1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/binfmts.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pid_namespace.h> 25 #include <linux/ptrace.h> 26 #include <linux/profile.h> 27 #include <linux/mount.h> 28 #include <linux/proc_fs.h> 29 #include <linux/kthread.h> 30 #include <linux/mempolicy.h> 31 #include <linux/taskstats_kern.h> 32 #include <linux/delayacct.h> 33 #include <linux/freezer.h> 34 #include <linux/cgroup.h> 35 #include <linux/syscalls.h> 36 #include <linux/signal.h> 37 #include <linux/posix-timers.h> 38 #include <linux/cn_proc.h> 39 #include <linux/mutex.h> 40 #include <linux/futex.h> 41 #include <linux/compat.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 48 #include <asm/uaccess.h> 49 #include <asm/unistd.h> 50 #include <asm/pgtable.h> 51 #include <asm/mmu_context.h> 52 53 extern void sem_exit (void); 54 55 static void exit_mm(struct task_struct * tsk); 56 57 static void __unhash_process(struct task_struct *p) 58 { 59 nr_threads--; 60 detach_pid(p, PIDTYPE_PID); 61 if (thread_group_leader(p)) { 62 detach_pid(p, PIDTYPE_PGID); 63 detach_pid(p, PIDTYPE_SID); 64 65 list_del_rcu(&p->tasks); 66 __get_cpu_var(process_counts)--; 67 } 68 list_del_rcu(&p->thread_group); 69 remove_parent(p); 70 } 71 72 /* 73 * This function expects the tasklist_lock write-locked. 74 */ 75 static void __exit_signal(struct task_struct *tsk) 76 { 77 struct signal_struct *sig = tsk->signal; 78 struct sighand_struct *sighand; 79 80 BUG_ON(!sig); 81 BUG_ON(!atomic_read(&sig->count)); 82 83 rcu_read_lock(); 84 sighand = rcu_dereference(tsk->sighand); 85 spin_lock(&sighand->siglock); 86 87 posix_cpu_timers_exit(tsk); 88 if (atomic_dec_and_test(&sig->count)) 89 posix_cpu_timers_exit_group(tsk); 90 else { 91 /* 92 * If there is any task waiting for the group exit 93 * then notify it: 94 */ 95 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 96 wake_up_process(sig->group_exit_task); 97 98 if (tsk == sig->curr_target) 99 sig->curr_target = next_thread(tsk); 100 /* 101 * Accumulate here the counters for all threads but the 102 * group leader as they die, so they can be added into 103 * the process-wide totals when those are taken. 104 * The group leader stays around as a zombie as long 105 * as there are other threads. When it gets reaped, 106 * the exit.c code will add its counts into these totals. 107 * We won't ever get here for the group leader, since it 108 * will have been the last reference on the signal_struct. 109 */ 110 sig->utime = cputime_add(sig->utime, tsk->utime); 111 sig->stime = cputime_add(sig->stime, tsk->stime); 112 sig->gtime = cputime_add(sig->gtime, tsk->gtime); 113 sig->min_flt += tsk->min_flt; 114 sig->maj_flt += tsk->maj_flt; 115 sig->nvcsw += tsk->nvcsw; 116 sig->nivcsw += tsk->nivcsw; 117 sig->inblock += task_io_get_inblock(tsk); 118 sig->oublock += task_io_get_oublock(tsk); 119 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 120 sig = NULL; /* Marker for below. */ 121 } 122 123 __unhash_process(tsk); 124 125 tsk->signal = NULL; 126 tsk->sighand = NULL; 127 spin_unlock(&sighand->siglock); 128 rcu_read_unlock(); 129 130 __cleanup_sighand(sighand); 131 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 132 flush_sigqueue(&tsk->pending); 133 if (sig) { 134 flush_sigqueue(&sig->shared_pending); 135 taskstats_tgid_free(sig); 136 __cleanup_signal(sig); 137 } 138 } 139 140 static void delayed_put_task_struct(struct rcu_head *rhp) 141 { 142 put_task_struct(container_of(rhp, struct task_struct, rcu)); 143 } 144 145 void release_task(struct task_struct * p) 146 { 147 struct task_struct *leader; 148 int zap_leader; 149 repeat: 150 atomic_dec(&p->user->processes); 151 proc_flush_task(p); 152 write_lock_irq(&tasklist_lock); 153 ptrace_unlink(p); 154 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); 155 __exit_signal(p); 156 157 /* 158 * If we are the last non-leader member of the thread 159 * group, and the leader is zombie, then notify the 160 * group leader's parent process. (if it wants notification.) 161 */ 162 zap_leader = 0; 163 leader = p->group_leader; 164 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 165 BUG_ON(leader->exit_signal == -1); 166 do_notify_parent(leader, leader->exit_signal); 167 /* 168 * If we were the last child thread and the leader has 169 * exited already, and the leader's parent ignores SIGCHLD, 170 * then we are the one who should release the leader. 171 * 172 * do_notify_parent() will have marked it self-reaping in 173 * that case. 174 */ 175 zap_leader = (leader->exit_signal == -1); 176 } 177 178 write_unlock_irq(&tasklist_lock); 179 release_thread(p); 180 call_rcu(&p->rcu, delayed_put_task_struct); 181 182 p = leader; 183 if (unlikely(zap_leader)) 184 goto repeat; 185 } 186 187 /* 188 * This checks not only the pgrp, but falls back on the pid if no 189 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 190 * without this... 191 * 192 * The caller must hold rcu lock or the tasklist lock. 193 */ 194 struct pid *session_of_pgrp(struct pid *pgrp) 195 { 196 struct task_struct *p; 197 struct pid *sid = NULL; 198 199 p = pid_task(pgrp, PIDTYPE_PGID); 200 if (p == NULL) 201 p = pid_task(pgrp, PIDTYPE_PID); 202 if (p != NULL) 203 sid = task_session(p); 204 205 return sid; 206 } 207 208 /* 209 * Determine if a process group is "orphaned", according to the POSIX 210 * definition in 2.2.2.52. Orphaned process groups are not to be affected 211 * by terminal-generated stop signals. Newly orphaned process groups are 212 * to receive a SIGHUP and a SIGCONT. 213 * 214 * "I ask you, have you ever known what it is to be an orphan?" 