xref: /linux/kernel/exit.c (revision 3a4fa0a25da81600ea0bcd75692ae8ca6050d165)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cgroup.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
52 
53 extern void sem_exit (void);
54 
55 static void exit_mm(struct task_struct * tsk);
56 
57 static void __unhash_process(struct task_struct *p)
58 {
59 	nr_threads--;
60 	detach_pid(p, PIDTYPE_PID);
61 	if (thread_group_leader(p)) {
62 		detach_pid(p, PIDTYPE_PGID);
63 		detach_pid(p, PIDTYPE_SID);
64 
65 		list_del_rcu(&p->tasks);
66 		__get_cpu_var(process_counts)--;
67 	}
68 	list_del_rcu(&p->thread_group);
69 	remove_parent(p);
70 }
71 
72 /*
73  * This function expects the tasklist_lock write-locked.
74  */
75 static void __exit_signal(struct task_struct *tsk)
76 {
77 	struct signal_struct *sig = tsk->signal;
78 	struct sighand_struct *sighand;
79 
80 	BUG_ON(!sig);
81 	BUG_ON(!atomic_read(&sig->count));
82 
83 	rcu_read_lock();
84 	sighand = rcu_dereference(tsk->sighand);
85 	spin_lock(&sighand->siglock);
86 
87 	posix_cpu_timers_exit(tsk);
88 	if (atomic_dec_and_test(&sig->count))
89 		posix_cpu_timers_exit_group(tsk);
90 	else {
91 		/*
92 		 * If there is any task waiting for the group exit
93 		 * then notify it:
94 		 */
95 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
96 			wake_up_process(sig->group_exit_task);
97 
98 		if (tsk == sig->curr_target)
99 			sig->curr_target = next_thread(tsk);
100 		/*
101 		 * Accumulate here the counters for all threads but the
102 		 * group leader as they die, so they can be added into
103 		 * the process-wide totals when those are taken.
104 		 * The group leader stays around as a zombie as long
105 		 * as there are other threads.  When it gets reaped,
106 		 * the exit.c code will add its counts into these totals.
107 		 * We won't ever get here for the group leader, since it
108 		 * will have been the last reference on the signal_struct.
109 		 */
110 		sig->utime = cputime_add(sig->utime, tsk->utime);
111 		sig->stime = cputime_add(sig->stime, tsk->stime);
112 		sig->gtime = cputime_add(sig->gtime, tsk->gtime);
113 		sig->min_flt += tsk->min_flt;
114 		sig->maj_flt += tsk->maj_flt;
115 		sig->nvcsw += tsk->nvcsw;
116 		sig->nivcsw += tsk->nivcsw;
117 		sig->inblock += task_io_get_inblock(tsk);
118 		sig->oublock += task_io_get_oublock(tsk);
119 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
120 		sig = NULL; /* Marker for below. */
121 	}
122 
123 	__unhash_process(tsk);
124 
125 	tsk->signal = NULL;
126 	tsk->sighand = NULL;
127 	spin_unlock(&sighand->siglock);
128 	rcu_read_unlock();
129 
130 	__cleanup_sighand(sighand);
131 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
132 	flush_sigqueue(&tsk->pending);
133 	if (sig) {
134 		flush_sigqueue(&sig->shared_pending);
135 		taskstats_tgid_free(sig);
136 		__cleanup_signal(sig);
137 	}
138 }
139 
140 static void delayed_put_task_struct(struct rcu_head *rhp)
141 {
142 	put_task_struct(container_of(rhp, struct task_struct, rcu));
143 }
144 
145 void release_task(struct task_struct * p)
146 {
147 	struct task_struct *leader;
148 	int zap_leader;
149 repeat:
150 	atomic_dec(&p->user->processes);
151 	proc_flush_task(p);
152 	write_lock_irq(&tasklist_lock);
153 	ptrace_unlink(p);
154 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
155 	__exit_signal(p);
156 
157 	/*
158 	 * If we are the last non-leader member of the thread
159 	 * group, and the leader is zombie, then notify the
160 	 * group leader's parent process. (if it wants notification.)
161 	 */
162 	zap_leader = 0;
163 	leader = p->group_leader;
164 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
165 		BUG_ON(leader->exit_signal == -1);
166 		do_notify_parent(leader, leader->exit_signal);
167 		/*
168 		 * If we were the last child thread and the leader has
169 		 * exited already, and the leader's parent ignores SIGCHLD,
170 		 * then we are the one who should release the leader.
171 		 *
172 		 * do_notify_parent() will have marked it self-reaping in
173 		 * that case.
174 		 */
175 		zap_leader = (leader->exit_signal == -1);
176 	}
177 
178 	write_unlock_irq(&tasklist_lock);
179 	release_thread(p);
180 	call_rcu(&p->rcu, delayed_put_task_struct);
181 
182 	p = leader;
183 	if (unlikely(zap_leader))
184 		goto repeat;
185 }
186 
187 /*
188  * This checks not only the pgrp, but falls back on the pid if no
189  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
190  * without this...
191  *
192  * The caller must hold rcu lock or the tasklist lock.
193  */
194 struct pid *session_of_pgrp(struct pid *pgrp)
195 {
196 	struct task_struct *p;
197 	struct pid *sid = NULL;
198 
199 	p = pid_task(pgrp, PIDTYPE_PGID);
200 	if (p == NULL)
201 		p = pid_task(pgrp, PIDTYPE_PID);
202 	if (p != NULL)
203 		sid = task_session(p);
204 
205 	return sid;
206 }
207 
208 /*
209  * Determine if a process group is "orphaned", according to the POSIX
210  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
211  * by terminal-generated stop signals.  Newly orphaned process groups are
212  * to receive a SIGHUP and a SIGCONT.
213  *
214  * "I ask you, have you ever known what it is to be an orphan?"
215  */
216 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
217 {
218 	struct task_struct *p;
219 	int ret = 1;
220 
221 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
222 		if (p == ignored_task
223 				|| p->exit_state
224 				|| is_global_init(p->real_parent))
225 			continue;
226 		if (task_pgrp(p->real_parent) != pgrp &&
227 		    task_session(p->real_parent) == task_session(p)) {
228 			ret = 0;
229 			break;
230 		}
231 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
232 	return ret;	/* (sighing) "Often!" */
233 }
234 
235 int is_current_pgrp_orphaned(void)
236 {
237 	int retval;
238 
239 	read_lock(&tasklist_lock);
240 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
241 	read_unlock(&tasklist_lock);
242 
243 	return retval;
244 }
245 
246 static int has_stopped_jobs(struct pid *pgrp)
247 {
248 	int retval = 0;
249 	struct task_struct *p;
250 
251 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
252 		if (p->state != TASK_STOPPED)
253 			continue;
254 		retval = 1;
255 		break;
256 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
257 	return retval;
258 }
259 
260 /**
261  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
262  *
263  * If a kernel thread is launched as a result of a system call, or if
264  * it ever exits, it should generally reparent itself to kthreadd so it
265  * isn't in the way of other processes and is correctly cleaned up on exit.
266  *
267  * The various task state such as scheduling policy and priority may have
268  * been inherited from a user process, so we reset them to sane values here.
