1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/binfmts.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pid_namespace.h> 25 #include <linux/ptrace.h> 26 #include <linux/profile.h> 27 #include <linux/signalfd.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cpuset.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/compat.h> 43 #include <linux/pipe_fs_i.h> 44 #include <linux/audit.h> /* for audit_free() */ 45 #include <linux/resource.h> 46 #include <linux/blkdev.h> 47 #include <linux/task_io_accounting_ops.h> 48 #include <linux/freezer.h> 49 50 #include <asm/uaccess.h> 51 #include <asm/unistd.h> 52 #include <asm/pgtable.h> 53 #include <asm/mmu_context.h> 54 55 extern void sem_exit (void); 56 57 static void exit_mm(struct task_struct * tsk); 58 59 static void __unhash_process(struct task_struct *p) 60 { 61 nr_threads--; 62 detach_pid(p, PIDTYPE_PID); 63 if (thread_group_leader(p)) { 64 detach_pid(p, PIDTYPE_PGID); 65 detach_pid(p, PIDTYPE_SID); 66 67 list_del_rcu(&p->tasks); 68 __get_cpu_var(process_counts)--; 69 } 70 list_del_rcu(&p->thread_group); 71 remove_parent(p); 72 } 73 74 /* 75 * This function expects the tasklist_lock write-locked. 76 */ 77 static void __exit_signal(struct task_struct *tsk) 78 { 79 struct signal_struct *sig = tsk->signal; 80 struct sighand_struct *sighand; 81 82 BUG_ON(!sig); 83 BUG_ON(!atomic_read(&sig->count)); 84 85 rcu_read_lock(); 86 sighand = rcu_dereference(tsk->sighand); 87 spin_lock(&sighand->siglock); 88 89 /* 90 * Notify that this sighand has been detached. This must 91 * be called with the tsk->sighand lock held. Also, this 92 * access tsk->sighand internally, so it must be called 93 * before tsk->sighand is reset. 94 */ 95 signalfd_detach_locked(tsk); 96 97 posix_cpu_timers_exit(tsk); 98 if (atomic_dec_and_test(&sig->count)) 99 posix_cpu_timers_exit_group(tsk); 100 else { 101 /* 102 * If there is any task waiting for the group exit 103 * then notify it: 104 */ 105 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) { 106 wake_up_process(sig->group_exit_task); 107 sig->group_exit_task = NULL; 108 } 109 if (tsk == sig->curr_target) 110 sig->curr_target = next_thread(tsk); 111 /* 112 * Accumulate here the counters for all threads but the 113 * group leader as they die, so they can be added into 114 * the process-wide totals when those are taken. 115 * The group leader stays around as a zombie as long 116 * as there are other threads. When it gets reaped, 117 * the exit.c code will add its counts into these totals. 118 * We won't ever get here for the group leader, since it 119 * will have been the last reference on the signal_struct. 120 */ 121 sig->utime = cputime_add(sig->utime, tsk->utime); 122 sig->stime = cputime_add(sig->stime, tsk->stime); 123 sig->min_flt += tsk->min_flt; 124 sig->maj_flt += tsk->maj_flt; 125 sig->nvcsw += tsk->nvcsw; 126 sig->nivcsw += tsk->nivcsw; 127 sig->inblock += task_io_get_inblock(tsk); 128 sig->oublock += task_io_get_oublock(tsk); 129 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 130 sig = NULL; /* Marker for below. */ 131 } 132 133 __unhash_process(tsk); 134 135 tsk->signal = NULL; 136 tsk->sighand = NULL; 137 spin_unlock(&sighand->siglock); 138 rcu_read_unlock(); 139 140 __cleanup_sighand(sighand); 141 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 142 flush_sigqueue(&tsk->pending); 143 if (sig) { 144 flush_sigqueue(&sig->shared_pending); 145 taskstats_tgid_free(sig); 146 __cleanup_signal(sig); 147 } 148 } 149 150 static void delayed_put_task_struct(struct rcu_head *rhp) 151 { 152 put_task_struct(container_of(rhp, struct task_struct, rcu)); 153 } 154 155 void release_task(struct task_struct * p) 156 { 157 struct task_struct *leader; 158 int zap_leader; 159 repeat: 160 atomic_dec(&p->user->processes); 161 write_lock_irq(&tasklist_lock); 162 ptrace_unlink(p); 163 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); 164 __exit_signal(p); 165 166 /* 167 * If we are the last non-leader member of the thread 168 * group, and the leader is zombie, then notify the 169 * group leader's parent process. (if it wants notification.) 170 */ 171 zap_leader = 0; 172 leader = p->group_leader; 173 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 174 BUG_ON(leader->exit_signal == -1); 175 do_notify_parent(leader, leader->exit_signal); 176 /* 177 * If we were the last child thread and the leader has 178 * exited already, and the leader's parent ignores SIGCHLD, 179 * then we are the one who should release the leader. 180 * 181 * do_notify_parent() will have marked it self-reaping in 182 * that case. 183 */ 184 zap_leader = (leader->exit_signal == -1); 185 } 186 187 write_unlock_irq(&tasklist_lock); 188 proc_flush_task(p); 189 release_thread(p); 190 call_rcu(&p->rcu, delayed_put_task_struct); 191 192 p = leader; 193 if (unlikely(zap_leader)) 194 goto repeat; 195 } 196 197 /* 198 * This checks not only the pgrp, but falls back on the pid if no 199 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 200 * without this... 201 * 202 * The caller must hold rcu lock or the tasklist lock. 203 */ 204 struct pid *session_of_pgrp(struct pid *pgrp) 205 { 206 struct task_struct *p; 207 struct pid *sid = NULL; 208 209 p = pid_task(pgrp, PIDTYPE_PGID); 210 if (p == NULL) 211 p = pid_task(pgrp, PIDTYPE_PID); 212 if (p != NULL) 213 sid = task_session(p); 214 215 return sid; 216 } 217 218 /* 219 * Determine if a process group is "orphaned", according to the POSIX 220 * definition in 2.2.2.52. Orphaned process groups are not to be affected 221 * by terminal-generated stop signals. Newly orphaned process groups are 222 * to receive a SIGHUP and a SIGCONT. 223 * 224 * "I ask you, have you ever known what it is to be an orphan?" 