1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/blkdev.h> 53 #include <linux/task_work.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/kmsan.h> 64 #include <linux/random.h> 65 #include <linux/rcuwait.h> 66 #include <linux/compat.h> 67 #include <linux/io_uring.h> 68 #include <linux/kprobes.h> 69 #include <linux/rethook.h> 70 #include <linux/sysfs.h> 71 #include <linux/user_events.h> 72 #include <linux/uaccess.h> 73 74 #include <uapi/linux/wait.h> 75 76 #include <asm/unistd.h> 77 #include <asm/mmu_context.h> 78 79 #include "exit.h" 80 81 /* 82 * The default value should be high enough to not crash a system that randomly 83 * crashes its kernel from time to time, but low enough to at least not permit 84 * overflowing 32-bit refcounts or the ldsem writer count. 85 */ 86 static unsigned int oops_limit = 10000; 87 88 #ifdef CONFIG_SYSCTL 89 static struct ctl_table kern_exit_table[] = { 90 { 91 .procname = "oops_limit", 92 .data = &oops_limit, 93 .maxlen = sizeof(oops_limit), 94 .mode = 0644, 95 .proc_handler = proc_douintvec, 96 }, 97 }; 98 99 static __init int kernel_exit_sysctls_init(void) 100 { 101 register_sysctl_init("kernel", kern_exit_table); 102 return 0; 103 } 104 late_initcall(kernel_exit_sysctls_init); 105 #endif 106 107 static atomic_t oops_count = ATOMIC_INIT(0); 108 109 #ifdef CONFIG_SYSFS 110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr, 111 char *page) 112 { 113 return sysfs_emit(page, "%d\n", atomic_read(&oops_count)); 114 } 115 116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count); 117 118 static __init int kernel_exit_sysfs_init(void) 119 { 120 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL); 121 return 0; 122 } 123 late_initcall(kernel_exit_sysfs_init); 124 #endif 125 126 static void __unhash_process(struct task_struct *p, bool group_dead) 127 { 128 nr_threads--; 129 detach_pid(p, PIDTYPE_PID); 130 if (group_dead) { 131 detach_pid(p, PIDTYPE_TGID); 132 detach_pid(p, PIDTYPE_PGID); 133 detach_pid(p, PIDTYPE_SID); 134 135 list_del_rcu(&p->tasks); 136 list_del_init(&p->sibling); 137 __this_cpu_dec(process_counts); 138 } 139 list_del_rcu(&p->thread_node); 140 } 141 142 /* 143 * This function expects the tasklist_lock write-locked. 144 */ 145 static void __exit_signal(struct task_struct *tsk) 146 { 147 struct signal_struct *sig = tsk->signal; 148 bool group_dead = thread_group_leader(tsk); 149 struct sighand_struct *sighand; 150 struct tty_struct *tty; 151 u64 utime, stime; 152 153 sighand = rcu_dereference_check(tsk->sighand, 154 lockdep_tasklist_lock_is_held()); 155 spin_lock(&sighand->siglock); 156 157 #ifdef CONFIG_POSIX_TIMERS 158 posix_cpu_timers_exit(tsk); 159 if (group_dead) 160 posix_cpu_timers_exit_group(tsk); 161 #endif 162 163 if (group_dead) { 164 tty = sig->tty; 165 sig->tty = NULL; 166 } else { 167 /* 168 * If there is any task waiting for the group exit 169 * then notify it: 170 */ 171 if (sig->notify_count > 0 && !--sig->notify_count) 172 wake_up_process(sig->group_exec_task); 173 174 if (tsk == sig->curr_target) 175 sig->curr_target = next_thread(tsk); 176 } 177 178 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 179 sizeof(unsigned long long)); 180 181 /* 182 * Accumulate here the counters for all threads as they die. We could 183 * skip the group leader because it is the last user of signal_struct, 184 * but we want to avoid the race with thread_group_cputime() which can 185 * see the empty ->thread_head list. 186 */ 187 task_cputime(tsk, &utime, &stime); 188 write_seqlock(&sig->stats_lock); 189 sig->utime += utime; 190 sig->stime += stime; 191 sig->gtime += task_gtime(tsk); 192 sig->min_flt += tsk->min_flt; 193 sig->maj_flt += tsk->maj_flt; 194 sig->nvcsw += tsk->nvcsw; 195 sig->nivcsw += tsk->nivcsw; 196 sig->inblock += task_io_get_inblock(tsk); 197 sig->oublock += task_io_get_oublock(tsk); 198 task_io_accounting_add(&sig->ioac, &tsk->ioac); 199 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 200 sig->nr_threads--; 201 __unhash_process(tsk, group_dead); 202 write_sequnlock(&sig->stats_lock); 203 204 /* 205 * Do this under ->siglock, we can race with another thread 206 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 207 */ 208 flush_sigqueue(&tsk->pending); 209 tsk->sighand = NULL; 210 spin_unlock(&sighand->siglock); 211 212 __cleanup_sighand(sighand); 213 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 214 if (group_dead) { 215 flush_sigqueue(&sig->shared_pending); 216 tty_kref_put(tty); 217 } 218 } 219 220 static void delayed_put_task_struct(struct rcu_head *rhp) 221 { 222 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 223 224 kprobe_flush_task(tsk); 225 rethook_flush_task(tsk); 226 perf_event_delayed_put(tsk); 227 trace_sched_process_free(tsk); 228 put_task_struct(tsk); 229 } 230 231 void put_task_struct_rcu_user(struct task_struct *task) 232 { 233 if (refcount_dec_and_test(&task->rcu_users)) 234 call_rcu(&task->rcu, delayed_put_task_struct); 235 } 236 237 void __weak release_thread(struct task_struct *dead_task) 238 { 239 } 240 241 void release_task(struct task_struct *p) 242 { 243 struct task_struct *leader; 244 struct pid *thread_pid; 245 int zap_leader; 246 repeat: 247 /* don't need to get the RCU readlock here - the process is dead and 248 * can't be modifying its own credentials. But shut RCU-lockdep up */ 249 rcu_read_lock(); 250 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 251 rcu_read_unlock(); 252 253 cgroup_release(p); 254 255 write_lock_irq(&tasklist_lock); 256 ptrace_release_task(p); 257 thread_pid = get_pid(p->thread_pid); 258 __exit_signal(p); 259 260 /* 261 * If we are the last non-leader member of the thread 262 * group, and the leader is zombie, then notify the 263 * group leader's parent process. (if it wants notification.) 264 */ 265 zap_leader = 0; 266 leader = p->group_leader; 267 if (leader != p && thread_group_empty(leader) 268 && leader->exit_state == EXIT_ZOMBIE) { 269 /* 270 * If we were the last child thread and the leader has 271 * exited already, and the leader's parent ignores SIGCHLD, 272 * then we are the one who should release the leader. 