269  *
270  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
271  */
272 static void reparent_to_kthreadd(void)
273 {
274 	write_lock_irq(&tasklist_lock);
275 
276 	ptrace_unlink(current);
277 	/* Reparent to init */
278 	remove_parent(current);
279 	current->real_parent = current->parent = kthreadd_task;
280 	add_parent(current);
281 
282 	/* Set the exit signal to SIGCHLD so we signal init on exit */
283 	current->exit_signal = SIGCHLD;
284 
285 	if (task_nice(current) < 0)
286 		set_user_nice(current, 0);
287 	/* cpus_allowed? */
288 	/* rt_priority? */
289 	/* signals? */
290 	security_task_reparent_to_init(current);
291 	memcpy(current->signal->rlim, init_task.signal->rlim,
292 	       sizeof(current->signal->rlim));
293 	atomic_inc(&(INIT_USER->__count));
294 	write_unlock_irq(&tasklist_lock);
295 	switch_uid(INIT_USER);
296 }
297 
298 void __set_special_pids(pid_t session, pid_t pgrp)
299 {
300 	struct task_struct *curr = current->group_leader;
301 
302 	if (task_session_nr(curr) != session) {
303 		detach_pid(curr, PIDTYPE_SID);
304 		set_task_session(curr, session);
305 		attach_pid(curr, PIDTYPE_SID, find_pid(session));
306 	}
307 	if (task_pgrp_nr(curr) != pgrp) {
308 		detach_pid(curr, PIDTYPE_PGID);
309 		set_task_pgrp(curr, pgrp);
310 		attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp));
311 	}
312 }
313 
314 static void set_special_pids(pid_t session, pid_t pgrp)
315 {
316 	write_lock_irq(&tasklist_lock);
317 	__set_special_pids(session, pgrp);
318 	write_unlock_irq(&tasklist_lock);
319 }
320 
321 /*
322  * Let kernel threads use this to say that they
323  * allow a certain signal (since daemonize() will
324  * have disabled all of them by default).
325  */
326 int allow_signal(int sig)
327 {
328 	if (!valid_signal(sig) || sig < 1)
329 		return -EINVAL;
330 
331 	spin_lock_irq(&current->sighand->siglock);
332 	sigdelset(&current->blocked, sig);
333 	if (!current->mm) {
334 		/* Kernel threads handle their own signals.
335 		   Let the signal code know it'll be handled, so
336 		   that they don't get converted to SIGKILL or
337 		   just silently dropped */
338 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
339 	}
340 	recalc_sigpending();
341 	spin_unlock_irq(&current->sighand->siglock);
342 	return 0;
343 }
344 
345 EXPORT_SYMBOL(allow_signal);
346 
347 int disallow_signal(int sig)
348 {
349 	if (!valid_signal(sig) || sig < 1)
350 		return -EINVAL;
351 
352 	spin_lock_irq(&current->sighand->siglock);
353 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
354 	recalc_sigpending();
355 	spin_unlock_irq(&current->sighand->siglock);
356 	return 0;
357 }
358 
359 EXPORT_SYMBOL(disallow_signal);
360 
361 /*
362  *	Put all the gunge required to become a kernel thread without
363  *	attached user resources in one place where it belongs.
364  */
365 
366 void daemonize(const char *name, ...)
367 {
368 	va_list args;
369 	struct fs_struct *fs;
370 	sigset_t blocked;
371 
372 	va_start(args, name);
373 	vsnprintf(current->comm, sizeof(current->comm), name, args);
374 	va_end(args);
375 
376 	/*
377 	 * If we were started as result of loading a module, close all of the
378 	 * user space pages.  We don't need them, and if we didn't close them
379 	 * they would be locked into memory.
380 	 */
381 	exit_mm(current);
382 	/*
383 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
384 	 * or suspend transition begins right now.
385 	 */
386 	current->flags |= PF_NOFREEZE;
387 
388 	set_special_pids(1, 1);
389 	proc_clear_tty(current);
390 
391 	/* Block and flush all signals */
392 	sigfillset(&blocked);
393 	sigprocmask(SIG_BLOCK, &blocked, NULL);
394 	flush_signals(current);
395 
396 	/* Become as one with the init task */
397 
398 	exit_fs(current);	/* current->fs->count--; */
399 	fs = init_task.fs;
400 	current->fs = fs;
401 	atomic_inc(&fs->count);
402 
403 	if (current->nsproxy != init_task.nsproxy) {
404 		get_nsproxy(init_task.nsproxy);
405 		switch_task_namespaces(current, init_task.nsproxy);
406 	}
407 
408 	exit_files(current);
409 	current->files = init_task.files;
410 	atomic_inc(&current->files->count);
411 
412 	reparent_to_kthreadd();
413 }
414 
415 EXPORT_SYMBOL(daemonize);
416 
417 static void close_files(struct files_struct * files)
418 {
419 	int i, j;
420 	struct fdtable *fdt;
421 
422 	j = 0;
423 
424 	/*
425 	 * It is safe to dereference the fd table without RCU or
426 	 * ->file_lock because this is the last reference to the
427 	 * files structure.
428 	 */
429 	fdt = files_fdtable(files);
430 	for (;;) {
431 		unsigned long set;
432 		i = j * __NFDBITS;
433 		if (i >= fdt->max_fds)
434 			break;
435 		set = fdt->open_fds->fds_bits[j++];
436 		while (set) {
437 			if (set & 1) {
438 				struct file * file = xchg(&fdt->fd[i], NULL);
439 				if (file) {
440 					filp_close(file, files);
441 					cond_resched();
442 				}
443 			}
444 			i++;
445 			set >>= 1;
446 		}
447 	}
448 }
449 
450 struct files_struct *get_files_struct(struct task_struct *task)
451 {
452 	struct files_struct *files;
453 
454 	task_lock(task);
455 	files = task->files;
456 	if (files)
457 		atomic_inc(&files->count);
458 	task_unlock(task);
459 
460 	return files;
461 }
462 
463 void fastcall put_files_struct(struct files_struct *files)
464 {
465 	struct fdtable *fdt;
466 
467 	if (atomic_dec_and_test(&files->count)) {
468 		close_files(files);
469 		/*
470 		 * Free the fd and fdset arrays if we expanded them.
471 		 * If the fdtable was embedded, pass files for freeing
472 		 * at the end of the RCU grace period. Otherwise,
473 		 * you can free files immediately.