225 */ 226 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 227 { 228 struct task_struct *p; 229 int ret = 1; 230 231 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 232 if (p == ignored_task 233 || p->exit_state 234 || is_init(p->real_parent)) 235 continue; 236 if (task_pgrp(p->real_parent) != pgrp && 237 task_session(p->real_parent) == task_session(p)) { 238 ret = 0; 239 break; 240 } 241 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 242 return ret; /* (sighing) "Often!" */ 243 } 244 245 int is_current_pgrp_orphaned(void) 246 { 247 int retval; 248 249 read_lock(&tasklist_lock); 250 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 251 read_unlock(&tasklist_lock); 252 253 return retval; 254 } 255 256 static int has_stopped_jobs(struct pid *pgrp) 257 { 258 int retval = 0; 259 struct task_struct *p; 260 261 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 262 if (p->state != TASK_STOPPED) 263 continue; 264 retval = 1; 265 break; 266 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 267 return retval; 268 } 269 270 /** 271 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 272 * 273 * If a kernel thread is launched as a result of a system call, or if 274 * it ever exits, it should generally reparent itself to kthreadd so it 275 * isn't in the way of other processes and is correctly cleaned up on exit. 276 * 277 * The various task state such as scheduling policy and priority may have 278 * been inherited from a user process, so we reset them to sane values here. 279 * 280 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 281 */ 282 static void reparent_to_kthreadd(void) 283 { 284 write_lock_irq(&tasklist_lock); 285 286 ptrace_unlink(current); 287 /* Reparent to init */ 288 remove_parent(current); 289 current->real_parent = current->parent = kthreadd_task; 290 add_parent(current); 291 292 /* Set the exit signal to SIGCHLD so we signal init on exit */ 293 current->exit_signal = SIGCHLD; 294 295 if (task_nice(current) < 0) 296 set_user_nice(current, 0); 297 /* cpus_allowed? */ 298 /* rt_priority? */ 299 /* signals? */ 300 security_task_reparent_to_init(current); 301 memcpy(current->signal->rlim, init_task.signal->rlim, 302 sizeof(current->signal->rlim)); 303 atomic_inc(&(INIT_USER->__count)); 304 write_unlock_irq(&tasklist_lock); 305 switch_uid(INIT_USER); 306 } 307 308 void __set_special_pids(pid_t session, pid_t pgrp) 309 { 310 struct task_struct *curr = current->group_leader; 311 312 if (process_session(curr) != session) { 313 detach_pid(curr, PIDTYPE_SID); 314 set_signal_session(curr->signal, session); 315 attach_pid(curr, PIDTYPE_SID, find_pid(session)); 316 } 317 if (process_group(curr) != pgrp) { 318 detach_pid(curr, PIDTYPE_PGID); 319 curr->signal->pgrp = pgrp; 320 attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp)); 321 } 322 } 323 324 static void set_special_pids(pid_t session, pid_t pgrp) 325 { 326 write_lock_irq(&tasklist_lock); 327 __set_special_pids(session, pgrp); 328 write_unlock_irq(&tasklist_lock); 329 } 330 331 /* 332 * Let kernel threads use this to say that they 333 * allow a certain signal (since daemonize() will 334 * have disabled all of them by default). 335 */ 336 int allow_signal(int sig) 337 { 338 if (!valid_signal(sig) || sig < 1) 339 return -EINVAL; 340 341 spin_lock_irq(¤t->sighand->siglock); 342 sigdelset(¤t->blocked, sig); 343 if (!current->mm) { 344 /* Kernel threads handle their own signals. 345 Let the signal code know it'll be handled, so 346 that they don't get converted to SIGKILL or 347 just silently dropped */ 348 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 349 } 350 recalc_sigpending(); 351 spin_unlock_irq(¤t->sighand->siglock); 352 return 0; 353 } 354 355 EXPORT_SYMBOL(allow_signal); 356 357 int disallow_signal(int sig) 358 { 359 if (!valid_signal(sig) || sig < 1) 360 return -EINVAL; 361 362 spin_lock_irq(¤t->sighand->siglock); 363 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 364 recalc_sigpending(); 365 spin_unlock_irq(¤t->sighand->siglock); 366 return 0; 367 } 368 369 EXPORT_SYMBOL(disallow_signal); 370 371 /* 372 * Put all the gunge required to become a kernel thread without 373 * attached user resources in one place where it belongs. 374 */ 375 376 void daemonize(const char *name, ...) 377 { 378 va_list args; 379 struct fs_struct *fs; 380 sigset_t blocked; 381 382 va_start(args, name); 383 vsnprintf(current->comm, sizeof(current->comm), name, args); 384 va_end(args); 385 386 /* 387 * If we were started as result of loading a module, close all of the 388 * user space pages. We don't need them, and if we didn't close them 389 * they would be locked into memory. 390 */ 391 exit_mm(current); 392 /* 393 * We don't want to have TIF_FREEZE set if the system-wide hibernation 394 * or suspend transition begins right now. 395 */ 396 current->flags |= PF_NOFREEZE; 397 398 set_special_pids(1, 1); 399 proc_clear_tty(current); 400 401 /* Block and flush all signals */ 402 sigfillset(&blocked); 403 sigprocmask(SIG_BLOCK, &blocked, NULL); 404 flush_signals(current); 405 406 /* Become as one with the init task */ 407 408 exit_fs(current); /* current->fs->count--; */ 409 fs = init_task.fs; 410 current->fs = fs; 411 atomic_inc(&fs->count); 412 413 exit_task_namespaces(current); 414 current->nsproxy = init_task.nsproxy; 415 get_task_namespaces(current); 416 417 exit_files(current); 418 current->files = init_task.files; 419 atomic_inc(¤t->files->count); 420 421 reparent_to_kthreadd(); 422 } 423 424 EXPORT_SYMBOL(daemonize); 425 426 static void close_files(struct files_struct * files) 427 { 428 int i, j; 429 struct fdtable *fdt; 430 431 j = 0; 432 433 /* 434 * It is safe to dereference the fd table without RCU or 435 * ->file_lock because this is the last reference to the 436 * files structure. 437 */ 438 fdt = files_fdtable(files); 439 for (;;) { 440 unsigned long set; 441 i = j * __NFDBITS; 442 if (i >= fdt->max_fds) 443 break; 444 set = fdt->open_fds->fds_bits[j++]; 445 while (set) { 446 if (set & 1) { 447 struct file * file = xchg(&fdt->fd[i], NULL); 448 if (file) { 449 filp_close(file, files); 450 cond_resched(); 451 } 452 } 453 i++; 454 set >>= 1; 455 } 456 } 457 } 458 459 struct files_struct *get_files_struct(struct task_struct *task) 460 { 461 struct files_struct *files; 462 463 task_lock(task); 464 files = task->files; 465 if (files) 466 atomic_inc(&files->count); 467 task_unlock(task); 468 469 return files; 470 } 471 472 void fastcall put_files_struct(struct files_struct *files) 473 { 474 struct fdtable *fdt; 475 476 if (atomic_dec_and_test(&files->count)) { 477 close_files(files); 478 /* 479 * Free the fd and fdset arrays if we expanded them. 480 * If the fdtable was embedded, pass files for freeing 481 * at the end of the RCU grace period. Otherwise, 482 * you can free files immediately. 