215 */ 216 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 217 { 218 struct task_struct *p; 219 int ret = 1; 220 221 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 222 if (p == ignored_task 223 || p->exit_state 224 || is_global_init(p->real_parent)) 225 continue; 226 if (task_pgrp(p->real_parent) != pgrp && 227 task_session(p->real_parent) == task_session(p)) { 228 ret = 0; 229 break; 230 } 231 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 232 return ret; /* (sighing) "Often!" */ 233 } 234 235 int is_current_pgrp_orphaned(void) 236 { 237 int retval; 238 239 read_lock(&tasklist_lock); 240 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 241 read_unlock(&tasklist_lock); 242 243 return retval; 244 } 245 246 static int has_stopped_jobs(struct pid *pgrp) 247 { 248 int retval = 0; 249 struct task_struct *p; 250 251 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 252 if (p->state != TASK_STOPPED) 253 continue; 254 retval = 1; 255 break; 256 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 257 return retval; 258 } 259 260 /** 261 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 262 * 263 * If a kernel thread is launched as a result of a system call, or if 264 * it ever exits, it should generally reparent itself to kthreadd so it 265 * isn't in the way of other processes and is correctly cleaned up on exit. 266 * 267 * The various task state such as scheduling policy and priority may have 268 * been inherited from a user process, so we reset them to sane values here. 269 * 270 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 271 */ 272 static void reparent_to_kthreadd(void) 273 { 274 write_lock_irq(&tasklist_lock); 275 276 ptrace_unlink(current); 277 /* Reparent to init */ 278 remove_parent(current); 279 current->real_parent = current->parent = kthreadd_task; 280 add_parent(current); 281 282 /* Set the exit signal to SIGCHLD so we signal init on exit */ 283 current->exit_signal = SIGCHLD; 284 285 if (task_nice(current) < 0) 286 set_user_nice(current, 0); 287 /* cpus_allowed? */ 288 /* rt_priority? */ 289 /* signals? */ 290 security_task_reparent_to_init(current); 291 memcpy(current->signal->rlim, init_task.signal->rlim, 292 sizeof(current->signal->rlim)); 293 atomic_inc(&(INIT_USER->__count)); 294 write_unlock_irq(&tasklist_lock); 295 switch_uid(INIT_USER); 296 } 297 298 void __set_special_pids(pid_t session, pid_t pgrp) 299 { 300 struct task_struct *curr = current->group_leader; 301 302 if (task_session_nr(curr) != session) { 303 detach_pid(curr, PIDTYPE_SID); 304 set_task_session(curr, session); 305 attach_pid(curr, PIDTYPE_SID, find_pid(session)); 306 } 307 if (task_pgrp_nr(curr) != pgrp) { 308 detach_pid(curr, PIDTYPE_PGID); 309 set_task_pgrp(curr, pgrp); 310 attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp)); 311 } 312 } 313 314 static void set_special_pids(pid_t session, pid_t pgrp) 315 { 316 write_lock_irq(&tasklist_lock); 317 __set_special_pids(session, pgrp); 318 write_unlock_irq(&tasklist_lock); 319 } 320 321 /* 322 * Let kernel threads use this to say that they 323 * allow a certain signal (since daemonize() will 324 * have disabled all of them by default). 325 */ 326 int allow_signal(int sig) 327 { 328 if (!valid_signal(sig) || sig < 1) 329 return -EINVAL; 330 331 spin_lock_irq(¤t->sighand->siglock); 332 sigdelset(¤t->blocked, sig); 333 if (!current->mm) { 334 /* Kernel threads handle their own signals. 335 Let the signal code know it'll be handled, so 336 that they don't get converted to SIGKILL or 337 just silently dropped */ 338 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 339 } 340 recalc_sigpending(); 341 spin_unlock_irq(¤t->sighand->siglock); 342 return 0; 343 } 344 345 EXPORT_SYMBOL(allow_signal); 346 347 int disallow_signal(int sig) 348 { 349 if (!valid_signal(sig) || sig < 1) 350 return -EINVAL; 351 352 spin_lock_irq(¤t->sighand->siglock); 353 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 354 recalc_sigpending(); 355 spin_unlock_irq(¤t->sighand->siglock); 356 return 0; 357 } 358 359 EXPORT_SYMBOL(disallow_signal); 360 361 /* 362 * Put all the gunge required to become a kernel thread without 363 * attached user resources in one place where it belongs. 364 */ 365 366 void daemonize(const char *name, ...) 367 { 368 va_list args; 369 struct fs_struct *fs; 370 sigset_t blocked; 371 372 va_start(args, name); 373 vsnprintf(current->comm, sizeof(current->comm), name, args); 374 va_end(args); 375 376 /* 377 * If we were started as result of loading a module, close all of the 378 * user space pages. We don't need them, and if we didn't close them 379 * they would be locked into memory. 380 */ 381 exit_mm(current); 382 /* 383 * We don't want to have TIF_FREEZE set if the system-wide hibernation 384 * or suspend transition begins right now. 385 */ 386 current->flags |= PF_NOFREEZE; 387 388 set_special_pids(1, 1); 389 proc_clear_tty(current); 390 391 /* Block and flush all signals */ 392 sigfillset(&blocked); 393 sigprocmask(SIG_BLOCK, &blocked, NULL); 394 flush_signals(current); 395 396 /* Become as one with the init task */ 397 398 exit_fs(current); /* current->fs->count--; */ 399 fs = init_task.fs; 400 current->fs = fs; 401 atomic_inc(&fs->count); 402 403 if (current->nsproxy != init_task.nsproxy) { 404 get_nsproxy(init_task.nsproxy); 405 switch_task_namespaces(current, init_task.nsproxy); 406 } 407 408 exit_files(current); 409 current->files = init_task.files; 410 atomic_inc(¤t->files->count); 411 412 reparent_to_kthreadd(); 413 } 414 415 EXPORT_SYMBOL(daemonize); 416 417 static void close_files(struct files_struct * files) 418 { 419 int i, j; 420 struct fdtable *fdt; 421 422 j = 0; 423 424 /* 425 * It is safe to dereference the fd table without RCU or 426 * ->file_lock because this is the last reference to the 427 * files structure. 428 */ 429 fdt = files_fdtable(files); 430 for (;;) { 431 unsigned long set; 432 i = j * __NFDBITS; 433 if (i >= fdt->max_fds) 434 break; 435 set = fdt->open_fds->fds_bits[j++]; 436 while (set) { 437 if (set & 1) { 438 struct file * file = xchg(&fdt->fd[i], NULL); 439 if (file) { 440 filp_close(file, files); 441 cond_resched(); 442 } 443 } 444 i++; 445 set >>= 1; 446 } 447 } 448 } 449 450 struct files_struct *get_files_struct(struct task_struct *task) 451 { 452 struct files_struct *files; 453 454 task_lock(task); 455 files = task->files; 456 if (files) 457 atomic_inc(&files->count); 458 task_unlock(task); 459 460 return files; 461 } 462 463 void fastcall put_files_struct(struct files_struct *files) 464 { 465 struct fdtable *fdt; 466 467 if (atomic_dec_and_test(&files->count)) { 468 close_files(files); 469 /* 470 * Free the fd and fdset arrays if we expanded them. 471 * If the fdtable was embedded, pass files for freeing 472 * at the end of the RCU grace period. Otherwise, 473 * you can free files immediately. 