474 		 */
475 		fdt = files_fdtable(files);
476 		if (fdt != &files->fdtab)
477 			kmem_cache_free(files_cachep, files);
478 		free_fdtable(fdt);
479 	}
480 }
481 
482 EXPORT_SYMBOL(put_files_struct);
483 
484 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
485 {
486 	struct files_struct *old;
487 
488 	old = tsk->files;
489 	task_lock(tsk);
490 	tsk->files = files;
491 	task_unlock(tsk);
492 	put_files_struct(old);
493 }
494 EXPORT_SYMBOL(reset_files_struct);
495 
496 static void __exit_files(struct task_struct *tsk)
497 {
498 	struct files_struct * files = tsk->files;
499 
500 	if (files) {
501 		task_lock(tsk);
502 		tsk->files = NULL;
503 		task_unlock(tsk);
504 		put_files_struct(files);
505 	}
506 }
507 
508 void exit_files(struct task_struct *tsk)
509 {
510 	__exit_files(tsk);
511 }
512 
513 static void __put_fs_struct(struct fs_struct *fs)
514 {
515 	/* No need to hold fs->lock if we are killing it */
516 	if (atomic_dec_and_test(&fs->count)) {
517 		dput(fs->root);
518 		mntput(fs->rootmnt);
519 		dput(fs->pwd);
520 		mntput(fs->pwdmnt);
521 		if (fs->altroot) {
522 			dput(fs->altroot);
523 			mntput(fs->altrootmnt);
524 		}
525 		kmem_cache_free(fs_cachep, fs);
526 	}
527 }
528 
529 void put_fs_struct(struct fs_struct *fs)
530 {
531 	__put_fs_struct(fs);
532 }
533 
534 static void __exit_fs(struct task_struct *tsk)
535 {
536 	struct fs_struct * fs = tsk->fs;
537 
538 	if (fs) {
539 		task_lock(tsk);
540 		tsk->fs = NULL;
541 		task_unlock(tsk);
542 		__put_fs_struct(fs);
543 	}
544 }
545 
546 void exit_fs(struct task_struct *tsk)
547 {
548 	__exit_fs(tsk);
549 }
550 
551 EXPORT_SYMBOL_GPL(exit_fs);
552 
553 /*
554  * Turn us into a lazy TLB process if we
555  * aren't already..
556  */
557 static void exit_mm(struct task_struct * tsk)
558 {
559 	struct mm_struct *mm = tsk->mm;
560 
561 	mm_release(tsk, mm);
562 	if (!mm)
563 		return;
564 	/*
565 	 * Serialize with any possible pending coredump.
566 	 * We must hold mmap_sem around checking core_waiters
567 	 * and clearing tsk->mm.  The core-inducing thread
568 	 * will increment core_waiters for each thread in the
569 	 * group with ->mm != NULL.
570 	 */
571 	down_read(&mm->mmap_sem);
572 	if (mm->core_waiters) {
573 		up_read(&mm->mmap_sem);
574 		down_write(&mm->mmap_sem);
575 		if (!--mm->core_waiters)
576 			complete(mm->core_startup_done);
577 		up_write(&mm->mmap_sem);
578 
579 		wait_for_completion(&mm->core_done);
580 		down_read(&mm->mmap_sem);
581 	}
582 	atomic_inc(&mm->mm_count);
583 	BUG_ON(mm != tsk->active_mm);
584 	/* more a memory barrier than a real lock */
585 	task_lock(tsk);
586 	tsk->mm = NULL;
587 	up_read(&mm->mmap_sem);
588 	enter_lazy_tlb(mm, current);
589 	/* We don't want this task to be frozen prematurely */
590 	clear_freeze_flag(tsk);
591 	task_unlock(tsk);
592 	mmput(mm);
593 }
594 
595 static void
596 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
597 {
598 	if (p->pdeath_signal)
599 		/* We already hold the tasklist_lock here.  */
600 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
601 
602 	/* Move the child from its dying parent to the new one.  */
603 	if (unlikely(traced)) {
604 		/* Preserve ptrace links if someone else is tracing this child.  */
605 		list_del_init(&p->ptrace_list);
606 		if (p->parent != p->real_parent)
607 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
608 	} else {
609 		/* If this child is being traced, then we're the one tracing it
610 		 * anyway, so let go of it.
611 		 */
612 		p->ptrace = 0;
613 		remove_parent(p);
614 		p->parent = p->real_parent;
615 		add_parent(p);
616 
617 		if (p->state == TASK_TRACED) {
618 			/*
619 			 * If it was at a trace stop, turn it into
620 			 * a normal stop since it's no longer being
621 			 * traced.
622 			 */
623 			ptrace_untrace(p);
624 		}
625 	}
626 
627 	/* If this is a threaded reparent there is no need to
628 	 * notify anyone anything has happened.
629 	 */
630 	if (p->real_parent->group_leader == father->group_leader)
631 		return;
632 
633 	/* We don't want people slaying init.  */
634 	if (p->exit_signal != -1)
635 		p->exit_signal = SIGCHLD;
636 
637 	/* If we'd notified the old parent about this child's death,
638 	 * also notify the new parent.
639 	 */
640 	if (!traced && p->exit_state == EXIT_ZOMBIE &&
641 	    p->exit_signal != -1 && thread_group_empty(p))
642 		do_notify_parent(p, p->exit_signal);
643 
644 	/*
645 	 * process group orphan check
646 	 * Case ii: Our child is in a different pgrp
647 	 * than we are, and it was the only connection
648 	 * outside, so the child pgrp is now orphaned.
649 	 */
650 	if ((task_pgrp(p) != task_pgrp(father)) &&
651 	    (task_session(p) == task_session(father))) {
652 		struct pid *pgrp = task_pgrp(p);
653 
654 		if (will_become_orphaned_pgrp(pgrp, NULL) &&
655 		    has_stopped_jobs(pgrp)) {
656 			__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
657 			__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
658 		}
659 	}
660 }
661 
662 /*
663  * When we die, we re-parent all our children.
664  * Try to give them to another thread in our thread
665  * group, and if no such member exists, give it to
666  * the child reaper process (ie "init") in our pid
667  * space.
668  */
669 static void forget_original_parent(struct task_struct *father)
670 {
671 	struct task_struct *p, *n, *reaper = father;
672 	struct list_head ptrace_dead;
673 
674 	INIT_LIST_HEAD(&ptrace_dead);
675 
676 	write_lock_irq(&tasklist_lock);
677 
678 	do {
679 		reaper = next_thread(reaper);
680 		if (reaper == father) {
681 			reaper = task_child_reaper(father);
682 			break;
683 		}
684 	} while (reaper->flags & PF_EXITING);
685 
686 	/*
687 	 * There are only two places where our children can be:
688 	 *
689 	 * - in our child list
690 	 * - in our ptraced child list
691 	 *
692 	 * Search them and reparent children.
693 	 */
694 	list_for_each_entry_safe(p, n, &father->children, sibling) {
695 		int ptrace;
696 
697 		ptrace = p->ptrace;
698 
699 		/* if father isn't the real parent, then ptrace must be enabled */
700 		BUG_ON(father != p->real_parent && !ptrace);
701 
702 		if (father == p->real_parent) {
703 			/* reparent with a reaper, real father it's us */
704 			p->real_parent = reaper;
705 			reparent_thread(p, father, 0);
706 		} else {
707 			/* reparent ptraced task to its real parent */
708 			__ptrace_unlink (p);
709 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
710 			    thread_group_empty(p))
711 				do_notify_parent(p, p->exit_signal);
712 		}
713 
714 		/*
715 		 * if the ptraced child is a zombie with exit_signal == -1
716 		 * we must collect it before we exit, or it will remain
717 		 * zombie forever since we prevented it from self-reap itself
718 		 * while it was being traced by us, to be able to see it in wait4.