273 */ 274 zap_leader = do_notify_parent(leader, leader->exit_signal); 275 if (zap_leader) 276 leader->exit_state = EXIT_DEAD; 277 } 278 279 write_unlock_irq(&tasklist_lock); 280 seccomp_filter_release(p); 281 proc_flush_pid(thread_pid); 282 put_pid(thread_pid); 283 release_thread(p); 284 put_task_struct_rcu_user(p); 285 286 p = leader; 287 if (unlikely(zap_leader)) 288 goto repeat; 289 } 290 291 int rcuwait_wake_up(struct rcuwait *w) 292 { 293 int ret = 0; 294 struct task_struct *task; 295 296 rcu_read_lock(); 297 298 /* 299 * Order condition vs @task, such that everything prior to the load 300 * of @task is visible. This is the condition as to why the user called 301 * rcuwait_wake() in the first place. Pairs with set_current_state() 302 * barrier (A) in rcuwait_wait_event(). 303 * 304 * WAIT WAKE 305 * [S] tsk = current [S] cond = true 306 * MB (A) MB (B) 307 * [L] cond [L] tsk 308 */ 309 smp_mb(); /* (B) */ 310 311 task = rcu_dereference(w->task); 312 if (task) 313 ret = wake_up_process(task); 314 rcu_read_unlock(); 315 316 return ret; 317 } 318 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 319 320 /* 321 * Determine if a process group is "orphaned", according to the POSIX 322 * definition in 2.2.2.52. Orphaned process groups are not to be affected 323 * by terminal-generated stop signals. Newly orphaned process groups are 324 * to receive a SIGHUP and a SIGCONT. 325 * 326 * "I ask you, have you ever known what it is to be an orphan?" 327 */ 328 static int will_become_orphaned_pgrp(struct pid *pgrp, 329 struct task_struct *ignored_task) 330 { 331 struct task_struct *p; 332 333 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 334 if ((p == ignored_task) || 335 (p->exit_state && thread_group_empty(p)) || 336 is_global_init(p->real_parent)) 337 continue; 338 339 if (task_pgrp(p->real_parent) != pgrp && 340 task_session(p->real_parent) == task_session(p)) 341 return 0; 342 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 343 344 return 1; 345 } 346 347 int is_current_pgrp_orphaned(void) 348 { 349 int retval; 350 351 read_lock(&tasklist_lock); 352 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 353 read_unlock(&tasklist_lock); 354 355 return retval; 356 } 357 358 static bool has_stopped_jobs(struct pid *pgrp) 359 { 360 struct task_struct *p; 361 362 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 363 if (p->signal->flags & SIGNAL_STOP_STOPPED) 364 return true; 365 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 366 367 return false; 368 } 369 370 /* 371 * Check to see if any process groups have become orphaned as 372 * a result of our exiting, and if they have any stopped jobs, 373 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 374 */ 375 static void 376 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 377 { 378 struct pid *pgrp = task_pgrp(tsk); 379 struct task_struct *ignored_task = tsk; 380 381 if (!parent) 382 /* exit: our father is in a different pgrp than 383 * we are and we were the only connection outside. 384 */ 385 parent = tsk->real_parent; 386 else 387 /* reparent: our child is in a different pgrp than 388 * we are, and it was the only connection outside. 389 */ 390 ignored_task = NULL; 391 392 if (task_pgrp(parent) != pgrp && 393 task_session(parent) == task_session(tsk) && 394 will_become_orphaned_pgrp(pgrp, ignored_task) && 395 has_stopped_jobs(pgrp)) { 396 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 397 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 398 } 399 } 400 401 static void coredump_task_exit(struct task_struct *tsk) 402 { 403 struct core_state *core_state; 404 405 /* 406 * Serialize with any possible pending coredump. 407 * We must hold siglock around checking core_state 408 * and setting PF_POSTCOREDUMP. The core-inducing thread 409 * will increment ->nr_threads for each thread in the 410 * group without PF_POSTCOREDUMP set. 411 */ 412 spin_lock_irq(&tsk->sighand->siglock); 413 tsk->flags |= PF_POSTCOREDUMP; 414 core_state = tsk->signal->core_state; 415 spin_unlock_irq(&tsk->sighand->siglock); 416 if (core_state) { 417 struct core_thread self; 418 419 self.task = current; 420 if (self.task->flags & PF_SIGNALED) 421 self.next = xchg(&core_state->dumper.next, &self); 422 else 423 self.task = NULL; 424 /* 425 * Implies mb(), the result of xchg() must be visible 426 * to core_state->dumper. 427 */ 428 if (atomic_dec_and_test(&core_state->nr_threads)) 429 complete(&core_state->startup); 430 431 for (;;) { 432 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE); 433 if (!self.task) /* see coredump_finish() */ 434 break; 435 schedule(); 436 } 437 __set_current_state(TASK_RUNNING); 438 } 439 } 440 441 #ifdef CONFIG_MEMCG 442 /* 443 * A task is exiting. If it owned this mm, find a new owner for the mm. 444 */ 445 void mm_update_next_owner(struct mm_struct *mm) 446 { 447 struct task_struct *c, *g, *p = current; 448 449 retry: 450 /* 451 * If the exiting or execing task is not the owner, it's 452 * someone else's problem. 453 */ 454 if (mm->owner != p) 455 return; 456 /* 457 * The current owner is exiting/execing and there are no other 458 * candidates. Do not leave the mm pointing to a possibly 459 * freed task structure. 460 */ 461 if (atomic_read(&mm->mm_users) <= 1) { 462 WRITE_ONCE(mm->owner, NULL); 463 return; 464 } 465 466 read_lock(&tasklist_lock); 467 /* 468 * Search in the children 469 */ 470 list_for_each_entry(c, &p->children, sibling) { 471 if (c->mm == mm) 472 goto assign_new_owner; 473 } 474 475 /* 476 * Search in the siblings 477 */ 478 list_for_each_entry(c, &p->real_parent->children, sibling) { 479 if (c->mm == mm) 480 goto assign_new_owner; 481 } 482 483 /* 484 * Search through everything else, we should not get here often. 485 */ 486 for_each_process(g) { 487 if (atomic_read(&mm->mm_users) <= 1) 488 break; 489 if (g->flags & PF_KTHREAD) 490 continue; 491 for_each_thread(g, c) { 492 if (c->mm == mm) 493 goto assign_new_owner; 494 if (c->mm) 495 break; 496 } 497 } 498 read_unlock(&tasklist_lock); 499 /* 500 * We found no owner yet mm_users > 1: this implies that we are 501 * most likely racing with swapoff (try_to_unuse()) or /proc or 502 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 503 */ 504 WRITE_ONCE(mm->owner, NULL); 505 return; 506 507 assign_new_owner: 508 BUG_ON(c == p); 509 get_task_struct(c); 510 /* 511 * The task_lock protects c->mm from changing. 512 * We always want mm->owner->mm == mm 513 */ 514 task_lock(c); 515 /* 516 * Delay read_unlock() till we have the task_lock() 517 * to ensure that c does not slip away underneath us 518 */ 519 read_unlock(&tasklist_lock); 520 if (c->mm != mm) { 521 task_unlock(c); 522 put_task_struct(c); 523 goto retry; 524 } 525 WRITE_ONCE(mm->owner, c); 526 lru_gen_migrate_mm(mm); 527 task_unlock(c); 528 put_task_struct(c); 529 } 530 #endif /* CONFIG_MEMCG */ 531 532 /* 533 * Turn us into a lazy TLB process if we 534 * aren't already.. 