xref: /linux/kernel/exit.c (revision 405849610fd96b4f34cd1875c4c033228fea6c0f)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/signalfd.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cpuset.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/freezer.h>
49 
50 #include <asm/uaccess.h>
51 #include <asm/unistd.h>
52 #include <asm/pgtable.h>
53 #include <asm/mmu_context.h>
54 
55 extern void sem_exit (void);
56 
57 static void exit_mm(struct task_struct * tsk);
58 
59 static void __unhash_process(struct task_struct *p)
60 {
61 	nr_threads--;
62 	detach_pid(p, PIDTYPE_PID);
63 	if (thread_group_leader(p)) {
64 		detach_pid(p, PIDTYPE_PGID);
65 		detach_pid(p, PIDTYPE_SID);
66 
67 		list_del_rcu(&p->tasks);
68 		__get_cpu_var(process_counts)--;
69 	}
70 	list_del_rcu(&p->thread_group);
71 	remove_parent(p);
72 }
73 
74 /*
75  * This function expects the tasklist_lock write-locked.
76  */
77 static void __exit_signal(struct task_struct *tsk)
78 {
79 	struct signal_struct *sig = tsk->signal;
80 	struct sighand_struct *sighand;
81 
82 	BUG_ON(!sig);
83 	BUG_ON(!atomic_read(&sig->count));
84 
85 	rcu_read_lock();
86 	sighand = rcu_dereference(tsk->sighand);
87 	spin_lock(&sighand->siglock);
88 
89 	/*
90 	 * Notify that this sighand has been detached. This must
91 	 * be called with the tsk->sighand lock held. Also, this
92 	 * access tsk->sighand internally, so it must be called
93 	 * before tsk->sighand is reset.
94 	 */
95 	signalfd_detach_locked(tsk);
96 
97 	posix_cpu_timers_exit(tsk);
98 	if (atomic_dec_and_test(&sig->count))
99 		posix_cpu_timers_exit_group(tsk);
100 	else {
101 		/*
102 		 * If there is any task waiting for the group exit
103 		 * then notify it:
104 		 */
105 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
106 			wake_up_process(sig->group_exit_task);
107 			sig->group_exit_task = NULL;
108 		}
109 		if (tsk == sig->curr_target)
110 			sig->curr_target = next_thread(tsk);
111 		/*
112 		 * Accumulate here the counters for all threads but the
113 		 * group leader as they die, so they can be added into
114 		 * the process-wide totals when those are taken.
115 		 * The group leader stays around as a zombie as long
116 		 * as there are other threads.  When it gets reaped,
117 		 * the exit.c code will add its counts into these totals.
118 		 * We won't ever get here for the group leader, since it
119 		 * will have been the last reference on the signal_struct.
120 		 */
121 		sig->utime = cputime_add(sig->utime, tsk->utime);
122 		sig->stime = cputime_add(sig->stime, tsk->stime);
123 		sig->min_flt += tsk->min_flt;
124 		sig->maj_flt += tsk->maj_flt;
125 		sig->nvcsw += tsk->nvcsw;
126 		sig->nivcsw += tsk->nivcsw;
127 		sig->inblock += task_io_get_inblock(tsk);
128 		sig->oublock += task_io_get_oublock(tsk);
129 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
130 		sig = NULL; /* Marker for below. */
131 	}
132 
133 	__unhash_process(tsk);
134 
135 	tsk->signal = NULL;
136 	tsk->sighand = NULL;
137 	spin_unlock(&sighand->siglock);
138 	rcu_read_unlock();
139 
140 	__cleanup_sighand(sighand);
141 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
142 	flush_sigqueue(&tsk->pending);
143 	if (sig) {
144 		flush_sigqueue(&sig->shared_pending);
145 		taskstats_tgid_free(sig);
146 		__cleanup_signal(sig);
147 	}
148 }
149 
150 static void delayed_put_task_struct(struct rcu_head *rhp)
151 {
152 	put_task_struct(container_of(rhp, struct task_struct, rcu));
153 }
154 
155 void release_task(struct task_struct * p)
156 {
157 	struct task_struct *leader;
158 	int zap_leader;
159 repeat:
160 	atomic_dec(&p->user->processes);
161 	write_lock_irq(&tasklist_lock);
162 	ptrace_unlink(p);
163 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
164 	__exit_signal(p);
165 
166 	/*
167 	 * If we are the last non-leader member of the thread
168 	 * group, and the leader is zombie, then notify the
169 	 * group leader's parent process. (if it wants notification.)
170 	 */
171 	zap_leader = 0;
172 	leader = p->group_leader;
173 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
174 		BUG_ON(leader->exit_signal == -1);
175 		do_notify_parent(leader, leader->exit_signal);
176 		/*
177 		 * If we were the last child thread and the leader has
178 		 * exited already, and the leader's parent ignores SIGCHLD,
179 		 * then we are the one who should release the leader.
180 		 *
181 		 * do_notify_parent() will have marked it self-reaping in
182 		 * that case.
183 		 */
184 		zap_leader = (leader->exit_signal == -1);
185 	}
186 
187 	write_unlock_irq(&tasklist_lock);
188 	proc_flush_task(p);
189 	release_thread(p);
190 	call_rcu(&p->rcu, delayed_put_task_struct);
191 
192 	p = leader;
193 	if (unlikely(zap_leader))
194 		goto repeat;
195 }
196 
197 /*
198  * This checks not only the pgrp, but falls back on the pid if no
199  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
200  * without this...
201  *
202  * The caller must hold rcu lock or the tasklist lock.
203  */
204 struct pid *session_of_pgrp(struct pid *pgrp)
205 {
206 	struct task_struct *p;
207 	struct pid *sid = NULL;
208 
209 	p = pid_task(pgrp, PIDTYPE_PGID);
210 	if (p == NULL)
211 		p = pid_task(pgrp, PIDTYPE_PID);
212 	if (p != NULL)
213 		sid = task_session(p);
214 
215 	return sid;
216 }
217 
218 /*
219  * Determine if a process group is "orphaned", according to the POSIX
220  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
221  * by terminal-generated stop signals.  Newly orphaned process groups are
222  * to receive a SIGHUP and a SIGCONT.
223  *
224  * "I ask you, have you ever known what it is to be an orphan?"
225  */
226 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
227 {
228 	struct task_struct *p;
229 	int ret = 1;
230 
231 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
232 		if (p == ignored_task
233 				|| p->exit_state
234 				|| is_init(p->real_parent))
235 			continue;
236 		if (task_pgrp(p->real_parent) != pgrp &&
237 		    task_session(p->real_parent) == task_session(p)) {
238 			ret = 0;
239 			break;
240 		}
241 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
242 	return ret;	/* (sighing) "Often!" */
243 }
244 
245 int is_current_pgrp_orphaned(void)
246 {
247 	int retval;
248 
249 	read_lock(&tasklist_lock);
250 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
251 	read_unlock(&tasklist_lock);
252 
253 	return retval;
254 }
255 
256 static int has_stopped_jobs(struct pid *pgrp)
257 {
258 	int retval = 0;
259 	struct task_struct *p;
260 
261 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
262 		if (p->state != TASK_STOPPED)
263 			continue;
264 		retval = 1;
265 		break;
266 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
267 	return retval;
268 }
269 
270 /**
271  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
272  *
273  * If a kernel thread is launched as a result of a system call, or if
274  * it ever exits, it should generally reparent itself to kthreadd so it
275  * isn't in the way of other processes and is correctly cleaned up on exit.
