task) 336 ret = wake_up_process(task); 337 rcu_read_unlock(); 338 339 return ret; 340 } 341 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 342 343 /* 344 * Determine if a process group is "orphaned", according to the POSIX 345 * definition in 2.2.2.52. Orphaned process groups are not to be affected 346 * by terminal-generated stop signals. Newly orphaned process groups are 347 * to receive a SIGHUP and a SIGCONT. 348 * 349 * "I ask you, have you ever known what it is to be an orphan?" 350 */ 351 static int will_become_orphaned_pgrp(struct pid *pgrp, 352 struct task_struct *ignored_task) 353 { 354 struct task_struct *p; 355 356 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 357 if ((p == ignored_task) || 358 (p->exit_state && thread_group_empty(p)) || 359 is_global_init(p->real_parent)) 360 continue; 361 362 if (task_pgrp(p->real_parent) != pgrp && 363 task_session(p->real_parent) == task_session(p)) 364 return 0; 365 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 366 367 return 1; 368 } 369 370 int is_current_pgrp_orphaned(void) 371 { 372 int retval; 373 374 read_lock(&tasklist_lock); 375 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 376 read_unlock(&tasklist_lock); 377 378 return retval; 379 } 380 381 static bool has_stopped_jobs(struct pid *pgrp) 382 { 383 struct task_struct *p; 384 385 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 386 if (p->signal->flags & SIGNAL_STOP_STOPPED) 387 return true; 388 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 389 390 return false; 391 } 392 393 /* 394 * Check to see if any process groups have become orphaned as 395 * a result of our exiting, and if they have any stopped jobs, 396 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 397 */ 398 static void 399 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 400 { 401 struct pid *pgrp = task_pgrp(tsk); 402 struct task_struct *ignored_task = tsk; 403 404 if (!parent) 405 /* exit: our father is in a different pgrp than 406 * we are and we were the only connection outside. 407 */ 408 parent = tsk->real_parent; 409 else 410 /* reparent: our child is in a different pgrp than 411 * we are, and it was the only connection outside. 412 */ 413 ignored_task = NULL; 414 415 if (task_pgrp(parent) != pgrp && 416 task_session(parent) == task_session(tsk) && 417 will_become_orphaned_pgrp(pgrp, ignored_task) && 418 has_stopped_jobs(pgrp)) { 419 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 420 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 421 } 422 } 423 424 static void coredump_task_exit(struct task_struct *tsk) 425 { 426 struct core_state *core_state; 427 428 /* 429 * Serialize with any possible pending coredump. 430 * We must hold siglock around checking core_state 431 * and setting PF_POSTCOREDUMP. The core-inducing thread 432 * will increment ->nr_threads for each thread in the 433 * group without PF_POSTCOREDUMP set. 434 */ 435 spin_lock_irq(&tsk->sighand->siglock); 436 tsk->flags |= PF_POSTCOREDUMP; 437 core_state = tsk->signal->core_state; 438 spin_unlock_irq(&tsk->sighand->siglock); 439 if (core_state) { 440 struct core_thread self; 441 442 self.task = current; 443 if (self.task->flags & PF_SIGNALED) 444 self.next = xchg(&core_state->dumper.next, &self); 445 else 446 self.task = NULL; 447 /* 448 * Implies mb(), the result of xchg() must be visible 449 * to core_state->dumper. 450 */ 451 if (atomic_dec_and_test(&core_state->nr_threads)) 452 complete(&core_state->startup); 453 454 for (;;) { 455 set_current_state(TASK_IDLE|TASK_FREEZABLE); 456 if (!self.task) /* see coredump_finish() */ 457 break; 458 schedule(); 459 } 460 __set_current_state(TASK_RUNNING); 461 } 462 } 463 464 #ifdef CONFIG_MEMCG 465 /* drops tasklist_lock if succeeds */ 466 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm) 467 { 468 bool ret = false; 469 470 task_lock(tsk); 471 if (likely(tsk->mm == mm)) { 472 /* tsk can't pass exit_mm/exec_mmap and exit */ 473 read_unlock(&tasklist_lock); 474 WRITE_ONCE(mm->owner, tsk); 475 lru_gen_migrate_mm(mm); 476 ret = true; 477 } 478 task_unlock(tsk); 479 return ret; 480 } 481 482 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm) 483 { 484 struct task_struct *t; 485 486 for_each_thread(g, t) { 487 struct mm_struct *t_mm = READ_ONCE(t->mm); 488 if (t_mm == mm) { 489 if (__try_to_set_owner(t, mm)) 490 return true; 491 } else if (t_mm) 492 break; 493 } 494 495 return false; 496 } 497 498 /* 499 * A task is exiting. If it owned this mm, find a new owner for the mm. 500 */ 501 void mm_update_next_owner(struct mm_struct *mm) 502 { 503 struct task_struct *g, *p = current; 504 505 /* 506 * If the exiting or execing task is not the owner, it's 507 * someone else's problem. 508 */ 509 if (mm->owner != p) 510 return; 511 /* 512 * The current owner is exiting/execing and there are no other 513 * candidates. Do not leave the mm pointing to a possibly 514 * freed task structure. 515 */ 516 if (atomic_read(&mm->mm_users) <= 1) { 517 WRITE_ONCE(mm->owner, NULL); 518 return; 519 } 520 521 read_lock(&tasklist_lock); 522 /* 523 * Search in the children 524 */ 525 list_for_each_entry(g, &p->children, sibling) { 526 if (try_to_set_owner(g, mm)) 527 goto ret; 528 } 529 /* 530 * Search in the siblings 531 */ 532 list_for_each_entry(g, &p->real_parent->children, sibling) { 533 if (try_to_set_owner(g, mm)) 534 goto ret; 535 } 536 /* 537 * Search through everything else, we should not get here often. 538 */ 539 for_each_process(g) { 540 if (atomic_read(&mm->mm_users) <= 1) 541 break; 542 if (g->flags & PF_KTHREAD) 543 continue; 544 if (try_to_set_owner(g, mm)) 545 goto ret; 546 } 547 read_unlock(&tasklist_lock); 548 /* 549 * We found no owner yet mm_users > 1: this implies that we are 550 * most likely racing with swapoff (try_to_unuse()) or /proc or 551 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 552 */ 553 WRITE_ONCE(mm->owner, NULL); 554 ret: 555 return; 556 557 } 558 #endif /* CONFIG_MEMCG */ 559 560 /* 561 * Turn us into a lazy TLB process if we 562 * aren't already.. 