535 */ 536 static void exit_mm(void) 537 { 538 struct mm_struct *mm = current->mm; 539 540 exit_mm_release(current, mm); 541 if (!mm) 542 return; 543 mmap_read_lock(mm); 544 mmgrab_lazy_tlb(mm); 545 BUG_ON(mm != current->active_mm); 546 /* more a memory barrier than a real lock */ 547 task_lock(current); 548 /* 549 * When a thread stops operating on an address space, the loop 550 * in membarrier_private_expedited() may not observe that 551 * tsk->mm, and the loop in membarrier_global_expedited() may 552 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 553 * rq->membarrier_state, so those would not issue an IPI. 554 * Membarrier requires a memory barrier after accessing 555 * user-space memory, before clearing tsk->mm or the 556 * rq->membarrier_state. 557 */ 558 smp_mb__after_spinlock(); 559 local_irq_disable(); 560 current->mm = NULL; 561 membarrier_update_current_mm(NULL); 562 enter_lazy_tlb(mm, current); 563 local_irq_enable(); 564 task_unlock(current); 565 mmap_read_unlock(mm); 566 mm_update_next_owner(mm); 567 mmput(mm); 568 if (test_thread_flag(TIF_MEMDIE)) 569 exit_oom_victim(); 570 } 571 572 static struct task_struct *find_alive_thread(struct task_struct *p) 573 { 574 struct task_struct *t; 575 576 for_each_thread(p, t) { 577 if (!(t->flags & PF_EXITING)) 578 return t; 579 } 580 return NULL; 581 } 582 583 static struct task_struct *find_child_reaper(struct task_struct *father, 584 struct list_head *dead) 585 __releases(&tasklist_lock) 586 __acquires(&tasklist_lock) 587 { 588 struct pid_namespace *pid_ns = task_active_pid_ns(father); 589 struct task_struct *reaper = pid_ns->child_reaper; 590 struct task_struct *p, *n; 591 592 if (likely(reaper != father)) 593 return reaper; 594 595 reaper = find_alive_thread(father); 596 if (reaper) { 597 pid_ns->child_reaper = reaper; 598 return reaper; 599 } 600 601 write_unlock_irq(&tasklist_lock); 602 603 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 604 list_del_init(&p->ptrace_entry); 605 release_task(p); 606 } 607 608 zap_pid_ns_processes(pid_ns); 609 write_lock_irq(&tasklist_lock); 610 611 return father; 612 } 613 614 /* 615 * When we die, we re-parent all our children, and try to: 616 * 1. give them to another thread in our thread group, if such a member exists 617 * 2. give it to the first ancestor process which prctl'd itself as a 618 * child_subreaper for its children (like a service manager) 619 * 3. give it to the init process (PID 1) in our pid namespace 620 */ 621 static struct task_struct *find_new_reaper(struct task_struct *father, 622 struct task_struct *child_reaper) 623 { 624 struct task_struct *thread, *reaper; 625 626 thread = find_alive_thread(father); 627 if (thread) 628 return thread; 629 630 if (father->signal->has_child_subreaper) { 631 unsigned int ns_level = task_pid(father)->level; 632 /* 633 * Find the first ->is_child_subreaper ancestor in our pid_ns. 634 * We can't check reaper != child_reaper to ensure we do not 635 * cross the namespaces, the exiting parent could be injected 636 * by setns() + fork(). 637 * We check pid->level, this is slightly more efficient than 638 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 639 */ 640 for (reaper = father->real_parent; 641 task_pid(reaper)->level == ns_level; 642 reaper = reaper->real_parent) { 643 if (reaper == &init_task) 644 break; 645 if (!reaper->signal->is_child_subreaper) 646 continue; 647 thread = find_alive_thread(reaper); 648 if (thread) 649 return thread; 650 } 651 } 652 653 return child_reaper; 654 } 655 656 /* 657 * Any that need to be release_task'd are put on the @dead list. 658 */ 659 static void reparent_leader(struct task_struct *father, struct task_struct *p, 660 struct list_head *dead) 661 { 662 if (unlikely(p->exit_state == EXIT_DEAD)) 663 return; 664 665 /* We don't want people slaying init. */ 666 p->exit_signal = SIGCHLD; 667 668 /* If it has exited notify the new parent about this child's death. */ 669 if (!p->ptrace && 670 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 671 if (do_notify_parent(p, p->exit_signal)) { 672 p->exit_state = EXIT_DEAD; 673 list_add(&p->ptrace_entry, dead); 674 } 675 } 676 677 kill_orphaned_pgrp(p, father); 678 } 679 680 /* 681 * This does two things: 682 * 683 * A. Make init inherit all the child processes 684 * B. Check to see if any process groups have become orphaned 685 * as a result of our exiting, and if they have any stopped 686 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 687 */ 688 static void forget_original_parent(struct task_struct *father, 689 struct list_head *dead) 690 { 691 struct task_struct *p, *t, *reaper; 692 693 if (unlikely(!list_empty(&father->ptraced))) 694 exit_ptrace(father, dead); 695 696 /* Can drop and reacquire tasklist_lock */ 697 reaper = find_child_reaper(father, dead); 698 if (list_empty(&father->children)) 699 return; 700 701 reaper = find_new_reaper(father, reaper); 702 list_for_each_entry(p, &father->children, sibling) { 703 for_each_thread(p, t) { 704 RCU_INIT_POINTER(t->real_parent, reaper); 705 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 706 if (likely(!t->ptrace)) 707 t->parent = t->real_parent; 708 if (t->pdeath_signal) 709 group_send_sig_info(t->pdeath_signal, 710 SEND_SIG_NOINFO, t, 711 PIDTYPE_TGID); 712 } 713 /* 714 * If this is a threaded reparent there is no need to 715 * notify anyone anything has happened. 716 */ 717 if (!same_thread_group(reaper, father)) 718 reparent_leader(father, p, dead); 719 } 720 list_splice_tail_init(&father->children, &reaper->children); 721 } 722 723 /* 724 * Send signals to all our closest relatives so that they know 725 * to properly mourn us.. 726 */ 727 static void exit_notify(struct task_struct *tsk, int group_dead) 728 { 729 bool autoreap; 730 struct task_struct *p, *n; 731 LIST_HEAD(dead); 732 733 write_lock_irq(&tasklist_lock); 734 forget_original_parent(tsk, &dead); 735 736 if (group_dead) 737 kill_orphaned_pgrp(tsk->group_leader, NULL); 738 739 tsk->exit_state = EXIT_ZOMBIE; 740 /* 741 * sub-thread or delay_group_leader(), wake up the 742 * PIDFD_THREAD waiters. 743 */ 744 if (!thread_group_empty(tsk)) 745 do_notify_pidfd(tsk); 746 747 if (unlikely(tsk->ptrace)) { 748 int sig = thread_group_leader(tsk) && 749 thread_group_empty(tsk) && 750 !ptrace_reparented(tsk) ? 