474 */ 475 fdt = files_fdtable(files); 476 if (fdt != &files->fdtab) 477 kmem_cache_free(files_cachep, files); 478 free_fdtable(fdt); 479 } 480 } 481 482 EXPORT_SYMBOL(put_files_struct); 483 484 void reset_files_struct(struct task_struct *tsk, struct files_struct *files) 485 { 486 struct files_struct *old; 487 488 old = tsk->files; 489 task_lock(tsk); 490 tsk->files = files; 491 task_unlock(tsk); 492 put_files_struct(old); 493 } 494 EXPORT_SYMBOL(reset_files_struct); 495 496 static void __exit_files(struct task_struct *tsk) 497 { 498 struct files_struct * files = tsk->files; 499 500 if (files) { 501 task_lock(tsk); 502 tsk->files = NULL; 503 task_unlock(tsk); 504 put_files_struct(files); 505 } 506 } 507 508 void exit_files(struct task_struct *tsk) 509 { 510 __exit_files(tsk); 511 } 512 513 static void __put_fs_struct(struct fs_struct *fs) 514 { 515 /* No need to hold fs->lock if we are killing it */ 516 if (atomic_dec_and_test(&fs->count)) { 517 dput(fs->root); 518 mntput(fs->rootmnt); 519 dput(fs->pwd); 520 mntput(fs->pwdmnt); 521 if (fs->altroot) { 522 dput(fs->altroot); 523 mntput(fs->altrootmnt); 524 } 525 kmem_cache_free(fs_cachep, fs); 526 } 527 } 528 529 void put_fs_struct(struct fs_struct *fs) 530 { 531 __put_fs_struct(fs); 532 } 533 534 static void __exit_fs(struct task_struct *tsk) 535 { 536 struct fs_struct * fs = tsk->fs; 537 538 if (fs) { 539 task_lock(tsk); 540 tsk->fs = NULL; 541 task_unlock(tsk); 542 __put_fs_struct(fs); 543 } 544 } 545 546 void exit_fs(struct task_struct *tsk) 547 { 548 __exit_fs(tsk); 549 } 550 551 EXPORT_SYMBOL_GPL(exit_fs); 552 553 /* 554 * Turn us into a lazy TLB process if we 555 * aren't already.. 556 */ 557 static void exit_mm(struct task_struct * tsk) 558 { 559 struct mm_struct *mm = tsk->mm; 560 561 mm_release(tsk, mm); 562 if (!mm) 563 return; 564 /* 565 * Serialize with any possible pending coredump. 566 * We must hold mmap_sem around checking core_waiters 567 * and clearing tsk->mm. The core-inducing thread 568 * will increment core_waiters for each thread in the 569 * group with ->mm != NULL. 570 */ 571 down_read(&mm->mmap_sem); 572 if (mm->core_waiters) { 573 up_read(&mm->mmap_sem); 574 down_write(&mm->mmap_sem); 575 if (!--mm->core_waiters) 576 complete(mm->core_startup_done); 577 up_write(&mm->mmap_sem); 578 579 wait_for_completion(&mm->core_done); 580 down_read(&mm->mmap_sem); 581 } 582 atomic_inc(&mm->mm_count); 583 BUG_ON(mm != tsk->active_mm); 584 /* more a memory barrier than a real lock */ 585 task_lock(tsk); 586 tsk->mm = NULL; 587 up_read(&mm->mmap_sem); 588 enter_lazy_tlb(mm, current); 589 /* We don't want this task to be frozen prematurely */ 590 clear_freeze_flag(tsk); 591 task_unlock(tsk); 592 mmput(mm); 593 } 594 595 static void 596 reparent_thread(struct task_struct *p, struct task_struct *father, int traced) 597 { 598 if (p->pdeath_signal) 599 /* We already hold the tasklist_lock here. */ 600 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 601 602 /* Move the child from its dying parent to the new one. */ 603 if (unlikely(traced)) { 604 /* Preserve ptrace links if someone else is tracing this child. */ 605 list_del_init(&p->ptrace_list); 606 if (p->parent != p->real_parent) 607 list_add(&p->ptrace_list, &p->real_parent->ptrace_children); 608 } else { 609 /* If this child is being traced, then we're the one tracing it 610 * anyway, so let go of it. 611 */ 612 p->ptrace = 0; 613 remove_parent(p); 614 p->parent = p->real_parent; 615 add_parent(p); 616 617 if (p->state == TASK_TRACED) { 618 /* 619 * If it was at a trace stop, turn it into 620 * a normal stop since it's no longer being 621 * traced. 622 */ 623 ptrace_untrace(p); 624 } 625 } 626 627 /* If this is a threaded reparent there is no need to 628 * notify anyone anything has happened. 629 */ 630 if (p->real_parent->group_leader == father->group_leader) 631 return; 632 633 /* We don't want people slaying init. */ 634 if (p->exit_signal != -1) 635 p->exit_signal = SIGCHLD; 636 637 /* If we'd notified the old parent about this child's death, 638 * also notify the new parent. 639 */ 640 if (!traced && p->exit_state == EXIT_ZOMBIE && 641 p->exit_signal != -1 && thread_group_empty(p)) 642 do_notify_parent(p, p->exit_signal); 643 644 /* 645 * process group orphan check 646 * Case ii: Our child is in a different pgrp 647 * than we are, and it was the only connection 648 * outside, so the child pgrp is now orphaned. 649 */ 650 if ((task_pgrp(p) != task_pgrp(father)) && 651 (task_session(p) == task_session(father))) { 652 struct pid *pgrp = task_pgrp(p); 653 654 if (will_become_orphaned_pgrp(pgrp, NULL) && 655 has_stopped_jobs(pgrp)) { 656 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 657 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 658 } 659 } 660 } 661 662 /* 663 * When we die, we re-parent all our children. 664 * Try to give them to another thread in our thread 665 * group, and if no such member exists, give it to 666 * the child reaper process (ie "init") in our pid 667 * space. 668 */ 669 static void forget_original_parent(struct task_struct *father) 670 { 671 struct task_struct *p, *n, *reaper = father; 672 struct list_head ptrace_dead; 673 674 INIT_LIST_HEAD(&ptrace_dead); 675 676 write_lock_irq(&tasklist_lock); 677 678 do { 679 reaper = next_thread(reaper); 680 if (reaper == father) { 681 reaper = task_child_reaper(father); 682 break; 683 } 684 } while (reaper->flags & PF_EXITING); 685 686 /* 687 * There are only two places where our children can be: 688 * 689 * - in our child list 690 * - in our ptraced child list 691 * 692 * Search them and reparent children. 693 */ 694 list_for_each_entry_safe(p, n, &father->children, sibling) { 695 int ptrace; 696 697 ptrace = p->ptrace; 698 699 /* if father isn't the real parent, then ptrace must be enabled */ 700 BUG_ON(father != p->real_parent && !ptrace); 701 702 if (father == p->real_parent) { 703 /* reparent with a reaper, real father it's us */ 704 p->real_parent = reaper; 705 reparent_thread(p, father, 0); 706 } else { 707 /* reparent ptraced task to its real parent */ 708 __ptrace_unlink (p); 709 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && 710 thread_group_empty(p)) 711 do_notify_parent(p, p->exit_signal); 712 } 713 714 /* 715 * if the ptraced child is a zombie with exit_signal == -1 716 * we must collect it before we exit, or it will remain 717 * zombie forever since we prevented it from self-reap itself 718 * while it was being traced by us, to be able to see it in wait4. 