719 		 */
720 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
721 			list_add(&p->ptrace_list, &ptrace_dead);
722 	}
723 
724 	list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) {
725 		p->real_parent = reaper;
726 		reparent_thread(p, father, 1);
727 	}
728 
729 	write_unlock_irq(&tasklist_lock);
730 	BUG_ON(!list_empty(&father->children));
731 	BUG_ON(!list_empty(&father->ptrace_children));
732 
733 	list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) {
734 		list_del_init(&p->ptrace_list);
735 		release_task(p);
736 	}
737 
738 }
739 
740 /*
741  * Send signals to all our closest relatives so that they know
742  * to properly mourn us..
743  */
744 static void exit_notify(struct task_struct *tsk)
745 {
746 	int state;
747 	struct task_struct *t;
748 	struct pid *pgrp;
749 
750 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
751 	    && !thread_group_empty(tsk)) {
752 		/*
753 		 * This occurs when there was a race between our exit
754 		 * syscall and a group signal choosing us as the one to
755 		 * wake up.  It could be that we are the only thread
756 		 * alerted to check for pending signals, but another thread
757 		 * should be woken now to take the signal since we will not.
758 		 * Now we'll wake all the threads in the group just to make
759 		 * sure someone gets all the pending signals.
760 		 */
761 		spin_lock_irq(&tsk->sighand->siglock);
762 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
763 			if (!signal_pending(t) && !(t->flags & PF_EXITING))
764 				recalc_sigpending_and_wake(t);
765 		spin_unlock_irq(&tsk->sighand->siglock);
766 	}
767 
768 	/*
769 	 * This does two things:
770 	 *
771   	 * A.  Make init inherit all the child processes
772 	 * B.  Check to see if any process groups have become orphaned
773 	 *	as a result of our exiting, and if they have any stopped
774 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
775 	 */
776 	forget_original_parent(tsk);
777 	exit_task_namespaces(tsk);
778 
779 	write_lock_irq(&tasklist_lock);
780 	/*
781 	 * Check to see if any process groups have become orphaned
782 	 * as a result of our exiting, and if they have any stopped
783 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
784 	 *
785 	 * Case i: Our father is in a different pgrp than we are
786 	 * and we were the only connection outside, so our pgrp
787 	 * is about to become orphaned.
788 	 */
789 	t = tsk->real_parent;
790 
791 	pgrp = task_pgrp(tsk);
792 	if ((task_pgrp(t) != pgrp) &&
793 	    (task_session(t) == task_session(tsk)) &&
794 	    will_become_orphaned_pgrp(pgrp, tsk) &&
795 	    has_stopped_jobs(pgrp)) {
796 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
797 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
798 	}
799 
800 	/* Let father know we died
801 	 *
802 	 * Thread signals are configurable, but you aren't going to use
803 	 * that to send signals to arbitary processes.
804 	 * That stops right now.
805 	 *
806 	 * If the parent exec id doesn't match the exec id we saved
807 	 * when we started then we know the parent has changed security
808 	 * domain.
809 	 *
810 	 * If our self_exec id doesn't match our parent_exec_id then
811 	 * we have changed execution domain as these two values started
812 	 * the same after a fork.
813 	 */
814 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
815 	    ( tsk->parent_exec_id != t->self_exec_id  ||
816 	      tsk->self_exec_id != tsk->parent_exec_id)
817 	    && !capable(CAP_KILL))
818 		tsk->exit_signal = SIGCHLD;
819 
820 
821 	/* If something other than our normal parent is ptracing us, then
822 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
823 	 * only has special meaning to our real parent.
824 	 */
825 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
826 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
827 		do_notify_parent(tsk, signal);
828 	} else if (tsk->ptrace) {
829 		do_notify_parent(tsk, SIGCHLD);
830 	}
831 
832 	state = EXIT_ZOMBIE;
833 	if (tsk->exit_signal == -1 && likely(!tsk->ptrace))
834 		state = EXIT_DEAD;
835 	tsk->exit_state = state;
836 
837 	if (thread_group_leader(tsk) &&
838 	    tsk->signal->notify_count < 0 &&
839 	    tsk->signal->group_exit_task)
840 		wake_up_process(tsk->signal->group_exit_task);
841 
842 	write_unlock_irq(&tasklist_lock);
843 
844 	/* If the process is dead, release it - nobody will wait for it */
845 	if (state == EXIT_DEAD)
846 		release_task(tsk);
847 }
848 
849 #ifdef CONFIG_DEBUG_STACK_USAGE
850 static void check_stack_usage(void)
851 {
852 	static DEFINE_SPINLOCK(low_water_lock);
853 	static int lowest_to_date = THREAD_SIZE;
854 	unsigned long *n = end_of_stack(current);
855 	unsigned long free;
856 
857 	while (*n == 0)
858 		n++;
859 	free = (unsigned long)n - (unsigned long)end_of_stack(current);
860 
861 	if (free >= lowest_to_date)
862 		return;
863 
864 	spin_lock(&low_water_lock);
865 	if (free < lowest_to_date) {
866 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
867 				"left\n",
868 				current->comm, free);
869 		lowest_to_date = free;
870 	}
871 	spin_unlock(&low_water_lock);
872 }
873 #else
874 static inline void check_stack_usage(void) {}
875 #endif
876 
877 static inline void exit_child_reaper(struct task_struct *tsk)
878 {
879 	if (likely(tsk->group_leader != task_child_reaper(tsk)))
880 		return;
881 
882 	if (tsk->nsproxy->pid_ns == &init_pid_ns)
883 		panic("Attempted to kill init!");
884 
885 	/*
886 	 * @tsk is the last thread in the 'cgroup-init' and is exiting.
887 	 * Terminate all remaining processes in the namespace and reap them
888 	 * before exiting @tsk.
889 	 *
890 	 * Note that @tsk (last thread of cgroup-init) may not necessarily
891 	 * be the child-reaper (i.e main thread of cgroup-init) of the
892 	 * namespace i.e the child_reaper may have already exited.
893 	 *
894 	 * Even after a child_reaper exits, we let it inherit orphaned children,
895 	 * because, pid_ns->child_reaper remains valid as long as there is
896 	 * at least one living sub-thread in the cgroup init.
897 
898 	 * This living sub-thread of the cgroup-init will be notified when
899 	 * a child inherited by the 'child-reaper' exits (do_notify_parent()
900 	 * uses __group_send_sig_info()). Further, when reaping child processes,
901 	 * do_wait() iterates over children of all living sub threads.
902 
903 	 * i.e even though 'child_reaper' thread is listed as the parent of the
904 	 * orphaned children, any living sub-thread in the cgroup-init can
905 	 * perform the role of the child_reaper.
906 	 */
907 	zap_pid_ns_processes(tsk->nsproxy->pid_ns);
908 }
909 
910 fastcall NORET_TYPE void do_exit(long code)
911 {
912 	struct task_struct *tsk = current;
913 	int group_dead;
914 
915 	profile_task_exit(tsk);
916 
917 	WARN_ON(atomic_read(&tsk->fs_excl));
918 
919 	if (unlikely(in_interrupt()))
920 		panic("Aiee, killing interrupt handler!");
921 	if (unlikely(!tsk->pid))
922 		panic("Attempted to kill the idle task!");
923 
924 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
925 		current->ptrace_message = code;
926 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
927 	}
928 
929 	/*
930 	 * We're taking recursive faults here in do_exit. Safest is to just
931 	 * leave this task alone and wait for reboot.
