1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_io_accounting_ops.h> 53 #include <linux/tracehook.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 67 #include <linux/uaccess.h> 68 #include <asm/unistd.h> 69 #include <asm/pgtable.h> 70 #include <asm/mmu_context.h> 71 72 static void __unhash_process(struct task_struct *p, bool group_dead) 73 { 74 nr_threads--; 75 detach_pid(p, PIDTYPE_PID); 76 if (group_dead) { 77 detach_pid(p, PIDTYPE_TGID); 78 detach_pid(p, PIDTYPE_PGID); 79 detach_pid(p, PIDTYPE_SID); 80 81 list_del_rcu(&p->tasks); 82 list_del_init(&p->sibling); 83 __this_cpu_dec(process_counts); 84 } 85 list_del_rcu(&p->thread_group); 86 list_del_rcu(&p->thread_node); 87 } 88 89 /* 90 * This function expects the tasklist_lock write-locked. 91 */ 92 static void __exit_signal(struct task_struct *tsk) 93 { 94 struct signal_struct *sig = tsk->signal; 95 bool group_dead = thread_group_leader(tsk); 96 struct sighand_struct *sighand; 97 struct tty_struct *uninitialized_var(tty); 98 u64 utime, stime; 99 100 sighand = rcu_dereference_check(tsk->sighand, 101 lockdep_tasklist_lock_is_held()); 102 spin_lock(&sighand->siglock); 103 104 #ifdef CONFIG_POSIX_TIMERS 105 posix_cpu_timers_exit(tsk); 106 if (group_dead) 107 posix_cpu_timers_exit_group(tsk); 108 #endif 109 110 if (group_dead) { 111 tty = sig->tty; 112 sig->tty = NULL; 113 } else { 114 /* 115 * If there is any task waiting for the group exit 116 * then notify it: 117 */ 118 if (sig->notify_count > 0 && !--sig->notify_count) 119 wake_up_process(sig->group_exit_task); 120 121 if (tsk == sig->curr_target) 122 sig->curr_target = next_thread(tsk); 123 } 124 125 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 126 sizeof(unsigned long long)); 127 128 /* 129 * Accumulate here the counters for all threads as they die. We could 130 * skip the group leader because it is the last user of signal_struct, 131 * but we want to avoid the race with thread_group_cputime() which can 132 * see the empty ->thread_head list. 133 */ 134 task_cputime(tsk, &utime, &stime); 135 write_seqlock(&sig->stats_lock); 136 sig->utime += utime; 137 sig->stime += stime; 138 sig->gtime += task_gtime(tsk); 139 sig->min_flt += tsk->min_flt; 140 sig->maj_flt += tsk->maj_flt; 141 sig->nvcsw += tsk->nvcsw; 142 sig->nivcsw += tsk->nivcsw; 143 sig->inblock += task_io_get_inblock(tsk); 144 sig->oublock += task_io_get_oublock(tsk); 145 task_io_accounting_add(&sig->ioac, &tsk->ioac); 146 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 147 sig->nr_threads--; 148 __unhash_process(tsk, group_dead); 149 write_sequnlock(&sig->stats_lock); 150 151 /* 152 * Do this under ->siglock, we can race with another thread 153 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 154 */ 155 flush_sigqueue(&tsk->pending); 156 tsk->sighand = NULL; 157 spin_unlock(&sighand->siglock); 158 159 __cleanup_sighand(sighand); 160 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 161 if (group_dead) { 162 flush_sigqueue(&sig->shared_pending); 163 tty_kref_put(tty); 164 } 165 } 166 167 static void delayed_put_task_struct(struct rcu_head *rhp) 168 { 169 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 170 171 perf_event_delayed_put(tsk); 172 trace_sched_process_free(tsk); 173 put_task_struct(tsk); 174 } 175 176 void put_task_struct_rcu_user(struct task_struct *task) 177 { 178 if (refcount_dec_and_test(&task->rcu_users)) 179 call_rcu(&task->rcu, delayed_put_task_struct); 180 } 181 182 void release_task(struct task_struct *p) 183 { 184 struct task_struct *leader; 185 struct pid *thread_pid; 186 int zap_leader; 187 repeat: 188 /* don't need to get the RCU readlock here - the process is dead and 189 * can't be modifying its own credentials. But shut RCU-lockdep up */ 190 rcu_read_lock(); 191 atomic_dec(&__task_cred(p)->user->processes); 192 rcu_read_unlock(); 193 194 cgroup_release(p); 195 196 write_lock_irq(&tasklist_lock); 197 ptrace_release_task(p); 198 thread_pid = get_pid(p->thread_pid); 199 __exit_signal(p); 200 201 /* 202 * If we are the last non-leader member of the thread 203 * group, and the leader is zombie, then notify the 204 * group leader's parent process. (if it wants notification.) 205 */ 206 zap_leader = 0; 207 leader = p->group_leader; 208 if (leader != p && thread_group_empty(leader) 209 && leader->exit_state == EXIT_ZOMBIE) { 210 /* 211 * If we were the last child thread and the leader has 212 * exited already, and the leader's parent ignores SIGCHLD, 213 * then we are the one who should release the leader. 214 */ 215 zap_leader = do_notify_parent(leader, leader->exit_signal); 216 if (zap_leader) 217 leader->exit_state = EXIT_DEAD; 218 } 219 220 write_unlock_irq(&tasklist_lock); 221 proc_flush_pid(thread_pid); 222 put_pid(thread_pid); 223 release_thread(p); 224 put_task_struct_rcu_user(p); 225 226 p = leader; 227 if (unlikely(zap_leader)) 228 goto repeat; 229 } 230 231 void rcuwait_wake_up(struct rcuwait *w) 232 { 233 struct task_struct *task; 234 235 rcu_read_lock(); 236 237 /* 238 * Order condition vs @task, such that everything prior to the load 239 * of @task is visible. This is the condition as to why the user called 240 * rcuwait_trywake() in the first place. Pairs with set_current_state() 241 * barrier (A) in rcuwait_wait_event(). 242 * 243 * WAIT WAKE 244 * [S] tsk = current [S] cond = true 245 * MB (A) MB (B) 246 * [L] cond [L] tsk 247 */ 248 smp_mb(); /* (B) */ 249 250 task = rcu_dereference(w->task); 251 if (task) 252 wake_up_process(task); 253 rcu_read_unlock(); 254 } 255 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 256 257 /* 258 * Determine if a process group is "orphaned", according to the POSIX 259 * definition in 2.2.2.52. Orphaned process groups are not to be affected 260 * by terminal-generated stop signals. Newly orphaned process groups are 261 * to receive a SIGHUP and a SIGCONT. 