483 */ 484 fdt = files_fdtable(files); 485 if (fdt != &files->fdtab) 486 kmem_cache_free(files_cachep, files); 487 free_fdtable(fdt); 488 } 489 } 490 491 EXPORT_SYMBOL(put_files_struct); 492 493 void reset_files_struct(struct task_struct *tsk, struct files_struct *files) 494 { 495 struct files_struct *old; 496 497 old = tsk->files; 498 task_lock(tsk); 499 tsk->files = files; 500 task_unlock(tsk); 501 put_files_struct(old); 502 } 503 EXPORT_SYMBOL(reset_files_struct); 504 505 static inline void __exit_files(struct task_struct *tsk) 506 { 507 struct files_struct * files = tsk->files; 508 509 if (files) { 510 task_lock(tsk); 511 tsk->files = NULL; 512 task_unlock(tsk); 513 put_files_struct(files); 514 } 515 } 516 517 void exit_files(struct task_struct *tsk) 518 { 519 __exit_files(tsk); 520 } 521 522 static inline void __put_fs_struct(struct fs_struct *fs) 523 { 524 /* No need to hold fs->lock if we are killing it */ 525 if (atomic_dec_and_test(&fs->count)) { 526 dput(fs->root); 527 mntput(fs->rootmnt); 528 dput(fs->pwd); 529 mntput(fs->pwdmnt); 530 if (fs->altroot) { 531 dput(fs->altroot); 532 mntput(fs->altrootmnt); 533 } 534 kmem_cache_free(fs_cachep, fs); 535 } 536 } 537 538 void put_fs_struct(struct fs_struct *fs) 539 { 540 __put_fs_struct(fs); 541 } 542 543 static inline void __exit_fs(struct task_struct *tsk) 544 { 545 struct fs_struct * fs = tsk->fs; 546 547 if (fs) { 548 task_lock(tsk); 549 tsk->fs = NULL; 550 task_unlock(tsk); 551 __put_fs_struct(fs); 552 } 553 } 554 555 void exit_fs(struct task_struct *tsk) 556 { 557 __exit_fs(tsk); 558 } 559 560 EXPORT_SYMBOL_GPL(exit_fs); 561 562 /* 563 * Turn us into a lazy TLB process if we 564 * aren't already.. 565 */ 566 static void exit_mm(struct task_struct * tsk) 567 { 568 struct mm_struct *mm = tsk->mm; 569 570 mm_release(tsk, mm); 571 if (!mm) 572 return; 573 /* 574 * Serialize with any possible pending coredump. 575 * We must hold mmap_sem around checking core_waiters 576 * and clearing tsk->mm. The core-inducing thread 577 * will increment core_waiters for each thread in the 578 * group with ->mm != NULL. 579 */ 580 down_read(&mm->mmap_sem); 581 if (mm->core_waiters) { 582 up_read(&mm->mmap_sem); 583 down_write(&mm->mmap_sem); 584 if (!--mm->core_waiters) 585 complete(mm->core_startup_done); 586 up_write(&mm->mmap_sem); 587 588 wait_for_completion(&mm->core_done); 589 down_read(&mm->mmap_sem); 590 } 591 atomic_inc(&mm->mm_count); 592 BUG_ON(mm != tsk->active_mm); 593 /* more a memory barrier than a real lock */ 594 task_lock(tsk); 595 tsk->mm = NULL; 596 up_read(&mm->mmap_sem); 597 enter_lazy_tlb(mm, current); 598 /* We don't want this task to be frozen prematurely */ 599 clear_freeze_flag(tsk); 600 task_unlock(tsk); 601 mmput(mm); 602 } 603 604 static inline void 605 choose_new_parent(struct task_struct *p, struct task_struct *reaper) 606 { 607 /* 608 * Make sure we're not reparenting to ourselves and that 609 * the parent is not a zombie. 610 */ 611 BUG_ON(p == reaper || reaper->exit_state); 612 p->real_parent = reaper; 613 } 614 615 static void 616 reparent_thread(struct task_struct *p, struct task_struct *father, int traced) 617 { 618 if (p->pdeath_signal) 619 /* We already hold the tasklist_lock here. */ 620 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 621 622 /* Move the child from its dying parent to the new one. */ 623 if (unlikely(traced)) { 624 /* Preserve ptrace links if someone else is tracing this child. */ 625 list_del_init(&p->ptrace_list); 626 if (p->parent != p->real_parent) 627 list_add(&p->ptrace_list, &p->real_parent->ptrace_children); 628 } else { 629 /* If this child is being traced, then we're the one tracing it 630 * anyway, so let go of it. 631 */ 632 p->ptrace = 0; 633 remove_parent(p); 634 p->parent = p->real_parent; 635 add_parent(p); 636 637 if (p->state == TASK_TRACED) { 638 /* 639 * If it was at a trace stop, turn it into 640 * a normal stop since it's no longer being 641 * traced. 642 */ 643 ptrace_untrace(p); 644 } 645 } 646 647 /* If this is a threaded reparent there is no need to 648 * notify anyone anything has happened. 649 */ 650 if (p->real_parent->group_leader == father->group_leader) 651 return; 652 653 /* We don't want people slaying init. */ 654 if (p->exit_signal != -1) 655 p->exit_signal = SIGCHLD; 656 657 /* If we'd notified the old parent about this child's death, 658 * also notify the new parent. 659 */ 660 if (!traced && p->exit_state == EXIT_ZOMBIE && 661 p->exit_signal != -1 && thread_group_empty(p)) 662 do_notify_parent(p, p->exit_signal); 663 664 /* 665 * process group orphan check 666 * Case ii: Our child is in a different pgrp 667 * than we are, and it was the only connection 668 * outside, so the child pgrp is now orphaned. 669 */ 670 if ((task_pgrp(p) != task_pgrp(father)) && 671 (task_session(p) == task_session(father))) { 672 struct pid *pgrp = task_pgrp(p); 673 674 if (will_become_orphaned_pgrp(pgrp, NULL) && 675 has_stopped_jobs(pgrp)) { 676 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 677 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 678 } 679 } 680 } 681 682 /* 683 * When we die, we re-parent all our children. 684 * Try to give them to another thread in our thread 685 * group, and if no such member exists, give it to 686 * the child reaper process (ie "init") in our pid 687 * space. 688 */ 689 static void 690 forget_original_parent(struct task_struct *father, struct list_head *to_release) 691 { 692 struct task_struct *p, *reaper = father; 693 struct list_head *_p, *_n; 694 695 do { 696 reaper = next_thread(reaper); 697 if (reaper == father) { 698 reaper = child_reaper(father); 699 break; 700 } 701 } while (reaper->exit_state); 702 703 /* 704 * There are only two places where our children can be: 705 * 706 * - in our child list 707 * - in our ptraced child list 708 * 709 * Search them and reparent children. 