563 */ 564 static void exit_mm(void) 565 { 566 struct mm_struct *mm = current->mm; 567 568 exit_mm_release(current, mm); 569 if (!mm) 570 return; 571 mmap_read_lock(mm); 572 mmgrab_lazy_tlb(mm); 573 BUG_ON(mm != current->active_mm); 574 /* more a memory barrier than a real lock */ 575 task_lock(current); 576 /* 577 * When a thread stops operating on an address space, the loop 578 * in membarrier_private_expedited() may not observe that 579 * tsk->mm, and the loop in membarrier_global_expedited() may 580 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 581 * rq->membarrier_state, so those would not issue an IPI. 582 * Membarrier requires a memory barrier after accessing 583 * user-space memory, before clearing tsk->mm or the 584 * rq->membarrier_state. 585 */ 586 smp_mb__after_spinlock(); 587 local_irq_disable(); 588 current->mm = NULL; 589 membarrier_update_current_mm(NULL); 590 enter_lazy_tlb(mm, current); 591 local_irq_enable(); 592 task_unlock(current); 593 mmap_read_unlock(mm); 594 mm_update_next_owner(mm); 595 mmput(mm); 596 if (test_thread_flag(TIF_MEMDIE)) 597 exit_oom_victim(); 598 } 599 600 static struct task_struct *find_alive_thread(struct task_struct *p) 601 { 602 struct task_struct *t; 603 604 for_each_thread(p, t) { 605 if (!(t->flags & PF_EXITING)) 606 return t; 607 } 608 return NULL; 609 } 610 611 static struct task_struct *find_child_reaper(struct task_struct *father, 612 struct list_head *dead) 613 __releases(&tasklist_lock) 614 __acquires(&tasklist_lock) 615 { 616 struct pid_namespace *pid_ns = task_active_pid_ns(father); 617 struct task_struct *reaper = pid_ns->child_reaper; 618 struct task_struct *p, *n; 619 620 if (likely(reaper != father)) 621 return reaper; 622 623 reaper = find_alive_thread(father); 624 if (reaper) { 625 pid_ns->child_reaper = reaper; 626 return reaper; 627 } 628 629 write_unlock_irq(&tasklist_lock); 630 631 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 632 list_del_init(&p->ptrace_entry); 633 release_task(p); 634 } 635 636 zap_pid_ns_processes(pid_ns); 637 write_lock_irq(&tasklist_lock); 638 639 return father; 640 } 641 642 /* 643 * When we die, we re-parent all our children, and try to: 644 * 1. give them to another thread in our thread group, if such a member exists 645 * 2. give it to the first ancestor process which prctl'd itself as a 646 * child_subreaper for its children (like a service manager) 647 * 3. give it to the init process (PID 1) in our pid namespace 648 */ 649 static struct task_struct *find_new_reaper(struct task_struct *father, 650 struct task_struct *child_reaper) 651 { 652 struct task_struct *thread, *reaper; 653 654 thread = find_alive_thread(father); 655 if (thread) 656 return thread; 657 658 if (father->signal->has_child_subreaper) { 659 unsigned int ns_level = task_pid(father)->level; 660 /* 661 * Find the first ->is_child_subreaper ancestor in our pid_ns. 662 * We can't check reaper != child_reaper to ensure we do not 663 * cross the namespaces, the exiting parent could be injected 664 * by setns() + fork(). 665 * We check pid->level, this is slightly more efficient than 666 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 667 */ 668 for (reaper = father->real_parent; 669 task_pid(reaper)->level == ns_level; 670 reaper = reaper->real_parent) { 671 if (reaper == &init_task) 672 break; 673 if (!reaper->signal->is_child_subreaper) 674 continue; 675 thread = find_alive_thread(reaper); 676 if (thread) 677 return thread; 678 } 679 } 680 681 return child_reaper; 682 } 683 684 /* 685 * Any that need to be release_task'd are put on the @dead list. 686 */ 687 static void reparent_leader(struct task_struct *father, struct task_struct *p, 688 struct list_head *dead) 689 { 690 if (unlikely(p->exit_state == EXIT_DEAD)) 691 return; 692 693 /* We don't want people slaying init. */ 694 p->exit_signal = SIGCHLD; 695 696 /* If it has exited notify the new parent about this child's death. */ 697 if (!p->ptrace && 698 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 699 if (do_notify_parent(p, p->exit_signal)) { 700 p->exit_state = EXIT_DEAD; 701 list_add(&p->ptrace_entry, dead); 702 } 703 } 704 705 kill_orphaned_pgrp(p, father); 706 } 707 708 /* 709 * This does two things: 710 * 711 * A. Make init inherit all the child processes 712 * B. Check to see if any process groups have become orphaned 713 * as a result of our exiting, and if they have any stopped 714 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 715 */ 716 static void forget_original_parent(struct task_struct *father, 717 struct list_head *dead) 718 { 719 struct task_struct *p, *t, *reaper; 720 721 if (unlikely(!list_empty(&father->ptraced))) 722 exit_ptrace(father, dead); 723 724 /* Can drop and reacquire tasklist_lock */ 725 reaper = find_child_reaper(father, dead); 726 if (list_empty(&father->children)) 727 return; 728 729 reaper = find_new_reaper(father, reaper); 730 list_for_each_entry(p, &father->children, sibling) { 731 for_each_thread(p, t) { 732 RCU_INIT_POINTER(t->real_parent, reaper); 733 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 734 if (likely(!t->ptrace)) 735 t->parent = t->real_parent; 736 if (t->pdeath_signal) 737 group_send_sig_info(t->pdeath_signal, 738 SEND_SIG_NOINFO, t, 739 PIDTYPE_TGID); 740 } 741 /* 742 * If this is a threaded reparent there is no need to 743 * notify anyone anything has happened. 