751 tsk->exit_signal : SIGCHLD; 752 autoreap = do_notify_parent(tsk, sig); 753 } else if (thread_group_leader(tsk)) { 754 autoreap = thread_group_empty(tsk) && 755 do_notify_parent(tsk, tsk->exit_signal); 756 } else { 757 autoreap = true; 758 } 759 760 if (autoreap) { 761 tsk->exit_state = EXIT_DEAD; 762 list_add(&tsk->ptrace_entry, &dead); 763 } 764 765 /* mt-exec, de_thread() is waiting for group leader */ 766 if (unlikely(tsk->signal->notify_count < 0)) 767 wake_up_process(tsk->signal->group_exec_task); 768 write_unlock_irq(&tasklist_lock); 769 770 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 771 list_del_init(&p->ptrace_entry); 772 release_task(p); 773 } 774 } 775 776 #ifdef CONFIG_DEBUG_STACK_USAGE 777 static void check_stack_usage(void) 778 { 779 static DEFINE_SPINLOCK(low_water_lock); 780 static int lowest_to_date = THREAD_SIZE; 781 unsigned long free; 782 783 free = stack_not_used(current); 784 785 if (free >= lowest_to_date) 786 return; 787 788 spin_lock(&low_water_lock); 789 if (free < lowest_to_date) { 790 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 791 current->comm, task_pid_nr(current), free); 792 lowest_to_date = free; 793 } 794 spin_unlock(&low_water_lock); 795 } 796 #else 797 static inline void check_stack_usage(void) {} 798 #endif 799 800 static void synchronize_group_exit(struct task_struct *tsk, long code) 801 { 802 struct sighand_struct *sighand = tsk->sighand; 803 struct signal_struct *signal = tsk->signal; 804 805 spin_lock_irq(&sighand->siglock); 806 signal->quick_threads--; 807 if ((signal->quick_threads == 0) && 808 !(signal->flags & SIGNAL_GROUP_EXIT)) { 809 signal->flags = SIGNAL_GROUP_EXIT; 810 signal->group_exit_code = code; 811 signal->group_stop_count = 0; 812 } 813 spin_unlock_irq(&sighand->siglock); 814 } 815 816 void __noreturn do_exit(long code) 817 { 818 struct task_struct *tsk = current; 819 int group_dead; 820 821 WARN_ON(irqs_disabled()); 822 823 synchronize_group_exit(tsk, code); 824 825 WARN_ON(tsk->plug); 826 827 kcov_task_exit(tsk); 828 kmsan_task_exit(tsk); 829 830 coredump_task_exit(tsk); 831 ptrace_event(PTRACE_EVENT_EXIT, code); 832 user_events_exit(tsk); 833 834 io_uring_files_cancel(); 835 exit_signals(tsk); /* sets PF_EXITING */ 836 837 acct_update_integrals(tsk); 838 group_dead = atomic_dec_and_test(&tsk->signal->live); 839 if (group_dead) { 840 /* 841 * If the last thread of global init has exited, panic 842 * immediately to get a useable coredump. 843 */ 844 if (unlikely(is_global_init(tsk))) 845 panic("Attempted to kill init! exitcode=0x%08x\n", 846 tsk->signal->group_exit_code ?: (int)code); 847 848 #ifdef CONFIG_POSIX_TIMERS 849 hrtimer_cancel(&tsk->signal->real_timer); 850 exit_itimers(tsk); 851 #endif 852 if (tsk->mm) 853 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 854 } 855 acct_collect(code, group_dead); 856 if (group_dead) 857 tty_audit_exit(); 858 audit_free(tsk); 859 860 tsk->exit_code = code; 861 taskstats_exit(tsk, group_dead); 862 863 exit_mm(); 864 865 if (group_dead) 866 acct_process(); 867 trace_sched_process_exit(tsk); 868 869 exit_sem(tsk); 870 exit_shm(tsk); 871 exit_files(tsk); 872 exit_fs(tsk); 873 if (group_dead) 874 disassociate_ctty(1); 875 exit_task_namespaces(tsk); 876 exit_task_work(tsk); 877 exit_thread(tsk); 878 879 /* 880 * Flush inherited counters to the parent - before the parent 881 * gets woken up by child-exit notifications. 882 * 883 * because of cgroup mode, must be called before cgroup_exit() 884 */ 885 perf_event_exit_task(tsk); 886 887 sched_autogroup_exit_task(tsk); 888 cgroup_exit(tsk); 889 890 /* 891 * FIXME: do that only when needed, using sched_exit tracepoint 892 */ 893 flush_ptrace_hw_breakpoint(tsk); 894 895 exit_tasks_rcu_start(); 896 exit_notify(tsk, group_dead); 897 proc_exit_connector(tsk); 898 mpol_put_task_policy(tsk); 899 #ifdef CONFIG_FUTEX 900 if (unlikely(current->pi_state_cache)) 901 kfree(current->pi_state_cache); 902 #endif 903 /* 904 * Make sure we are holding no locks: 905 */ 906 debug_check_no_locks_held(); 907 908 if (tsk->io_context) 909 exit_io_context(tsk); 910 911 if (tsk->splice_pipe) 912 free_pipe_info(tsk->splice_pipe); 913 914 if (tsk->task_frag.page) 915 put_page(tsk->task_frag.page); 916 917 exit_task_stack_account(tsk); 918 919 check_stack_usage(); 920 preempt_disable(); 921 if (tsk->nr_dirtied) 922 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 923 exit_rcu(); 924 exit_tasks_rcu_finish(); 925 926 lockdep_free_task(tsk); 927 do_task_dead(); 928 } 929 930 void __noreturn make_task_dead(int signr) 931 { 932 /* 933 * Take the task off the cpu after something catastrophic has 934 * happened. 935 * 936 * We can get here from a kernel oops, sometimes with preemption off. 937 * Start by checking for critical errors. 938 * Then fix up important state like USER_DS and preemption. 939 * Then do everything else. 940 */ 941 struct task_struct *tsk = current; 942 unsigned int limit; 943 944 if (unlikely(in_interrupt())) 945 panic("Aiee, killing interrupt handler!"); 946 if (unlikely(!tsk->pid)) 947 panic("Attempted to kill the idle task!"); 948 949 if (unlikely(irqs_disabled())) { 950 pr_info("note: %s[%d] exited with irqs disabled\n", 951 current->comm, task_pid_nr(current)); 952 local_irq_enable(); 953 } 954 if (unlikely(in_atomic())) { 955 pr_info("note: %s[%d] exited with preempt_count %d\n", 956 current->comm, task_pid_nr(current), 957 preempt_count()); 958 preempt_count_set(PREEMPT_ENABLED); 959 } 960 961 /* 962 * Every time the system oopses, if the oops happens while a reference 963 * to an object was held, the reference leaks. 964 * If the oops doesn't also leak memory, repeated oopsing can cause 965 * reference counters to wrap around (if they're not using refcount_t). 966 * This means that repeated oopsing can make unexploitable-looking bugs 967 * exploitable through repeated oopsing. 968 * To make sure this can't happen, place an upper bound on how often the 969 * kernel may oops without panic(). 970 */ 971 limit = READ_ONCE(oops_limit); 972 if (atomic_inc_return(&oops_count) >= limit && limit) 973 panic("Oopsed too often (kernel.oops_limit is %d)", limit); 974 975 /* 976 * We're taking recursive faults here in make_task_dead. Safest is to just 977 * leave this task alone and wait for reboot. 978 */ 979 if (unlikely(tsk->flags & PF_EXITING)) { 980 pr_alert("Fixing recursive fault but reboot is needed!\n"); 981 futex_exit_recursive(tsk); 982 tsk->exit_state = EXIT_DEAD; 983 refcount_inc(&tsk->rcu_users); 984 do_task_dead(); 985 } 986 987 do_exit(signr); 988 } 989 990 SYSCALL_DEFINE1(exit, int, error_code) 991 { 992 do_exit((error_code&0xff)<<8); 993 } 994 995 /* 996 * Take down every thread in the group. This is called by fatal signals 997 * as well as by sys_exit_group (below). 