710 */ 711 list_for_each_safe(_p, _n, &father->children) { 712 int ptrace; 713 p = list_entry(_p, struct task_struct, sibling); 714 715 ptrace = p->ptrace; 716 717 /* if father isn't the real parent, then ptrace must be enabled */ 718 BUG_ON(father != p->real_parent && !ptrace); 719 720 if (father == p->real_parent) { 721 /* reparent with a reaper, real father it's us */ 722 choose_new_parent(p, reaper); 723 reparent_thread(p, father, 0); 724 } else { 725 /* reparent ptraced task to its real parent */ 726 __ptrace_unlink (p); 727 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && 728 thread_group_empty(p)) 729 do_notify_parent(p, p->exit_signal); 730 } 731 732 /* 733 * if the ptraced child is a zombie with exit_signal == -1 734 * we must collect it before we exit, or it will remain 735 * zombie forever since we prevented it from self-reap itself 736 * while it was being traced by us, to be able to see it in wait4. 737 */ 738 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) 739 list_add(&p->ptrace_list, to_release); 740 } 741 list_for_each_safe(_p, _n, &father->ptrace_children) { 742 p = list_entry(_p, struct task_struct, ptrace_list); 743 choose_new_parent(p, reaper); 744 reparent_thread(p, father, 1); 745 } 746 } 747 748 /* 749 * Send signals to all our closest relatives so that they know 750 * to properly mourn us.. 751 */ 752 static void exit_notify(struct task_struct *tsk) 753 { 754 int state; 755 struct task_struct *t; 756 struct list_head ptrace_dead, *_p, *_n; 757 struct pid *pgrp; 758 759 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT) 760 && !thread_group_empty(tsk)) { 761 /* 762 * This occurs when there was a race between our exit 763 * syscall and a group signal choosing us as the one to 764 * wake up. It could be that we are the only thread 765 * alerted to check for pending signals, but another thread 766 * should be woken now to take the signal since we will not. 767 * Now we'll wake all the threads in the group just to make 768 * sure someone gets all the pending signals. 769 */ 770 read_lock(&tasklist_lock); 771 spin_lock_irq(&tsk->sighand->siglock); 772 for (t = next_thread(tsk); t != tsk; t = next_thread(t)) 773 if (!signal_pending(t) && !(t->flags & PF_EXITING)) 774 recalc_sigpending_and_wake(t); 775 spin_unlock_irq(&tsk->sighand->siglock); 776 read_unlock(&tasklist_lock); 777 } 778 779 write_lock_irq(&tasklist_lock); 780 781 /* 782 * This does two things: 783 * 784 * A. Make init inherit all the child processes 785 * B. Check to see if any process groups have become orphaned 786 * as a result of our exiting, and if they have any stopped 787 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 788 */ 789 790 INIT_LIST_HEAD(&ptrace_dead); 791 forget_original_parent(tsk, &ptrace_dead); 792 BUG_ON(!list_empty(&tsk->children)); 793 BUG_ON(!list_empty(&tsk->ptrace_children)); 794 795 /* 796 * Check to see if any process groups have become orphaned 797 * as a result of our exiting, and if they have any stopped 798 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 799 * 800 * Case i: Our father is in a different pgrp than we are 801 * and we were the only connection outside, so our pgrp 802 * is about to become orphaned. 803 */ 804 805 t = tsk->real_parent; 806 807 pgrp = task_pgrp(tsk); 808 if ((task_pgrp(t) != pgrp) && 809 (task_session(t) == task_session(tsk)) && 810 will_become_orphaned_pgrp(pgrp, tsk) && 811 has_stopped_jobs(pgrp)) { 812 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 813 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 814 } 815 816 /* Let father know we died 817 * 818 * Thread signals are configurable, but you aren't going to use 819 * that to send signals to arbitary processes. 820 * That stops right now. 821 * 822 * If the parent exec id doesn't match the exec id we saved 823 * when we started then we know the parent has changed security 824 * domain. 825 * 826 * If our self_exec id doesn't match our parent_exec_id then 827 * we have changed execution domain as these two values started 828 * the same after a fork. 829 */ 830 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && 831 ( tsk->parent_exec_id != t->self_exec_id || 832 tsk->self_exec_id != tsk->parent_exec_id) 833 && !capable(CAP_KILL)) 834 tsk->exit_signal = SIGCHLD; 835 836 837 /* If something other than our normal parent is ptracing us, then 838 * send it a SIGCHLD instead of honoring exit_signal. exit_signal 839 * only has special meaning to our real parent. 840 */ 841 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { 842 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; 843 do_notify_parent(tsk, signal); 844 } else if (tsk->ptrace) { 845 do_notify_parent(tsk, SIGCHLD); 846 } 847 848 state = EXIT_ZOMBIE; 849 if (tsk->exit_signal == -1 && likely(!tsk->ptrace)) 850 state = EXIT_DEAD; 851 tsk->exit_state = state; 852 853 write_unlock_irq(&tasklist_lock); 854 855 list_for_each_safe(_p, _n, &ptrace_dead) { 856 list_del_init(_p); 857 t = list_entry(_p, struct task_struct, ptrace_list); 858 release_task(t); 859 } 860 861 /* If the process is dead, release it - nobody will wait for it */ 862 if (state == EXIT_DEAD) 863 release_task(tsk); 864 } 865 866 #ifdef CONFIG_DEBUG_STACK_USAGE 867 static void check_stack_usage(void) 868 { 869 static DEFINE_SPINLOCK(low_water_lock); 870 static int lowest_to_date = THREAD_SIZE; 871 unsigned long *n = end_of_stack(current); 872 unsigned long free; 873 874 while (*n == 0) 875 n++; 876 free = (unsigned long)n - (unsigned long)end_of_stack(current); 877 878 if (free >= lowest_to_date) 879 return; 880 881 spin_lock(&low_water_lock); 882 if (free < lowest_to_date) { 883 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 884 "left\n", 885 current->comm, free); 886 lowest_to_date = free; 887 } 888 spin_unlock(&low_water_lock); 889 } 890 #else 891 static inline void check_stack_usage(void) {} 892 #endif 893 894 fastcall NORET_TYPE void do_exit(long code) 895 { 896 struct task_struct *tsk = current; 897 int group_dead; 898 899 profile_task_exit(tsk); 900 901 WARN_ON(atomic_read(&tsk->fs_excl)); 902 903 if (unlikely(in_interrupt())) 904 panic("Aiee, killing interrupt handler!"); 905 if (unlikely(!tsk->pid)) 906 panic("Attempted to kill the idle task!"); 907 if (unlikely(tsk == child_reaper(tsk))) { 908 if (tsk->nsproxy->pid_ns != &init_pid_ns) 909 tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper; 910 else 911 panic("Attempted to kill init!"); 912 } 913 914 915 if (unlikely(current->ptrace & PT_TRACE_EXIT)) { 916 current->ptrace_message = code; 917 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); 918 } 919 920 /* 921 * We're taking recursive faults here in do_exit. Safest is to just 922 * leave this task alone and wait for reboot. 