719 */ 720 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) 721 list_add(&p->ptrace_list, &ptrace_dead); 722 } 723 724 list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) { 725 p->real_parent = reaper; 726 reparent_thread(p, father, 1); 727 } 728 729 write_unlock_irq(&tasklist_lock); 730 BUG_ON(!list_empty(&father->children)); 731 BUG_ON(!list_empty(&father->ptrace_children)); 732 733 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) { 734 list_del_init(&p->ptrace_list); 735 release_task(p); 736 } 737 738 } 739 740 /* 741 * Send signals to all our closest relatives so that they know 742 * to properly mourn us.. 743 */ 744 static void exit_notify(struct task_struct *tsk) 745 { 746 int state; 747 struct task_struct *t; 748 struct pid *pgrp; 749 750 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT) 751 && !thread_group_empty(tsk)) { 752 /* 753 * This occurs when there was a race between our exit 754 * syscall and a group signal choosing us as the one to 755 * wake up. It could be that we are the only thread 756 * alerted to check for pending signals, but another thread 757 * should be woken now to take the signal since we will not. 758 * Now we'll wake all the threads in the group just to make 759 * sure someone gets all the pending signals. 760 */ 761 spin_lock_irq(&tsk->sighand->siglock); 762 for (t = next_thread(tsk); t != tsk; t = next_thread(t)) 763 if (!signal_pending(t) && !(t->flags & PF_EXITING)) 764 recalc_sigpending_and_wake(t); 765 spin_unlock_irq(&tsk->sighand->siglock); 766 } 767 768 /* 769 * This does two things: 770 * 771 * A. Make init inherit all the child processes 772 * B. Check to see if any process groups have become orphaned 773 * as a result of our exiting, and if they have any stopped 774 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 775 */ 776 forget_original_parent(tsk); 777 exit_task_namespaces(tsk); 778 779 write_lock_irq(&tasklist_lock); 780 /* 781 * Check to see if any process groups have become orphaned 782 * as a result of our exiting, and if they have any stopped 783 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 784 * 785 * Case i: Our father is in a different pgrp than we are 786 * and we were the only connection outside, so our pgrp 787 * is about to become orphaned. 788 */ 789 t = tsk->real_parent; 790 791 pgrp = task_pgrp(tsk); 792 if ((task_pgrp(t) != pgrp) && 793 (task_session(t) == task_session(tsk)) && 794 will_become_orphaned_pgrp(pgrp, tsk) && 795 has_stopped_jobs(pgrp)) { 796 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 797 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 798 } 799 800 /* Let father know we died 801 * 802 * Thread signals are configurable, but you aren't going to use 803 * that to send signals to arbitary processes. 804 * That stops right now. 805 * 806 * If the parent exec id doesn't match the exec id we saved 807 * when we started then we know the parent has changed security 808 * domain. 809 * 810 * If our self_exec id doesn't match our parent_exec_id then 811 * we have changed execution domain as these two values started 812 * the same after a fork. 813 */ 814 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && 815 ( tsk->parent_exec_id != t->self_exec_id || 816 tsk->self_exec_id != tsk->parent_exec_id) 817 && !capable(CAP_KILL)) 818 tsk->exit_signal = SIGCHLD; 819 820 821 /* If something other than our normal parent is ptracing us, then 822 * send it a SIGCHLD instead of honoring exit_signal. exit_signal 823 * only has special meaning to our real parent. 824 */ 825 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { 826 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; 827 do_notify_parent(tsk, signal); 828 } else if (tsk->ptrace) { 829 do_notify_parent(tsk, SIGCHLD); 830 } 831 832 state = EXIT_ZOMBIE; 833 if (tsk->exit_signal == -1 && likely(!tsk->ptrace)) 834 state = EXIT_DEAD; 835 tsk->exit_state = state; 836 837 if (thread_group_leader(tsk) && 838 tsk->signal->notify_count < 0 && 839 tsk->signal->group_exit_task) 840 wake_up_process(tsk->signal->group_exit_task); 841 842 write_unlock_irq(&tasklist_lock); 843 844 /* If the process is dead, release it - nobody will wait for it */ 845 if (state == EXIT_DEAD) 846 release_task(tsk); 847 } 848 849 #ifdef CONFIG_DEBUG_STACK_USAGE 850 static void check_stack_usage(void) 851 { 852 static DEFINE_SPINLOCK(low_water_lock); 853 static int lowest_to_date = THREAD_SIZE; 854 unsigned long *n = end_of_stack(current); 855 unsigned long free; 856 857 while (*n == 0) 858 n++; 859 free = (unsigned long)n - (unsigned long)end_of_stack(current); 860 861 if (free >= lowest_to_date) 862 return; 863 864 spin_lock(&low_water_lock); 865 if (free < lowest_to_date) { 866 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 867 "left\n", 868 current->comm, free); 869 lowest_to_date = free; 870 } 871 spin_unlock(&low_water_lock); 872 } 873 #else 874 static inline void check_stack_usage(void) {} 875 #endif 876 877 static inline void exit_child_reaper(struct task_struct *tsk) 878 { 879 if (likely(tsk->group_leader != task_child_reaper(tsk))) 880 return; 881 882 if (tsk->nsproxy->pid_ns == &init_pid_ns) 883 panic("Attempted to kill init!"); 884 885 /* 886 * @tsk is the last thread in the 'cgroup-init' and is exiting. 887 * Terminate all remaining processes in the namespace and reap them 888 * before exiting @tsk. 889 * 890 * Note that @tsk (last thread of cgroup-init) may not necessarily 891 * be the child-reaper (i.e main thread of cgroup-init) of the 892 * namespace i.e the child_reaper may have already exited. 