276  *
277  * The various task state such as scheduling policy and priority may have
278  * been inherited from a user process, so we reset them to sane values here.
279  *
280  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
281  */
282 static void reparent_to_kthreadd(void)
283 {
284 	write_lock_irq(&tasklist_lock);
285 
286 	ptrace_unlink(current);
287 	/* Reparent to init */
288 	remove_parent(current);
289 	current->real_parent = current->parent = kthreadd_task;
290 	add_parent(current);
291 
292 	/* Set the exit signal to SIGCHLD so we signal init on exit */
293 	current->exit_signal = SIGCHLD;
294 
295 	if (task_nice(current) < 0)
296 		set_user_nice(current, 0);
297 	/* cpus_allowed? */
298 	/* rt_priority? */
299 	/* signals? */
300 	security_task_reparent_to_init(current);
301 	memcpy(current->signal->rlim, init_task.signal->rlim,
302 	       sizeof(current->signal->rlim));
303 	atomic_inc(&(INIT_USER->__count));
304 	write_unlock_irq(&tasklist_lock);
305 	switch_uid(INIT_USER);
306 }
307 
308 void __set_special_pids(pid_t session, pid_t pgrp)
309 {
310 	struct task_struct *curr = current->group_leader;
311 
312 	if (process_session(curr) != session) {
313 		detach_pid(curr, PIDTYPE_SID);
314 		set_signal_session(curr->signal, session);
315 		attach_pid(curr, PIDTYPE_SID, find_pid(session));
316 	}
317 	if (process_group(curr) != pgrp) {
318 		detach_pid(curr, PIDTYPE_PGID);
319 		curr->signal->pgrp = pgrp;
320 		attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp));
321 	}
322 }
323 
324 static void set_special_pids(pid_t session, pid_t pgrp)
325 {
326 	write_lock_irq(&tasklist_lock);
327 	__set_special_pids(session, pgrp);
328 	write_unlock_irq(&tasklist_lock);
329 }
330 
331 /*
332  * Let kernel threads use this to say that they
333  * allow a certain signal (since daemonize() will
334  * have disabled all of them by default).
335  */
336 int allow_signal(int sig)
337 {
338 	if (!valid_signal(sig) || sig < 1)
339 		return -EINVAL;
340 
341 	spin_lock_irq(&current->sighand->siglock);
342 	sigdelset(&current->blocked, sig);
343 	if (!current->mm) {
344 		/* Kernel threads handle their own signals.
345 		   Let the signal code know it'll be handled, so
346 		   that they don't get converted to SIGKILL or
347 		   just silently dropped */
348 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
349 	}
350 	recalc_sigpending();
351 	spin_unlock_irq(&current->sighand->siglock);
352 	return 0;
353 }
354 
355 EXPORT_SYMBOL(allow_signal);
356 
357 int disallow_signal(int sig)
358 {
359 	if (!valid_signal(sig) || sig < 1)
360 		return -EINVAL;
361 
362 	spin_lock_irq(&current->sighand->siglock);
363 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
364 	recalc_sigpending();
365 	spin_unlock_irq(&current->sighand->siglock);
366 	return 0;
367 }
368 
369 EXPORT_SYMBOL(disallow_signal);
370 
371 /*
372  *	Put all the gunge required to become a kernel thread without
373  *	attached user resources in one place where it belongs.
374  */
375 
376 void daemonize(const char *name, ...)
377 {
378 	va_list args;
379 	struct fs_struct *fs;
380 	sigset_t blocked;
381 
382 	va_start(args, name);
383 	vsnprintf(current->comm, sizeof(current->comm), name, args);
384 	va_end(args);
385 
386 	/*
387 	 * If we were started as result of loading a module, close all of the
388 	 * user space pages.  We don't need them, and if we didn't close them
389 	 * they would be locked into memory.
390 	 */
391 	exit_mm(current);
392 	/*
393 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
394 	 * or suspend transition begins right now.
395 	 */
396 	current->flags |= PF_NOFREEZE;
397 
398 	set_special_pids(1, 1);
399 	proc_clear_tty(current);
400 
401 	/* Block and flush all signals */
402 	sigfillset(&blocked);
403 	sigprocmask(SIG_BLOCK, &blocked, NULL);
404 	flush_signals(current);
405 
406 	/* Become as one with the init task */
407 
408 	exit_fs(current);	/* current->fs->count--; */
409 	fs = init_task.fs;
410 	current->fs = fs;
411 	atomic_inc(&fs->count);
412 
413 	exit_task_namespaces(current);
414 	current->nsproxy = init_task.nsproxy;
415 	get_task_namespaces(current);
416 
417  	exit_files(current);
418 	current->files = init_task.files;
419 	atomic_inc(&current->files->count);
420 
421 	reparent_to_kthreadd();
422 }
423 
424 EXPORT_SYMBOL(daemonize);
425 
426 static void close_files(struct files_struct * files)
427 {
428 	int i, j;
429 	struct fdtable *fdt;
430 
431 	j = 0;
432 
433 	/*
434 	 * It is safe to dereference the fd table without RCU or
435 	 * ->file_lock because this is the last reference to the
436 	 * files structure.
437 	 */
438 	fdt = files_fdtable(files);
439 	for (;;) {
440 		unsigned long set;
441 		i = j * __NFDBITS;
442 		if (i >= fdt->max_fds)
443 			break;
444 		set = fdt->open_fds->fds_bits[j++];
445 		while (set) {
446 			if (set & 1) {
447 				struct file * file = xchg(&fdt->fd[i], NULL);
448 				if (file) {
449 					filp_close(file, files);
450 					cond_resched();
451 				}
452 			}
453 			i++;
454 			set >>= 1;
455 		}
456 	}
457 }
458 
459 struct files_struct *get_files_struct(struct task_struct *task)
460 {
461 	struct files_struct *files;
462 
463 	task_lock(task);
464 	files = task->files;
465 	if (files)
466 		atomic_inc(&files->count);
467 	task_unlock(task);
468 
469 	return files;
470 }
471 
472 void fastcall put_files_struct(struct files_struct *files)
473 {
474 	struct fdtable *fdt;
475 
476 	if (atomic_dec_and_test(&files->count)) {
477 		close_files(files);
478 		/*
479 		 * Free the fd and fdset arrays if we expanded them.
480 		 * If the fdtable was embedded, pass files for freeing
481 		 * at the end of the RCU grace period. Otherwise,
482 		 * you can free files immediately.