262 * 263 * "I ask you, have you ever known what it is to be an orphan?" 264 */ 265 static int will_become_orphaned_pgrp(struct pid *pgrp, 266 struct task_struct *ignored_task) 267 { 268 struct task_struct *p; 269 270 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 271 if ((p == ignored_task) || 272 (p->exit_state && thread_group_empty(p)) || 273 is_global_init(p->real_parent)) 274 continue; 275 276 if (task_pgrp(p->real_parent) != pgrp && 277 task_session(p->real_parent) == task_session(p)) 278 return 0; 279 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 280 281 return 1; 282 } 283 284 int is_current_pgrp_orphaned(void) 285 { 286 int retval; 287 288 read_lock(&tasklist_lock); 289 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 290 read_unlock(&tasklist_lock); 291 292 return retval; 293 } 294 295 static bool has_stopped_jobs(struct pid *pgrp) 296 { 297 struct task_struct *p; 298 299 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 300 if (p->signal->flags & SIGNAL_STOP_STOPPED) 301 return true; 302 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 303 304 return false; 305 } 306 307 /* 308 * Check to see if any process groups have become orphaned as 309 * a result of our exiting, and if they have any stopped jobs, 310 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 311 */ 312 static void 313 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 314 { 315 struct pid *pgrp = task_pgrp(tsk); 316 struct task_struct *ignored_task = tsk; 317 318 if (!parent) 319 /* exit: our father is in a different pgrp than 320 * we are and we were the only connection outside. 321 */ 322 parent = tsk->real_parent; 323 else 324 /* reparent: our child is in a different pgrp than 325 * we are, and it was the only connection outside. 326 */ 327 ignored_task = NULL; 328 329 if (task_pgrp(parent) != pgrp && 330 task_session(parent) == task_session(tsk) && 331 will_become_orphaned_pgrp(pgrp, ignored_task) && 332 has_stopped_jobs(pgrp)) { 333 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 334 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 335 } 336 } 337 338 #ifdef CONFIG_MEMCG 339 /* 340 * A task is exiting. If it owned this mm, find a new owner for the mm. 341 */ 342 void mm_update_next_owner(struct mm_struct *mm) 343 { 344 struct task_struct *c, *g, *p = current; 345 346 retry: 347 /* 348 * If the exiting or execing task is not the owner, it's 349 * someone else's problem. 350 */ 351 if (mm->owner != p) 352 return; 353 /* 354 * The current owner is exiting/execing and there are no other 355 * candidates. Do not leave the mm pointing to a possibly 356 * freed task structure. 357 */ 358 if (atomic_read(&mm->mm_users) <= 1) { 359 WRITE_ONCE(mm->owner, NULL); 360 return; 361 } 362 363 read_lock(&tasklist_lock); 364 /* 365 * Search in the children 366 */ 367 list_for_each_entry(c, &p->children, sibling) { 368 if (c->mm == mm) 369 goto assign_new_owner; 370 } 371 372 /* 373 * Search in the siblings 374 */ 375 list_for_each_entry(c, &p->real_parent->children, sibling) { 376 if (c->mm == mm) 377 goto assign_new_owner; 378 } 379 380 /* 381 * Search through everything else, we should not get here often. 382 */ 383 for_each_process(g) { 384 if (g->flags & PF_KTHREAD) 385 continue; 386 for_each_thread(g, c) { 387 if (c->mm == mm) 388 goto assign_new_owner; 389 if (c->mm) 390 break; 391 } 392 } 393 read_unlock(&tasklist_lock); 394 /* 395 * We found no owner yet mm_users > 1: this implies that we are 396 * most likely racing with swapoff (try_to_unuse()) or /proc or 397 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 398 */ 399 WRITE_ONCE(mm->owner, NULL); 400 return; 401 402 assign_new_owner: 403 BUG_ON(c == p); 404 get_task_struct(c); 405 /* 406 * The task_lock protects c->mm from changing. 407 * We always want mm->owner->mm == mm 408 */ 409 task_lock(c); 410 /* 411 * Delay read_unlock() till we have the task_lock() 412 * to ensure that c does not slip away underneath us 413 */ 414 read_unlock(&tasklist_lock); 415 if (c->mm != mm) { 416 task_unlock(c); 417 put_task_struct(c); 418 goto retry; 419 } 420 WRITE_ONCE(mm->owner, c); 421 task_unlock(c); 422 put_task_struct(c); 423 } 424 #endif /* CONFIG_MEMCG */ 425 426 /* 427 * Turn us into a lazy TLB process if we 428 * aren't already.. 429 */ 430 static void exit_mm(void) 431 { 432 struct mm_struct *mm = current->mm; 433 struct core_state *core_state; 434 435 exit_mm_release(current, mm); 436 if (!mm) 437 return; 438 sync_mm_rss(mm); 439 /* 440 * Serialize with any possible pending coredump. 441 * We must hold mmap_sem around checking core_state 442 * and clearing tsk->mm. The core-inducing thread 443 * will increment ->nr_threads for each thread in the 444 * group with ->mm != NULL. 445 */ 446 down_read(&mm->mmap_sem); 447 core_state = mm->core_state; 448 if (core_state) { 449 struct core_thread self; 450 451 up_read(&mm->mmap_sem); 452 453 self.task = current; 454 self.next = xchg(&core_state->dumper.next, &self); 455 /* 456 * Implies mb(), the result of xchg() must be visible 457 * to core_state->dumper. 458 */ 459 if (atomic_dec_and_test(&core_state->nr_threads)) 460 complete(&core_state->startup); 461 462 for (;;) { 463 set_current_state(TASK_UNINTERRUPTIBLE); 464 if (!self.task) /* see coredump_finish() */ 465 break; 466 freezable_schedule(); 467 } 468 __set_current_state(TASK_RUNNING); 469 down_read(&mm->mmap_sem); 470 } 471 mmgrab(mm); 472 BUG_ON(mm != current->active_mm); 473 /* more a memory barrier than a real lock */ 474 task_lock(current); 475 current->mm = NULL; 476 up_read(&mm->mmap_sem); 477 enter_lazy_tlb(mm, current); 478 task_unlock(current); 479 mm_update_next_owner(mm); 480 mmput(mm); 481 if (test_thread_flag(TIF_MEMDIE)) 482 exit_oom_victim(); 483 } 484 485 static struct task_struct *find_alive_thread(struct task_struct *p) 486 { 487 struct task_struct *t; 488 489 for_each_thread(p, t) { 490 if (!