893 * 894 * Even after a child_reaper exits, we let it inherit orphaned children, 895 * because, pid_ns->child_reaper remains valid as long as there is 896 * at least one living sub-thread in the cgroup init. 897 898 * This living sub-thread of the cgroup-init will be notified when 899 * a child inherited by the 'child-reaper' exits (do_notify_parent() 900 * uses __group_send_sig_info()). Further, when reaping child processes, 901 * do_wait() iterates over children of all living sub threads. 902 903 * i.e even though 'child_reaper' thread is listed as the parent of the 904 * orphaned children, any living sub-thread in the cgroup-init can 905 * perform the role of the child_reaper. 906 */ 907 zap_pid_ns_processes(tsk->nsproxy->pid_ns); 908 } 909 910 fastcall NORET_TYPE void do_exit(long code) 911 { 912 struct task_struct *tsk = current; 913 int group_dead; 914 915 profile_task_exit(tsk); 916 917 WARN_ON(atomic_read(&tsk->fs_excl)); 918 919 if (unlikely(in_interrupt())) 920 panic("Aiee, killing interrupt handler!"); 921 if (unlikely(!tsk->pid)) 922 panic("Attempted to kill the idle task!"); 923 924 if (unlikely(current->ptrace & PT_TRACE_EXIT)) { 925 current->ptrace_message = code; 926 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); 927 } 928 929 /* 930 * We're taking recursive faults here in do_exit. Safest is to just 931 * leave this task alone and wait for reboot. 932 */ 933 if (unlikely(tsk->flags & PF_EXITING)) { 934 printk(KERN_ALERT 935 "Fixing recursive fault but reboot is needed!\n"); 936 /* 937 * We can do this unlocked here. The futex code uses 938 * this flag just to verify whether the pi state 939 * cleanup has been done or not. In the worst case it 940 * loops once more. We pretend that the cleanup was 941 * done as there is no way to return. Either the 942 * OWNER_DIED bit is set by now or we push the blocked 943 * task into the wait for ever nirwana as well. 944 */ 945 tsk->flags |= PF_EXITPIDONE; 946 if (tsk->io_context) 947 exit_io_context(); 948 set_current_state(TASK_UNINTERRUPTIBLE); 949 schedule(); 950 } 951 952 tsk->flags |= PF_EXITING; 953 /* 954 * tsk->flags are checked in the futex code to protect against 955 * an exiting task cleaning up the robust pi futexes. 956 */ 957 smp_mb(); 958 spin_unlock_wait(&tsk->pi_lock); 959 960 if (unlikely(in_atomic())) 961 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 962 current->comm, task_pid_nr(current), 963 preempt_count()); 964 965 acct_update_integrals(tsk); 966 if (tsk->mm) { 967 update_hiwater_rss(tsk->mm); 968 update_hiwater_vm(tsk->mm); 969 } 970 group_dead = atomic_dec_and_test(&tsk->signal->live); 971 if (group_dead) { 972 exit_child_reaper(tsk); 973 hrtimer_cancel(&tsk->signal->real_timer); 974 exit_itimers(tsk->signal); 975 } 976 acct_collect(code, group_dead); 977 #ifdef CONFIG_FUTEX 978 if (unlikely(tsk->robust_list)) 979 exit_robust_list(tsk); 980 #ifdef CONFIG_COMPAT 981 if (unlikely(tsk->compat_robust_list)) 982 compat_exit_robust_list(tsk); 983 #endif 984 #endif 985 if (group_dead) 986 tty_audit_exit(); 987 if (unlikely(tsk->audit_context)) 988 audit_free(tsk); 989 990 tsk->exit_code = code; 991 taskstats_exit(tsk, group_dead); 992 993 exit_mm(tsk); 994 995 if (group_dead) 996 acct_process(); 997 exit_sem(tsk); 998 __exit_files(tsk); 999 __exit_fs(tsk); 1000 check_stack_usage(); 1001 exit_thread(); 1002 cgroup_exit(tsk, 1); 1003 exit_keys(tsk); 1004 1005 if (group_dead && tsk->signal->leader) 1006 disassociate_ctty(1); 1007 1008 module_put(task_thread_info(tsk)->exec_domain->module); 1009 if (tsk->binfmt) 1010 module_put(tsk->binfmt->module); 1011 1012 proc_exit_connector(tsk); 1013 exit_notify(tsk); 1014 #ifdef CONFIG_NUMA 1015 mpol_free(tsk->mempolicy); 1016 tsk->mempolicy = NULL; 1017 #endif 1018 #ifdef CONFIG_FUTEX 1019 /* 1020 * This must happen late, after the PID is not 1021 * hashed anymore: 1022 */ 1023 if (unlikely(!list_empty(&tsk->pi_state_list))) 1024 exit_pi_state_list(tsk); 1025 if (unlikely(current->pi_state_cache)) 1026 kfree(current->pi_state_cache); 1027 #endif 1028 /* 1029 * Make sure we are holding no locks: 1030 */ 1031 debug_check_no_locks_held(tsk); 1032 /* 1033 * We can do this unlocked here. The futex code uses this flag 1034 * just to verify whether the pi state cleanup has been done 1035 * or not. In the worst case it loops once more. 1036 */ 1037 tsk->flags |= PF_EXITPIDONE; 1038 1039 if (tsk->io_context) 1040 exit_io_context(); 1041 1042 if (tsk->splice_pipe) 1043 __free_pipe_info(tsk->splice_pipe); 1044 1045 preempt_disable(); 1046 /* causes final put_task_struct in finish_task_switch(). */ 1047 tsk->state = TASK_DEAD; 1048 1049 schedule(); 1050 BUG(); 1051 /* Avoid "noreturn function does return". */ 1052 for (;;) 1053 cpu_relax(); /* For when BUG is null */ 1054 } 1055 1056 EXPORT_SYMBOL_GPL(do_exit); 1057 1058 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1059 { 1060 if (comp) 1061 complete(comp); 1062 1063 do_exit(code); 1064 } 1065 1066 EXPORT_SYMBOL(complete_and_exit); 1067 1068 asmlinkage long sys_exit(int error_code) 1069 { 1070 do_exit((error_code&0xff)<<8); 1071 } 1072 1073 /* 1074 * Take down every thread in the group. This is called by fatal signals 1075 * as well as by sys_exit_group (below). 1076 */ 1077 NORET_TYPE void 1078 do_group_exit(int exit_code) 1079 { 1080 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1081 1082 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1083 exit_code = current->signal->group_exit_code; 1084 else if (!thread_group_empty(current)) { 1085 struct signal_struct *const sig = current->signal; 1086 struct sighand_struct *const sighand = current->sighand; 1087 spin_lock_irq(&sighand->siglock); 1088 if (sig->flags & SIGNAL_GROUP_EXIT) 1089 /* Another thread got here before we took the lock. */ 1090 exit_code = sig->group_exit_code; 1091 else { 1092 sig->group_exit_code = exit_code; 1093 zap_other_threads(current); 1094 } 1095 spin_unlock_irq(&sighand->siglock); 1096 } 1097 1098 do_exit(exit_code); 1099 /* NOTREACHED */ 1100 } 1101 1102 /* 1103 * this kills every thread in the thread group. Note that any externally 1104 * wait4()-ing process will get the correct exit code - even if this 1105 * thread is not the thread group leader. 