923 */ 924 if (unlikely(tsk->flags & PF_EXITING)) { 925 printk(KERN_ALERT 926 "Fixing recursive fault but reboot is needed!\n"); 927 /* 928 * We can do this unlocked here. The futex code uses 929 * this flag just to verify whether the pi state 930 * cleanup has been done or not. In the worst case it 931 * loops once more. We pretend that the cleanup was 932 * done as there is no way to return. Either the 933 * OWNER_DIED bit is set by now or we push the blocked 934 * task into the wait for ever nirwana as well. 935 */ 936 tsk->flags |= PF_EXITPIDONE; 937 if (tsk->io_context) 938 exit_io_context(); 939 set_current_state(TASK_UNINTERRUPTIBLE); 940 schedule(); 941 } 942 943 /* 944 * tsk->flags are checked in the futex code to protect against 945 * an exiting task cleaning up the robust pi futexes. 946 */ 947 spin_lock_irq(&tsk->pi_lock); 948 tsk->flags |= PF_EXITING; 949 spin_unlock_irq(&tsk->pi_lock); 950 951 if (unlikely(in_atomic())) 952 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 953 current->comm, current->pid, 954 preempt_count()); 955 956 acct_update_integrals(tsk); 957 if (tsk->mm) { 958 update_hiwater_rss(tsk->mm); 959 update_hiwater_vm(tsk->mm); 960 } 961 group_dead = atomic_dec_and_test(&tsk->signal->live); 962 if (group_dead) { 963 hrtimer_cancel(&tsk->signal->real_timer); 964 exit_itimers(tsk->signal); 965 } 966 acct_collect(code, group_dead); 967 if (unlikely(tsk->robust_list)) 968 exit_robust_list(tsk); 969 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT) 970 if (unlikely(tsk->compat_robust_list)) 971 compat_exit_robust_list(tsk); 972 #endif 973 if (group_dead) 974 tty_audit_exit(); 975 if (unlikely(tsk->audit_context)) 976 audit_free(tsk); 977 978 taskstats_exit(tsk, group_dead); 979 980 exit_mm(tsk); 981 982 if (group_dead) 983 acct_process(); 984 exit_sem(tsk); 985 __exit_files(tsk); 986 __exit_fs(tsk); 987 check_stack_usage(); 988 exit_thread(); 989 cpuset_exit(tsk); 990 exit_keys(tsk); 991 992 if (group_dead && tsk->signal->leader) 993 disassociate_ctty(1); 994 995 module_put(task_thread_info(tsk)->exec_domain->module); 996 if (tsk->binfmt) 997 module_put(tsk->binfmt->module); 998 999 tsk->exit_code = code; 1000 proc_exit_connector(tsk); 1001 exit_task_namespaces(tsk); 1002 exit_notify(tsk); 1003 #ifdef CONFIG_NUMA 1004 mpol_free(tsk->mempolicy); 1005 tsk->mempolicy = NULL; 1006 #endif 1007 /* 1008 * This must happen late, after the PID is not 1009 * hashed anymore: 1010 */ 1011 if (unlikely(!list_empty(&tsk->pi_state_list))) 1012 exit_pi_state_list(tsk); 1013 if (unlikely(current->pi_state_cache)) 1014 kfree(current->pi_state_cache); 1015 /* 1016 * Make sure we are holding no locks: 1017 */ 1018 debug_check_no_locks_held(tsk); 1019 /* 1020 * We can do this unlocked here. The futex code uses this flag 1021 * just to verify whether the pi state cleanup has been done 1022 * or not. In the worst case it loops once more. 1023 */ 1024 tsk->flags |= PF_EXITPIDONE; 1025 1026 if (tsk->io_context) 1027 exit_io_context(); 1028 1029 if (tsk->splice_pipe) 1030 __free_pipe_info(tsk->splice_pipe); 1031 1032 preempt_disable(); 1033 /* causes final put_task_struct in finish_task_switch(). */ 1034 tsk->state = TASK_DEAD; 1035 1036 schedule(); 1037 BUG(); 1038 /* Avoid "noreturn function does return". */ 1039 for (;;) 1040 cpu_relax(); /* For when BUG is null */ 1041 } 1042 1043 EXPORT_SYMBOL_GPL(do_exit); 1044 1045 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1046 { 1047 if (comp) 1048 complete(comp); 1049 1050 do_exit(code); 1051 } 1052 1053 EXPORT_SYMBOL(complete_and_exit); 1054 1055 asmlinkage long sys_exit(int error_code) 1056 { 1057 do_exit((error_code&0xff)<<8); 1058 } 1059 1060 /* 1061 * Take down every thread in the group. This is called by fatal signals 1062 * as well as by sys_exit_group (below). 1063 */ 1064 NORET_TYPE void 1065 do_group_exit(int exit_code) 1066 { 1067 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1068 1069 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1070 exit_code = current->signal->group_exit_code; 1071 else if (!thread_group_empty(current)) { 1072 struct signal_struct *const sig = current->signal; 1073 struct sighand_struct *const sighand = current->sighand; 1074 spin_lock_irq(&sighand->siglock); 1075 if (sig->flags & SIGNAL_GROUP_EXIT) 1076 /* Another thread got here before we took the lock. */ 1077 exit_code = sig->group_exit_code; 1078 else { 1079 sig->group_exit_code = exit_code; 1080 zap_other_threads(current); 1081 } 1082 spin_unlock_irq(&sighand->siglock); 1083 } 1084 1085 do_exit(exit_code); 1086 /* NOTREACHED */ 1087 } 1088 1089 /* 1090 * this kills every thread in the thread group. Note that any externally 1091 * wait4()-ing process will get the correct exit code - even if this 1092 * thread is not the thread group leader. 