932 	 */
933 	if (unlikely(tsk->flags & PF_EXITING)) {
934 		printk(KERN_ALERT
935 			"Fixing recursive fault but reboot is needed!\n");
936 		/*
937 		 * We can do this unlocked here. The futex code uses
938 		 * this flag just to verify whether the pi state
939 		 * cleanup has been done or not. In the worst case it
940 		 * loops once more. We pretend that the cleanup was
941 		 * done as there is no way to return. Either the
942 		 * OWNER_DIED bit is set by now or we push the blocked
943 		 * task into the wait for ever nirwana as well.
944 		 */
945 		tsk->flags |= PF_EXITPIDONE;
946 		if (tsk->io_context)
947 			exit_io_context();
948 		set_current_state(TASK_UNINTERRUPTIBLE);
949 		schedule();
950 	}
951 
952 	tsk->flags |= PF_EXITING;
953 	/*
954 	 * tsk->flags are checked in the futex code to protect against
955 	 * an exiting task cleaning up the robust pi futexes.
956 	 */
957 	smp_mb();
958 	spin_unlock_wait(&tsk->pi_lock);
959 
960 	if (unlikely(in_atomic()))
961 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
962 				current->comm, task_pid_nr(current),
963 				preempt_count());
964 
965 	acct_update_integrals(tsk);
966 	if (tsk->mm) {
967 		update_hiwater_rss(tsk->mm);
968 		update_hiwater_vm(tsk->mm);
969 	}
970 	group_dead = atomic_dec_and_test(&tsk->signal->live);
971 	if (group_dead) {
972 		exit_child_reaper(tsk);
973 		hrtimer_cancel(&tsk->signal->real_timer);
974 		exit_itimers(tsk->signal);
975 	}
976 	acct_collect(code, group_dead);
977 #ifdef CONFIG_FUTEX
978 	if (unlikely(tsk->robust_list))
979 		exit_robust_list(tsk);
980 #ifdef CONFIG_COMPAT
981 	if (unlikely(tsk->compat_robust_list))
982 		compat_exit_robust_list(tsk);
983 #endif
984 #endif
985 	if (group_dead)
986 		tty_audit_exit();
987 	if (unlikely(tsk->audit_context))
988 		audit_free(tsk);
989 
990 	tsk->exit_code = code;
991 	taskstats_exit(tsk, group_dead);
992 
993 	exit_mm(tsk);
994 
995 	if (group_dead)
996 		acct_process();
997 	exit_sem(tsk);
998 	__exit_files(tsk);
999 	__exit_fs(tsk);
1000 	check_stack_usage();
1001 	exit_thread();
1002 	cgroup_exit(tsk, 1);
1003 	exit_keys(tsk);
1004 
1005 	if (group_dead && tsk->signal->leader)
1006 		disassociate_ctty(1);
1007 
1008 	module_put(task_thread_info(tsk)->exec_domain->module);
1009 	if (tsk->binfmt)
1010 		module_put(tsk->binfmt->module);
1011 
1012 	proc_exit_connector(tsk);
1013 	exit_notify(tsk);
1014 #ifdef CONFIG_NUMA
1015 	mpol_free(tsk->mempolicy);
1016 	tsk->mempolicy = NULL;
1017 #endif
1018 #ifdef CONFIG_FUTEX
1019 	/*
1020 	 * This must happen late, after the PID is not
1021 	 * hashed anymore:
1022 	 */
1023 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1024 		exit_pi_state_list(tsk);
1025 	if (unlikely(current->pi_state_cache))
1026 		kfree(current->pi_state_cache);
1027 #endif
1028 	/*
1029 	 * Make sure we are holding no locks:
1030 	 */
1031 	debug_check_no_locks_held(tsk);
1032 	/*
1033 	 * We can do this unlocked here. The futex code uses this flag
1034 	 * just to verify whether the pi state cleanup has been done
1035 	 * or not. In the worst case it loops once more.
1036 	 */
1037 	tsk->flags |= PF_EXITPIDONE;
1038 
1039 	if (tsk->io_context)
1040 		exit_io_context();
1041 
1042 	if (tsk->splice_pipe)
1043 		__free_pipe_info(tsk->splice_pipe);
1044 
1045 	preempt_disable();
1046 	/* causes final put_task_struct in finish_task_switch(). */
1047 	tsk->state = TASK_DEAD;
1048 
1049 	schedule();
1050 	BUG();
1051 	/* Avoid "noreturn function does return".  */
1052 	for (;;)
1053 		cpu_relax();	/* For when BUG is null */
1054 }
1055 
1056 EXPORT_SYMBOL_GPL(do_exit);
1057 
1058 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1059 {
1060 	if (comp)
1061 		complete(comp);
1062 
1063 	do_exit(code);
1064 }
1065 
1066 EXPORT_SYMBOL(complete_and_exit);
1067 
1068 asmlinkage long sys_exit(int error_code)
1069 {
1070 	do_exit((error_code&0xff)<<8);
1071 }
1072 
1073 /*
1074  * Take down every thread in the group.  This is called by fatal signals
1075  * as well as by sys_exit_group (below).
1076  */
1077 NORET_TYPE void
1078 do_group_exit(int exit_code)
1079 {
1080 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1081 
1082 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1083 		exit_code = current->signal->group_exit_code;
1084 	else if (!thread_group_empty(current)) {
1085 		struct signal_struct *const sig = current->signal;
1086 		struct sighand_struct *const sighand = current->sighand;
1087 		spin_lock_irq(&sighand->siglock);
1088 		if (sig->flags & SIGNAL_GROUP_EXIT)
1089 			/* Another thread got here before we took the lock.  */
1090 			exit_code = sig->group_exit_code;
1091 		else {
1092 			sig->group_exit_code = exit_code;
1093 			zap_other_threads(current);
1094 		}
1095 		spin_unlock_irq(&sighand->siglock);
1096 	}
1097 
1098 	do_exit(exit_code);
1099 	/* NOTREACHED */
1100 }
1101 
1102 /*
1103  * this kills every thread in the thread group. Note that any externally
1104  * wait4()-ing process will get the correct exit code - even if this
1105  * thread is not the thread group leader.