744 */ 745 if (!same_thread_group(reaper, father)) 746 reparent_leader(father, p, dead); 747 } 748 list_splice_tail_init(&father->children, &reaper->children); 749 } 750 751 /* 752 * Send signals to all our closest relatives so that they know 753 * to properly mourn us.. 754 */ 755 static void exit_notify(struct task_struct *tsk, int group_dead) 756 { 757 bool autoreap; 758 struct task_struct *p, *n; 759 LIST_HEAD(dead); 760 761 write_lock_irq(&tasklist_lock); 762 forget_original_parent(tsk, &dead); 763 764 if (group_dead) 765 kill_orphaned_pgrp(tsk->group_leader, NULL); 766 767 tsk->exit_state = EXIT_ZOMBIE; 768 769 if (unlikely(tsk->ptrace)) { 770 int sig = thread_group_leader(tsk) && 771 thread_group_empty(tsk) && 772 !ptrace_reparented(tsk) ? 773 tsk->exit_signal : SIGCHLD; 774 autoreap = do_notify_parent(tsk, sig); 775 } else if (thread_group_leader(tsk)) { 776 autoreap = thread_group_empty(tsk) && 777 do_notify_parent(tsk, tsk->exit_signal); 778 } else { 779 autoreap = true; 780 /* untraced sub-thread */ 781 do_notify_pidfd(tsk); 782 } 783 784 if (autoreap) { 785 tsk->exit_state = EXIT_DEAD; 786 list_add(&tsk->ptrace_entry, &dead); 787 } 788 789 /* mt-exec, de_thread() is waiting for group leader */ 790 if (unlikely(tsk->signal->notify_count < 0)) 791 wake_up_process(tsk->signal->group_exec_task); 792 write_unlock_irq(&tasklist_lock); 793 794 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 795 list_del_init(&p->ptrace_entry); 796 release_task(p); 797 } 798 } 799 800 #ifdef CONFIG_DEBUG_STACK_USAGE 801 unsigned long stack_not_used(struct task_struct *p) 802 { 803 unsigned long *n = end_of_stack(p); 804 805 do { /* Skip over canary */ 806 # ifdef CONFIG_STACK_GROWSUP 807 n--; 808 # else 809 n++; 810 # endif 811 } while (!*n); 812 813 # ifdef CONFIG_STACK_GROWSUP 814 return (unsigned long)end_of_stack(p) - (unsigned long)n; 815 # else 816 return (unsigned long)n - (unsigned long)end_of_stack(p); 817 # endif 818 } 819 820 /* Count the maximum pages reached in kernel stacks */ 821 static inline void kstack_histogram(unsigned long used_stack) 822 { 823 #ifdef CONFIG_VM_EVENT_COUNTERS 824 if (used_stack <= 1024) 825 count_vm_event(KSTACK_1K); 826 #if THREAD_SIZE > 1024 827 else if (used_stack <= 2048) 828 count_vm_event(KSTACK_2K); 829 #endif 830 #if THREAD_SIZE > 2048 831 else if (used_stack <= 4096) 832 count_vm_event(KSTACK_4K); 833 #endif 834 #if THREAD_SIZE > 4096 835 else if (used_stack <= 8192) 836 count_vm_event(KSTACK_8K); 837 #endif 838 #if THREAD_SIZE > 8192 839 else if (used_stack <= 16384) 840 count_vm_event(KSTACK_16K); 841 #endif 842 #if THREAD_SIZE > 16384 843 else if (used_stack <= 32768) 844 count_vm_event(KSTACK_32K); 845 #endif 846 #if THREAD_SIZE > 32768 847 else if (used_stack <= 65536) 848 count_vm_event(KSTACK_64K); 849 #endif 850 #if THREAD_SIZE > 65536 851 else 852 count_vm_event(KSTACK_REST); 853 #endif 854 #endif /* CONFIG_VM_EVENT_COUNTERS */ 855 } 856 857 static void check_stack_usage(void) 858 { 859 static DEFINE_SPINLOCK(low_water_lock); 860 static int lowest_to_date = THREAD_SIZE; 861 unsigned long free; 862 863 free = stack_not_used(current); 864 kstack_histogram(THREAD_SIZE - free); 865 866 if (free >= lowest_to_date) 867 return; 868 869 spin_lock(&low_water_lock); 870 if (free < lowest_to_date) { 871 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 872 current->comm, task_pid_nr(current), free); 873 lowest_to_date = free; 874 } 875 spin_unlock(&low_water_lock); 876 } 877 #else 878 static inline void check_stack_usage(void) {} 879 #endif 880 881 static void synchronize_group_exit(struct task_struct *tsk, long code) 882 { 883 struct sighand_struct *sighand = tsk->sighand; 884 struct signal_struct *signal = tsk->signal; 885 886 spin_lock_irq(&sighand->siglock); 887 signal->quick_threads--; 888 if ((signal->quick_threads == 0) && 889 !(signal->flags & SIGNAL_GROUP_EXIT)) { 890 signal->flags = SIGNAL_GROUP_EXIT; 891 signal->group_exit_code = code; 892 signal->group_stop_count = 0; 893 } 894 spin_unlock_irq(&sighand->siglock); 895 } 896 897 void __noreturn do_exit(long code) 898 { 899 struct task_struct *tsk = current; 900 int group_dead; 901 902 WARN_ON(irqs_disabled()); 903 904 synchronize_group_exit(tsk, code); 905 906 WARN_ON(tsk->plug); 907 908 kcov_task_exit(tsk); 909 kmsan_task_exit(tsk); 910 911 coredump_task_exit(tsk); 912 ptrace_event(PTRACE_EVENT_EXIT, code); 913 user_events_exit(tsk); 914 915 io_uring_files_cancel(); 916 exit_signals(tsk); /* sets PF_EXITING */ 917 918 seccomp_filter_release(tsk); 919 920 acct_update_integrals(tsk); 921 group_dead = atomic_dec_and_test(&tsk->signal->live); 922 if (group_dead) { 923 /* 924 * If the last thread of global init has exited, panic 925 * immediately to get a useable coredump. 926 */ 927 if (unlikely(is_global_init(tsk))) 928 panic("Attempted to kill init! exitcode=0x%08x\n", 929 tsk->signal->group_exit_code ?: (int)code); 930 931 #ifdef CONFIG_POSIX_TIMERS 932 hrtimer_cancel(&tsk->signal->real_timer); 933 exit_itimers(tsk); 934 #endif 935 if (tsk->mm) 936 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 937 } 938 acct_collect(code, group_dead); 939 if (group_dead) 940 tty_audit_exit(); 941 audit_free(tsk); 942 943 tsk->exit_code = code; 944 taskstats_exit(tsk, group_dead); 945 trace_sched_process_exit(tsk, group_dead); 946 947 exit_mm(); 948 949 if (group_dead) 950 acct_process(); 951 952 exit_sem(tsk); 953 exit_shm(tsk); 954 exit_files(tsk); 955 exit_fs(tsk); 956 if (group_dead) 957 disassociate_ctty(1); 958 exit_task_namespaces(tsk); 959 exit_task_work(tsk); 960 exit_thread(tsk); 961 962 /* 963 * Flush inherited counters to the parent - before the parent 964 * gets woken up by child-exit notifications. 