(t->flags & PF_EXITING)) 491 return t; 492 } 493 return NULL; 494 } 495 496 static struct task_struct *find_child_reaper(struct task_struct *father, 497 struct list_head *dead) 498 __releases(&tasklist_lock) 499 __acquires(&tasklist_lock) 500 { 501 struct pid_namespace *pid_ns = task_active_pid_ns(father); 502 struct task_struct *reaper = pid_ns->child_reaper; 503 struct task_struct *p, *n; 504 505 if (likely(reaper != father)) 506 return reaper; 507 508 reaper = find_alive_thread(father); 509 if (reaper) { 510 pid_ns->child_reaper = reaper; 511 return reaper; 512 } 513 514 write_unlock_irq(&tasklist_lock); 515 516 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 517 list_del_init(&p->ptrace_entry); 518 release_task(p); 519 } 520 521 zap_pid_ns_processes(pid_ns); 522 write_lock_irq(&tasklist_lock); 523 524 return father; 525 } 526 527 /* 528 * When we die, we re-parent all our children, and try to: 529 * 1. give them to another thread in our thread group, if such a member exists 530 * 2. give it to the first ancestor process which prctl'd itself as a 531 * child_subreaper for its children (like a service manager) 532 * 3. give it to the init process (PID 1) in our pid namespace 533 */ 534 static struct task_struct *find_new_reaper(struct task_struct *father, 535 struct task_struct *child_reaper) 536 { 537 struct task_struct *thread, *reaper; 538 539 thread = find_alive_thread(father); 540 if (thread) 541 return thread; 542 543 if (father->signal->has_child_subreaper) { 544 unsigned int ns_level = task_pid(father)->level; 545 /* 546 * Find the first ->is_child_subreaper ancestor in our pid_ns. 547 * We can't check reaper != child_reaper to ensure we do not 548 * cross the namespaces, the exiting parent could be injected 549 * by setns() + fork(). 550 * We check pid->level, this is slightly more efficient than 551 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 552 */ 553 for (reaper = father->real_parent; 554 task_pid(reaper)->level == ns_level; 555 reaper = reaper->real_parent) { 556 if (reaper == &init_task) 557 break; 558 if (!reaper->signal->is_child_subreaper) 559 continue; 560 thread = find_alive_thread(reaper); 561 if (thread) 562 return thread; 563 } 564 } 565 566 return child_reaper; 567 } 568 569 /* 570 * Any that need to be release_task'd are put on the @dead list. 571 */ 572 static void reparent_leader(struct task_struct *father, struct task_struct *p, 573 struct list_head *dead) 574 { 575 if (unlikely(p->exit_state == EXIT_DEAD)) 576 return; 577 578 /* We don't want people slaying init. */ 579 p->exit_signal = SIGCHLD; 580 581 /* If it has exited notify the new parent about this child's death. */ 582 if (!p->ptrace && 583 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 584 if (do_notify_parent(p, p->exit_signal)) { 585 p->exit_state = EXIT_DEAD; 586 list_add(&p->ptrace_entry, dead); 587 } 588 } 589 590 kill_orphaned_pgrp(p, father); 591 } 592 593 /* 594 * This does two things: 595 * 596 * A. Make init inherit all the child processes 597 * B. Check to see if any process groups have become orphaned 598 * as a result of our exiting, and if they have any stopped 599 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 600 */ 601 static void forget_original_parent(struct task_struct *father, 602 struct list_head *dead) 603 { 604 struct task_struct *p, *t, *reaper; 605 606 if (unlikely(!list_empty(&father->ptraced))) 607 exit_ptrace(father, dead); 608 609 /* Can drop and reacquire tasklist_lock */ 610 reaper = find_child_reaper(father, dead); 611 if (list_empty(&father->children)) 612 return; 613 614 reaper = find_new_reaper(father, reaper); 615 list_for_each_entry(p, &father->children, sibling) { 616 for_each_thread(p, t) { 617 RCU_INIT_POINTER(t->real_parent, reaper); 618 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 619 if (likely(!t->ptrace)) 620 t->parent = t->real_parent; 621 if (t->pdeath_signal) 622 group_send_sig_info(t->pdeath_signal, 623 SEND_SIG_NOINFO, t, 624 PIDTYPE_TGID); 625 } 626 /* 627 * If this is a threaded reparent there is no need to 628 * notify anyone anything has happened. 629 */ 630 if (!same_thread_group(reaper, father)) 631 reparent_leader(father, p, dead); 632 } 633 list_splice_tail_init(&father->children, &reaper->children); 634 } 635 636 /* 637 * Send signals to all our closest relatives so that they know 638 * to properly mourn us.. 639 */ 640 static void exit_notify(struct task_struct *tsk, int group_dead) 641 { 642 bool autoreap; 643 struct task_struct *p, *n; 644 LIST_HEAD(dead); 645 646 write_lock_irq(&tasklist_lock); 647 forget_original_parent(tsk, &dead); 648 649 if (group_dead) 650 kill_orphaned_pgrp(tsk->group_leader, NULL); 651 652 tsk->exit_state = EXIT_ZOMBIE; 653 if (unlikely(tsk->ptrace)) { 654 int sig = thread_group_leader(tsk) && 655 thread_group_empty(tsk) && 656 !ptrace_reparented(tsk) ? 