483 		 */
484 		fdt = files_fdtable(files);
485 		if (fdt != &files->fdtab)
486 			kmem_cache_free(files_cachep, files);
487 		free_fdtable(fdt);
488 	}
489 }
490 
491 EXPORT_SYMBOL(put_files_struct);
492 
493 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
494 {
495 	struct files_struct *old;
496 
497 	old = tsk->files;
498 	task_lock(tsk);
499 	tsk->files = files;
500 	task_unlock(tsk);
501 	put_files_struct(old);
502 }
503 EXPORT_SYMBOL(reset_files_struct);
504 
505 static inline void __exit_files(struct task_struct *tsk)
506 {
507 	struct files_struct * files = tsk->files;
508 
509 	if (files) {
510 		task_lock(tsk);
511 		tsk->files = NULL;
512 		task_unlock(tsk);
513 		put_files_struct(files);
514 	}
515 }
516 
517 void exit_files(struct task_struct *tsk)
518 {
519 	__exit_files(tsk);
520 }
521 
522 static inline void __put_fs_struct(struct fs_struct *fs)
523 {
524 	/* No need to hold fs->lock if we are killing it */
525 	if (atomic_dec_and_test(&fs->count)) {
526 		dput(fs->root);
527 		mntput(fs->rootmnt);
528 		dput(fs->pwd);
529 		mntput(fs->pwdmnt);
530 		if (fs->altroot) {
531 			dput(fs->altroot);
532 			mntput(fs->altrootmnt);
533 		}
534 		kmem_cache_free(fs_cachep, fs);
535 	}
536 }
537 
538 void put_fs_struct(struct fs_struct *fs)
539 {
540 	__put_fs_struct(fs);
541 }
542 
543 static inline void __exit_fs(struct task_struct *tsk)
544 {
545 	struct fs_struct * fs = tsk->fs;
546 
547 	if (fs) {
548 		task_lock(tsk);
549 		tsk->fs = NULL;
550 		task_unlock(tsk);
551 		__put_fs_struct(fs);
552 	}
553 }
554 
555 void exit_fs(struct task_struct *tsk)
556 {
557 	__exit_fs(tsk);
558 }
559 
560 EXPORT_SYMBOL_GPL(exit_fs);
561 
562 /*
563  * Turn us into a lazy TLB process if we
564  * aren't already..
565  */
566 static void exit_mm(struct task_struct * tsk)
567 {
568 	struct mm_struct *mm = tsk->mm;
569 
570 	mm_release(tsk, mm);
571 	if (!mm)
572 		return;
573 	/*
574 	 * Serialize with any possible pending coredump.
575 	 * We must hold mmap_sem around checking core_waiters
576 	 * and clearing tsk->mm.  The core-inducing thread
577 	 * will increment core_waiters for each thread in the
578 	 * group with ->mm != NULL.
579 	 */
580 	down_read(&mm->mmap_sem);
581 	if (mm->core_waiters) {
582 		up_read(&mm->mmap_sem);
583 		down_write(&mm->mmap_sem);
584 		if (!--mm->core_waiters)
585 			complete(mm->core_startup_done);
586 		up_write(&mm->mmap_sem);
587 
588 		wait_for_completion(&mm->core_done);
589 		down_read(&mm->mmap_sem);
590 	}
591 	atomic_inc(&mm->mm_count);
592 	BUG_ON(mm != tsk->active_mm);
593 	/* more a memory barrier than a real lock */
594 	task_lock(tsk);
595 	tsk->mm = NULL;
596 	up_read(&mm->mmap_sem);
597 	enter_lazy_tlb(mm, current);
598 	/* We don't want this task to be frozen prematurely */
599 	clear_freeze_flag(tsk);
600 	task_unlock(tsk);
601 	mmput(mm);
602 }
603 
604 static inline void
605 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
606 {
607 	/*
608 	 * Make sure we're not reparenting to ourselves and that
609 	 * the parent is not a zombie.
610 	 */
611 	BUG_ON(p == reaper || reaper->exit_state);
612 	p->real_parent = reaper;
613 }
614 
615 static void
616 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
617 {
618 	if (p->pdeath_signal)
619 		/* We already hold the tasklist_lock here.  */
620 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
621 
622 	/* Move the child from its dying parent to the new one.  */
623 	if (unlikely(traced)) {
624 		/* Preserve ptrace links if someone else is tracing this child.  */
625 		list_del_init(&p->ptrace_list);
626 		if (p->parent != p->real_parent)
627 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
628 	} else {
629 		/* If this child is being traced, then we're the one tracing it
630 		 * anyway, so let go of it.
631 		 */
632 		p->ptrace = 0;
633 		remove_parent(p);
634 		p->parent = p->real_parent;
635 		add_parent(p);
636 
637 		if (p->state == TASK_TRACED) {
638 			/*
639 			 * If it was at a trace stop, turn it into
640 			 * a normal stop since it's no longer being
641 			 * traced.
642 			 */
643 			ptrace_untrace(p);
644 		}
645 	}
646 
647 	/* If this is a threaded reparent there is no need to
648 	 * notify anyone anything has happened.
649 	 */
650 	if (p->real_parent->group_leader == father->group_leader)
651 		return;
652 
653 	/* We don't want people slaying init.  */
654 	if (p->exit_signal != -1)
655 		p->exit_signal = SIGCHLD;
656 
657 	/* If we'd notified the old parent about this child's death,
658 	 * also notify the new parent.
659 	 */
660 	if (!traced && p->exit_state == EXIT_ZOMBIE &&
661 	    p->exit_signal != -1 && thread_group_empty(p))
662 		do_notify_parent(p, p->exit_signal);
663 
664 	/*
665 	 * process group orphan check
666 	 * Case ii: Our child is in a different pgrp
667 	 * than we are, and it was the only connection
668 	 * outside, so the child pgrp is now orphaned.
669 	 */
670 	if ((task_pgrp(p) != task_pgrp(father)) &&
671 	    (task_session(p) == task_session(father))) {
672 		struct pid *pgrp = task_pgrp(p);
673 
674 		if (will_become_orphaned_pgrp(pgrp, NULL) &&
675 		    has_stopped_jobs(pgrp)) {
676 			__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
677 			__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
678 		}
679 	}
680 }
681 
682 /*
683  * When we die, we re-parent all our children.
684  * Try to give them to another thread in our thread
685  * group, and if no such member exists, give it to
686  * the child reaper process (ie "init") in our pid
687  * space.
688  */
689 static void
690 forget_original_parent(struct task_struct *father, struct list_head *to_release)
691 {
692 	struct task_struct *p, *reaper = father;
693 	struct list_head *_p, *_n;
694 
695 	do {
696 		reaper = next_thread(reaper);
697 		if (reaper == father) {
698 			reaper = child_reaper(father);
699 			break;
700 		}
701 	} while (reaper->exit_state);
702 
703 	/*
704 	 * There are only two places where our children can be:
705 	 *
706 	 * - in our child list
707 	 * - in our ptraced child list
708 	 *
709 	 * Search them and reparent children.