1106  */
1107 asmlinkage void sys_exit_group(int error_code)
1108 {
1109 	do_group_exit((error_code & 0xff) << 8);
1110 }
1111 
1112 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1113 {
1114 	int err;
1115 	struct pid_namespace *ns;
1116 
1117 	ns = current->nsproxy->pid_ns;
1118 	if (pid > 0) {
1119 		if (task_pid_nr_ns(p, ns) != pid)
1120 			return 0;
1121 	} else if (!pid) {
1122 		if (task_pgrp_nr_ns(p, ns) != task_pgrp_vnr(current))
1123 			return 0;
1124 	} else if (pid != -1) {
1125 		if (task_pgrp_nr_ns(p, ns) != -pid)
1126 			return 0;
1127 	}
1128 
1129 	/*
1130 	 * Do not consider detached threads that are
1131 	 * not ptraced:
1132 	 */
1133 	if (p->exit_signal == -1 && !p->ptrace)
1134 		return 0;
1135 
1136 	/* Wait for all children (clone and not) if __WALL is set;
1137 	 * otherwise, wait for clone children *only* if __WCLONE is
1138 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1139 	 * A "clone" child here is one that reports to its parent
1140 	 * using a signal other than SIGCHLD.) */
1141 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1142 	    && !(options & __WALL))
1143 		return 0;
1144 	/*
1145 	 * Do not consider thread group leaders that are
1146 	 * in a non-empty thread group:
1147 	 */
1148 	if (delay_group_leader(p))
1149 		return 2;
1150 
1151 	err = security_task_wait(p);
1152 	if (err)
1153 		return err;
1154 
1155 	return 1;
1156 }
1157 
1158 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1159 			       int why, int status,
1160 			       struct siginfo __user *infop,
1161 			       struct rusage __user *rusagep)
1162 {
1163 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1164 
1165 	put_task_struct(p);
1166 	if (!retval)
1167 		retval = put_user(SIGCHLD, &infop->si_signo);
1168 	if (!retval)
1169 		retval = put_user(0, &infop->si_errno);
1170 	if (!retval)
1171 		retval = put_user((short)why, &infop->si_code);
1172 	if (!retval)
1173 		retval = put_user(pid, &infop->si_pid);
1174 	if (!retval)
1175 		retval = put_user(uid, &infop->si_uid);
1176 	if (!retval)
1177 		retval = put_user(status, &infop->si_status);
1178 	if (!retval)
1179 		retval = pid;
1180 	return retval;
1181 }
1182 
1183 /*
1184  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1185  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1186  * the lock and this task is uninteresting.  If we return nonzero, we have
1187  * released the lock and the system call should return.
1188  */
1189 static int wait_task_zombie(struct task_struct *p, int noreap,
1190 			    struct siginfo __user *infop,
1191 			    int __user *stat_addr, struct rusage __user *ru)
1192 {
1193 	unsigned long state;
1194 	int retval, status, traced;
1195 	struct pid_namespace *ns;
1196 
1197 	ns = current->nsproxy->pid_ns;
1198 
1199 	if (unlikely(noreap)) {
1200 		pid_t pid = task_pid_nr_ns(p, ns);
1201 		uid_t uid = p->uid;
1202 		int exit_code = p->exit_code;
1203 		int why, status;
1204 
1205 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1206 			return 0;
1207 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1208 			return 0;
1209 		get_task_struct(p);
1210 		read_unlock(&tasklist_lock);
1211 		if ((exit_code & 0x7f) == 0) {
1212 			why = CLD_EXITED;
1213 			status = exit_code >> 8;
1214 		} else {
1215 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1216 			status = exit_code & 0x7f;
1217 		}
1218 		return wait_noreap_copyout(p, pid, uid, why,
1219 					   status, infop, ru);
1220 	}
1221 
1222 	/*
1223 	 * Try to move the task's state to DEAD
1224 	 * only one thread is allowed to do this:
1225 	 */
1226 	state = xchg(&p->exit_state, EXIT_DEAD);
1227 	if (state != EXIT_ZOMBIE) {
1228 		BUG_ON(state != EXIT_DEAD);
1229 		return 0;
1230 	}
1231 
1232 	/* traced means p->ptrace, but not vice versa */
1233 	traced = (p->real_parent != p->parent);
1234 
1235 	if (likely(!traced)) {
1236 		struct signal_struct *psig;
1237 		struct signal_struct *sig;
1238 
1239 		/*
1240 		 * The resource counters for the group leader are in its
1241 		 * own task_struct.  Those for dead threads in the group
1242 		 * are in its signal_struct, as are those for the child
1243 		 * processes it has previously reaped.  All these
1244 		 * accumulate in the parent's signal_struct c* fields.
1245 		 *
1246 		 * We don't bother to take a lock here to protect these
1247 		 * p->signal fields, because they are only touched by
1248 		 * __exit_signal, which runs with tasklist_lock
1249 		 * write-locked anyway, and so is excluded here.  We do
1250 		 * need to protect the access to p->parent->signal fields,
1251 		 * as other threads in the parent group can be right
1252 		 * here reaping other children at the same time.
1253 		 */
1254 		spin_lock_irq(&p->parent->sighand->siglock);
1255 		psig = p->parent->signal;
1256 		sig = p->signal;
1257 		psig->cutime =
1258 			cputime_add(psig->cutime,
1259 			cputime_add(p->utime,
1260 			cputime_add(sig->utime,
1261 				    sig->cutime)));
1262 		psig->cstime =
1263 			cputime_add(psig->cstime,
1264 			cputime_add(p->stime,
1265 			cputime_add(sig->stime,
1266 				    sig->cstime)));
1267 		psig->cgtime =
1268 			cputime_add(psig->cgtime,
1269 			cputime_add(p->gtime,
1270 			cputime_add(sig->gtime,
1271 				    sig->cgtime)));
1272 		psig->cmin_flt +=
1273 			p->min_flt + sig->min_flt + sig->cmin_flt;
1274 		psig->cmaj_flt +=
1275 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1276 		psig->cnvcsw +=
1277 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1278 		psig->cnivcsw +=
1279 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1280 		psig->cinblock +=
1281 			task_io_get_inblock(p) +
1282 			sig->inblock + sig->cinblock;
1283 		psig->coublock +=
1284 			task_io_get_oublock(p) +
1285 			sig->oublock + sig->coublock;
1286 		spin_unlock_irq(&p->parent->sighand->siglock);
1287 	}
1288 
1289 	/*
1290 	 * Now we are sure this task is interesting, and no other
1291 	 * thread can reap it because we set its state to EXIT_DEAD.
1292 	 */
1293 	read_unlock(&tasklist_lock);
1294 
1295 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1296 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1297 		? p->signal->group_exit_code : p->exit_code;
1298 	if (!retval && stat_addr)
1299 		retval = put_user(status, stat_addr);
1300 	if (!retval && infop)
1301 		retval = put_user(SIGCHLD, &infop->si_signo);
1302 	if (!retval && infop)
1303 		retval = put_user(0, &infop->si_errno);
1304 	if (!retval && infop) {
1305 		int why;
1306 
1307 		if ((status & 0x7f) == 0) {
1308 			why = CLD_EXITED;
1309 			status >>= 8;
1310 		} else {
1311 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1312 			status &= 0x7f;
1313 		}
1314 		retval = put_user((short)why, &infop->si_code);
1315 		if (!retval)
1316 			retval = put_user(status, &infop->si_status);
1317 	}
1318 	if (!retval && infop)
1319 		retval = put_user(task_pid_nr_ns(p, ns), &infop->si_pid);
1320 	if (!retval && infop)
1321 		retval = put_user(p->uid, &infop->si_uid);
1322 	if (!retval)
1323 		retval = task_pid_nr_ns(p, ns);
1324 
1325 	if (traced) {
1326 		write_lock_irq(&tasklist_lock);
1327 		/* We dropped tasklist, ptracer could die and untrace */
1328 		ptrace_unlink(p);
1329 		/*
1330 		 * If this is not a detached task, notify the parent.