965 * 966 * because of cgroup mode, must be called before cgroup_exit() 967 */ 968 perf_event_exit_task(tsk); 969 970 sched_autogroup_exit_task(tsk); 971 cgroup_exit(tsk); 972 973 /* 974 * FIXME: do that only when needed, using sched_exit tracepoint 975 */ 976 flush_ptrace_hw_breakpoint(tsk); 977 978 exit_tasks_rcu_start(); 979 exit_notify(tsk, group_dead); 980 proc_exit_connector(tsk); 981 mpol_put_task_policy(tsk); 982 #ifdef CONFIG_FUTEX 983 if (unlikely(current->pi_state_cache)) 984 kfree(current->pi_state_cache); 985 #endif 986 /* 987 * Make sure we are holding no locks: 988 */ 989 debug_check_no_locks_held(); 990 991 if (tsk->io_context) 992 exit_io_context(tsk); 993 994 if (tsk->splice_pipe) 995 free_pipe_info(tsk->splice_pipe); 996 997 if (tsk->task_frag.page) 998 put_page(tsk->task_frag.page); 999 1000 exit_task_stack_account(tsk); 1001 1002 check_stack_usage(); 1003 preempt_disable(); 1004 if (tsk->nr_dirtied) 1005 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 1006 exit_rcu(); 1007 exit_tasks_rcu_finish(); 1008 1009 lockdep_free_task(tsk); 1010 do_task_dead(); 1011 } 1012 1013 void __noreturn make_task_dead(int signr) 1014 { 1015 /* 1016 * Take the task off the cpu after something catastrophic has 1017 * happened. 1018 * 1019 * We can get here from a kernel oops, sometimes with preemption off. 1020 * Start by checking for critical errors. 1021 * Then fix up important state like USER_DS and preemption. 1022 * Then do everything else. 1023 */ 1024 struct task_struct *tsk = current; 1025 unsigned int limit; 1026 1027 if (unlikely(in_interrupt())) 1028 panic("Aiee, killing interrupt handler!"); 1029 if (unlikely(!tsk->pid)) 1030 panic("Attempted to kill the idle task!"); 1031 1032 if (unlikely(irqs_disabled())) { 1033 pr_info("note: %s[%d] exited with irqs disabled\n", 1034 current->comm, task_pid_nr(current)); 1035 local_irq_enable(); 1036 } 1037 if (unlikely(in_atomic())) { 1038 pr_info("note: %s[%d] exited with preempt_count %d\n", 1039 current->comm, task_pid_nr(current), 1040 preempt_count()); 1041 preempt_count_set(PREEMPT_ENABLED); 1042 } 1043 1044 /* 1045 * Every time the system oopses, if the oops happens while a reference 1046 * to an object was held, the reference leaks. 1047 * If the oops doesn't also leak memory, repeated oopsing can cause 1048 * reference counters to wrap around (if they're not using refcount_t). 1049 * This means that repeated oopsing can make unexploitable-looking bugs 1050 * exploitable through repeated oopsing. 1051 * To make sure this can't happen, place an upper bound on how often the 1052 * kernel may oops without panic(). 1053 */ 1054 limit = READ_ONCE(oops_limit); 1055 if (atomic_inc_return(&oops_count) >= limit && limit) 1056 panic("Oopsed too often (kernel.oops_limit is %d)", limit); 1057 1058 /* 1059 * We're taking recursive faults here in make_task_dead. Safest is to just 1060 * leave this task alone and wait for reboot. 1061 */ 1062 if (unlikely(tsk->flags & PF_EXITING)) { 1063 pr_alert("Fixing recursive fault but reboot is needed!\n"); 1064 futex_exit_recursive(tsk); 1065 tsk->exit_state = EXIT_DEAD; 1066 refcount_inc(&tsk->rcu_users); 1067 do_task_dead(); 1068 } 1069 1070 do_exit(signr); 1071 } 1072 1073 SYSCALL_DEFINE1(exit, int, error_code) 1074 { 1075 do_exit((error_code&0xff)<<8); 1076 } 1077 1078 /* 1079 * Take down every thread in the group. This is called by fatal signals 1080 * as well as by sys_exit_group (below). 1081 */ 1082 void __noreturn 1083 do_group_exit(int exit_code) 1084 { 1085 struct signal_struct *sig = current->signal; 1086 1087 if (sig->flags & SIGNAL_GROUP_EXIT) 1088 exit_code = sig->group_exit_code; 1089 else if (sig->group_exec_task) 1090 exit_code = 0; 1091 else { 1092 struct sighand_struct *const sighand = current->sighand; 1093 1094 spin_lock_irq(&sighand->siglock); 1095 if (sig->flags & SIGNAL_GROUP_EXIT) 1096 /* Another thread got here before we took the lock. */ 1097 exit_code = sig->group_exit_code; 1098 else if (sig->group_exec_task) 1099 exit_code = 0; 1100 else { 1101 sig->group_exit_code = exit_code; 1102 sig->flags = SIGNAL_GROUP_EXIT; 1103 zap_other_threads(current); 1104 } 1105 spin_unlock_irq(&sighand->siglock); 1106 } 1107 1108 do_exit(exit_code); 1109 /* NOTREACHED */ 1110 } 1111 1112 /* 1113 * this kills every thread in the thread group. Note that any externally 1114 * wait4()-ing process will get the correct exit code - even if this 1115 * thread is not the thread group leader. 1116 */ 1117 SYSCALL_DEFINE1(exit_group, int, error_code) 1118 { 1119 do_group_exit((error_code & 0xff) << 8); 1120 /* NOTREACHED */ 1121 return 0; 1122 } 1123 1124 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1125 { 1126 return wo->wo_type == PIDTYPE_MAX || 1127 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1128 } 1129 1130 static int 1131 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1132 { 1133 if (!eligible_pid(wo, p)) 1134 return 0; 1135 1136 /* 1137 * Wait for all children (clone and not) if __WALL is set or 1138 * if it is traced by us. 1139 */ 1140 if (ptrace || (wo->wo_flags & __WALL)) 1141 return 1; 1142 1143 /* 1144 * Otherwise, wait for clone children *only* if __WCLONE is set; 1145 * otherwise, wait for non-clone children *only*. 1146 * 1147 * Note: a "clone" child here is one that reports to its parent 1148 * using a signal other than SIGCHLD, or a non-leader thread which 1149 * we can only see if it is traced by us. 1150 */ 1151 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1152 return 0; 1153 1154 return 1; 1155 } 1156 1157 /* 1158 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1159 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1160 * the lock and this task is uninteresting. If we return nonzero, we have 1161 * released the lock and the system call should return. 