710 	 */
711 	list_for_each_safe(_p, _n, &father->children) {
712 		int ptrace;
713 		p = list_entry(_p, struct task_struct, sibling);
714 
715 		ptrace = p->ptrace;
716 
717 		/* if father isn't the real parent, then ptrace must be enabled */
718 		BUG_ON(father != p->real_parent && !ptrace);
719 
720 		if (father == p->real_parent) {
721 			/* reparent with a reaper, real father it's us */
722 			choose_new_parent(p, reaper);
723 			reparent_thread(p, father, 0);
724 		} else {
725 			/* reparent ptraced task to its real parent */
726 			__ptrace_unlink (p);
727 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
728 			    thread_group_empty(p))
729 				do_notify_parent(p, p->exit_signal);
730 		}
731 
732 		/*
733 		 * if the ptraced child is a zombie with exit_signal == -1
734 		 * we must collect it before we exit, or it will remain
735 		 * zombie forever since we prevented it from self-reap itself
736 		 * while it was being traced by us, to be able to see it in wait4.
737 		 */
738 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
739 			list_add(&p->ptrace_list, to_release);
740 	}
741 	list_for_each_safe(_p, _n, &father->ptrace_children) {
742 		p = list_entry(_p, struct task_struct, ptrace_list);
743 		choose_new_parent(p, reaper);
744 		reparent_thread(p, father, 1);
745 	}
746 }
747 
748 /*
749  * Send signals to all our closest relatives so that they know
750  * to properly mourn us..
751  */
752 static void exit_notify(struct task_struct *tsk)
753 {
754 	int state;
755 	struct task_struct *t;
756 	struct list_head ptrace_dead, *_p, *_n;
757 	struct pid *pgrp;
758 
759 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
760 	    && !thread_group_empty(tsk)) {
761 		/*
762 		 * This occurs when there was a race between our exit
763 		 * syscall and a group signal choosing us as the one to
764 		 * wake up.  It could be that we are the only thread
765 		 * alerted to check for pending signals, but another thread
766 		 * should be woken now to take the signal since we will not.
767 		 * Now we'll wake all the threads in the group just to make
768 		 * sure someone gets all the pending signals.
769 		 */
770 		read_lock(&tasklist_lock);
771 		spin_lock_irq(&tsk->sighand->siglock);
772 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
773 			if (!signal_pending(t) && !(t->flags & PF_EXITING))
774 				recalc_sigpending_and_wake(t);
775 		spin_unlock_irq(&tsk->sighand->siglock);
776 		read_unlock(&tasklist_lock);
777 	}
778 
779 	write_lock_irq(&tasklist_lock);
780 
781 	/*
782 	 * This does two things:
783 	 *
784   	 * A.  Make init inherit all the child processes
785 	 * B.  Check to see if any process groups have become orphaned
786 	 *	as a result of our exiting, and if they have any stopped
787 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
788 	 */
789 
790 	INIT_LIST_HEAD(&ptrace_dead);
791 	forget_original_parent(tsk, &ptrace_dead);
792 	BUG_ON(!list_empty(&tsk->children));
793 	BUG_ON(!list_empty(&tsk->ptrace_children));
794 
795 	/*
796 	 * Check to see if any process groups have become orphaned
797 	 * as a result of our exiting, and if they have any stopped
798 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
799 	 *
800 	 * Case i: Our father is in a different pgrp than we are
801 	 * and we were the only connection outside, so our pgrp
802 	 * is about to become orphaned.
803 	 */
804 
805 	t = tsk->real_parent;
806 
807 	pgrp = task_pgrp(tsk);
808 	if ((task_pgrp(t) != pgrp) &&
809 	    (task_session(t) == task_session(tsk)) &&
810 	    will_become_orphaned_pgrp(pgrp, tsk) &&
811 	    has_stopped_jobs(pgrp)) {
812 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
813 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
814 	}
815 
816 	/* Let father know we died
817 	 *
818 	 * Thread signals are configurable, but you aren't going to use
819 	 * that to send signals to arbitary processes.
820 	 * That stops right now.
821 	 *
822 	 * If the parent exec id doesn't match the exec id we saved
823 	 * when we started then we know the parent has changed security
824 	 * domain.
825 	 *
826 	 * If our self_exec id doesn't match our parent_exec_id then
827 	 * we have changed execution domain as these two values started
828 	 * the same after a fork.
829 	 */
830 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
831 	    ( tsk->parent_exec_id != t->self_exec_id  ||
832 	      tsk->self_exec_id != tsk->parent_exec_id)
833 	    && !capable(CAP_KILL))
834 		tsk->exit_signal = SIGCHLD;
835 
836 
837 	/* If something other than our normal parent is ptracing us, then
838 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
839 	 * only has special meaning to our real parent.
840 	 */
841 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
842 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
843 		do_notify_parent(tsk, signal);
844 	} else if (tsk->ptrace) {
845 		do_notify_parent(tsk, SIGCHLD);
846 	}
847 
848 	state = EXIT_ZOMBIE;
849 	if (tsk->exit_signal == -1 && likely(!tsk->ptrace))
850 		state = EXIT_DEAD;
851 	tsk->exit_state = state;
852 
853 	write_unlock_irq(&tasklist_lock);
854 
855 	list_for_each_safe(_p, _n, &ptrace_dead) {
856 		list_del_init(_p);
857 		t = list_entry(_p, struct task_struct, ptrace_list);
858 		release_task(t);
859 	}
860 
861 	/* If the process is dead, release it - nobody will wait for it */
862 	if (state == EXIT_DEAD)
863 		release_task(tsk);
864 }
865 
866 #ifdef CONFIG_DEBUG_STACK_USAGE
867 static void check_stack_usage(void)
868 {
869 	static DEFINE_SPINLOCK(low_water_lock);
870 	static int lowest_to_date = THREAD_SIZE;
871 	unsigned long *n = end_of_stack(current);
872 	unsigned long free;
873 
874 	while (*n == 0)
875 		n++;
876 	free = (unsigned long)n - (unsigned long)end_of_stack(current);
877 
878 	if (free >= lowest_to_date)
879 		return;
880 
881 	spin_lock(&low_water_lock);
882 	if (free < lowest_to_date) {
883 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
884 				"left\n",
885 				current->comm, free);
886 		lowest_to_date = free;
887 	}
888 	spin_unlock(&low_water_lock);
889 }
890 #else
891 static inline void check_stack_usage(void) {}
892 #endif
893 
894 fastcall NORET_TYPE void do_exit(long code)
895 {
896 	struct task_struct *tsk = current;
897 	int group_dead;
898 
899 	profile_task_exit(tsk);
900 
901 	WARN_ON(atomic_read(&tsk->fs_excl));
902 
903 	if (unlikely(in_interrupt()))
904 		panic("Aiee, killing interrupt handler!");
905 	if (unlikely(!tsk->pid))
906 		panic("Attempted to kill the idle task!");
907 	if (unlikely(tsk == child_reaper(tsk))) {
908 		if (tsk->nsproxy->pid_ns != &init_pid_ns)
909 			tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper;
910 		else
911 			panic("Attempted to kill init!");
912 	}
913 
914 
915 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
916 		current->ptrace_message = code;
917 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
918 	}
919 
920 	/*
921 	 * We're taking recursive faults here in do_exit. Safest is to just
922 	 * leave this task alone and wait for reboot.