1331 		 * If it's still not detached after that, don't release
1332 		 * it now.
1333 		 */
1334 		if (p->exit_signal != -1) {
1335 			do_notify_parent(p, p->exit_signal);
1336 			if (p->exit_signal != -1) {
1337 				p->exit_state = EXIT_ZOMBIE;
1338 				p = NULL;
1339 			}
1340 		}
1341 		write_unlock_irq(&tasklist_lock);
1342 	}
1343 	if (p != NULL)
1344 		release_task(p);
1345 
1346 	return retval;
1347 }
1348 
1349 /*
1350  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1351  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1352  * the lock and this task is uninteresting.  If we return nonzero, we have
1353  * released the lock and the system call should return.
1354  */
1355 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1356 			     int noreap, struct siginfo __user *infop,
1357 			     int __user *stat_addr, struct rusage __user *ru)
1358 {
1359 	int retval, exit_code;
1360 	struct pid_namespace *ns;
1361 
1362 	if (!p->exit_code)
1363 		return 0;
1364 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1365 	    p->signal->group_stop_count > 0)
1366 		/*
1367 		 * A group stop is in progress and this is the group leader.
1368 		 * We won't report until all threads have stopped.
1369 		 */
1370 		return 0;
1371 
1372 	/*
1373 	 * Now we are pretty sure this task is interesting.
1374 	 * Make sure it doesn't get reaped out from under us while we
1375 	 * give up the lock and then examine it below.  We don't want to
1376 	 * keep holding onto the tasklist_lock while we call getrusage and
1377 	 * possibly take page faults for user memory.
1378 	 */
1379 	ns = current->nsproxy->pid_ns;
1380 	get_task_struct(p);
1381 	read_unlock(&tasklist_lock);
1382 
1383 	if (unlikely(noreap)) {
1384 		pid_t pid = task_pid_nr_ns(p, ns);
1385 		uid_t uid = p->uid;
1386 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1387 
1388 		exit_code = p->exit_code;
1389 		if (unlikely(!exit_code) ||
1390 		    unlikely(p->state & TASK_TRACED))
1391 			goto bail_ref;
1392 		return wait_noreap_copyout(p, pid, uid,
1393 					   why, (exit_code << 8) | 0x7f,
1394 					   infop, ru);
1395 	}
1396 
1397 	write_lock_irq(&tasklist_lock);
1398 
1399 	/*
1400 	 * This uses xchg to be atomic with the thread resuming and setting
1401 	 * it.  It must also be done with the write lock held to prevent a
1402 	 * race with the EXIT_ZOMBIE case.
1403 	 */
1404 	exit_code = xchg(&p->exit_code, 0);
1405 	if (unlikely(p->exit_state)) {
1406 		/*
1407 		 * The task resumed and then died.  Let the next iteration
1408 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1409 		 * already be zero here if it resumed and did _exit(0).
1410 		 * The task itself is dead and won't touch exit_code again;
1411 		 * other processors in this function are locked out.
1412 		 */
1413 		p->exit_code = exit_code;
1414 		exit_code = 0;
1415 	}
1416 	if (unlikely(exit_code == 0)) {
1417 		/*
1418 		 * Another thread in this function got to it first, or it
1419 		 * resumed, or it resumed and then died.
1420 		 */
1421 		write_unlock_irq(&tasklist_lock);
1422 bail_ref:
1423 		put_task_struct(p);
1424 		/*
1425 		 * We are returning to the wait loop without having successfully
1426 		 * removed the process and having released the lock. We cannot
1427 		 * continue, since the "p" task pointer is potentially stale.
1428 		 *
1429 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1430 		 * beginning. Do _not_ re-acquire the lock.
1431 		 */
1432 		return -EAGAIN;
1433 	}
1434 
1435 	/* move to end of parent's list to avoid starvation */
1436 	remove_parent(p);
1437 	add_parent(p);
1438 
1439 	write_unlock_irq(&tasklist_lock);
1440 
1441 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1442 	if (!retval && stat_addr)
1443 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1444 	if (!retval && infop)
1445 		retval = put_user(SIGCHLD, &infop->si_signo);
1446 	if (!retval && infop)
1447 		retval = put_user(0, &infop->si_errno);
1448 	if (!retval && infop)
1449 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1450 					  ? CLD_TRAPPED : CLD_STOPPED),
1451 				  &infop->si_code);
1452 	if (!retval && infop)
1453 		retval = put_user(exit_code, &infop->si_status);
1454 	if (!retval && infop)
1455 		retval = put_user(task_pid_nr_ns(p, ns), &infop->si_pid);
1456 	if (!retval && infop)
1457 		retval = put_user(p->uid, &infop->si_uid);
1458 	if (!retval)
1459 		retval = task_pid_nr_ns(p, ns);
1460 	put_task_struct(p);
1461 
1462 	BUG_ON(!retval);
1463 	return retval;
1464 }
1465 
1466 /*
1467  * Handle do_wait work for one task in a live, non-stopped state.
1468  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1469  * the lock and this task is uninteresting.  If we return nonzero, we have
1470  * released the lock and the system call should return.
1471  */
1472 static int wait_task_continued(struct task_struct *p, int noreap,
1473 			       struct siginfo __user *infop,
1474 			       int __user *stat_addr, struct rusage __user *ru)
1475 {
1476 	int retval;
1477 	pid_t pid;
1478 	uid_t uid;
1479 	struct pid_namespace *ns;
1480 
1481 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1482 		return 0;
1483 
1484 	spin_lock_irq(&p->sighand->siglock);
1485 	/* Re-check with the lock held.  */
1486 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1487 		spin_unlock_irq(&p->sighand->siglock);
1488 		return 0;
1489 	}
1490 	if (!noreap)
1491 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1492 	spin_unlock_irq(&p->sighand->siglock);
1493 
1494 	ns = current->nsproxy->pid_ns;
1495 	pid = task_pid_nr_ns(p, ns);
1496 	uid = p->uid;
1497 	get_task_struct(p);
1498 	read_unlock(&tasklist_lock);
1499 
1500 	if (!infop) {
1501 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1502 		put_task_struct(p);
1503 		if (!retval && stat_addr)
1504 			retval = put_user(0xffff, stat_addr);
1505 		if (!retval)
1506 			retval = task_pid_nr_ns(p, ns);
1507 	} else {
1508 		retval = wait_noreap_copyout(p, pid, uid,
1509 					     CLD_CONTINUED, SIGCONT,
1510 					     infop, ru);
1511 		BUG_ON(retval == 0);
1512 	}
1513 
1514 	return retval;
1515 }
1516 
1517 
1518 static inline int my_ptrace_child(struct task_struct *p)
1519 {
1520 	if (!(p->ptrace & PT_PTRACED))
1521 		return 0;
1522 	if (!(p->ptrace & PT_ATTACHED))
1523 		return 1;
1524 	/*
1525 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1526 	 * we are the attacher.  If we are the real parent, this is a race
1527 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1528 	 * which we have to switch the parent links, but has already set
1529 	 * the flags in p->ptrace.