657 tsk->exit_signal : SIGCHLD; 658 autoreap = do_notify_parent(tsk, sig); 659 } else if (thread_group_leader(tsk)) { 660 autoreap = thread_group_empty(tsk) && 661 do_notify_parent(tsk, tsk->exit_signal); 662 } else { 663 autoreap = true; 664 } 665 666 if (autoreap) { 667 tsk->exit_state = EXIT_DEAD; 668 list_add(&tsk->ptrace_entry, &dead); 669 } 670 671 /* mt-exec, de_thread() is waiting for group leader */ 672 if (unlikely(tsk->signal->notify_count < 0)) 673 wake_up_process(tsk->signal->group_exit_task); 674 write_unlock_irq(&tasklist_lock); 675 676 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 677 list_del_init(&p->ptrace_entry); 678 release_task(p); 679 } 680 } 681 682 #ifdef CONFIG_DEBUG_STACK_USAGE 683 static void check_stack_usage(void) 684 { 685 static DEFINE_SPINLOCK(low_water_lock); 686 static int lowest_to_date = THREAD_SIZE; 687 unsigned long free; 688 689 free = stack_not_used(current); 690 691 if (free >= lowest_to_date) 692 return; 693 694 spin_lock(&low_water_lock); 695 if (free < lowest_to_date) { 696 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 697 current->comm, task_pid_nr(current), free); 698 lowest_to_date = free; 699 } 700 spin_unlock(&low_water_lock); 701 } 702 #else 703 static inline void check_stack_usage(void) {} 704 #endif 705 706 void __noreturn do_exit(long code) 707 { 708 struct task_struct *tsk = current; 709 int group_dead; 710 711 profile_task_exit(tsk); 712 kcov_task_exit(tsk); 713 714 WARN_ON(blk_needs_flush_plug(tsk)); 715 716 if (unlikely(in_interrupt())) 717 panic("Aiee, killing interrupt handler!"); 718 if (unlikely(!tsk->pid)) 719 panic("Attempted to kill the idle task!"); 720 721 /* 722 * If do_exit is called because this processes oopsed, it's possible 723 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 724 * continuing. Amongst other possible reasons, this is to prevent 725 * mm_release()->clear_child_tid() from writing to a user-controlled 726 * kernel address. 727 */ 728 set_fs(USER_DS); 729 730 ptrace_event(PTRACE_EVENT_EXIT, code); 731 732 validate_creds_for_do_exit(tsk); 733 734 /* 735 * We're taking recursive faults here in do_exit. Safest is to just 736 * leave this task alone and wait for reboot. 737 */ 738 if (unlikely(tsk->flags & PF_EXITING)) { 739 pr_alert("Fixing recursive fault but reboot is needed!\n"); 740 futex_exit_recursive(tsk); 741 set_current_state(TASK_UNINTERRUPTIBLE); 742 schedule(); 743 } 744 745 exit_signals(tsk); /* sets PF_EXITING */ 746 747 if (unlikely(in_atomic())) { 748 pr_info("note: %s[%d] exited with preempt_count %d\n", 749 current->comm, task_pid_nr(current), 750 preempt_count()); 751 preempt_count_set(PREEMPT_ENABLED); 752 } 753 754 /* sync mm's RSS info before statistics gathering */ 755 if (tsk->mm) 756 sync_mm_rss(tsk->mm); 757 acct_update_integrals(tsk); 758 group_dead = atomic_dec_and_test(&tsk->signal->live); 759 if (group_dead) { 760 /* 761 * If the last thread of global init has exited, panic 762 * immediately to get a useable coredump. 763 */ 764 if (unlikely(is_global_init(tsk))) 765 panic("Attempted to kill init! exitcode=0x%08x\n", 766 tsk->signal->group_exit_code ?: (int)code); 767 768 #ifdef CONFIG_POSIX_TIMERS 769 hrtimer_cancel(&tsk->signal->real_timer); 770 exit_itimers(tsk->signal); 771 #endif 772 if (tsk->mm) 773 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 774 } 775 acct_collect(code, group_dead); 776 if (group_dead) 777 tty_audit_exit(); 778 audit_free(tsk); 779 780 tsk->exit_code = code; 781 taskstats_exit(tsk, group_dead); 782 783 exit_mm(); 784 785 if (group_dead) 786 acct_process(); 787 trace_sched_process_exit(tsk); 788 789 exit_sem(tsk); 790 exit_shm(tsk); 791 exit_files(tsk); 792 exit_fs(tsk); 793 if (group_dead) 794 disassociate_ctty(1); 795 exit_task_namespaces(tsk); 796 exit_task_work(tsk); 797 exit_thread(tsk); 798 exit_umh(tsk); 799 800 /* 801 * Flush inherited counters to the parent - before the parent 802 * gets woken up by child-exit notifications. 803 * 804 * because of cgroup mode, must be called before cgroup_exit() 805 */ 806 perf_event_exit_task(tsk); 807 808 sched_autogroup_exit_task(tsk); 809 cgroup_exit(tsk); 810 811 /* 812 * FIXME: do that only when needed, using sched_exit tracepoint 813 */ 814 flush_ptrace_hw_breakpoint(tsk); 815 816 exit_tasks_rcu_start(); 817 exit_notify(tsk, group_dead); 818 proc_exit_connector(tsk); 819 mpol_put_task_policy(tsk); 820 #ifdef CONFIG_FUTEX 821 if (unlikely(current->pi_state_cache)) 822 kfree(current->pi_state_cache); 823 #endif 824 /* 825 * Make sure we are holding no locks: 826 */ 827 debug_check_no_locks_held(); 828 829 if (tsk->io_context) 830 exit_io_context(tsk); 831 832 if (tsk->splice_pipe) 833 free_pipe_info(tsk->splice_pipe); 834 835 if (tsk->task_frag.page) 836 put_page(tsk->task_frag.page); 837 838 validate_creds_for_do_exit(tsk); 839 840 check_stack_usage(); 841 preempt_disable(); 842 if (tsk->nr_dirtied) 843 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 844 exit_rcu(); 845 exit_tasks_rcu_finish(); 846 847 lockdep_free_task(tsk); 848 do_task_dead(); 849 } 850 EXPORT_SYMBOL_GPL(do_exit); 851 852 void complete_and_exit(struct completion *comp, long code) 853 { 854 if (comp) 855 complete(comp); 856 857 do_exit(code); 858 } 859 EXPORT_SYMBOL(complete_and_exit); 860 861 SYSCALL_DEFINE1(exit, int, error_code) 862 { 863 do_exit((error_code&0xff)<<8); 864 } 865 866 /* 867 * Take down every thread in the group. This is called by fatal signals 868 * as well as by sys_exit_group (below). 869 */ 870 void 871 do_group_exit(int exit_code) 872 { 873 struct signal_struct *sig = current->signal; 874 875 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 876 877 if (signal_group_exit(sig)) 878 exit_code = sig->group_exit_code; 879 else if (!thread_group_empty(current)) { 880 struct sighand_struct *const sighand = current->sighand; 881 882 spin_lock_irq(&sighand->siglock); 883 if (signal_group_exit(sig)) 884 /* Another thread got here before we took the lock. */ 885 exit_code = sig->group_exit_code; 886 else { 887 sig->group_exit_code = exit_code; 888 sig->flags = SIGNAL_GROUP_EXIT; 889 zap_other_threads(current); 890 } 891 spin_unlock_irq(&sighand->siglock); 892 } 893 894 do_exit(exit_code); 895 /* NOTREACHED */ 896 } 897 898 /* 899 * this kills every thread in the thread group. Note that any externally 900 * wait4()-ing process will get the correct exit code - even if this 901 * thread is not the thread group leader. 