923 	 */
924 	if (unlikely(tsk->flags & PF_EXITING)) {
925 		printk(KERN_ALERT
926 			"Fixing recursive fault but reboot is needed!\n");
927 		/*
928 		 * We can do this unlocked here. The futex code uses
929 		 * this flag just to verify whether the pi state
930 		 * cleanup has been done or not. In the worst case it
931 		 * loops once more. We pretend that the cleanup was
932 		 * done as there is no way to return. Either the
933 		 * OWNER_DIED bit is set by now or we push the blocked
934 		 * task into the wait for ever nirwana as well.
935 		 */
936 		tsk->flags |= PF_EXITPIDONE;
937 		if (tsk->io_context)
938 			exit_io_context();
939 		set_current_state(TASK_UNINTERRUPTIBLE);
940 		schedule();
941 	}
942 
943 	/*
944 	 * tsk->flags are checked in the futex code to protect against
945 	 * an exiting task cleaning up the robust pi futexes.
946 	 */
947 	spin_lock_irq(&tsk->pi_lock);
948 	tsk->flags |= PF_EXITING;
949 	spin_unlock_irq(&tsk->pi_lock);
950 
951 	if (unlikely(in_atomic()))
952 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
953 				current->comm, current->pid,
954 				preempt_count());
955 
956 	acct_update_integrals(tsk);
957 	if (tsk->mm) {
958 		update_hiwater_rss(tsk->mm);
959 		update_hiwater_vm(tsk->mm);
960 	}
961 	group_dead = atomic_dec_and_test(&tsk->signal->live);
962 	if (group_dead) {
963 		hrtimer_cancel(&tsk->signal->real_timer);
964 		exit_itimers(tsk->signal);
965 	}
966 	acct_collect(code, group_dead);
967 	if (unlikely(tsk->robust_list))
968 		exit_robust_list(tsk);
969 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
970 	if (unlikely(tsk->compat_robust_list))
971 		compat_exit_robust_list(tsk);
972 #endif
973 	if (group_dead)
974 		tty_audit_exit();
975 	if (unlikely(tsk->audit_context))
976 		audit_free(tsk);
977 
978 	taskstats_exit(tsk, group_dead);
979 
980 	exit_mm(tsk);
981 
982 	if (group_dead)
983 		acct_process();
984 	exit_sem(tsk);
985 	__exit_files(tsk);
986 	__exit_fs(tsk);
987 	check_stack_usage();
988 	exit_thread();
989 	cpuset_exit(tsk);
990 	exit_keys(tsk);
991 
992 	if (group_dead && tsk->signal->leader)
993 		disassociate_ctty(1);
994 
995 	module_put(task_thread_info(tsk)->exec_domain->module);
996 	if (tsk->binfmt)
997 		module_put(tsk->binfmt->module);
998 
999 	tsk->exit_code = code;
1000 	proc_exit_connector(tsk);
1001 	exit_task_namespaces(tsk);
1002 	exit_notify(tsk);
1003 #ifdef CONFIG_NUMA
1004 	mpol_free(tsk->mempolicy);
1005 	tsk->mempolicy = NULL;
1006 #endif
1007 	/*
1008 	 * This must happen late, after the PID is not
1009 	 * hashed anymore:
1010 	 */
1011 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1012 		exit_pi_state_list(tsk);
1013 	if (unlikely(current->pi_state_cache))
1014 		kfree(current->pi_state_cache);
1015 	/*
1016 	 * Make sure we are holding no locks:
1017 	 */
1018 	debug_check_no_locks_held(tsk);
1019 	/*
1020 	 * We can do this unlocked here. The futex code uses this flag
1021 	 * just to verify whether the pi state cleanup has been done
1022 	 * or not. In the worst case it loops once more.
1023 	 */
1024 	tsk->flags |= PF_EXITPIDONE;
1025 
1026 	if (tsk->io_context)
1027 		exit_io_context();
1028 
1029 	if (tsk->splice_pipe)
1030 		__free_pipe_info(tsk->splice_pipe);
1031 
1032 	preempt_disable();
1033 	/* causes final put_task_struct in finish_task_switch(). */
1034 	tsk->state = TASK_DEAD;
1035 
1036 	schedule();
1037 	BUG();
1038 	/* Avoid "noreturn function does return".  */
1039 	for (;;)
1040 		cpu_relax();	/* For when BUG is null */
1041 }
1042 
1043 EXPORT_SYMBOL_GPL(do_exit);
1044 
1045 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1046 {
1047 	if (comp)
1048 		complete(comp);
1049 
1050 	do_exit(code);
1051 }
1052 
1053 EXPORT_SYMBOL(complete_and_exit);
1054 
1055 asmlinkage long sys_exit(int error_code)
1056 {
1057 	do_exit((error_code&0xff)<<8);
1058 }
1059 
1060 /*
1061  * Take down every thread in the group.  This is called by fatal signals
1062  * as well as by sys_exit_group (below).
1063  */
1064 NORET_TYPE void
1065 do_group_exit(int exit_code)
1066 {
1067 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1068 
1069 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1070 		exit_code = current->signal->group_exit_code;
1071 	else if (!thread_group_empty(current)) {
1072 		struct signal_struct *const sig = current->signal;
1073 		struct sighand_struct *const sighand = current->sighand;
1074 		spin_lock_irq(&sighand->siglock);
1075 		if (sig->flags & SIGNAL_GROUP_EXIT)
1076 			/* Another thread got here before we took the lock.  */
1077 			exit_code = sig->group_exit_code;
1078 		else {
1079 			sig->group_exit_code = exit_code;
1080 			zap_other_threads(current);
1081 		}
1082 		spin_unlock_irq(&sighand->siglock);
1083 	}
1084 
1085 	do_exit(exit_code);
1086 	/* NOTREACHED */
1087 }
1088 
1089 /*
1090  * this kills every thread in the thread group. Note that any externally
1091  * wait4()-ing process will get the correct exit code - even if this
1092  * thread is not the thread group leader.