1162 */ 1163 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1164 { 1165 int state, status; 1166 pid_t pid = task_pid_vnr(p); 1167 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1168 struct waitid_info *infop; 1169 1170 if (!likely(wo->wo_flags & WEXITED)) 1171 return 0; 1172 1173 if (unlikely(wo->wo_flags & WNOWAIT)) { 1174 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1175 ? p->signal->group_exit_code : p->exit_code; 1176 get_task_struct(p); 1177 read_unlock(&tasklist_lock); 1178 sched_annotate_sleep(); 1179 if (wo->wo_rusage) 1180 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1181 put_task_struct(p); 1182 goto out_info; 1183 } 1184 /* 1185 * Move the task's state to DEAD/TRACE, only one thread can do this. 1186 */ 1187 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1188 EXIT_TRACE : EXIT_DEAD; 1189 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1190 return 0; 1191 /* 1192 * We own this thread, nobody else can reap it. 1193 */ 1194 read_unlock(&tasklist_lock); 1195 sched_annotate_sleep(); 1196 1197 /* 1198 * Check thread_group_leader() to exclude the traced sub-threads. 1199 */ 1200 if (state == EXIT_DEAD && thread_group_leader(p)) { 1201 struct signal_struct *sig = p->signal; 1202 struct signal_struct *psig = current->signal; 1203 unsigned long maxrss; 1204 u64 tgutime, tgstime; 1205 1206 /* 1207 * The resource counters for the group leader are in its 1208 * own task_struct. Those for dead threads in the group 1209 * are in its signal_struct, as are those for the child 1210 * processes it has previously reaped. All these 1211 * accumulate in the parent's signal_struct c* fields. 1212 * 1213 * We don't bother to take a lock here to protect these 1214 * p->signal fields because the whole thread group is dead 1215 * and nobody can change them. 1216 * 1217 * psig->stats_lock also protects us from our sub-threads 1218 * which can reap other children at the same time. 1219 * 1220 * We use thread_group_cputime_adjusted() to get times for 1221 * the thread group, which consolidates times for all threads 1222 * in the group including the group leader. 1223 */ 1224 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1225 write_seqlock_irq(&psig->stats_lock); 1226 psig->cutime += tgutime + sig->cutime; 1227 psig->cstime += tgstime + sig->cstime; 1228 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1229 psig->cmin_flt += 1230 p->min_flt + sig->min_flt + sig->cmin_flt; 1231 psig->cmaj_flt += 1232 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1233 psig->cnvcsw += 1234 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1235 psig->cnivcsw += 1236 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1237 psig->cinblock += 1238 task_io_get_inblock(p) + 1239 sig->inblock + sig->cinblock; 1240 psig->coublock += 1241 task_io_get_oublock(p) + 1242 sig->oublock + sig->coublock; 1243 maxrss = max(sig->maxrss, sig->cmaxrss); 1244 if (psig->cmaxrss < maxrss) 1245 psig->cmaxrss = maxrss; 1246 task_io_accounting_add(&psig->ioac, &p->ioac); 1247 task_io_accounting_add(&psig->ioac, &sig->ioac); 1248 write_sequnlock_irq(&psig->stats_lock); 1249 } 1250 1251 if (wo->wo_rusage) 1252 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1253 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1254 ? p->signal->group_exit_code : p->exit_code; 1255 wo->wo_stat = status; 1256 1257 if (state == EXIT_TRACE) { 1258 write_lock_irq(&tasklist_lock); 1259 /* We dropped tasklist, ptracer could die and untrace */ 1260 ptrace_unlink(p); 1261 1262 /* If parent wants a zombie, don't release it now */ 1263 state = EXIT_ZOMBIE; 1264 if (do_notify_parent(p, p->exit_signal)) 1265 state = EXIT_DEAD; 1266 p->exit_state = state; 1267 write_unlock_irq(&tasklist_lock); 1268 } 1269 if (state == EXIT_DEAD) 1270 release_task(p); 1271 1272 out_info: 1273 infop = wo->wo_info; 1274 if (infop) { 1275 if ((status & 0x7f) == 0) { 1276 infop->cause = CLD_EXITED; 1277 infop->status = status >> 8; 1278 } else { 1279 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1280 infop->status = status & 0x7f; 1281 } 1282 infop->pid = pid; 1283 infop->uid = uid; 1284 } 1285 1286 return pid; 1287 } 1288 1289 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1290 { 1291 if (ptrace) { 1292 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1293 return &p->exit_code; 1294 } else { 1295 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1296 return &p->signal->group_exit_code; 1297 } 1298 return NULL; 1299 } 1300 1301 /** 1302 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1303 * @wo: wait options 1304 * @ptrace: is the wait for ptrace 1305 * @p: task to wait for 1306 * 1307 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1308 * 1309 * CONTEXT: 1310 * read_lock(&tasklist_lock), which is released if return value is 1311 * non-zero. Also, grabs and releases @p->sighand->siglock. 1312 * 1313 * RETURNS: 1314 * 0 if wait condition didn't exist and search for other wait conditions 1315 * should continue. Non-zero return, -errno on failure and @p's pid on 1316 * success, implies that tasklist_lock is released and wait condition 1317 * search should terminate. 1318 */ 1319 static int wait_task_stopped(struct wait_opts *wo, 1320 int ptrace, struct task_struct *p) 1321 { 1322 struct waitid_info *infop; 1323 int exit_code, *p_code, why; 1324 uid_t uid = 0; /* unneeded, required by compiler */ 1325 pid_t pid; 1326 1327 /* 1328 * Traditionally we see ptrace'd stopped tasks regardless of options. 1329 */ 1330 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1331 return 0; 1332 1333 if (!task_stopped_code(p, ptrace)) 1334 return 0; 1335 1336 exit_code = 0; 1337 spin_lock_irq(&p->sighand->siglock); 1338 1339 p_code = task_stopped_code(p, ptrace); 1340 if (unlikely(!p_code)) 1341 goto unlock_sig; 1342 1343 exit_code = *p_code; 1344 if (!exit_code) 1345 goto unlock_sig; 1346 1347 if (!unlikely(wo->wo_flags & WNOWAIT)) 1348 *p_code = 0; 1349 1350 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1351 unlock_sig: 1352 spin_unlock_irq(&p->sighand->siglock); 1353 if (!exit_code) 1354 return 0; 1355 1356 /* 1357 * Now we are pretty sure this task is interesting. 