1093 */ 1094 asmlinkage void sys_exit_group(int error_code) 1095 { 1096 do_group_exit((error_code & 0xff) << 8); 1097 } 1098 1099 static int eligible_child(pid_t pid, int options, struct task_struct *p) 1100 { 1101 int err; 1102 1103 if (pid > 0) { 1104 if (p->pid != pid) 1105 return 0; 1106 } else if (!pid) { 1107 if (process_group(p) != process_group(current)) 1108 return 0; 1109 } else if (pid != -1) { 1110 if (process_group(p) != -pid) 1111 return 0; 1112 } 1113 1114 /* 1115 * Do not consider detached threads that are 1116 * not ptraced: 1117 */ 1118 if (p->exit_signal == -1 && !p->ptrace) 1119 return 0; 1120 1121 /* Wait for all children (clone and not) if __WALL is set; 1122 * otherwise, wait for clone children *only* if __WCLONE is 1123 * set; otherwise, wait for non-clone children *only*. (Note: 1124 * A "clone" child here is one that reports to its parent 1125 * using a signal other than SIGCHLD.) */ 1126 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1127 && !(options & __WALL)) 1128 return 0; 1129 /* 1130 * Do not consider thread group leaders that are 1131 * in a non-empty thread group: 1132 */ 1133 if (delay_group_leader(p)) 1134 return 2; 1135 1136 err = security_task_wait(p); 1137 if (err) 1138 return err; 1139 1140 return 1; 1141 } 1142 1143 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1144 int why, int status, 1145 struct siginfo __user *infop, 1146 struct rusage __user *rusagep) 1147 { 1148 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1149 1150 put_task_struct(p); 1151 if (!retval) 1152 retval = put_user(SIGCHLD, &infop->si_signo); 1153 if (!retval) 1154 retval = put_user(0, &infop->si_errno); 1155 if (!retval) 1156 retval = put_user((short)why, &infop->si_code); 1157 if (!retval) 1158 retval = put_user(pid, &infop->si_pid); 1159 if (!retval) 1160 retval = put_user(uid, &infop->si_uid); 1161 if (!retval) 1162 retval = put_user(status, &infop->si_status); 1163 if (!retval) 1164 retval = pid; 1165 return retval; 1166 } 1167 1168 /* 1169 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1170 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1171 * the lock and this task is uninteresting. If we return nonzero, we have 1172 * released the lock and the system call should return. 1173 */ 1174 static int wait_task_zombie(struct task_struct *p, int noreap, 1175 struct siginfo __user *infop, 1176 int __user *stat_addr, struct rusage __user *ru) 1177 { 1178 unsigned long state; 1179 int retval; 1180 int status; 1181 1182 if (unlikely(noreap)) { 1183 pid_t pid = p->pid; 1184 uid_t uid = p->uid; 1185 int exit_code = p->exit_code; 1186 int why, status; 1187 1188 if (unlikely(p->exit_state != EXIT_ZOMBIE)) 1189 return 0; 1190 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) 1191 return 0; 1192 get_task_struct(p); 1193 read_unlock(&tasklist_lock); 1194 if ((exit_code & 0x7f) == 0) { 1195 why = CLD_EXITED; 1196 status = exit_code >> 8; 1197 } else { 1198 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1199 status = exit_code & 0x7f; 1200 } 1201 return wait_noreap_copyout(p, pid, uid, why, 1202 status, infop, ru); 1203 } 1204 1205 /* 1206 * Try to move the task's state to DEAD 1207 * only one thread is allowed to do this: 1208 */ 1209 state = xchg(&p->exit_state, EXIT_DEAD); 1210 if (state != EXIT_ZOMBIE) { 1211 BUG_ON(state != EXIT_DEAD); 1212 return 0; 1213 } 1214 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) { 1215 /* 1216 * This can only happen in a race with a ptraced thread 1217 * dying on another processor. 1218 */ 1219 return 0; 1220 } 1221 1222 if (likely(p->real_parent == p->parent) && likely(p->signal)) { 1223 struct signal_struct *psig; 1224 struct signal_struct *sig; 1225 1226 /* 1227 * The resource counters for the group leader are in its 1228 * own task_struct. Those for dead threads in the group 1229 * are in its signal_struct, as are those for the child 1230 * processes it has previously reaped. All these 1231 * accumulate in the parent's signal_struct c* fields. 1232 * 1233 * We don't bother to take a lock here to protect these 1234 * p->signal fields, because they are only touched by 1235 * __exit_signal, which runs with tasklist_lock 1236 * write-locked anyway, and so is excluded here. We do 1237 * need to protect the access to p->parent->signal fields, 1238 * as other threads in the parent group can be right 1239 * here reaping other children at the same time. 1240 */ 1241 spin_lock_irq(&p->parent->sighand->siglock); 1242 psig = p->parent->signal; 1243 sig = p->signal; 1244 psig->cutime = 1245 cputime_add(psig->cutime, 1246 cputime_add(p->utime, 1247 cputime_add(sig->utime, 1248 sig->cutime))); 1249 psig->cstime = 1250 cputime_add(psig->cstime, 1251 cputime_add(p->stime, 1252 cputime_add(sig->stime, 1253 sig->cstime))); 1254 psig->cmin_flt += 1255 p->min_flt + sig->min_flt + sig->cmin_flt; 1256 psig->cmaj_flt += 1257 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1258 psig->cnvcsw += 1259 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1260 psig->cnivcsw += 1261 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1262 psig->cinblock += 1263 task_io_get_inblock(p) + 1264 sig->inblock + sig->cinblock; 1265 psig->coublock += 1266 task_io_get_oublock(p) + 1267 sig->oublock + sig->coublock; 1268 spin_unlock_irq(&p->parent->sighand->siglock); 1269 } 1270 1271 /* 1272 * Now we are sure this task is interesting, and no other 1273 * thread can reap it because we set its state to EXIT_DEAD. 1274 */ 1275 read_unlock(&tasklist_lock); 1276 1277 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1278 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1279 ? p->signal->group_exit_code : p->exit_code; 1280 if (!retval && stat_addr) 1281 retval = put_user(status, stat_addr); 1282 if (!retval && infop) 1283 retval = put_user(SIGCHLD, &infop->si_signo); 1284 if (!retval && infop) 1285 retval = put_user(0, &infop->si_errno); 1286 if (!retval && infop) { 1287 int why; 1288 1289 if ((status & 0x7f) == 0) { 1290 why = CLD_EXITED; 1291 status >>= 8; 1292 } else { 1293 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1294 status &= 0x7f; 1295 } 1296 retval = put_user((short)why, &infop->si_code); 1297 if (!retval) 1298 retval = put_user(status, &infop->si_status); 1299 } 1300 if (!retval && infop) 1301 retval = put_user(p->pid, &infop->si_pid); 1302 if (!retval && infop) 1303 retval = put_user(p->uid, &infop->si_uid); 1304 if (retval) { 1305 // TODO: is this safe? 1306 p->exit_state = EXIT_ZOMBIE; 1307 return retval; 1308 } 1309 retval = p->pid; 1310 if (p->real_parent != p->parent) { 1311 write_lock_irq(&tasklist_lock); 1312 /* Double-check with lock held. */ 1313 if (p->real_parent != p->parent) { 1314 __ptrace_unlink(p); 1315 // TODO: is this safe? 1316 p->exit_state = EXIT_ZOMBIE; 1317 /* 1318 * If this is not a detached task, notify the parent. 