902 */ 903 SYSCALL_DEFINE1(exit_group, int, error_code) 904 { 905 do_group_exit((error_code & 0xff) << 8); 906 /* NOTREACHED */ 907 return 0; 908 } 909 910 struct waitid_info { 911 pid_t pid; 912 uid_t uid; 913 int status; 914 int cause; 915 }; 916 917 struct wait_opts { 918 enum pid_type wo_type; 919 int wo_flags; 920 struct pid *wo_pid; 921 922 struct waitid_info *wo_info; 923 int wo_stat; 924 struct rusage *wo_rusage; 925 926 wait_queue_entry_t child_wait; 927 int notask_error; 928 }; 929 930 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 931 { 932 return wo->wo_type == PIDTYPE_MAX || 933 task_pid_type(p, wo->wo_type) == wo->wo_pid; 934 } 935 936 static int 937 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 938 { 939 if (!eligible_pid(wo, p)) 940 return 0; 941 942 /* 943 * Wait for all children (clone and not) if __WALL is set or 944 * if it is traced by us. 945 */ 946 if (ptrace || (wo->wo_flags & __WALL)) 947 return 1; 948 949 /* 950 * Otherwise, wait for clone children *only* if __WCLONE is set; 951 * otherwise, wait for non-clone children *only*. 952 * 953 * Note: a "clone" child here is one that reports to its parent 954 * using a signal other than SIGCHLD, or a non-leader thread which 955 * we can only see if it is traced by us. 956 */ 957 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 958 return 0; 959 960 return 1; 961 } 962 963 /* 964 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 965 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 966 * the lock and this task is uninteresting. If we return nonzero, we have 967 * released the lock and the system call should return. 968 */ 969 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 970 { 971 int state, status; 972 pid_t pid = task_pid_vnr(p); 973 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 974 struct waitid_info *infop; 975 976 if (!likely(wo->wo_flags & WEXITED)) 977 return 0; 978 979 if (unlikely(wo->wo_flags & WNOWAIT)) { 980 status = p->exit_code; 981 get_task_struct(p); 982 read_unlock(&tasklist_lock); 983 sched_annotate_sleep(); 984 if (wo->wo_rusage) 985 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 986 put_task_struct(p); 987 goto out_info; 988 } 989 /* 990 * Move the task's state to DEAD/TRACE, only one thread can do this. 991 */ 992 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 993 EXIT_TRACE : EXIT_DEAD; 994 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 995 return 0; 996 /* 997 * We own this thread, nobody else can reap it. 998 */ 999 read_unlock(&tasklist_lock); 1000 sched_annotate_sleep(); 1001 1002 /* 1003 * Check thread_group_leader() to exclude the traced sub-threads. 1004 */ 1005 if (state == EXIT_DEAD && thread_group_leader(p)) { 1006 struct signal_struct *sig = p->signal; 1007 struct signal_struct *psig = current->signal; 1008 unsigned long maxrss; 1009 u64 tgutime, tgstime; 1010 1011 /* 1012 * The resource counters for the group leader are in its 1013 * own task_struct. Those for dead threads in the group 1014 * are in its signal_struct, as are those for the child 1015 * processes it has previously reaped. All these 1016 * accumulate in the parent's signal_struct c* fields. 1017 * 1018 * We don't bother to take a lock here to protect these 1019 * p->signal fields because the whole thread group is dead 1020 * and nobody can change them. 1021 * 1022 * psig->stats_lock also protects us from our sub-theads 1023 * which can reap other children at the same time. Until 1024 * we change k_getrusage()-like users to rely on this lock 1025 * we have to take ->siglock as well. 1026 * 1027 * We use thread_group_cputime_adjusted() to get times for 1028 * the thread group, which consolidates times for all threads 1029 * in the group including the group leader. 1030 */ 1031 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1032 spin_lock_irq(¤t->sighand->siglock); 1033 write_seqlock(&psig->stats_lock); 1034 psig->cutime += tgutime + sig->cutime; 1035 psig->cstime += tgstime + sig->cstime; 1036 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1037 psig->cmin_flt += 1038 p->min_flt + sig->min_flt + sig->cmin_flt; 1039 psig->cmaj_flt += 1040 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1041 psig->cnvcsw += 1042 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1043 psig->cnivcsw += 1044 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1045 psig->cinblock += 1046 task_io_get_inblock(p) + 1047 sig->inblock + sig->cinblock; 1048 psig->coublock += 1049 task_io_get_oublock(p) + 1050 sig->oublock + sig->coublock; 1051 maxrss = max(sig->maxrss, sig->cmaxrss); 1052 if (psig->cmaxrss < maxrss) 1053 psig->cmaxrss = maxrss; 1054 task_io_accounting_add(&psig->ioac, &p->ioac); 1055 task_io_accounting_add(&psig->ioac, &sig->ioac); 1056 write_sequnlock(&psig->stats_lock); 1057 spin_unlock_irq(¤t->sighand->siglock); 1058 } 1059 1060 if (wo->wo_rusage) 1061 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1062 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1063 ? p->signal->group_exit_code : p->exit_code; 1064 wo->wo_stat = status; 1065 1066 if (state == EXIT_TRACE) { 1067 write_lock_irq(&tasklist_lock); 1068 /* We dropped tasklist, ptracer could die and untrace */ 1069 ptrace_unlink(p); 1070 1071 /* If parent wants a zombie, don't release it now */ 1072 state = EXIT_ZOMBIE; 1073 if (do_notify_parent(p, p->exit_signal)) 1074 state = EXIT_DEAD; 1075 p->exit_state = state; 1076 write_unlock_irq(&tasklist_lock); 1077 } 1078 if (state == EXIT_DEAD) 1079 release_task(p); 1080 1081 out_info: 1082 infop = wo->wo_info; 1083 if (infop) { 1084 if ((status & 0x7f) == 0) { 1085 infop->cause = CLD_EXITED; 1086 infop->status = status >> 8; 1087 } else { 1088 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1089 infop->status = status & 0x7f; 1090 } 1091 infop->pid = pid; 1092 infop->uid = uid; 1093 } 1094 1095 return pid; 1096 } 1097 1098 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1099 { 1100 if (ptrace) { 1101 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1102 return &p->exit_code; 1103 } else { 1104 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1105 return &p->signal->group_exit_code; 1106 } 1107 return NULL; 1108 } 1109 1110 /** 1111 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1112 * @wo: wait options 1113 * @ptrace: is the wait for ptrace 1114 * @p: task to wait for 1115 * 1116 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1117 * 1118 * CONTEXT: 1119 * read_lock(&tasklist_lock), which is released if return value is 1120 * non-zero. Also, grabs and releases @p->sighand->siglock. 1121 * 1122 * RETURNS: 1123 * 0 if wait condition didn't exist and search for other wait conditions 1124 * should continue. Non-zero return, -errno on failure and @p's pid on 1125 * success, implies that tasklist_lock is released and wait condition 1126 * search should terminate. 1127 */ 1128 static int wait_task_stopped(struct wait_opts *wo, 1129 int ptrace, struct task_struct *p) 1130 { 1131 struct waitid_info *infop; 1132 int exit_code, *p_code, why; 1133 uid_t uid = 0; /* unneeded, required by compiler */ 1134 pid_t pid; 1135 1136 /* 1137 * Traditionally we see ptrace'd stopped tasks regardless of options. 1138 */ 1139 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1140 return 0; 1141 1142 if (!task_stopped_code(p, ptrace)) 1143 return 0; 1144 1145 exit_code = 0; 1146 spin_lock_irq(&p->sighand->siglock); 1147 1148 p_code = task_stopped_code(p, ptrace); 1149 if (unlikely(!p_code)) 1150 goto unlock_sig; 1151 1152 exit_code = *p_code; 1153 if (!exit_code) 1154 goto unlock_sig; 1155 1156 if (!unlikely(wo->wo_flags & WNOWAIT)) 1157 *p_code = 0; 1158 1159 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1160 unlock_sig: 1161 spin_unlock_irq(&p->sighand->siglock); 1162 if (!exit_code) 1163 return 0; 1164 1165 /* 1166 * Now we are pretty sure this task is interesting. 1167 * Make sure it doesn't get reaped out from under us while we 1168 * give up the lock and then examine it below. We don't want to 1169 * keep holding onto the tasklist_lock while we call getrusage and 1170 * possibly take page faults for user memory. 1171 */ 1172 get_task_struct(p); 1173 pid = task_pid_vnr(p); 1174 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1175 read_unlock(&tasklist_lock); 1176 sched_annotate_sleep(); 1177 if (wo->wo_rusage) 1178 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1179 put_task_struct(p); 1180 1181 if (likely(!(wo->wo_flags & WNOWAIT))) 1182 wo->wo_stat = (exit_code << 8) | 0x7f; 1183 1184 infop = wo->wo_info; 1185 if (infop) { 1186 infop->cause = why; 1187 infop->status = exit_code; 1188 infop->pid = pid; 1189 infop->uid = uid; 1190 } 1191 return pid; 1192 } 1193 1194 /* 1195 * Handle do_wait work for one task in a live, non-stopped state. 1196 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1197 * the lock and this task is uninteresting. If we return nonzero, we have 1198 * released the lock and the system call should return. 1199 */ 1200 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1201 { 1202 struct waitid_info *infop; 1203 pid_t pid; 1204 uid_t uid; 1205 1206 if (!unlikely(wo->wo_flags & WCONTINUED)) 1207 return 0; 1208 1209 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1210 return 0; 1211 1212 spin_lock_irq(&p->sighand->siglock); 1213 /* Re-check with the lock held. */ 1214 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1215 spin_unlock_irq(&p->sighand->siglock); 1216 return 0; 1217 } 1218 if (!unlikely(wo->wo_flags & WNOWAIT)) 1219 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1220 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1221 spin_unlock_irq(&p->sighand->siglock); 1222 1223 pid = task_pid_vnr(p); 1224 get_task_struct(p); 1225 read_unlock(&tasklist_lock); 1226 sched_annotate_sleep(); 1227 if (wo->wo_rusage) 1228 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1229 put_task_struct(p); 1230 1231 infop = wo->wo_info; 1232 if (!infop) { 1233 wo->wo_stat = 0xffff; 1234 } else { 1235 infop->cause = CLD_CONTINUED; 1236 infop->pid = pid; 1237 infop->uid = uid; 1238 infop->status = SIGCONT; 1239 } 1240 return pid; 1241 } 1242 1243 /* 1244 * Consider @p for a wait by @parent. 1245 * 1246 * -ECHILD should be in ->notask_error before the first call. 1247 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1248 * Returns zero if the search for a child should continue; 1249 * then ->notask_error is 0 if @p is an eligible child, 1250 * or still -ECHILD. 1251 */ 1252 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1253 struct task_struct *p) 1254 { 1255 /* 1256 * We can race with wait_task_zombie() from another thread. 1257 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1258 * can't confuse the checks below. 1259 */ 1260 int exit_state = READ_ONCE(p->exit_state); 1261 int ret; 1262 1263 if (unlikely(exit_state == EXIT_DEAD)) 1264 return 0; 1265 1266 ret = eligible_child(wo, ptrace, p); 1267 if (!ret) 1268 return ret; 1269 1270 if (unlikely(exit_state == EXIT_TRACE)) { 1271 /* 1272 * ptrace == 0 means we are the natural parent. In this case 1273 * we should clear notask_error, debugger will notify us. 1274 */ 1275 if (likely(!ptrace)) 1276 wo->notask_error = 0; 1277 return 0; 1278 } 1279 1280 if (likely(!ptrace) && unlikely(p->ptrace)) { 1281 /* 1282 * If it is traced by its real parent's group, just pretend 1283 * the caller is ptrace_do_wait() and reap this child if it 1284 * is zombie. 