1358 * Make sure it doesn't get reaped out from under us while we 1359 * give up the lock and then examine it below. We don't want to 1360 * keep holding onto the tasklist_lock while we call getrusage and 1361 * possibly take page faults for user memory. 1362 */ 1363 get_task_struct(p); 1364 pid = task_pid_vnr(p); 1365 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1366 read_unlock(&tasklist_lock); 1367 sched_annotate_sleep(); 1368 if (wo->wo_rusage) 1369 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1370 put_task_struct(p); 1371 1372 if (likely(!(wo->wo_flags & WNOWAIT))) 1373 wo->wo_stat = (exit_code << 8) | 0x7f; 1374 1375 infop = wo->wo_info; 1376 if (infop) { 1377 infop->cause = why; 1378 infop->status = exit_code; 1379 infop->pid = pid; 1380 infop->uid = uid; 1381 } 1382 return pid; 1383 } 1384 1385 /* 1386 * Handle do_wait work for one task in a live, non-stopped state. 1387 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1388 * the lock and this task is uninteresting. If we return nonzero, we have 1389 * released the lock and the system call should return. 1390 */ 1391 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1392 { 1393 struct waitid_info *infop; 1394 pid_t pid; 1395 uid_t uid; 1396 1397 if (!unlikely(wo->wo_flags & WCONTINUED)) 1398 return 0; 1399 1400 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1401 return 0; 1402 1403 spin_lock_irq(&p->sighand->siglock); 1404 /* Re-check with the lock held. */ 1405 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1406 spin_unlock_irq(&p->sighand->siglock); 1407 return 0; 1408 } 1409 if (!unlikely(wo->wo_flags & WNOWAIT)) 1410 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1411 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1412 spin_unlock_irq(&p->sighand->siglock); 1413 1414 pid = task_pid_vnr(p); 1415 get_task_struct(p); 1416 read_unlock(&tasklist_lock); 1417 sched_annotate_sleep(); 1418 if (wo->wo_rusage) 1419 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1420 put_task_struct(p); 1421 1422 infop = wo->wo_info; 1423 if (!infop) { 1424 wo->wo_stat = 0xffff; 1425 } else { 1426 infop->cause = CLD_CONTINUED; 1427 infop->pid = pid; 1428 infop->uid = uid; 1429 infop->status = SIGCONT; 1430 } 1431 return pid; 1432 } 1433 1434 /* 1435 * Consider @p for a wait by @parent. 1436 * 1437 * -ECHILD should be in ->notask_error before the first call. 1438 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1439 * Returns zero if the search for a child should continue; 1440 * then ->notask_error is 0 if @p is an eligible child, 1441 * or still -ECHILD. 1442 */ 1443 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1444 struct task_struct *p) 1445 { 1446 /* 1447 * We can race with wait_task_zombie() from another thread. 1448 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1449 * can't confuse the checks below. 1450 */ 1451 int exit_state = READ_ONCE(p->exit_state); 1452 int ret; 1453 1454 if (unlikely(exit_state == EXIT_DEAD)) 1455 return 0; 1456 1457 ret = eligible_child(wo, ptrace, p); 1458 if (!ret) 1459 return ret; 1460 1461 if (unlikely(exit_state == EXIT_TRACE)) { 1462 /* 1463 * ptrace == 0 means we are the natural parent. In this case 1464 * we should clear notask_error, debugger will notify us. 1465 */ 1466 if (likely(!ptrace)) 1467 wo->notask_error = 0; 1468 return 0; 1469 } 1470 1471 if (likely(!ptrace) && unlikely(p->ptrace)) { 1472 /* 1473 * If it is traced by its real parent's group, just pretend 1474 * the caller is ptrace_do_wait() and reap this child if it 1475 * is zombie. 1476 * 1477 * This also hides group stop state from real parent; otherwise 1478 * a single stop can be reported twice as group and ptrace stop. 1479 * If a ptracer wants to distinguish these two events for its 1480 * own children it should create a separate process which takes 1481 * the role of real parent. 1482 */ 1483 if (!ptrace_reparented(p)) 1484 ptrace = 1; 1485 } 1486 1487 /* slay zombie? */ 1488 if (exit_state == EXIT_ZOMBIE) { 1489 /* we don't reap group leaders with subthreads */ 1490 if (!delay_group_leader(p)) { 1491 /* 1492 * A zombie ptracee is only visible to its ptracer. 1493 * Notification and reaping will be cascaded to the 1494 * real parent when the ptracer detaches. 1495 */ 1496 if (unlikely(ptrace) || likely(!p->ptrace)) 1497 return wait_task_zombie(wo, p); 1498 } 1499 1500 /* 1501 * Allow access to stopped/continued state via zombie by 1502 * falling through. Clearing of notask_error is complex. 1503 * 1504 * When !@ptrace: 1505 * 1506 * If WEXITED is set, notask_error should naturally be 1507 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1508 * so, if there are live subthreads, there are events to 1509 * wait for. If all subthreads are dead, it's still safe 1510 * to clear - this function will be called again in finite 1511 * amount time once all the subthreads are released and 1512 * will then return without clearing. 1513 * 1514 * When @ptrace: 1515 * 1516 * Stopped state is per-task and thus can't change once the 1517 * target task dies. Only continued and exited can happen. 1518 * Clear notask_error if WCONTINUED | WEXITED. 1519 */ 1520 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1521 wo->notask_error = 0; 1522 } else { 1523 /* 1524 * @p is alive and it's gonna stop, continue or exit, so 1525 * there always is something to wait for. 1526 */ 1527 wo->notask_error = 0; 1528 } 1529 1530 /* 1531 * Wait for stopped. Depending on @ptrace, different stopped state 1532 * is used and the two don't interact with each other. 