1106 */ 1107 asmlinkage void sys_exit_group(int error_code) 1108 { 1109 do_group_exit((error_code & 0xff) << 8); 1110 } 1111 1112 static int eligible_child(pid_t pid, int options, struct task_struct *p) 1113 { 1114 int err; 1115 struct pid_namespace *ns; 1116 1117 ns = current->nsproxy->pid_ns; 1118 if (pid > 0) { 1119 if (task_pid_nr_ns(p, ns) != pid) 1120 return 0; 1121 } else if (!pid) { 1122 if (task_pgrp_nr_ns(p, ns) != task_pgrp_vnr(current)) 1123 return 0; 1124 } else if (pid != -1) { 1125 if (task_pgrp_nr_ns(p, ns) != -pid) 1126 return 0; 1127 } 1128 1129 /* 1130 * Do not consider detached threads that are 1131 * not ptraced: 1132 */ 1133 if (p->exit_signal == -1 && !p->ptrace) 1134 return 0; 1135 1136 /* Wait for all children (clone and not) if __WALL is set; 1137 * otherwise, wait for clone children *only* if __WCLONE is 1138 * set; otherwise, wait for non-clone children *only*. (Note: 1139 * A "clone" child here is one that reports to its parent 1140 * using a signal other than SIGCHLD.) */ 1141 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1142 && !(options & __WALL)) 1143 return 0; 1144 /* 1145 * Do not consider thread group leaders that are 1146 * in a non-empty thread group: 1147 */ 1148 if (delay_group_leader(p)) 1149 return 2; 1150 1151 err = security_task_wait(p); 1152 if (err) 1153 return err; 1154 1155 return 1; 1156 } 1157 1158 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1159 int why, int status, 1160 struct siginfo __user *infop, 1161 struct rusage __user *rusagep) 1162 { 1163 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1164 1165 put_task_struct(p); 1166 if (!retval) 1167 retval = put_user(SIGCHLD, &infop->si_signo); 1168 if (!retval) 1169 retval = put_user(0, &infop->si_errno); 1170 if (!retval) 1171 retval = put_user((short)why, &infop->si_code); 1172 if (!retval) 1173 retval = put_user(pid, &infop->si_pid); 1174 if (!retval) 1175 retval = put_user(uid, &infop->si_uid); 1176 if (!retval) 1177 retval = put_user(status, &infop->si_status); 1178 if (!retval) 1179 retval = pid; 1180 return retval; 1181 } 1182 1183 /* 1184 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1185 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1186 * the lock and this task is uninteresting. If we return nonzero, we have 1187 * released the lock and the system call should return. 1188 */ 1189 static int wait_task_zombie(struct task_struct *p, int noreap, 1190 struct siginfo __user *infop, 1191 int __user *stat_addr, struct rusage __user *ru) 1192 { 1193 unsigned long state; 1194 int retval, status, traced; 1195 struct pid_namespace *ns; 1196 1197 ns = current->nsproxy->pid_ns; 1198 1199 if (unlikely(noreap)) { 1200 pid_t pid = task_pid_nr_ns(p, ns); 1201 uid_t uid = p->uid; 1202 int exit_code = p->exit_code; 1203 int why, status; 1204 1205 if (unlikely(p->exit_state != EXIT_ZOMBIE)) 1206 return 0; 1207 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) 1208 return 0; 1209 get_task_struct(p); 1210 read_unlock(&tasklist_lock); 1211 if ((exit_code & 0x7f) == 0) { 1212 why = CLD_EXITED; 1213 status = exit_code >> 8; 1214 } else { 1215 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1216 status = exit_code & 0x7f; 1217 } 1218 return wait_noreap_copyout(p, pid, uid, why, 1219 status, infop, ru); 1220 } 1221 1222 /* 1223 * Try to move the task's state to DEAD 1224 * only one thread is allowed to do this: 1225 */ 1226 state = xchg(&p->exit_state, EXIT_DEAD); 1227 if (state != EXIT_ZOMBIE) { 1228 BUG_ON(state != EXIT_DEAD); 1229 return 0; 1230 } 1231 1232 /* traced means p->ptrace, but not vice versa */ 1233 traced = (p->real_parent != p->parent); 1234 1235 if (likely(!traced)) { 1236 struct signal_struct *psig; 1237 struct signal_struct *sig; 1238 1239 /* 1240 * The resource counters for the group leader are in its 1241 * own task_struct. Those for dead threads in the group 1242 * are in its signal_struct, as are those for the child 1243 * processes it has previously reaped. All these 1244 * accumulate in the parent's signal_struct c* fields. 1245 * 1246 * We don't bother to take a lock here to protect these 1247 * p->signal fields, because they are only touched by 1248 * __exit_signal, which runs with tasklist_lock 1249 * write-locked anyway, and so is excluded here. We do 1250 * need to protect the access to p->parent->signal fields, 1251 * as other threads in the parent group can be right 1252 * here reaping other children at the same time. 1253 */ 1254 spin_lock_irq(&p->parent->sighand->siglock); 1255 psig = p->parent->signal; 1256 sig = p->signal; 1257 psig->cutime = 1258 cputime_add(psig->cutime, 1259 cputime_add(p->utime, 1260 cputime_add(sig->utime, 1261 sig->cutime))); 1262 psig->cstime = 1263 cputime_add(psig->cstime, 1264 cputime_add(p->stime, 1265 cputime_add(sig->stime, 1266 sig->cstime))); 1267 psig->cgtime = 1268 cputime_add(psig->cgtime, 1269 cputime_add(p->gtime, 1270 cputime_add(sig->gtime, 1271 sig->cgtime))); 1272 psig->cmin_flt += 1273 p->min_flt + sig->min_flt + sig->cmin_flt; 1274 psig->cmaj_flt += 1275 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1276 psig->cnvcsw += 1277 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1278 psig->cnivcsw += 1279 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1280 psig->cinblock += 1281 task_io_get_inblock(p) + 1282 sig->inblock + sig->cinblock; 1283 psig->coublock += 1284 task_io_get_oublock(p) + 1285 sig->oublock + sig->coublock; 1286 spin_unlock_irq(&p->parent->sighand->siglock); 1287 } 1288 1289 /* 1290 * Now we are sure this task is interesting, and no other 1291 * thread can reap it because we set its state to EXIT_DEAD. 1292 */ 1293 read_unlock(&tasklist_lock); 1294 1295 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1296 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1297 ? p->signal->group_exit_code : p->exit_code; 1298 if (!retval && stat_addr) 1299 retval = put_user(status, stat_addr); 1300 if (!retval && infop) 1301 retval = put_user(SIGCHLD, &infop->si_signo); 1302 if (!retval && infop) 1303 retval = put_user(0, &infop->si_errno); 1304 if (!retval && infop) { 1305 int why; 1306 1307 if ((status & 0x7f) == 0) { 1308 why = CLD_EXITED; 1309 status >>= 8; 1310 } else { 1311 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1312 status &= 0x7f; 1313 } 1314 retval = put_user((short)why, &infop->si_code); 1315 if (!retval) 1316 retval = put_user(status, &infop->si_status); 1317 } 1318 if (!retval && infop) 1319 retval = put_user(task_pid_nr_ns(p, ns), &infop->si_pid); 1320 if (!retval && infop) 1321 retval = put_user(p->uid, &infop->si_uid); 1322 if (!retval) 1323 retval = task_pid_nr_ns(p, ns); 1324 1325 if (traced) { 1326 write_lock_irq(&tasklist_lock); 1327 /* We dropped tasklist, ptracer could die and untrace */ 1328 ptrace_unlink(p); 1329 /* 1330 * If this is not a detached task, notify the parent. 