998 */ 999 void __noreturn 1000 do_group_exit(int exit_code) 1001 { 1002 struct signal_struct *sig = current->signal; 1003 1004 if (sig->flags & SIGNAL_GROUP_EXIT) 1005 exit_code = sig->group_exit_code; 1006 else if (sig->group_exec_task) 1007 exit_code = 0; 1008 else { 1009 struct sighand_struct *const sighand = current->sighand; 1010 1011 spin_lock_irq(&sighand->siglock); 1012 if (sig->flags & SIGNAL_GROUP_EXIT) 1013 /* Another thread got here before we took the lock. */ 1014 exit_code = sig->group_exit_code; 1015 else if (sig->group_exec_task) 1016 exit_code = 0; 1017 else { 1018 sig->group_exit_code = exit_code; 1019 sig->flags = SIGNAL_GROUP_EXIT; 1020 zap_other_threads(current); 1021 } 1022 spin_unlock_irq(&sighand->siglock); 1023 } 1024 1025 do_exit(exit_code); 1026 /* NOTREACHED */ 1027 } 1028 1029 /* 1030 * this kills every thread in the thread group. Note that any externally 1031 * wait4()-ing process will get the correct exit code - even if this 1032 * thread is not the thread group leader. 1033 */ 1034 SYSCALL_DEFINE1(exit_group, int, error_code) 1035 { 1036 do_group_exit((error_code & 0xff) << 8); 1037 /* NOTREACHED */ 1038 return 0; 1039 } 1040 1041 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1042 { 1043 return wo->wo_type == PIDTYPE_MAX || 1044 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1045 } 1046 1047 static int 1048 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1049 { 1050 if (!eligible_pid(wo, p)) 1051 return 0; 1052 1053 /* 1054 * Wait for all children (clone and not) if __WALL is set or 1055 * if it is traced by us. 1056 */ 1057 if (ptrace || (wo->wo_flags & __WALL)) 1058 return 1; 1059 1060 /* 1061 * Otherwise, wait for clone children *only* if __WCLONE is set; 1062 * otherwise, wait for non-clone children *only*. 1063 * 1064 * Note: a "clone" child here is one that reports to its parent 1065 * using a signal other than SIGCHLD, or a non-leader thread which 1066 * we can only see if it is traced by us. 1067 */ 1068 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1069 return 0; 1070 1071 return 1; 1072 } 1073 1074 /* 1075 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1076 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1077 * the lock and this task is uninteresting. If we return nonzero, we have 1078 * released the lock and the system call should return. 1079 */ 1080 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1081 { 1082 int state, status; 1083 pid_t pid = task_pid_vnr(p); 1084 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1085 struct waitid_info *infop; 1086 1087 if (!likely(wo->wo_flags & WEXITED)) 1088 return 0; 1089 1090 if (unlikely(wo->wo_flags & WNOWAIT)) { 1091 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1092 ? p->signal->group_exit_code : p->exit_code; 1093 get_task_struct(p); 1094 read_unlock(&tasklist_lock); 1095 sched_annotate_sleep(); 1096 if (wo->wo_rusage) 1097 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1098 put_task_struct(p); 1099 goto out_info; 1100 } 1101 /* 1102 * Move the task's state to DEAD/TRACE, only one thread can do this. 1103 */ 1104 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1105 EXIT_TRACE : EXIT_DEAD; 1106 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1107 return 0; 1108 /* 1109 * We own this thread, nobody else can reap it. 1110 */ 1111 read_unlock(&tasklist_lock); 1112 sched_annotate_sleep(); 1113 1114 /* 1115 * Check thread_group_leader() to exclude the traced sub-threads. 1116 */ 1117 if (state == EXIT_DEAD && thread_group_leader(p)) { 1118 struct signal_struct *sig = p->signal; 1119 struct signal_struct *psig = current->signal; 1120 unsigned long maxrss; 1121 u64 tgutime, tgstime; 1122 1123 /* 1124 * The resource counters for the group leader are in its 1125 * own task_struct. Those for dead threads in the group 1126 * are in its signal_struct, as are those for the child 1127 * processes it has previously reaped. All these 1128 * accumulate in the parent's signal_struct c* fields. 1129 * 1130 * We don't bother to take a lock here to protect these 1131 * p->signal fields because the whole thread group is dead 1132 * and nobody can change them. 1133 * 1134 * psig->stats_lock also protects us from our sub-threads 1135 * which can reap other children at the same time. 1136 * 1137 * We use thread_group_cputime_adjusted() to get times for 1138 * the thread group, which consolidates times for all threads 1139 * in the group including the group leader. 1140 */ 1141 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1142 write_seqlock_irq(&psig->stats_lock); 1143 psig->cutime += tgutime + sig->cutime; 1144 psig->cstime += tgstime + sig->cstime; 1145 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1146 psig->cmin_flt += 1147 p->min_flt + sig->min_flt + sig->cmin_flt; 1148 psig->cmaj_flt += 1149 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1150 psig->cnvcsw += 1151 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1152 psig->cnivcsw += 1153 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1154 psig->cinblock += 1155 task_io_get_inblock(p) + 1156 sig->inblock + sig->cinblock; 1157 psig->coublock += 1158 task_io_get_oublock(p) + 1159 sig->oublock + sig->coublock; 1160 maxrss = max(sig->maxrss, sig->cmaxrss); 1161 if (psig->cmaxrss < maxrss) 1162 psig->cmaxrss = maxrss; 1163 task_io_accounting_add(&psig->ioac, &p->ioac); 1164 task_io_accounting_add(&psig->ioac, &sig->ioac); 1165 write_sequnlock_irq(&psig->stats_lock); 1166 } 1167 1168 if (wo->wo_rusage) 1169 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1170 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1171 ? p->signal->group_exit_code : p->exit_code; 1172 wo->wo_stat = status; 1173 1174 if (state == EXIT_TRACE) { 1175 write_lock_irq(&tasklist_lock); 1176 /* We dropped tasklist, ptracer could die and untrace */ 1177 ptrace_unlink(p); 1178 1179 /* If parent wants a zombie, don't release it now */ 1180 state = EXIT_ZOMBIE; 1181 if (do_notify_parent(p, p->exit_signal)) 1182 state = EXIT_DEAD; 1183 p->exit_state = state; 1184 write_unlock_irq(&tasklist_lock); 1185 } 1186 if (state == EXIT_DEAD) 1187 release_task(p); 1188 1189 out_info: 1190 infop = wo->wo_info; 1191 if (infop) { 1192 if ((status & 0x7f) == 0) { 1193 infop->cause = CLD_EXITED; 1194 infop->status = status >> 8; 1195 } else { 1196 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1197 infop->status = status & 0x7f; 1198 } 1199 infop->pid = pid; 1200 infop->uid = uid; 1201 } 1202 1203 return pid; 1204 } 1205 1206 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1207 { 1208 if (ptrace) { 1209 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1210 return &p->exit_code; 1211 } else { 1212 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1213 return &p->signal->group_exit_code; 1214 } 1215 return NULL; 1216 } 1217 1218 /** 1219 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1220 * @wo: wait options 1221 * @ptrace: is the wait for ptrace 1222 * @p: task to wait for 1223 * 1224 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1225 * 1226 * CONTEXT: 1227 * read_lock(&tasklist_lock), which is released if return value is 1228 * non-zero. Also, grabs and releases @p->sighand->siglock. 