1533 */ 1534 ret = wait_task_stopped(wo, ptrace, p); 1535 if (ret) 1536 return ret; 1537 1538 /* 1539 * Wait for continued. There's only one continued state and the 1540 * ptracer can consume it which can confuse the real parent. Don't 1541 * use WCONTINUED from ptracer. You don't need or want it. 1542 */ 1543 return wait_task_continued(wo, p); 1544 } 1545 1546 /* 1547 * Do the work of do_wait() for one thread in the group, @tsk. 1548 * 1549 * -ECHILD should be in ->notask_error before the first call. 1550 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1551 * Returns zero if the search for a child should continue; then 1552 * ->notask_error is 0 if there were any eligible children, 1553 * or still -ECHILD. 1554 */ 1555 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1556 { 1557 struct task_struct *p; 1558 1559 list_for_each_entry(p, &tsk->children, sibling) { 1560 int ret = wait_consider_task(wo, 0, p); 1561 1562 if (ret) 1563 return ret; 1564 } 1565 1566 return 0; 1567 } 1568 1569 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1570 { 1571 struct task_struct *p; 1572 1573 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1574 int ret = wait_consider_task(wo, 1, p); 1575 1576 if (ret) 1577 return ret; 1578 } 1579 1580 return 0; 1581 } 1582 1583 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p) 1584 { 1585 if (!eligible_pid(wo, p)) 1586 return false; 1587 1588 if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent) 1589 return false; 1590 1591 return true; 1592 } 1593 1594 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1595 int sync, void *key) 1596 { 1597 struct wait_opts *wo = container_of(wait, struct wait_opts, 1598 child_wait); 1599 struct task_struct *p = key; 1600 1601 if (pid_child_should_wake(wo, p)) 1602 return default_wake_function(wait, mode, sync, key); 1603 1604 return 0; 1605 } 1606 1607 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1608 { 1609 __wake_up_sync_key(&parent->signal->wait_chldexit, 1610 TASK_INTERRUPTIBLE, p); 1611 } 1612 1613 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1614 struct task_struct *target) 1615 { 1616 struct task_struct *parent = 1617 !ptrace ? target->real_parent : target->parent; 1618 1619 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1620 same_thread_group(current, parent)); 1621 } 1622 1623 /* 1624 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1625 * and tracee lists to find the target task. 1626 */ 1627 static int do_wait_pid(struct wait_opts *wo) 1628 { 1629 bool ptrace; 1630 struct task_struct *target; 1631 int retval; 1632 1633 ptrace = false; 1634 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1635 if (target && is_effectively_child(wo, ptrace, target)) { 1636 retval = wait_consider_task(wo, ptrace, target); 1637 if (retval) 1638 return retval; 1639 } 1640 1641 ptrace = true; 1642 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1643 if (target && target->ptrace && 1644 is_effectively_child(wo, ptrace, target)) { 1645 retval = wait_consider_task(wo, ptrace, target); 1646 if (retval) 1647 return retval; 1648 } 1649 1650 return 0; 1651 } 1652 1653 long __do_wait(struct wait_opts *wo) 1654 { 1655 long retval; 1656 1657 /* 1658 * If there is nothing that can match our criteria, just get out. 1659 * We will clear ->notask_error to zero if we see any child that 1660 * might later match our criteria, even if we are not able to reap 1661 * it yet. 1662 */ 1663 wo->notask_error = -ECHILD; 1664 if ((wo->wo_type < PIDTYPE_MAX) && 1665 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1666 goto notask; 1667 1668 read_lock(&tasklist_lock); 1669 1670 if (wo->wo_type == PIDTYPE_PID) { 1671 retval = do_wait_pid(wo); 1672 if (retval) 1673 return retval; 1674 } else { 1675 struct task_struct *tsk = current; 1676 1677 do { 1678 retval = do_wait_thread(wo, tsk); 1679 if (retval) 1680 return retval; 1681 1682 retval = ptrace_do_wait(wo, tsk); 1683 if (retval) 1684 return retval; 1685 1686 if (wo->wo_flags & __WNOTHREAD) 1687 break; 1688 } while_each_thread(current, tsk); 1689 } 1690 read_unlock(&tasklist_lock); 1691 1692 notask: 1693 retval = wo->notask_error; 1694 if (!retval && !(wo->wo_flags & WNOHANG)) 1695 return -ERESTARTSYS; 1696 1697 return retval; 1698 } 1699 1700 static long do_wait(struct wait_opts *wo) 1701 { 1702 int retval; 1703 1704 trace_sched_process_wait(wo->wo_pid); 1705 1706 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1707 wo->child_wait.private = current; 1708 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1709 1710 do { 1711 set_current_state(TASK_INTERRUPTIBLE); 1712 retval = __do_wait(wo); 1713 if (retval != -ERESTARTSYS) 1714 break; 1715 if (signal_pending(current)) 1716 break; 1717 schedule(); 1718 } while (1); 1719 1720 __set_current_state(TASK_RUNNING); 1721 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1722 return retval; 1723 } 1724 1725 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid, 1726 struct waitid_info *infop, int options, 1727 struct rusage *ru) 1728 { 1729 unsigned int f_flags = 0; 1730 struct pid *pid = NULL; 1731 enum pid_type type; 1732 1733 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1734 __WNOTHREAD|__WCLONE|__WALL)) 1735 return -EINVAL; 1736 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1737 return -EINVAL; 1738 1739 switch (which) { 1740 case P_ALL: 1741 type = PIDTYPE_MAX; 1742 break; 1743 case P_PID: 1744 type = PIDTYPE_PID; 1745 if (upid <= 0) 1746 return -EINVAL; 1747 1748 pid = find_get_pid(upid); 1749 break; 1750 case P_PGID: 1751 type = PIDTYPE_PGID; 1752 if (upid < 0) 1753 return -EINVAL; 1754 1755 if (upid) 1756 pid = find_get_pid(upid); 1757 else 1758 pid = get_task_pid(current, PIDTYPE_PGID); 1759 break; 1760 case P_PIDFD: 1761 type = PIDTYPE_PID; 1762 if (upid < 0) 1763 return -EINVAL; 1764 1765 pid = pidfd_get_pid(upid, &f_flags); 1766 if (IS_ERR(pid)) 1767 return PTR_ERR(pid); 1768 1769 