1319 * If it's still not detached after that, don't release 1320 * it now. 1321 */ 1322 if (p->exit_signal != -1) { 1323 do_notify_parent(p, p->exit_signal); 1324 if (p->exit_signal != -1) 1325 p = NULL; 1326 } 1327 } 1328 write_unlock_irq(&tasklist_lock); 1329 } 1330 if (p != NULL) 1331 release_task(p); 1332 BUG_ON(!retval); 1333 return retval; 1334 } 1335 1336 /* 1337 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1338 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1339 * the lock and this task is uninteresting. If we return nonzero, we have 1340 * released the lock and the system call should return. 1341 */ 1342 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader, 1343 int noreap, struct siginfo __user *infop, 1344 int __user *stat_addr, struct rusage __user *ru) 1345 { 1346 int retval, exit_code; 1347 1348 if (!p->exit_code) 1349 return 0; 1350 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) && 1351 p->signal && p->signal->group_stop_count > 0) 1352 /* 1353 * A group stop is in progress and this is the group leader. 1354 * We won't report until all threads have stopped. 1355 */ 1356 return 0; 1357 1358 /* 1359 * Now we are pretty sure this task is interesting. 1360 * Make sure it doesn't get reaped out from under us while we 1361 * give up the lock and then examine it below. We don't want to 1362 * keep holding onto the tasklist_lock while we call getrusage and 1363 * possibly take page faults for user memory. 1364 */ 1365 get_task_struct(p); 1366 read_unlock(&tasklist_lock); 1367 1368 if (unlikely(noreap)) { 1369 pid_t pid = p->pid; 1370 uid_t uid = p->uid; 1371 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; 1372 1373 exit_code = p->exit_code; 1374 if (unlikely(!exit_code) || 1375 unlikely(p->state & TASK_TRACED)) 1376 goto bail_ref; 1377 return wait_noreap_copyout(p, pid, uid, 1378 why, (exit_code << 8) | 0x7f, 1379 infop, ru); 1380 } 1381 1382 write_lock_irq(&tasklist_lock); 1383 1384 /* 1385 * This uses xchg to be atomic with the thread resuming and setting 1386 * it. It must also be done with the write lock held to prevent a 1387 * race with the EXIT_ZOMBIE case. 1388 */ 1389 exit_code = xchg(&p->exit_code, 0); 1390 if (unlikely(p->exit_state)) { 1391 /* 1392 * The task resumed and then died. Let the next iteration 1393 * catch it in EXIT_ZOMBIE. Note that exit_code might 1394 * already be zero here if it resumed and did _exit(0). 1395 * The task itself is dead and won't touch exit_code again; 1396 * other processors in this function are locked out. 1397 */ 1398 p->exit_code = exit_code; 1399 exit_code = 0; 1400 } 1401 if (unlikely(exit_code == 0)) { 1402 /* 1403 * Another thread in this function got to it first, or it 1404 * resumed, or it resumed and then died. 1405 */ 1406 write_unlock_irq(&tasklist_lock); 1407 bail_ref: 1408 put_task_struct(p); 1409 /* 1410 * We are returning to the wait loop without having successfully 1411 * removed the process and having released the lock. We cannot 1412 * continue, since the "p" task pointer is potentially stale. 1413 * 1414 * Return -EAGAIN, and do_wait() will restart the loop from the 1415 * beginning. Do _not_ re-acquire the lock. 1416 */ 1417 return -EAGAIN; 1418 } 1419 1420 /* move to end of parent's list to avoid starvation */ 1421 remove_parent(p); 1422 add_parent(p); 1423 1424 write_unlock_irq(&tasklist_lock); 1425 1426 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1427 if (!retval && stat_addr) 1428 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1429 if (!retval && infop) 1430 retval = put_user(SIGCHLD, &infop->si_signo); 1431 if (!retval && infop) 1432 retval = put_user(0, &infop->si_errno); 1433 if (!retval && infop) 1434 retval = put_user((short)((p->ptrace & PT_PTRACED) 1435 ? CLD_TRAPPED : CLD_STOPPED), 1436 &infop->si_code); 1437 if (!retval && infop) 1438 retval = put_user(exit_code, &infop->si_status); 1439 if (!retval && infop) 1440 retval = put_user(p->pid, &infop->si_pid); 1441 if (!retval && infop) 1442 retval = put_user(p->uid, &infop->si_uid); 1443 if (!retval) 1444 retval = p->pid; 1445 put_task_struct(p); 1446 1447 BUG_ON(!retval); 1448 return retval; 1449 } 1450 1451 /* 1452 * Handle do_wait work for one task in a live, non-stopped state. 1453 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1454 * the lock and this task is uninteresting. If we return nonzero, we have 1455 * released the lock and the system call should return. 1456 */ 1457 static int wait_task_continued(struct task_struct *p, int noreap, 1458 struct siginfo __user *infop, 1459 int __user *stat_addr, struct rusage __user *ru) 1460 { 1461 int retval; 1462 pid_t pid; 1463 uid_t uid; 1464 1465 if (unlikely(!p->signal)) 1466 return 0; 1467 1468 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1469 return 0; 1470 1471 spin_lock_irq(&p->sighand->siglock); 1472 /* Re-check with the lock held. */ 1473 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1474 spin_unlock_irq(&p->sighand->siglock); 1475 return 0; 1476 } 1477 if (!noreap) 1478 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1479 spin_unlock_irq(&p->sighand->siglock); 1480 1481 pid = p->pid; 1482 uid = p->uid; 1483 get_task_struct(p); 1484 read_unlock(&tasklist_lock); 1485 1486 if (!infop) { 1487 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1488 put_task_struct(p); 1489 if (!retval && stat_addr) 1490 retval = put_user(0xffff, stat_addr); 1491 if (!retval) 1492 retval = p->pid; 1493 } else { 1494 retval = wait_noreap_copyout(p, pid, uid, 1495 CLD_CONTINUED, SIGCONT, 1496 infop, ru); 1497 BUG_ON(retval == 0); 1498 } 1499 1500 return retval; 1501 } 1502 1503 1504 static inline int my_ptrace_child(struct task_struct *p) 1505 { 1506 if (!(p->ptrace & PT_PTRACED)) 1507 return 0; 1508 if (!