1229 * 1230 * RETURNS: 1231 * 0 if wait condition didn't exist and search for other wait conditions 1232 * should continue. Non-zero return, -errno on failure and @p's pid on 1233 * success, implies that tasklist_lock is released and wait condition 1234 * search should terminate. 1235 */ 1236 static int wait_task_stopped(struct wait_opts *wo, 1237 int ptrace, struct task_struct *p) 1238 { 1239 struct waitid_info *infop; 1240 int exit_code, *p_code, why; 1241 uid_t uid = 0; /* unneeded, required by compiler */ 1242 pid_t pid; 1243 1244 /* 1245 * Traditionally we see ptrace'd stopped tasks regardless of options. 1246 */ 1247 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1248 return 0; 1249 1250 if (!task_stopped_code(p, ptrace)) 1251 return 0; 1252 1253 exit_code = 0; 1254 spin_lock_irq(&p->sighand->siglock); 1255 1256 p_code = task_stopped_code(p, ptrace); 1257 if (unlikely(!p_code)) 1258 goto unlock_sig; 1259 1260 exit_code = *p_code; 1261 if (!exit_code) 1262 goto unlock_sig; 1263 1264 if (!unlikely(wo->wo_flags & WNOWAIT)) 1265 *p_code = 0; 1266 1267 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1268 unlock_sig: 1269 spin_unlock_irq(&p->sighand->siglock); 1270 if (!exit_code) 1271 return 0; 1272 1273 /* 1274 * Now we are pretty sure this task is interesting. 1275 * Make sure it doesn't get reaped out from under us while we 1276 * give up the lock and then examine it below. We don't want to 1277 * keep holding onto the tasklist_lock while we call getrusage and 1278 * possibly take page faults for user memory. 1279 */ 1280 get_task_struct(p); 1281 pid = task_pid_vnr(p); 1282 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1283 read_unlock(&tasklist_lock); 1284 sched_annotate_sleep(); 1285 if (wo->wo_rusage) 1286 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1287 put_task_struct(p); 1288 1289 if (likely(!(wo->wo_flags & WNOWAIT))) 1290 wo->wo_stat = (exit_code << 8) | 0x7f; 1291 1292 infop = wo->wo_info; 1293 if (infop) { 1294 infop->cause = why; 1295 infop->status = exit_code; 1296 infop->pid = pid; 1297 infop->uid = uid; 1298 } 1299 return pid; 1300 } 1301 1302 /* 1303 * Handle do_wait work for one task in a live, non-stopped state. 1304 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1305 * the lock and this task is uninteresting. If we return nonzero, we have 1306 * released the lock and the system call should return. 1307 */ 1308 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1309 { 1310 struct waitid_info *infop; 1311 pid_t pid; 1312 uid_t uid; 1313 1314 if (!unlikely(wo->wo_flags & WCONTINUED)) 1315 return 0; 1316 1317 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1318 return 0; 1319 1320 spin_lock_irq(&p->sighand->siglock); 1321 /* Re-check with the lock held. */ 1322 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1323 spin_unlock_irq(&p->sighand->siglock); 1324 return 0; 1325 } 1326 if (!unlikely(wo->wo_flags & WNOWAIT)) 1327 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1328 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1329 spin_unlock_irq(&p->sighand->siglock); 1330 1331 pid = task_pid_vnr(p); 1332 get_task_struct(p); 1333 read_unlock(&tasklist_lock); 1334 sched_annotate_sleep(); 1335 if (wo->wo_rusage) 1336 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1337 put_task_struct(p); 1338 1339 infop = wo->wo_info; 1340 if (!infop) { 1341 wo->wo_stat = 0xffff; 1342 } else { 1343 infop->cause = CLD_CONTINUED; 1344 infop->pid = pid; 1345 infop->uid = uid; 1346 infop->status = SIGCONT; 1347 } 1348 return pid; 1349 } 1350 1351 /* 1352 * Consider @p for a wait by @parent. 1353 * 1354 * -ECHILD should be in ->notask_error before the first call. 1355 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1356 * Returns zero if the search for a child should continue; 1357 * then ->notask_error is 0 if @p is an eligible child, 1358 * or still -ECHILD. 1359 */ 1360 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1361 struct task_struct *p) 1362 { 1363 /* 1364 * We can race with wait_task_zombie() from another thread. 1365 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1366 * can't confuse the checks below. 1367 */ 1368 int exit_state = READ_ONCE(p->exit_state); 1369 int ret; 1370 1371 if (unlikely(exit_state == EXIT_DEAD)) 1372 return 0; 1373 1374 ret = eligible_child(wo, ptrace, p); 1375 if (!ret) 1376 return ret; 1377 1378 if (unlikely(exit_state == EXIT_TRACE)) { 1379 /* 1380 * ptrace == 0 means we are the natural parent. In this case 1381 * we should clear notask_error, debugger will notify us. 1382 */ 1383 if (likely(!ptrace)) 1384 wo->notask_error = 0; 1385 return 0; 1386 } 1387 1388 if (likely(!ptrace) && unlikely(p->ptrace)) { 1389 /* 1390 * If it is traced by its real parent's group, just pretend 1391 * the caller is ptrace_do_wait() and reap this child if it 1392 * is zombie. 1393 * 1394 * This also hides group stop state from real parent; otherwise 1395 * a single stop can be reported twice as group and ptrace stop. 1396 * If a ptracer wants to distinguish these two events for its 1397 * own children it should create a separate process which takes 1398 * the role of real parent. 1399 */ 1400 if (!ptrace_reparented(p)) 1401 ptrace = 1; 1402 } 1403 1404 /* slay zombie? */ 1405 if (exit_state == EXIT_ZOMBIE) { 1406 /* we don't reap group leaders with subthreads */ 1407 if (!delay_group_leader(p)) { 1408 /* 1409 * A zombie ptracee is only visible to its ptracer. 1410 * Notification and reaping will be cascaded to the 1411 * real parent when the ptracer detaches. 