1093  */
1094 asmlinkage void sys_exit_group(int error_code)
1095 {
1096 	do_group_exit((error_code & 0xff) << 8);
1097 }
1098 
1099 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1100 {
1101 	int err;
1102 
1103 	if (pid > 0) {
1104 		if (p->pid != pid)
1105 			return 0;
1106 	} else if (!pid) {
1107 		if (process_group(p) != process_group(current))
1108 			return 0;
1109 	} else if (pid != -1) {
1110 		if (process_group(p) != -pid)
1111 			return 0;
1112 	}
1113 
1114 	/*
1115 	 * Do not consider detached threads that are
1116 	 * not ptraced:
1117 	 */
1118 	if (p->exit_signal == -1 && !p->ptrace)
1119 		return 0;
1120 
1121 	/* Wait for all children (clone and not) if __WALL is set;
1122 	 * otherwise, wait for clone children *only* if __WCLONE is
1123 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1124 	 * A "clone" child here is one that reports to its parent
1125 	 * using a signal other than SIGCHLD.) */
1126 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1127 	    && !(options & __WALL))
1128 		return 0;
1129 	/*
1130 	 * Do not consider thread group leaders that are
1131 	 * in a non-empty thread group:
1132 	 */
1133 	if (delay_group_leader(p))
1134 		return 2;
1135 
1136 	err = security_task_wait(p);
1137 	if (err)
1138 		return err;
1139 
1140 	return 1;
1141 }
1142 
1143 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1144 			       int why, int status,
1145 			       struct siginfo __user *infop,
1146 			       struct rusage __user *rusagep)
1147 {
1148 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1149 
1150 	put_task_struct(p);
1151 	if (!retval)
1152 		retval = put_user(SIGCHLD, &infop->si_signo);
1153 	if (!retval)
1154 		retval = put_user(0, &infop->si_errno);
1155 	if (!retval)
1156 		retval = put_user((short)why, &infop->si_code);
1157 	if (!retval)
1158 		retval = put_user(pid, &infop->si_pid);
1159 	if (!retval)
1160 		retval = put_user(uid, &infop->si_uid);
1161 	if (!retval)
1162 		retval = put_user(status, &infop->si_status);
1163 	if (!retval)
1164 		retval = pid;
1165 	return retval;
1166 }
1167 
1168 /*
1169  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1170  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1171  * the lock and this task is uninteresting.  If we return nonzero, we have
1172  * released the lock and the system call should return.
1173  */
1174 static int wait_task_zombie(struct task_struct *p, int noreap,
1175 			    struct siginfo __user *infop,
1176 			    int __user *stat_addr, struct rusage __user *ru)
1177 {
1178 	unsigned long state;
1179 	int retval;
1180 	int status;
1181 
1182 	if (unlikely(noreap)) {
1183 		pid_t pid = p->pid;
1184 		uid_t uid = p->uid;
1185 		int exit_code = p->exit_code;
1186 		int why, status;
1187 
1188 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1189 			return 0;
1190 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1191 			return 0;
1192 		get_task_struct(p);
1193 		read_unlock(&tasklist_lock);
1194 		if ((exit_code & 0x7f) == 0) {
1195 			why = CLD_EXITED;
1196 			status = exit_code >> 8;
1197 		} else {
1198 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1199 			status = exit_code & 0x7f;
1200 		}
1201 		return wait_noreap_copyout(p, pid, uid, why,
1202 					   status, infop, ru);
1203 	}
1204 
1205 	/*
1206 	 * Try to move the task's state to DEAD
1207 	 * only one thread is allowed to do this:
1208 	 */
1209 	state = xchg(&p->exit_state, EXIT_DEAD);
1210 	if (state != EXIT_ZOMBIE) {
1211 		BUG_ON(state != EXIT_DEAD);
1212 		return 0;
1213 	}
1214 	if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1215 		/*
1216 		 * This can only happen in a race with a ptraced thread
1217 		 * dying on another processor.
1218 		 */
1219 		return 0;
1220 	}
1221 
1222 	if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1223 		struct signal_struct *psig;
1224 		struct signal_struct *sig;
1225 
1226 		/*
1227 		 * The resource counters for the group leader are in its
1228 		 * own task_struct.  Those for dead threads in the group
1229 		 * are in its signal_struct, as are those for the child
1230 		 * processes it has previously reaped.  All these
1231 		 * accumulate in the parent's signal_struct c* fields.
1232 		 *
1233 		 * We don't bother to take a lock here to protect these
1234 		 * p->signal fields, because they are only touched by
1235 		 * __exit_signal, which runs with tasklist_lock
1236 		 * write-locked anyway, and so is excluded here.  We do
1237 		 * need to protect the access to p->parent->signal fields,
1238 		 * as other threads in the parent group can be right
1239 		 * here reaping other children at the same time.
1240 		 */
1241 		spin_lock_irq(&p->parent->sighand->siglock);
1242 		psig = p->parent->signal;
1243 		sig = p->signal;
1244 		psig->cutime =
1245 			cputime_add(psig->cutime,
1246 			cputime_add(p->utime,
1247 			cputime_add(sig->utime,
1248 				    sig->cutime)));
1249 		psig->cstime =
1250 			cputime_add(psig->cstime,
1251 			cputime_add(p->stime,
1252 			cputime_add(sig->stime,
1253 				    sig->cstime)));
1254 		psig->cmin_flt +=
1255 			p->min_flt + sig->min_flt + sig->cmin_flt;
1256 		psig->cmaj_flt +=
1257 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1258 		psig->cnvcsw +=
1259 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1260 		psig->cnivcsw +=
1261 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1262 		psig->cinblock +=
1263 			task_io_get_inblock(p) +
1264 			sig->inblock + sig->cinblock;
1265 		psig->coublock +=
1266 			task_io_get_oublock(p) +
1267 			sig->oublock + sig->coublock;
1268 		spin_unlock_irq(&p->parent->sighand->siglock);
1269 	}
1270 
1271 	/*
1272 	 * Now we are sure this task is interesting, and no other
1273 	 * thread can reap it because we set its state to EXIT_DEAD.
1274 	 */
1275 	read_unlock(&tasklist_lock);
1276 
1277 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1278 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1279 		? p->signal->group_exit_code : p->exit_code;
1280 	if (!retval && stat_addr)
1281 		retval = put_user(status, stat_addr);
1282 	if (!retval && infop)
1283 		retval = put_user(SIGCHLD, &infop->si_signo);
1284 	if (!retval && infop)
1285 		retval = put_user(0, &infop->si_errno);
1286 	if (!retval && infop) {
1287 		int why;
1288 
1289 		if ((status & 0x7f) == 0) {
1290 			why = CLD_EXITED;
1291 			status >>= 8;
1292 		} else {
1293 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1294 			status &= 0x7f;
1295 		}
1296 		retval = put_user((short)why, &infop->si_code);
1297 		if (!retval)
1298 			retval = put_user(status, &infop->si_status);
1299 	}
1300 	if (!retval && infop)
1301 		retval = put_user(p->pid, &infop->si_pid);
1302 	if (!retval && infop)
1303 		retval = put_user(p->uid, &infop->si_uid);
1304 	if (retval) {
1305 		// TODO: is this safe?
1306 		p->exit_state = EXIT_ZOMBIE;
1307 		return retval;
1308 	}
1309 	retval = p->pid;
1310 	if (p->real_parent != p->parent) {
1311 		write_lock_irq(&tasklist_lock);
1312 		/* Double-check with lock held.  */
1313 		if (p->real_parent != p->parent) {
1314 			__ptrace_unlink(p);
1315 			// TODO: is this safe?
1316 			p->exit_state = EXIT_ZOMBIE;
1317 			/*
1318 			 * If this is not a detached task, notify the parent.
1319 			 * If it's still not detached after that, don't release
1320 			 * it now.