1285 * 1286 * This also hides group stop state from real parent; otherwise 1287 * a single stop can be reported twice as group and ptrace stop. 1288 * If a ptracer wants to distinguish these two events for its 1289 * own children it should create a separate process which takes 1290 * the role of real parent. 1291 */ 1292 if (!ptrace_reparented(p)) 1293 ptrace = 1; 1294 } 1295 1296 /* slay zombie? */ 1297 if (exit_state == EXIT_ZOMBIE) { 1298 /* we don't reap group leaders with subthreads */ 1299 if (!delay_group_leader(p)) { 1300 /* 1301 * A zombie ptracee is only visible to its ptracer. 1302 * Notification and reaping will be cascaded to the 1303 * real parent when the ptracer detaches. 1304 */ 1305 if (unlikely(ptrace) || likely(!p->ptrace)) 1306 return wait_task_zombie(wo, p); 1307 } 1308 1309 /* 1310 * Allow access to stopped/continued state via zombie by 1311 * falling through. Clearing of notask_error is complex. 1312 * 1313 * When !@ptrace: 1314 * 1315 * If WEXITED is set, notask_error should naturally be 1316 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1317 * so, if there are live subthreads, there are events to 1318 * wait for. If all subthreads are dead, it's still safe 1319 * to clear - this function will be called again in finite 1320 * amount time once all the subthreads are released and 1321 * will then return without clearing. 1322 * 1323 * When @ptrace: 1324 * 1325 * Stopped state is per-task and thus can't change once the 1326 * target task dies. Only continued and exited can happen. 1327 * Clear notask_error if WCONTINUED | WEXITED. 1328 */ 1329 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1330 wo->notask_error = 0; 1331 } else { 1332 /* 1333 * @p is alive and it's gonna stop, continue or exit, so 1334 * there always is something to wait for. 1335 */ 1336 wo->notask_error = 0; 1337 } 1338 1339 /* 1340 * Wait for stopped. Depending on @ptrace, different stopped state 1341 * is used and the two don't interact with each other. 1342 */ 1343 ret = wait_task_stopped(wo, ptrace, p); 1344 if (ret) 1345 return ret; 1346 1347 /* 1348 * Wait for continued. There's only one continued state and the 1349 * ptracer can consume it which can confuse the real parent. Don't 1350 * use WCONTINUED from ptracer. You don't need or want it. 1351 */ 1352 return wait_task_continued(wo, p); 1353 } 1354 1355 /* 1356 * Do the work of do_wait() for one thread in the group, @tsk. 1357 * 1358 * -ECHILD should be in ->notask_error before the first call. 1359 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1360 * Returns zero if the search for a child should continue; then 1361 * ->notask_error is 0 if there were any eligible children, 1362 * or still -ECHILD. 1363 */ 1364 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1365 { 1366 struct task_struct *p; 1367 1368 list_for_each_entry(p, &tsk->children, sibling) { 1369 int ret = wait_consider_task(wo, 0, p); 1370 1371 if (ret) 1372 return ret; 1373 } 1374 1375 return 0; 1376 } 1377 1378 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1379 { 1380 struct task_struct *p; 1381 1382 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1383 int ret = wait_consider_task(wo, 1, p); 1384 1385 if (ret) 1386 return ret; 1387 } 1388 1389 return 0; 1390 } 1391 1392 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1393 int sync, void *key) 1394 { 1395 struct wait_opts *wo = container_of(wait, struct wait_opts, 1396 child_wait); 1397 struct task_struct *p = key; 1398 1399 if (!eligible_pid(wo, p)) 1400 return 0; 1401 1402 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1403 return 0; 1404 1405 return default_wake_function(wait, mode, sync, key); 1406 } 1407 1408 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1409 { 1410 __wake_up_sync_key(&parent->signal->wait_chldexit, 1411 TASK_INTERRUPTIBLE, p); 1412 } 1413 1414 static long do_wait(struct wait_opts *wo) 1415 { 1416 struct task_struct *tsk; 1417 int retval; 1418 1419 trace_sched_process_wait(wo->wo_pid); 1420 1421 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1422 wo->child_wait.private = current; 1423 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1424 repeat: 1425 /* 1426 * If there is nothing that can match our criteria, just get out. 1427 * We will clear ->notask_error to zero if we see any child that 1428 * might later match our criteria, even if we are not able to reap 1429 * it yet. 1430 */ 1431 wo->notask_error = -ECHILD; 1432 if ((wo->wo_type < PIDTYPE_MAX) && 1433 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1434 goto notask; 1435 1436 set_current_state(TASK_INTERRUPTIBLE); 1437 read_lock(&tasklist_lock); 1438 tsk = current; 1439 do { 1440 retval = do_wait_thread(wo, tsk); 1441 if (retval) 1442 goto end; 1443 1444 retval = ptrace_do_wait(wo, tsk); 1445 if (retval) 1446 goto end; 1447 1448 if (wo->wo_flags & __WNOTHREAD) 1449 break; 1450 } while_each_thread(current, tsk); 1451 read_unlock(&tasklist_lock); 1452 1453 notask: 1454 retval = wo->notask_error; 1455 if (!retval && !