1331 * If it's still not detached after that, don't release 1332 * it now. 1333 */ 1334 if (p->exit_signal != -1) { 1335 do_notify_parent(p, p->exit_signal); 1336 if (p->exit_signal != -1) { 1337 p->exit_state = EXIT_ZOMBIE; 1338 p = NULL; 1339 } 1340 } 1341 write_unlock_irq(&tasklist_lock); 1342 } 1343 if (p != NULL) 1344 release_task(p); 1345 1346 return retval; 1347 } 1348 1349 /* 1350 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1351 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1352 * the lock and this task is uninteresting. If we return nonzero, we have 1353 * released the lock and the system call should return. 1354 */ 1355 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader, 1356 int noreap, struct siginfo __user *infop, 1357 int __user *stat_addr, struct rusage __user *ru) 1358 { 1359 int retval, exit_code; 1360 struct pid_namespace *ns; 1361 1362 if (!p->exit_code) 1363 return 0; 1364 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) && 1365 p->signal->group_stop_count > 0) 1366 /* 1367 * A group stop is in progress and this is the group leader. 1368 * We won't report until all threads have stopped. 1369 */ 1370 return 0; 1371 1372 /* 1373 * Now we are pretty sure this task is interesting. 1374 * Make sure it doesn't get reaped out from under us while we 1375 * give up the lock and then examine it below. We don't want to 1376 * keep holding onto the tasklist_lock while we call getrusage and 1377 * possibly take page faults for user memory. 1378 */ 1379 ns = current->nsproxy->pid_ns; 1380 get_task_struct(p); 1381 read_unlock(&tasklist_lock); 1382 1383 if (unlikely(noreap)) { 1384 pid_t pid = task_pid_nr_ns(p, ns); 1385 uid_t uid = p->uid; 1386 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; 1387 1388 exit_code = p->exit_code; 1389 if (unlikely(!exit_code) || 1390 unlikely(p->state & TASK_TRACED)) 1391 goto bail_ref; 1392 return wait_noreap_copyout(p, pid, uid, 1393 why, (exit_code << 8) | 0x7f, 1394 infop, ru); 1395 } 1396 1397 write_lock_irq(&tasklist_lock); 1398 1399 /* 1400 * This uses xchg to be atomic with the thread resuming and setting 1401 * it. It must also be done with the write lock held to prevent a 1402 * race with the EXIT_ZOMBIE case. 1403 */ 1404 exit_code = xchg(&p->exit_code, 0); 1405 if (unlikely(p->exit_state)) { 1406 /* 1407 * The task resumed and then died. Let the next iteration 1408 * catch it in EXIT_ZOMBIE. Note that exit_code might 1409 * already be zero here if it resumed and did _exit(0). 1410 * The task itself is dead and won't touch exit_code again; 1411 * other processors in this function are locked out. 1412 */ 1413 p->exit_code = exit_code; 1414 exit_code = 0; 1415 } 1416 if (unlikely(exit_code == 0)) { 1417 /* 1418 * Another thread in this function got to it first, or it 1419 * resumed, or it resumed and then died. 1420 */ 1421 write_unlock_irq(&tasklist_lock); 1422 bail_ref: 1423 put_task_struct(p); 1424 /* 1425 * We are returning to the wait loop without having successfully 1426 * removed the process and having released the lock. We cannot 1427 * continue, since the "p" task pointer is potentially stale. 1428 * 1429 * Return -EAGAIN, and do_wait() will restart the loop from the 1430 * beginning. Do _not_ re-acquire the lock. 1431 */ 1432 return -EAGAIN; 1433 } 1434 1435 /* move to end of parent's list to avoid starvation */ 1436 remove_parent(p); 1437 add_parent(p); 1438 1439 write_unlock_irq(&tasklist_lock); 1440 1441 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1442 if (!retval && stat_addr) 1443 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1444 if (!retval && infop) 1445 retval = put_user(SIGCHLD, &infop->si_signo); 1446 if (!retval && infop) 1447 retval = put_user(0, &infop->si_errno); 1448 if (!retval && infop) 1449 retval = put_user((short)((p->ptrace & PT_PTRACED) 1450 ? CLD_TRAPPED : CLD_STOPPED), 1451 &infop->si_code); 1452 if (!retval && infop) 1453 retval = put_user(exit_code, &infop->si_status); 1454 if (!retval && infop) 1455 retval = put_user(task_pid_nr_ns(p, ns), &infop->si_pid); 1456 if (!retval && infop) 1457 retval = put_user(p->uid, &infop->si_uid); 1458 if (!retval) 1459 retval = task_pid_nr_ns(p, ns); 1460 put_task_struct(p); 1461 1462 BUG_ON(!retval); 1463 return retval; 1464 } 1465 1466 /* 1467 * Handle do_wait work for one task in a live, non-stopped state. 1468 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1469 * the lock and this task is uninteresting. If we return nonzero, we have 1470 * released the lock and the system call should return. 1471 */ 1472 static int wait_task_continued(struct task_struct *p, int noreap, 1473 struct siginfo __user *infop, 1474 int __user *stat_addr, struct rusage __user *ru) 1475 { 1476 int retval; 1477 pid_t pid; 1478 uid_t uid; 1479 struct pid_namespace *ns; 1480 1481 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1482 return 0; 1483 1484 spin_lock_irq(&p->sighand->siglock); 1485 /* Re-check with the lock held. */ 1486 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1487 spin_unlock_irq(&p->sighand->siglock); 1488 return 0; 1489 } 1490 if (!noreap) 1491 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1492 spin_unlock_irq(&p->sighand->siglock); 1493 1494 ns = current->nsproxy->pid_ns; 1495 pid = task_pid_nr_ns(p, ns); 1496 uid = p->uid; 1497 get_task_struct(p); 1498 read_unlock(&tasklist_lock); 1499 1500 if (!infop) { 1501 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1502 put_task_struct(p); 1503 if (!retval && stat_addr) 1504 retval = put_user(0xffff, stat_addr); 1505 if (!retval) 1506 retval = task_pid_nr_ns(p, ns); 1507 } else { 1508 retval = wait_noreap_copyout(p, pid, uid, 1509 CLD_CONTINUED, SIGCONT, 1510 infop, ru); 1511 BUG_ON(retval == 0); 1512 } 1513 1514 return retval; 1515 } 1516 1517 1518 static inline int my_ptrace_child(struct task_struct *p) 1519 { 1520 if (!