1321 			 */
1322 			if (p->exit_signal != -1) {
1323 				do_notify_parent(p, p->exit_signal);
1324 				if (p->exit_signal != -1)
1325 					p = NULL;
1326 			}
1327 		}
1328 		write_unlock_irq(&tasklist_lock);
1329 	}
1330 	if (p != NULL)
1331 		release_task(p);
1332 	BUG_ON(!retval);
1333 	return retval;
1334 }
1335 
1336 /*
1337  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1338  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1339  * the lock and this task is uninteresting.  If we return nonzero, we have
1340  * released the lock and the system call should return.
1341  */
1342 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1343 			     int noreap, struct siginfo __user *infop,
1344 			     int __user *stat_addr, struct rusage __user *ru)
1345 {
1346 	int retval, exit_code;
1347 
1348 	if (!p->exit_code)
1349 		return 0;
1350 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1351 	    p->signal && p->signal->group_stop_count > 0)
1352 		/*
1353 		 * A group stop is in progress and this is the group leader.
1354 		 * We won't report until all threads have stopped.
1355 		 */
1356 		return 0;
1357 
1358 	/*
1359 	 * Now we are pretty sure this task is interesting.
1360 	 * Make sure it doesn't get reaped out from under us while we
1361 	 * give up the lock and then examine it below.  We don't want to
1362 	 * keep holding onto the tasklist_lock while we call getrusage and
1363 	 * possibly take page faults for user memory.
1364 	 */
1365 	get_task_struct(p);
1366 	read_unlock(&tasklist_lock);
1367 
1368 	if (unlikely(noreap)) {
1369 		pid_t pid = p->pid;
1370 		uid_t uid = p->uid;
1371 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1372 
1373 		exit_code = p->exit_code;
1374 		if (unlikely(!exit_code) ||
1375 		    unlikely(p->state & TASK_TRACED))
1376 			goto bail_ref;
1377 		return wait_noreap_copyout(p, pid, uid,
1378 					   why, (exit_code << 8) | 0x7f,
1379 					   infop, ru);
1380 	}
1381 
1382 	write_lock_irq(&tasklist_lock);
1383 
1384 	/*
1385 	 * This uses xchg to be atomic with the thread resuming and setting
1386 	 * it.  It must also be done with the write lock held to prevent a
1387 	 * race with the EXIT_ZOMBIE case.
1388 	 */
1389 	exit_code = xchg(&p->exit_code, 0);
1390 	if (unlikely(p->exit_state)) {
1391 		/*
1392 		 * The task resumed and then died.  Let the next iteration
1393 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1394 		 * already be zero here if it resumed and did _exit(0).
1395 		 * The task itself is dead and won't touch exit_code again;
1396 		 * other processors in this function are locked out.
1397 		 */
1398 		p->exit_code = exit_code;
1399 		exit_code = 0;
1400 	}
1401 	if (unlikely(exit_code == 0)) {
1402 		/*
1403 		 * Another thread in this function got to it first, or it
1404 		 * resumed, or it resumed and then died.
1405 		 */
1406 		write_unlock_irq(&tasklist_lock);
1407 bail_ref:
1408 		put_task_struct(p);
1409 		/*
1410 		 * We are returning to the wait loop without having successfully
1411 		 * removed the process and having released the lock. We cannot
1412 		 * continue, since the "p" task pointer is potentially stale.
1413 		 *
1414 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1415 		 * beginning. Do _not_ re-acquire the lock.
1416 		 */
1417 		return -EAGAIN;
1418 	}
1419 
1420 	/* move to end of parent's list to avoid starvation */
1421 	remove_parent(p);
1422 	add_parent(p);
1423 
1424 	write_unlock_irq(&tasklist_lock);
1425 
1426 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1427 	if (!retval && stat_addr)
1428 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1429 	if (!retval && infop)
1430 		retval = put_user(SIGCHLD, &infop->si_signo);
1431 	if (!retval && infop)
1432 		retval = put_user(0, &infop->si_errno);
1433 	if (!retval && infop)
1434 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1435 					  ? CLD_TRAPPED : CLD_STOPPED),
1436 				  &infop->si_code);
1437 	if (!retval && infop)
1438 		retval = put_user(exit_code, &infop->si_status);
1439 	if (!retval && infop)
1440 		retval = put_user(p->pid, &infop->si_pid);
1441 	if (!retval && infop)
1442 		retval = put_user(p->uid, &infop->si_uid);
1443 	if (!retval)
1444 		retval = p->pid;
1445 	put_task_struct(p);
1446 
1447 	BUG_ON(!retval);
1448 	return retval;
1449 }
1450 
1451 /*
1452  * Handle do_wait work for one task in a live, non-stopped state.
1453  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1454  * the lock and this task is uninteresting.  If we return nonzero, we have
1455  * released the lock and the system call should return.
1456  */
1457 static int wait_task_continued(struct task_struct *p, int noreap,
1458 			       struct siginfo __user *infop,
1459 			       int __user *stat_addr, struct rusage __user *ru)
1460 {
1461 	int retval;
1462 	pid_t pid;
1463 	uid_t uid;
1464 
1465 	if (unlikely(!p->signal))
1466 		return 0;
1467 
1468 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1469 		return 0;
1470 
1471 	spin_lock_irq(&p->sighand->siglock);
1472 	/* Re-check with the lock held.  */
1473 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1474 		spin_unlock_irq(&p->sighand->siglock);
1475 		return 0;
1476 	}
1477 	if (!noreap)
1478 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1479 	spin_unlock_irq(&p->sighand->siglock);
1480 
1481 	pid = p->pid;
1482 	uid = p->uid;
1483 	get_task_struct(p);
1484 	read_unlock(&tasklist_lock);
1485 
1486 	if (!infop) {
1487 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1488 		put_task_struct(p);
1489 		if (!retval && stat_addr)
1490 			retval = put_user(0xffff, stat_addr);
1491 		if (!retval)
1492 			retval = p->pid;
1493 	} else {
1494 		retval = wait_noreap_copyout(p, pid, uid,
1495 					     CLD_CONTINUED, SIGCONT,
1496 					     infop, ru);
1497 		BUG_ON(retval == 0);
1498 	}
1499 
1500 	return retval;
1501 }
1502 
1503 
1504 static inline int my_ptrace_child(struct task_struct *p)
1505 {
1506 	if (!(p->ptrace & PT_PTRACED))
1507 		return 0;
1508 	if (!(p->ptrace & PT_ATTACHED))
1509 		return 1;
1510 	/*
1511 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1512 	 * we are the attacher.  If we are the real parent, this is a race
1513 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1514 	 * which we have to switch the parent links, but has already set
1515 	 * the flags in p->ptrace.
1516 	 */
1517 	return (p->parent != p->real_parent);
1518 }
1519 
1520 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1521 		    int __user *stat_addr, struct rusage __user *ru)
1522 {
1523 	DECLARE_WAITQUEUE(wait, current);
1524 	struct task_struct *tsk;
1525 	int flag, retval;
1526 	int allowed, denied;
1527 
1528 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1529 repeat:
1530 	/*
1531 	 * We will set this flag if we see any child that might later
1532 	 * match our criteria, even if we are not able to reap it yet.