1412 */ 1413 if (unlikely(ptrace) || likely(!p->ptrace)) 1414 return wait_task_zombie(wo, p); 1415 } 1416 1417 /* 1418 * Allow access to stopped/continued state via zombie by 1419 * falling through. Clearing of notask_error is complex. 1420 * 1421 * When !@ptrace: 1422 * 1423 * If WEXITED is set, notask_error should naturally be 1424 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1425 * so, if there are live subthreads, there are events to 1426 * wait for. If all subthreads are dead, it's still safe 1427 * to clear - this function will be called again in finite 1428 * amount time once all the subthreads are released and 1429 * will then return without clearing. 1430 * 1431 * When @ptrace: 1432 * 1433 * Stopped state is per-task and thus can't change once the 1434 * target task dies. Only continued and exited can happen. 1435 * Clear notask_error if WCONTINUED | WEXITED. 1436 */ 1437 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1438 wo->notask_error = 0; 1439 } else { 1440 /* 1441 * @p is alive and it's gonna stop, continue or exit, so 1442 * there always is something to wait for. 1443 */ 1444 wo->notask_error = 0; 1445 } 1446 1447 /* 1448 * Wait for stopped. Depending on @ptrace, different stopped state 1449 * is used and the two don't interact with each other. 1450 */ 1451 ret = wait_task_stopped(wo, ptrace, p); 1452 if (ret) 1453 return ret; 1454 1455 /* 1456 * Wait for continued. There's only one continued state and the 1457 * ptracer can consume it which can confuse the real parent. Don't 1458 * use WCONTINUED from ptracer. You don't need or want it. 1459 */ 1460 return wait_task_continued(wo, p); 1461 } 1462 1463 /* 1464 * Do the work of do_wait() for one thread in the group, @tsk. 1465 * 1466 * -ECHILD should be in ->notask_error before the first call. 1467 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1468 * Returns zero if the search for a child should continue; then 1469 * ->notask_error is 0 if there were any eligible children, 1470 * or still -ECHILD. 1471 */ 1472 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1473 { 1474 struct task_struct *p; 1475 1476 list_for_each_entry(p, &tsk->children, sibling) { 1477 int ret = wait_consider_task(wo, 0, p); 1478 1479 if (ret) 1480 return ret; 1481 } 1482 1483 return 0; 1484 } 1485 1486 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1487 { 1488 struct task_struct *p; 1489 1490 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1491 int ret = wait_consider_task(wo, 1, p); 1492 1493 if (ret) 1494 return ret; 1495 } 1496 1497 return 0; 1498 } 1499 1500 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p) 1501 { 1502 if (!eligible_pid(wo, p)) 1503 return false; 1504 1505 if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent) 1506 return false; 1507 1508 return true; 1509 } 1510 1511 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1512 int sync, void *key) 1513 { 1514 struct wait_opts *wo = container_of(wait, struct wait_opts, 1515 child_wait); 1516 struct task_struct *p = key; 1517 1518 if (pid_child_should_wake(wo, p)) 1519 return default_wake_function(wait, mode, sync, key); 1520 1521 return 0; 1522 } 1523 1524 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1525 { 1526 __wake_up_sync_key(&parent->signal->wait_chldexit, 1527 TASK_INTERRUPTIBLE, p); 1528 } 1529 1530 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1531 struct task_struct *target) 1532 { 1533 struct task_struct *parent = 1534 !ptrace ? target->real_parent : target->parent; 1535 1536 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1537 same_thread_group(current, parent)); 1538 } 1539 1540 /* 1541 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1542 * and tracee lists to find the target task. 1543 */ 1544 static int do_wait_pid(struct wait_opts *wo) 1545 { 1546 bool ptrace; 1547 struct task_struct *target; 1548 int retval; 1549 1550 ptrace = false; 1551 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1552 if (target && is_effectively_child(wo, ptrace, target)) { 1553 retval = wait_consider_task(wo, ptrace, target); 1554 if (retval) 1555 return retval; 1556 } 1557 1558 ptrace = true; 1559 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1560 if (target && target->ptrace && 1561 is_effectively_child(wo, ptrace, target)) { 1562 retval = wait_consider_task(wo, ptrace, target); 1563 if (retval) 1564 return retval; 1565 } 1566 1567 return 0; 1568 } 1569 1570 long __do_wait(struct wait_opts *wo) 1571 { 1572 long retval; 1573 1574 /* 1575 * If there is nothing that can match our criteria, just get out. 1576 * We will clear ->notask_error to zero if we see any child that 1577 * might later match our criteria, even if we are not able to reap 1578 * it yet. 1579 */ 1580 wo->notask_error = -ECHILD; 1581 if ((wo->wo_type < PIDTYPE_MAX) && 1582 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1583 goto notask; 1584 1585 read_lock(&tasklist_lock); 1586 1587 if (wo->wo_type == PIDTYPE_PID) { 1588 retval = do_wait_pid(wo); 1589 if (retval) 1590 return retval; 1591 } else { 1592 struct task_struct *tsk = current; 1593 1594 do { 1595 retval = do_wait_thread(wo, tsk); 1596 if (retval) 1597 return retval; 1598 1599 retval = ptrace_do_wait(wo, tsk); 1600 if (retval) 1601 return retval; 1602 1603 if (wo->wo_flags & __WNOTHREAD) 1604 break; 1605 } while_each_thread(current, tsk); 1606 } 1607 read_unlock(&tasklist_lock); 1608 1609 notask: 1610 retval = wo->notask_error; 1611 if (!retval && !(wo->wo_flags & WNOHANG)) 1612 return -ERESTARTSYS; 1613 1614 return retval; 1615 } 1616 1617 static long do_wait(struct wait_opts *wo) 1618 { 1619 int retval; 1620 1621 trace_sched_process_wait(wo->wo_pid); 1622 1623 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1624 wo->child_wait.private = current; 1625 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1626 1627 do { 1628 set_current_state(TASK_INTERRUPTIBLE); 1629 retval = __do_wait(wo); 1630 if (retval != -ERESTARTSYS) 1631 break; 1632 if (signal_pending(current)) 1633 break; 1634 schedule(); 1635 } while (1); 1636 1637 __set_current_state(TASK_RUNNING); 1638 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1639 return retval; 1640 } 1641 1642 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid, 1643 struct waitid_info *infop, int options, 1644 struct rusage *ru) 1645 { 1646 unsigned int f_flags = 0; 1647 struct pid *pid = NULL; 1648 enum pid_type type; 1649 1650 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1651 __WNOTHREAD|__WCLONE|__WALL)) 1652 return -EINVAL; 