(wo->wo_flags & WNOHANG)) { 1456 retval = -ERESTARTSYS; 1457 if (!signal_pending(current)) { 1458 schedule(); 1459 goto repeat; 1460 } 1461 } 1462 end: 1463 __set_current_state(TASK_RUNNING); 1464 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1465 return retval; 1466 } 1467 1468 static struct pid *pidfd_get_pid(unsigned int fd) 1469 { 1470 struct fd f; 1471 struct pid *pid; 1472 1473 f = fdget(fd); 1474 if (!f.file) 1475 return ERR_PTR(-EBADF); 1476 1477 pid = pidfd_pid(f.file); 1478 if (!IS_ERR(pid)) 1479 get_pid(pid); 1480 1481 fdput(f); 1482 return pid; 1483 } 1484 1485 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1486 int options, struct rusage *ru) 1487 { 1488 struct wait_opts wo; 1489 struct pid *pid = NULL; 1490 enum pid_type type; 1491 long ret; 1492 1493 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1494 __WNOTHREAD|__WCLONE|__WALL)) 1495 return -EINVAL; 1496 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1497 return -EINVAL; 1498 1499 switch (which) { 1500 case P_ALL: 1501 type = PIDTYPE_MAX; 1502 break; 1503 case P_PID: 1504 type = PIDTYPE_PID; 1505 if (upid <= 0) 1506 return -EINVAL; 1507 1508 pid = find_get_pid(upid); 1509 break; 1510 case P_PGID: 1511 type = PIDTYPE_PGID; 1512 if (upid < 0) 1513 return -EINVAL; 1514 1515 if (upid) 1516 pid = find_get_pid(upid); 1517 else 1518 pid = get_task_pid(current, PIDTYPE_PGID); 1519 break; 1520 case P_PIDFD: 1521 type = PIDTYPE_PID; 1522 if (upid < 0) 1523 return -EINVAL; 1524 1525 pid = pidfd_get_pid(upid); 1526 if (IS_ERR(pid)) 1527 return PTR_ERR(pid); 1528 break; 1529 default: 1530 return -EINVAL; 1531 } 1532 1533 wo.wo_type = type; 1534 wo.wo_pid = pid; 1535 wo.wo_flags = options; 1536 wo.wo_info = infop; 1537 wo.wo_rusage = ru; 1538 ret = do_wait(&wo); 1539 1540 put_pid(pid); 1541 return ret; 1542 } 1543 1544 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1545 infop, int, options, struct rusage __user *, ru) 1546 { 1547 struct rusage r; 1548 struct waitid_info info = {.status = 0}; 1549 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1550 int signo = 0; 1551 1552 if (err > 0) { 1553 signo = SIGCHLD; 1554 err = 0; 1555 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1556 return -EFAULT; 1557 } 1558 if (!infop) 1559 return err; 1560 1561 if (!user_access_begin(infop, sizeof(*infop))) 1562 return -EFAULT; 1563 1564 unsafe_put_user(signo, &infop->si_signo, Efault); 1565 unsafe_put_user(0, &infop->si_errno, Efault); 1566 unsafe_put_user(info.cause, &infop->si_code, Efault); 1567 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1568 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1569 unsafe_put_user(info.status, &infop->si_status, Efault); 1570 user_access_end(); 1571 return err; 1572 Efault: 1573 user_access_end(); 1574 return -EFAULT; 1575 } 1576 1577 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1578 struct rusage *ru) 1579 { 1580 struct wait_opts wo; 1581 struct pid *pid = NULL; 1582 enum pid_type type; 1583 long ret; 1584 1585 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1586 __WNOTHREAD|__WCLONE|__WALL)) 1587 return -EINVAL; 1588 1589 /* -INT_MIN is not defined */ 1590 if (upid == INT_MIN) 1591 return -ESRCH; 1592 1593 if (upid == -1) 1594 type = PIDTYPE_MAX; 1595 else if (upid < 0) { 1596 type = PIDTYPE_PGID; 1597 pid = find_get_pid(-upid); 1598 } else if (upid == 0) { 1599 type = PIDTYPE_PGID; 1600 pid = get_task_pid(current, PIDTYPE_PGID); 1601 } else /* upid > 0 */ { 1602 type = PIDTYPE_PID; 1603 pid = find_get_pid(upid); 1604 } 1605 1606 wo.wo_type = type; 1607 wo.wo_pid = pid; 1608 wo.wo_flags = options | WEXITED; 1609 wo.wo_info = NULL; 1610 wo.wo_stat = 0; 1611 wo.wo_rusage = ru; 1612 ret = do_wait(&wo); 1613 put_pid(pid); 1614 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1615 ret = -EFAULT; 1616 1617 return ret; 1618 } 1619 1620 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1621 int, options, struct rusage __user *, ru) 1622 { 1623 struct rusage r; 1624 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1625 1626 if (err > 0) { 1627 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1628 return -EFAULT; 1629 } 1630 return err; 1631 } 1632 1633 #ifdef __ARCH_WANT_SYS_WAITPID 1634 1635 /* 1636 * sys_waitpid() remains for compatibility. waitpid() should be 1637 * implemented by calling sys_wait4() from libc.a. 1638 */ 1639 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1640 { 1641 return kernel_wait4(pid, stat_addr, options, NULL); 1642 } 1643 1644 #endif 1645 1646 #ifdef CONFIG_COMPAT 1647 COMPAT_SYSCALL_DEFINE4(wait4, 1648 compat_pid_t, pid, 1649 compat_uint_t __user *, stat_addr, 1650 int, options, 1651 struct compat_rusage __user *, ru) 1652 { 1653 struct rusage r; 1654 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1655 if (err > 0) { 1656 if (ru && put_compat_rusage(&r, ru)) 1657 return -EFAULT; 1658 } 1659 return err; 1660 } 1661 1662 COMPAT_SYSCALL_DEFINE5(waitid, 1663 int, which, compat_pid_t, pid, 1664 struct compat_siginfo __user *, infop, int, options, 1665 struct compat_rusage __user *, uru) 1666 { 1667 struct rusage ru; 1668 struct waitid_info info = {.status = 0}; 1669 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1670 int signo = 0; 1671 if (err > 0) { 1672 signo = SIGCHLD; 1673 err = 0; 1674 if (uru) { 1675 /* kernel_waitid() overwrites everything in ru */ 1676 if (COMPAT_USE_64BIT_TIME) 1677 err = copy_to_user(uru, &ru, sizeof(ru)); 1678 else 1679 err = put_compat_rusage(&ru, uru); 1680 if (err) 1681 return -EFAULT; 1682 } 1683 } 1684 1685 if (!infop) 1686 return err; 1687 1688 if (!user_access_begin(infop, sizeof(*infop))) 1689 return -EFAULT; 1690 1691 unsafe_put_user(signo, &infop->si_signo, Efault); 1692 unsafe_put_user(0, &infop->si_errno, Efault); 1693 unsafe_put_user(info.cause, &infop->si_code, Efault); 1694 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1695 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1696 unsafe_put_user(info.status, &infop->si_status, Efault); 1697 user_access_end(); 1698 return err; 1699 Efault: 1700 user_access_end(); 1701 return -EFAULT; 1702 } 1703 #endif 1704 1705 __weak void abort(void) 1706 { 1707 BUG(); 1708 1709 /* if that doesn't kill us, halt */ 1710 panic("Oops failed to kill thread"); 1711 } 1712 EXPORT_SYMBOL(abort); 1713