(p->ptrace & PT_ATTACHED)) 1509 return 1; 1510 /* 1511 * This child was PTRACE_ATTACH'd. We should be seeing it only if 1512 * we are the attacher. If we are the real parent, this is a race 1513 * inside ptrace_attach. It is waiting for the tasklist_lock, 1514 * which we have to switch the parent links, but has already set 1515 * the flags in p->ptrace. 1516 */ 1517 return (p->parent != p->real_parent); 1518 } 1519 1520 static long do_wait(pid_t pid, int options, struct siginfo __user *infop, 1521 int __user *stat_addr, struct rusage __user *ru) 1522 { 1523 DECLARE_WAITQUEUE(wait, current); 1524 struct task_struct *tsk; 1525 int flag, retval; 1526 int allowed, denied; 1527 1528 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1529 repeat: 1530 /* 1531 * We will set this flag if we see any child that might later 1532 * match our criteria, even if we are not able to reap it yet. 1533 */ 1534 flag = 0; 1535 allowed = denied = 0; 1536 current->state = TASK_INTERRUPTIBLE; 1537 read_lock(&tasklist_lock); 1538 tsk = current; 1539 do { 1540 struct task_struct *p; 1541 struct list_head *_p; 1542 int ret; 1543 1544 list_for_each(_p,&tsk->children) { 1545 p = list_entry(_p, struct task_struct, sibling); 1546 1547 ret = eligible_child(pid, options, p); 1548 if (!ret) 1549 continue; 1550 1551 if (unlikely(ret < 0)) { 1552 denied = ret; 1553 continue; 1554 } 1555 allowed = 1; 1556 1557 switch (p->state) { 1558 case TASK_TRACED: 1559 /* 1560 * When we hit the race with PTRACE_ATTACH, 1561 * we will not report this child. But the 1562 * race means it has not yet been moved to 1563 * our ptrace_children list, so we need to 1564 * set the flag here to avoid a spurious ECHILD 1565 * when the race happens with the only child. 1566 */ 1567 flag = 1; 1568 if (!my_ptrace_child(p)) 1569 continue; 1570 /*FALLTHROUGH*/ 1571 case TASK_STOPPED: 1572 /* 1573 * It's stopped now, so it might later 1574 * continue, exit, or stop again. 1575 */ 1576 flag = 1; 1577 if (!(options & WUNTRACED) && 1578 !my_ptrace_child(p)) 1579 continue; 1580 retval = wait_task_stopped(p, ret == 2, 1581 (options & WNOWAIT), 1582 infop, 1583 stat_addr, ru); 1584 if (retval == -EAGAIN) 1585 goto repeat; 1586 if (retval != 0) /* He released the lock. */ 1587 goto end; 1588 break; 1589 default: 1590 // case EXIT_DEAD: 1591 if (p->exit_state == EXIT_DEAD) 1592 continue; 1593 // case EXIT_ZOMBIE: 1594 if (p->exit_state == EXIT_ZOMBIE) { 1595 /* 1596 * Eligible but we cannot release 1597 * it yet: 1598 */ 1599 if (ret == 2) 1600 goto check_continued; 1601 if (!likely(options & WEXITED)) 1602 continue; 1603 retval = wait_task_zombie( 1604 p, (options & WNOWAIT), 1605 infop, stat_addr, ru); 1606 /* He released the lock. */ 1607 if (retval != 0) 1608 goto end; 1609 break; 1610 } 1611 check_continued: 1612 /* 1613 * It's running now, so it might later 1614 * exit, stop, or stop and then continue. 1615 */ 1616 flag = 1; 1617 if (!unlikely(options & WCONTINUED)) 1618 continue; 1619 retval = wait_task_continued( 1620 p, (options & WNOWAIT), 1621 infop, stat_addr, ru); 1622 if (retval != 0) /* He released the lock. */ 1623 goto end; 1624 break; 1625 } 1626 } 1627 if (!flag) { 1628 list_for_each(_p, &tsk->ptrace_children) { 1629 p = list_entry(_p, struct task_struct, 1630 ptrace_list); 1631 if (!eligible_child(pid, options, p)) 1632 continue; 1633 flag = 1; 1634 break; 1635 } 1636 } 1637 if (options & __WNOTHREAD) 1638 break; 1639 tsk = next_thread(tsk); 1640 BUG_ON(tsk->signal != current->signal); 1641 } while (tsk != current); 1642 1643 read_unlock(&tasklist_lock); 1644 if (flag) { 1645 retval = 0; 1646 if (options & WNOHANG) 1647 goto end; 1648 retval = -ERESTARTSYS; 1649 if (signal_pending(current)) 1650 goto end; 1651 schedule(); 1652 goto repeat; 1653 } 1654 retval = -ECHILD; 1655 if (unlikely(denied) && !allowed) 1656 retval = denied; 1657 end: 1658 current->state = TASK_RUNNING; 1659 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1660 if (infop) { 1661 if (retval > 0) 1662 retval = 0; 1663 else { 1664 /* 1665 * For a WNOHANG return, clear out all the fields 1666 * we would set so the user can easily tell the 1667 * difference. 1668 */ 1669 if (!retval) 1670 retval = put_user(0, &infop->si_signo); 1671 if (!retval) 1672 retval = put_user(0, &infop->si_errno); 1673 if (!retval) 1674 retval = put_user(0, &infop->si_code); 1675 if (!retval) 1676 retval = put_user(0, &infop->si_pid); 1677 if (!retval) 1678 retval = put_user(0, &infop->si_uid); 1679 if (!retval) 1680 retval = put_user(0, &infop->si_status); 1681 } 1682 } 1683 return retval; 1684 } 1685 1686 asmlinkage long sys_waitid(int which, pid_t pid, 1687 struct siginfo __user *infop, int options, 1688 struct rusage __user *ru) 1689 { 1690 long ret; 1691 1692 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1693 return -EINVAL; 1694 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1695 return -EINVAL; 1696 1697 switch (which) { 1698 case P_ALL: 1699 pid = -1; 1700 break; 1701 case P_PID: 1702 if (pid <= 0) 1703 return -EINVAL; 1704 break; 1705 case P_PGID: 1706 if (pid <= 0) 1707 return -EINVAL; 1708 pid = -pid; 1709 break; 1710 default: 1711 return -EINVAL; 1712 } 1713 1714 ret = do_wait(pid, options, infop, NULL, ru); 1715 1716 /* avoid REGPARM breakage on x86: */ 1717 prevent_tail_call(ret); 1718 return ret; 1719 } 1720 1721 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr, 1722 int options, struct rusage __user *ru) 1723 { 1724 long ret; 1725 1726 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1727 __WNOTHREAD|__WCLONE|__WALL)) 1728 return -EINVAL; 1729 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru); 1730 1731 /* avoid REGPARM breakage on x86: */ 1732 prevent_tail_call(ret); 1733 return ret; 1734 } 1735 1736 #ifdef __ARCH_WANT_SYS_WAITPID 1737 1738 /* 1739 * sys_waitpid() remains for compatibility. waitpid() should be 1740 * implemented by calling sys_wait4() from libc.a. 1741 */ 1742 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1743 { 1744 return sys_wait4(pid, stat_addr, options, NULL); 1745 } 1746 1747 #endif 1748