(p->ptrace & PT_PTRACED)) 1521 return 0; 1522 if (!(p->ptrace & PT_ATTACHED)) 1523 return 1; 1524 /* 1525 * This child was PTRACE_ATTACH'd. We should be seeing it only if 1526 * we are the attacher. If we are the real parent, this is a race 1527 * inside ptrace_attach. It is waiting for the tasklist_lock, 1528 * which we have to switch the parent links, but has already set 1529 * the flags in p->ptrace. 1530 */ 1531 return (p->parent != p->real_parent); 1532 } 1533 1534 static long do_wait(pid_t pid, int options, struct siginfo __user *infop, 1535 int __user *stat_addr, struct rusage __user *ru) 1536 { 1537 DECLARE_WAITQUEUE(wait, current); 1538 struct task_struct *tsk; 1539 int flag, retval; 1540 int allowed, denied; 1541 1542 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1543 repeat: 1544 /* 1545 * We will set this flag if we see any child that might later 1546 * match our criteria, even if we are not able to reap it yet. 1547 */ 1548 flag = 0; 1549 allowed = denied = 0; 1550 current->state = TASK_INTERRUPTIBLE; 1551 read_lock(&tasklist_lock); 1552 tsk = current; 1553 do { 1554 struct task_struct *p; 1555 int ret; 1556 1557 list_for_each_entry(p, &tsk->children, sibling) { 1558 ret = eligible_child(pid, options, p); 1559 if (!ret) 1560 continue; 1561 1562 if (unlikely(ret < 0)) { 1563 denied = ret; 1564 continue; 1565 } 1566 allowed = 1; 1567 1568 switch (p->state) { 1569 case TASK_TRACED: 1570 /* 1571 * When we hit the race with PTRACE_ATTACH, 1572 * we will not report this child. But the 1573 * race means it has not yet been moved to 1574 * our ptrace_children list, so we need to 1575 * set the flag here to avoid a spurious ECHILD 1576 * when the race happens with the only child. 1577 */ 1578 flag = 1; 1579 if (!my_ptrace_child(p)) 1580 continue; 1581 /*FALLTHROUGH*/ 1582 case TASK_STOPPED: 1583 /* 1584 * It's stopped now, so it might later 1585 * continue, exit, or stop again. 1586 */ 1587 flag = 1; 1588 if (!(options & WUNTRACED) && 1589 !my_ptrace_child(p)) 1590 continue; 1591 retval = wait_task_stopped(p, ret == 2, 1592 (options & WNOWAIT), 1593 infop, 1594 stat_addr, ru); 1595 if (retval == -EAGAIN) 1596 goto repeat; 1597 if (retval != 0) /* He released the lock. */ 1598 goto end; 1599 break; 1600 default: 1601 // case EXIT_DEAD: 1602 if (p->exit_state == EXIT_DEAD) 1603 continue; 1604 // case EXIT_ZOMBIE: 1605 if (p->exit_state == EXIT_ZOMBIE) { 1606 /* 1607 * Eligible but we cannot release 1608 * it yet: 1609 */ 1610 if (ret == 2) 1611 goto check_continued; 1612 if (!likely(options & WEXITED)) 1613 continue; 1614 retval = wait_task_zombie( 1615 p, (options & WNOWAIT), 1616 infop, stat_addr, ru); 1617 /* He released the lock. */ 1618 if (retval != 0) 1619 goto end; 1620 break; 1621 } 1622 check_continued: 1623 /* 1624 * It's running now, so it might later 1625 * exit, stop, or stop and then continue. 1626 */ 1627 flag = 1; 1628 if (!unlikely(options & WCONTINUED)) 1629 continue; 1630 retval = wait_task_continued( 1631 p, (options & WNOWAIT), 1632 infop, stat_addr, ru); 1633 if (retval != 0) /* He released the lock. */ 1634 goto end; 1635 break; 1636 } 1637 } 1638 if (!flag) { 1639 list_for_each_entry(p, &tsk->ptrace_children, 1640 ptrace_list) { 1641 if (!eligible_child(pid, options, p)) 1642 continue; 1643 flag = 1; 1644 break; 1645 } 1646 } 1647 if (options & __WNOTHREAD) 1648 break; 1649 tsk = next_thread(tsk); 1650 BUG_ON(tsk->signal != current->signal); 1651 } while (tsk != current); 1652 1653 read_unlock(&tasklist_lock); 1654 if (flag) { 1655 retval = 0; 1656 if (options & WNOHANG) 1657 goto end; 1658 retval = -ERESTARTSYS; 1659 if (signal_pending(current)) 1660 goto end; 1661 schedule(); 1662 goto repeat; 1663 } 1664 retval = -ECHILD; 1665 if (unlikely(denied) && !allowed) 1666 retval = denied; 1667 end: 1668 current->state = TASK_RUNNING; 1669 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1670 if (infop) { 1671 if (retval > 0) 1672 retval = 0; 1673 else { 1674 /* 1675 * For a WNOHANG return, clear out all the fields 1676 * we would set so the user can easily tell the 1677 * difference. 1678 */ 1679 if (!retval) 1680 retval = put_user(0, &infop->si_signo); 1681 if (!retval) 1682 retval = put_user(0, &infop->si_errno); 1683 if (!retval) 1684 retval = put_user(0, &infop->si_code); 1685 if (!retval) 1686 retval = put_user(0, &infop->si_pid); 1687 if (!retval) 1688 retval = put_user(0, &infop->si_uid); 1689 if (!retval) 1690 retval = put_user(0, &infop->si_status); 1691 } 1692 } 1693 return retval; 1694 } 1695 1696 asmlinkage long sys_waitid(int which, pid_t pid, 1697 struct siginfo __user *infop, int options, 1698 struct rusage __user *ru) 1699 { 1700 long ret; 1701 1702 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1703 return -EINVAL; 1704 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1705 return -EINVAL; 1706 1707 switch (which) { 1708 case P_ALL: 1709 pid = -1; 1710 break; 1711 case P_PID: 1712 if (pid <= 0) 1713 return -EINVAL; 1714 break; 1715 case P_PGID: 1716 if (pid <= 0) 1717 return -EINVAL; 1718 pid = -pid; 1719 break; 1720 default: 1721 return -EINVAL; 1722 } 1723 1724 ret = do_wait(pid, options, infop, NULL, ru); 1725 1726 /* avoid REGPARM breakage on x86: */ 1727 prevent_tail_call(ret); 1728 return ret; 1729 } 1730 1731 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr, 1732 int options, struct rusage __user *ru) 1733 { 1734 long ret; 1735 1736 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1737 __WNOTHREAD|__WCLONE|__WALL)) 1738 return -EINVAL; 1739 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru); 1740 1741 /* avoid REGPARM breakage on x86: */ 1742 prevent_tail_call(ret); 1743 return ret; 1744 } 1745 1746 #ifdef __ARCH_WANT_SYS_WAITPID 1747 1748 /* 1749 * sys_waitpid() remains for compatibility. waitpid() should be 1750 * implemented by calling sys_wait4() from libc.a. 1751 */ 1752 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1753 { 1754 return sys_wait4(pid, stat_addr, options, NULL); 1755 } 1756 1757 #endif 1758