break; 1770 default: 1771 return -EINVAL; 1772 } 1773 1774 wo->wo_type = type; 1775 wo->wo_pid = pid; 1776 wo->wo_flags = options; 1777 wo->wo_info = infop; 1778 wo->wo_rusage = ru; 1779 if (f_flags & O_NONBLOCK) 1780 wo->wo_flags |= WNOHANG; 1781 1782 return 0; 1783 } 1784 1785 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1786 int options, struct rusage *ru) 1787 { 1788 struct wait_opts wo; 1789 long ret; 1790 1791 ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru); 1792 if (ret) 1793 return ret; 1794 1795 ret = do_wait(&wo); 1796 if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG)) 1797 ret = -EAGAIN; 1798 1799 put_pid(wo.wo_pid); 1800 return ret; 1801 } 1802 1803 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1804 infop, int, options, struct rusage __user *, ru) 1805 { 1806 struct rusage r; 1807 struct waitid_info info = {.status = 0}; 1808 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1809 int signo = 0; 1810 1811 if (err > 0) { 1812 signo = SIGCHLD; 1813 err = 0; 1814 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1815 return -EFAULT; 1816 } 1817 if (!infop) 1818 return err; 1819 1820 if (!user_write_access_begin(infop, sizeof(*infop))) 1821 return -EFAULT; 1822 1823 unsafe_put_user(signo, &infop->si_signo, Efault); 1824 unsafe_put_user(0, &infop->si_errno, Efault); 1825 unsafe_put_user(info.cause, &infop->si_code, Efault); 1826 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1827 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1828 unsafe_put_user(info.status, &infop->si_status, Efault); 1829 user_write_access_end(); 1830 return err; 1831 Efault: 1832 user_write_access_end(); 1833 return -EFAULT; 1834 } 1835 1836 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1837 struct rusage *ru) 1838 { 1839 struct wait_opts wo; 1840 struct pid *pid = NULL; 1841 enum pid_type type; 1842 long ret; 1843 1844 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1845 __WNOTHREAD|__WCLONE|__WALL)) 1846 return -EINVAL; 1847 1848 /* -INT_MIN is not defined */ 1849 if (upid == INT_MIN) 1850 return -ESRCH; 1851 1852 if (upid == -1) 1853 type = PIDTYPE_MAX; 1854 else if (upid < 0) { 1855 type = PIDTYPE_PGID; 1856 pid = find_get_pid(-upid); 1857 } else if (upid == 0) { 1858 type = PIDTYPE_PGID; 1859 pid = get_task_pid(current, PIDTYPE_PGID); 1860 } else /* upid > 0 */ { 1861 type = PIDTYPE_PID; 1862 pid = find_get_pid(upid); 1863 } 1864 1865 wo.wo_type = type; 1866 wo.wo_pid = pid; 1867 wo.wo_flags = options | WEXITED; 1868 wo.wo_info = NULL; 1869 wo.wo_stat = 0; 1870 wo.wo_rusage = ru; 1871 ret = do_wait(&wo); 1872 put_pid(pid); 1873 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1874 ret = -EFAULT; 1875 1876 return ret; 1877 } 1878 1879 int kernel_wait(pid_t pid, int *stat) 1880 { 1881 struct wait_opts wo = { 1882 .wo_type = PIDTYPE_PID, 1883 .wo_pid = find_get_pid(pid), 1884 .wo_flags = WEXITED, 1885 }; 1886 int ret; 1887 1888 ret = do_wait(&wo); 1889 if (ret > 0 && wo.wo_stat) 1890 *stat = wo.wo_stat; 1891 put_pid(wo.wo_pid); 1892 return ret; 1893 } 1894 1895 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1896 int, options, struct rusage __user *, ru) 1897 { 1898 struct rusage r; 1899 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1900 1901 if (err > 0) { 1902 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1903 return -EFAULT; 1904 } 1905 return err; 1906 } 1907 1908 #ifdef __ARCH_WANT_SYS_WAITPID 1909 1910 /* 1911 * sys_waitpid() remains for compatibility. waitpid() should be 1912 * implemented by calling sys_wait4() from libc.a. 1913 */ 1914 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1915 { 1916 return kernel_wait4(pid, stat_addr, options, NULL); 1917 } 1918 1919 #endif 1920 1921 #ifdef CONFIG_COMPAT 1922 COMPAT_SYSCALL_DEFINE4(wait4, 1923 compat_pid_t, pid, 1924 compat_uint_t __user *, stat_addr, 1925 int, options, 1926 struct compat_rusage __user *, ru) 1927 { 1928 struct rusage r; 1929 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1930 if (err > 0) { 1931 if (ru && put_compat_rusage(&r, ru)) 1932 return -EFAULT; 1933 } 1934 return err; 1935 } 1936 1937 COMPAT_SYSCALL_DEFINE5(waitid, 1938 int, which, compat_pid_t, pid, 1939 struct compat_siginfo __user *, infop, int, options, 1940 struct compat_rusage __user *, uru) 1941 { 1942 struct rusage ru; 1943 struct waitid_info info = {.status = 0}; 1944 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1945 int signo = 0; 1946 if (err > 0) { 1947 signo = SIGCHLD; 1948 err = 0; 1949 if (uru) { 1950 /* kernel_waitid() overwrites everything in ru */ 1951 if (COMPAT_USE_64BIT_TIME) 1952 err = copy_to_user(uru, &ru, sizeof(ru)); 1953 else 1954 err = put_compat_rusage(&ru, uru); 1955 if (err) 1956 return -EFAULT; 1957 } 1958 } 1959 1960 if (!infop) 1961 return err; 1962 1963 if (!user_write_access_begin(infop, sizeof(*infop))) 1964 return -EFAULT; 1965 1966 unsafe_put_user(signo, &infop->si_signo, Efault); 1967 unsafe_put_user(0, &infop->si_errno, Efault); 1968 unsafe_put_user(info.cause, &infop->si_code, Efault); 1969 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1970 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1971 unsafe_put_user(info.status, &infop->si_status, Efault); 1972 user_write_access_end(); 1973 return err; 1974 Efault: 1975 user_write_access_end(); 1976 return -EFAULT; 1977 } 1978 #endif 1979 1980 /* 1981 * This needs to be __function_aligned as GCC implicitly makes any 1982 * implementation of abort() cold and drops alignment specified by 1983 * -falign-functions=N. 1984 * 1985 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11 1986 */ 1987 __weak __function_aligned void abort(void) 1988 { 1989 BUG(); 1990 1991 /* if that doesn't kill us, halt */ 1992 panic("Oops failed to kill thread"); 1993 } 1994 EXPORT_SYMBOL(abort); 1995