1653 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1654 return -EINVAL; 1655 1656 switch (which) { 1657 case P_ALL: 1658 type = PIDTYPE_MAX; 1659 break; 1660 case P_PID: 1661 type = PIDTYPE_PID; 1662 if (upid <= 0) 1663 return -EINVAL; 1664 1665 pid = find_get_pid(upid); 1666 break; 1667 case P_PGID: 1668 type = PIDTYPE_PGID; 1669 if (upid < 0) 1670 return -EINVAL; 1671 1672 if (upid) 1673 pid = find_get_pid(upid); 1674 else 1675 pid = get_task_pid(current, PIDTYPE_PGID); 1676 break; 1677 case P_PIDFD: 1678 type = PIDTYPE_PID; 1679 if (upid < 0) 1680 return -EINVAL; 1681 1682 pid = pidfd_get_pid(upid, &f_flags); 1683 if (IS_ERR(pid)) 1684 return PTR_ERR(pid); 1685 1686 break; 1687 default: 1688 return -EINVAL; 1689 } 1690 1691 wo->wo_type = type; 1692 wo->wo_pid = pid; 1693 wo->wo_flags = options; 1694 wo->wo_info = infop; 1695 wo->wo_rusage = ru; 1696 if (f_flags & O_NONBLOCK) 1697 wo->wo_flags |= WNOHANG; 1698 1699 return 0; 1700 } 1701 1702 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1703 int options, struct rusage *ru) 1704 { 1705 struct wait_opts wo; 1706 long ret; 1707 1708 ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru); 1709 if (ret) 1710 return ret; 1711 1712 ret = do_wait(&wo); 1713 if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG)) 1714 ret = -EAGAIN; 1715 1716 put_pid(wo.wo_pid); 1717 return ret; 1718 } 1719 1720 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1721 infop, int, options, struct rusage __user *, ru) 1722 { 1723 struct rusage r; 1724 struct waitid_info info = {.status = 0}; 1725 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1726 int signo = 0; 1727 1728 if (err > 0) { 1729 signo = SIGCHLD; 1730 err = 0; 1731 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1732 return -EFAULT; 1733 } 1734 if (!infop) 1735 return err; 1736 1737 if (!user_write_access_begin(infop, sizeof(*infop))) 1738 return -EFAULT; 1739 1740 unsafe_put_user(signo, &infop->si_signo, Efault); 1741 unsafe_put_user(0, &infop->si_errno, Efault); 1742 unsafe_put_user(info.cause, &infop->si_code, Efault); 1743 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1744 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1745 unsafe_put_user(info.status, &infop->si_status, Efault); 1746 user_write_access_end(); 1747 return err; 1748 Efault: 1749 user_write_access_end(); 1750 return -EFAULT; 1751 } 1752 1753 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1754 struct rusage *ru) 1755 { 1756 struct wait_opts wo; 1757 struct pid *pid = NULL; 1758 enum pid_type type; 1759 long ret; 1760 1761 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1762 __WNOTHREAD|__WCLONE|__WALL)) 1763 return -EINVAL; 1764 1765 /* -INT_MIN is not defined */ 1766 if (upid == INT_MIN) 1767 return -ESRCH; 1768 1769 if (upid == -1) 1770 type = PIDTYPE_MAX; 1771 else if (upid < 0) { 1772 type = PIDTYPE_PGID; 1773 pid = find_get_pid(-upid); 1774 } else if (upid == 0) { 1775 type = PIDTYPE_PGID; 1776 pid = get_task_pid(current, PIDTYPE_PGID); 1777 } else /* upid > 0 */ { 1778 type = PIDTYPE_PID; 1779 pid = find_get_pid(upid); 1780 } 1781 1782 wo.wo_type = type; 1783 wo.wo_pid = pid; 1784 wo.wo_flags = options | WEXITED; 1785 wo.wo_info = NULL; 1786 wo.wo_stat = 0; 1787 wo.wo_rusage = ru; 1788 ret = do_wait(&wo); 1789 put_pid(pid); 1790 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1791 ret = -EFAULT; 1792 1793 return ret; 1794 } 1795 1796 int kernel_wait(pid_t pid, int *stat) 1797 { 1798 struct wait_opts wo = { 1799 .wo_type = PIDTYPE_PID, 1800 .wo_pid = find_get_pid(pid), 1801 .wo_flags = WEXITED, 1802 }; 1803 int ret; 1804 1805 ret = do_wait(&wo); 1806 if (ret > 0 && wo.wo_stat) 1807 *stat = wo.wo_stat; 1808 put_pid(wo.wo_pid); 1809 return ret; 1810 } 1811 1812 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1813 int, options, struct rusage __user *, ru) 1814 { 1815 struct rusage r; 1816 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1817 1818 if (err > 0) { 1819 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1820 return -EFAULT; 1821 } 1822 return err; 1823 } 1824 1825 #ifdef __ARCH_WANT_SYS_WAITPID 1826 1827 /* 1828 * sys_waitpid() remains for compatibility. waitpid() should be 1829 * implemented by calling sys_wait4() from libc.a. 1830 */ 1831 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1832 { 1833 return kernel_wait4(pid, stat_addr, options, NULL); 1834 } 1835 1836 #endif 1837 1838 #ifdef CONFIG_COMPAT 1839 COMPAT_SYSCALL_DEFINE4(wait4, 1840 compat_pid_t, pid, 1841 compat_uint_t __user *, stat_addr, 1842 int, options, 1843 struct compat_rusage __user *, ru) 1844 { 1845 struct rusage r; 1846 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1847 if (err > 0) { 1848 if (ru && put_compat_rusage(&r, ru)) 1849 return -EFAULT; 1850 } 1851 return err; 1852 } 1853 1854 COMPAT_SYSCALL_DEFINE5(waitid, 1855 int, which, compat_pid_t, pid, 1856 struct compat_siginfo __user *, infop, int, options, 1857 struct compat_rusage __user *, uru) 1858 { 1859 struct rusage ru; 1860 struct waitid_info info = {.status = 0}; 1861 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1862 int signo = 0; 1863 if (err > 0) { 1864 signo = SIGCHLD; 1865 err = 0; 1866 if (uru) { 1867 /* kernel_waitid() overwrites everything in ru */ 1868 if (COMPAT_USE_64BIT_TIME) 1869 err = copy_to_user(uru, &ru, sizeof(ru)); 1870 else 1871 err = put_compat_rusage(&ru, uru); 1872 if (err) 1873 return -EFAULT; 1874 } 1875 } 1876 1877 if (!infop) 1878 return err; 1879 1880 if (!user_write_access_begin(infop, sizeof(*infop))) 1881 return -EFAULT; 1882 1883 unsafe_put_user(signo, &infop->si_signo, Efault); 1884 unsafe_put_user(0, &infop->si_errno, Efault); 1885 unsafe_put_user(info.cause, &infop->si_code, Efault); 1886 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1887 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1888 unsafe_put_user(info.status, &infop->si_status, Efault); 1889 user_write_access_end(); 1890 return err; 1891 Efault: 1892 user_write_access_end(); 1893 return -EFAULT; 1894 } 1895 #endif 1896 1897 /* 1898 * This needs to be __function_aligned as GCC implicitly makes any 1899 * implementation of abort() cold and drops alignment specified by 1900 * -falign-functions=N. 1901 * 1902 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11 1903 */ 1904 __weak __function_aligned void abort(void) 1905 { 1906 BUG(); 1907 1908 /* if that doesn't kill us, halt */ 1909 panic("Oops failed to kill thread"); 1910 } 1911 EXPORT_SYMBOL(abort); 1912