1533 	 */
1534 	flag = 0;
1535 	allowed = denied = 0;
1536 	current->state = TASK_INTERRUPTIBLE;
1537 	read_lock(&tasklist_lock);
1538 	tsk = current;
1539 	do {
1540 		struct task_struct *p;
1541 		struct list_head *_p;
1542 		int ret;
1543 
1544 		list_for_each(_p,&tsk->children) {
1545 			p = list_entry(_p, struct task_struct, sibling);
1546 
1547 			ret = eligible_child(pid, options, p);
1548 			if (!ret)
1549 				continue;
1550 
1551 			if (unlikely(ret < 0)) {
1552 				denied = ret;
1553 				continue;
1554 			}
1555 			allowed = 1;
1556 
1557 			switch (p->state) {
1558 			case TASK_TRACED:
1559 				/*
1560 				 * When we hit the race with PTRACE_ATTACH,
1561 				 * we will not report this child.  But the
1562 				 * race means it has not yet been moved to
1563 				 * our ptrace_children list, so we need to
1564 				 * set the flag here to avoid a spurious ECHILD
1565 				 * when the race happens with the only child.
1566 				 */
1567 				flag = 1;
1568 				if (!my_ptrace_child(p))
1569 					continue;
1570 				/*FALLTHROUGH*/
1571 			case TASK_STOPPED:
1572 				/*
1573 				 * It's stopped now, so it might later
1574 				 * continue, exit, or stop again.
1575 				 */
1576 				flag = 1;
1577 				if (!(options & WUNTRACED) &&
1578 				    !my_ptrace_child(p))
1579 					continue;
1580 				retval = wait_task_stopped(p, ret == 2,
1581 							   (options & WNOWAIT),
1582 							   infop,
1583 							   stat_addr, ru);
1584 				if (retval == -EAGAIN)
1585 					goto repeat;
1586 				if (retval != 0) /* He released the lock.  */
1587 					goto end;
1588 				break;
1589 			default:
1590 			// case EXIT_DEAD:
1591 				if (p->exit_state == EXIT_DEAD)
1592 					continue;
1593 			// case EXIT_ZOMBIE:
1594 				if (p->exit_state == EXIT_ZOMBIE) {
1595 					/*
1596 					 * Eligible but we cannot release
1597 					 * it yet:
1598 					 */
1599 					if (ret == 2)
1600 						goto check_continued;
1601 					if (!likely(options & WEXITED))
1602 						continue;
1603 					retval = wait_task_zombie(
1604 						p, (options & WNOWAIT),
1605 						infop, stat_addr, ru);
1606 					/* He released the lock.  */
1607 					if (retval != 0)
1608 						goto end;
1609 					break;
1610 				}
1611 check_continued:
1612 				/*
1613 				 * It's running now, so it might later
1614 				 * exit, stop, or stop and then continue.
1615 				 */
1616 				flag = 1;
1617 				if (!unlikely(options & WCONTINUED))
1618 					continue;
1619 				retval = wait_task_continued(
1620 					p, (options & WNOWAIT),
1621 					infop, stat_addr, ru);
1622 				if (retval != 0) /* He released the lock.  */
1623 					goto end;
1624 				break;
1625 			}
1626 		}
1627 		if (!flag) {
1628 			list_for_each(_p, &tsk->ptrace_children) {
1629 				p = list_entry(_p, struct task_struct,
1630 						ptrace_list);
1631 				if (!eligible_child(pid, options, p))
1632 					continue;
1633 				flag = 1;
1634 				break;
1635 			}
1636 		}
1637 		if (options & __WNOTHREAD)
1638 			break;
1639 		tsk = next_thread(tsk);
1640 		BUG_ON(tsk->signal != current->signal);
1641 	} while (tsk != current);
1642 
1643 	read_unlock(&tasklist_lock);
1644 	if (flag) {
1645 		retval = 0;
1646 		if (options & WNOHANG)
1647 			goto end;
1648 		retval = -ERESTARTSYS;
1649 		if (signal_pending(current))
1650 			goto end;
1651 		schedule();
1652 		goto repeat;
1653 	}
1654 	retval = -ECHILD;
1655 	if (unlikely(denied) && !allowed)
1656 		retval = denied;
1657 end:
1658 	current->state = TASK_RUNNING;
1659 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1660 	if (infop) {
1661 		if (retval > 0)
1662 		retval = 0;
1663 		else {
1664 			/*
1665 			 * For a WNOHANG return, clear out all the fields
1666 			 * we would set so the user can easily tell the
1667 			 * difference.
1668 			 */
1669 			if (!retval)
1670 				retval = put_user(0, &infop->si_signo);
1671 			if (!retval)
1672 				retval = put_user(0, &infop->si_errno);
1673 			if (!retval)
1674 				retval = put_user(0, &infop->si_code);
1675 			if (!retval)
1676 				retval = put_user(0, &infop->si_pid);
1677 			if (!retval)
1678 				retval = put_user(0, &infop->si_uid);
1679 			if (!retval)
1680 				retval = put_user(0, &infop->si_status);
1681 		}
1682 	}
1683 	return retval;
1684 }
1685 
1686 asmlinkage long sys_waitid(int which, pid_t pid,
1687 			   struct siginfo __user *infop, int options,
1688 			   struct rusage __user *ru)
1689 {
1690 	long ret;
1691 
1692 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1693 		return -EINVAL;
1694 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1695 		return -EINVAL;
1696 
1697 	switch (which) {
1698 	case P_ALL:
1699 		pid = -1;
1700 		break;
1701 	case P_PID:
1702 		if (pid <= 0)
1703 			return -EINVAL;
1704 		break;
1705 	case P_PGID:
1706 		if (pid <= 0)
1707 			return -EINVAL;
1708 		pid = -pid;
1709 		break;
1710 	default:
1711 		return -EINVAL;
1712 	}
1713 
1714 	ret = do_wait(pid, options, infop, NULL, ru);
1715 
1716 	/* avoid REGPARM breakage on x86: */
1717 	prevent_tail_call(ret);
1718 	return ret;
1719 }
1720 
1721 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1722 			  int options, struct rusage __user *ru)
1723 {
1724 	long ret;
1725 
1726 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1727 			__WNOTHREAD|__WCLONE|__WALL))
1728 		return -EINVAL;
1729 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1730 
1731 	/* avoid REGPARM breakage on x86: */
1732 	prevent_tail_call(ret);
1733 	return ret;
1734 }
1735 
1736 #ifdef __ARCH_WANT_SYS_WAITPID
1737 
1738 /*
1739  * sys_waitpid() remains for compatibility. waitpid() should be
1740  * implemented by calling sys_wait4() from libc.a.
1741  */
1742 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1743 {
1744 	return sys_wait4(pid, stat_addr, options, NULL);
1745 }
1746 
1747 #endif
1748