1530 	 */
1531 	return (p->parent != p->real_parent);
1532 }
1533 
1534 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1535 		    int __user *stat_addr, struct rusage __user *ru)
1536 {
1537 	DECLARE_WAITQUEUE(wait, current);
1538 	struct task_struct *tsk;
1539 	int flag, retval;
1540 	int allowed, denied;
1541 
1542 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1543 repeat:
1544 	/*
1545 	 * We will set this flag if we see any child that might later
1546 	 * match our criteria, even if we are not able to reap it yet.
1547 	 */
1548 	flag = 0;
1549 	allowed = denied = 0;
1550 	current->state = TASK_INTERRUPTIBLE;
1551 	read_lock(&tasklist_lock);
1552 	tsk = current;
1553 	do {
1554 		struct task_struct *p;
1555 		int ret;
1556 
1557 		list_for_each_entry(p, &tsk->children, sibling) {
1558 			ret = eligible_child(pid, options, p);
1559 			if (!ret)
1560 				continue;
1561 
1562 			if (unlikely(ret < 0)) {
1563 				denied = ret;
1564 				continue;
1565 			}
1566 			allowed = 1;
1567 
1568 			switch (p->state) {
1569 			case TASK_TRACED:
1570 				/*
1571 				 * When we hit the race with PTRACE_ATTACH,
1572 				 * we will not report this child.  But the
1573 				 * race means it has not yet been moved to
1574 				 * our ptrace_children list, so we need to
1575 				 * set the flag here to avoid a spurious ECHILD
1576 				 * when the race happens with the only child.
1577 				 */
1578 				flag = 1;
1579 				if (!my_ptrace_child(p))
1580 					continue;
1581 				/*FALLTHROUGH*/
1582 			case TASK_STOPPED:
1583 				/*
1584 				 * It's stopped now, so it might later
1585 				 * continue, exit, or stop again.
1586 				 */
1587 				flag = 1;
1588 				if (!(options & WUNTRACED) &&
1589 				    !my_ptrace_child(p))
1590 					continue;
1591 				retval = wait_task_stopped(p, ret == 2,
1592 							   (options & WNOWAIT),
1593 							   infop,
1594 							   stat_addr, ru);
1595 				if (retval == -EAGAIN)
1596 					goto repeat;
1597 				if (retval != 0) /* He released the lock.  */
1598 					goto end;
1599 				break;
1600 			default:
1601 			// case EXIT_DEAD:
1602 				if (p->exit_state == EXIT_DEAD)
1603 					continue;
1604 			// case EXIT_ZOMBIE:
1605 				if (p->exit_state == EXIT_ZOMBIE) {
1606 					/*
1607 					 * Eligible but we cannot release
1608 					 * it yet:
1609 					 */
1610 					if (ret == 2)
1611 						goto check_continued;
1612 					if (!likely(options & WEXITED))
1613 						continue;
1614 					retval = wait_task_zombie(
1615 						p, (options & WNOWAIT),
1616 						infop, stat_addr, ru);
1617 					/* He released the lock.  */
1618 					if (retval != 0)
1619 						goto end;
1620 					break;
1621 				}
1622 check_continued:
1623 				/*
1624 				 * It's running now, so it might later
1625 				 * exit, stop, or stop and then continue.
1626 				 */
1627 				flag = 1;
1628 				if (!unlikely(options & WCONTINUED))
1629 					continue;
1630 				retval = wait_task_continued(
1631 					p, (options & WNOWAIT),
1632 					infop, stat_addr, ru);
1633 				if (retval != 0) /* He released the lock.  */
1634 					goto end;
1635 				break;
1636 			}
1637 		}
1638 		if (!flag) {
1639 			list_for_each_entry(p, &tsk->ptrace_children,
1640 					    ptrace_list) {
1641 				if (!eligible_child(pid, options, p))
1642 					continue;
1643 				flag = 1;
1644 				break;
1645 			}
1646 		}
1647 		if (options & __WNOTHREAD)
1648 			break;
1649 		tsk = next_thread(tsk);
1650 		BUG_ON(tsk->signal != current->signal);
1651 	} while (tsk != current);
1652 
1653 	read_unlock(&tasklist_lock);
1654 	if (flag) {
1655 		retval = 0;
1656 		if (options & WNOHANG)
1657 			goto end;
1658 		retval = -ERESTARTSYS;
1659 		if (signal_pending(current))
1660 			goto end;
1661 		schedule();
1662 		goto repeat;
1663 	}
1664 	retval = -ECHILD;
1665 	if (unlikely(denied) && !allowed)
1666 		retval = denied;
1667 end:
1668 	current->state = TASK_RUNNING;
1669 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1670 	if (infop) {
1671 		if (retval > 0)
1672 		retval = 0;
1673 		else {
1674 			/*
1675 			 * For a WNOHANG return, clear out all the fields
1676 			 * we would set so the user can easily tell the
1677 			 * difference.
1678 			 */
1679 			if (!retval)
1680 				retval = put_user(0, &infop->si_signo);
1681 			if (!retval)
1682 				retval = put_user(0, &infop->si_errno);
1683 			if (!retval)
1684 				retval = put_user(0, &infop->si_code);
1685 			if (!retval)
1686 				retval = put_user(0, &infop->si_pid);
1687 			if (!retval)
1688 				retval = put_user(0, &infop->si_uid);
1689 			if (!retval)
1690 				retval = put_user(0, &infop->si_status);
1691 		}
1692 	}
1693 	return retval;
1694 }
1695 
1696 asmlinkage long sys_waitid(int which, pid_t pid,
1697 			   struct siginfo __user *infop, int options,
1698 			   struct rusage __user *ru)
1699 {
1700 	long ret;
1701 
1702 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1703 		return -EINVAL;
1704 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1705 		return -EINVAL;
1706 
1707 	switch (which) {
1708 	case P_ALL:
1709 		pid = -1;
1710 		break;
1711 	case P_PID:
1712 		if (pid <= 0)
1713 			return -EINVAL;
1714 		break;
1715 	case P_PGID:
1716 		if (pid <= 0)
1717 			return -EINVAL;
1718 		pid = -pid;
1719 		break;
1720 	default:
1721 		return -EINVAL;
1722 	}
1723 
1724 	ret = do_wait(pid, options, infop, NULL, ru);
1725 
1726 	/* avoid REGPARM breakage on x86: */
1727 	prevent_tail_call(ret);
1728 	return ret;
1729 }
1730 
1731 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1732 			  int options, struct rusage __user *ru)
1733 {
1734 	long ret;
1735 
1736 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1737 			__WNOTHREAD|__WCLONE|__WALL))
1738 		return -EINVAL;
1739 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1740 
1741 	/* avoid REGPARM breakage on x86: */
1742 	prevent_tail_call(ret);
1743 	return ret;
1744 }
1745 
1746 #ifdef __ARCH_WANT_SYS_WAITPID
1747 
1748 /*
1749  * sys_waitpid() remains for compatibility. waitpid() should be
1750  * implemented by calling sys_wait4() from libc.a.
1751  */
1752 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1753 {
1754 	return sys_wait4(pid, stat_addr, options, NULL);
1755 }
1756 
1757 #endif
1758