1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/blkdev.h> 53 #include <linux/task_work.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/kmsan.h> 64 #include <linux/random.h> 65 #include <linux/rcuwait.h> 66 #include <linux/compat.h> 67 #include <linux/io_uring.h> 68 #include <linux/kprobes.h> 69 #include <linux/rethook.h> 70 71 #include <linux/uaccess.h> 72 #include <asm/unistd.h> 73 #include <asm/mmu_context.h> 74 75 static void __unhash_process(struct task_struct *p, bool group_dead) 76 { 77 nr_threads--; 78 detach_pid(p, PIDTYPE_PID); 79 if (group_dead) { 80 detach_pid(p, PIDTYPE_TGID); 81 detach_pid(p, PIDTYPE_PGID); 82 detach_pid(p, PIDTYPE_SID); 83 84 list_del_rcu(&p->tasks); 85 list_del_init(&p->sibling); 86 __this_cpu_dec(process_counts); 87 } 88 list_del_rcu(&p->thread_group); 89 list_del_rcu(&p->thread_node); 90 } 91 92 /* 93 * This function expects the tasklist_lock write-locked. 94 */ 95 static void __exit_signal(struct task_struct *tsk) 96 { 97 struct signal_struct *sig = tsk->signal; 98 bool group_dead = thread_group_leader(tsk); 99 struct sighand_struct *sighand; 100 struct tty_struct *tty; 101 u64 utime, stime; 102 103 sighand = rcu_dereference_check(tsk->sighand, 104 lockdep_tasklist_lock_is_held()); 105 spin_lock(&sighand->siglock); 106 107 #ifdef CONFIG_POSIX_TIMERS 108 posix_cpu_timers_exit(tsk); 109 if (group_dead) 110 posix_cpu_timers_exit_group(tsk); 111 #endif 112 113 if (group_dead) { 114 tty = sig->tty; 115 sig->tty = NULL; 116 } else { 117 /* 118 * If there is any task waiting for the group exit 119 * then notify it: 120 */ 121 if (sig->notify_count > 0 && !--sig->notify_count) 122 wake_up_process(sig->group_exec_task); 123 124 if (tsk == sig->curr_target) 125 sig->curr_target = next_thread(tsk); 126 } 127 128 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 129 sizeof(unsigned long long)); 130 131 /* 132 * Accumulate here the counters for all threads as they die. We could 133 * skip the group leader because it is the last user of signal_struct, 134 * but we want to avoid the race with thread_group_cputime() which can 135 * see the empty ->thread_head list. 136 */ 137 task_cputime(tsk, &utime, &stime); 138 write_seqlock(&sig->stats_lock); 139 sig->utime += utime; 140 sig->stime += stime; 141 sig->gtime += task_gtime(tsk); 142 sig->min_flt += tsk->min_flt; 143 sig->maj_flt += tsk->maj_flt; 144 sig->nvcsw += tsk->nvcsw; 145 sig->nivcsw += tsk->nivcsw; 146 sig->inblock += task_io_get_inblock(tsk); 147 sig->oublock += task_io_get_oublock(tsk); 148 task_io_accounting_add(&sig->ioac, &tsk->ioac); 149 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 150 sig->nr_threads--; 151 __unhash_process(tsk, group_dead); 152 write_sequnlock(&sig->stats_lock); 153 154 /* 155 * Do this under ->siglock, we can race with another thread 156 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 157 */ 158 flush_sigqueue(&tsk->pending); 159 tsk->sighand = NULL; 160 spin_unlock(&sighand->siglock); 161 162 __cleanup_sighand(sighand); 163 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 164 if (group_dead) { 165 flush_sigqueue(&sig->shared_pending); 166 tty_kref_put(tty); 167 } 168 } 169 170 static void delayed_put_task_struct(struct rcu_head *rhp) 171 { 172 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 173 174 kprobe_flush_task(tsk); 175 rethook_flush_task(tsk); 176 perf_event_delayed_put(tsk); 177 trace_sched_process_free(tsk); 178 put_task_struct(tsk); 179 } 180 181 void put_task_struct_rcu_user(struct task_struct *task) 182 { 183 if (refcount_dec_and_test(&task->rcu_users)) 184 call_rcu(&task->rcu, delayed_put_task_struct); 185 } 186 187 void __weak release_thread(struct task_struct *dead_task) 188 { 189 } 190 191 void release_task(struct task_struct *p) 192 { 193 struct task_struct *leader; 194 struct pid *thread_pid; 195 int zap_leader; 196 repeat: 197 /* don't need to get the RCU readlock here - the process is dead and 198 * can't be modifying its own credentials. But shut RCU-lockdep up */ 199 rcu_read_lock(); 200 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 201 rcu_read_unlock(); 202 203 cgroup_release(p); 204 205 write_lock_irq(&tasklist_lock); 206 ptrace_release_task(p); 207 thread_pid = get_pid(p->thread_pid); 208 __exit_signal(p); 209 210 /* 211 * If we are the last non-leader member of the thread 212 * group, and the leader is zombie, then notify the 213 * group leader's parent process. (if it wants notification.) 214 */ 215 zap_leader = 0; 216 leader = p->group_leader; 217 if (leader != p && thread_group_empty(leader) 218 && leader->exit_state == EXIT_ZOMBIE) { 219 /* 220 * If we were the last child thread and the leader has 221 * exited already, and the leader's parent ignores SIGCHLD, 222 * then we are the one who should release the leader. 223 */ 224 zap_leader = do_notify_parent(leader, leader->exit_signal); 225 if (zap_leader) 226 leader->exit_state = EXIT_DEAD; 227 } 228 229 write_unlock_irq(&tasklist_lock); 230 seccomp_filter_release(p); 231 proc_flush_pid(thread_pid); 232 put_pid(thread_pid); 233 release_thread(p); 234 put_task_struct_rcu_user(p); 235 236 p = leader; 237 if (unlikely(zap_leader)) 238 goto repeat; 239 } 240 241 int rcuwait_wake_up(struct rcuwait *w) 242 { 243 int ret = 0; 244 struct task_struct *task; 245 246 rcu_read_lock(); 247 248 /* 249 * Order condition vs @task, such that everything prior to the load 250 * of @task is visible. This is the condition as to why the user called 251 * rcuwait_wake() in the first place. Pairs with set_current_state() 252 * barrier (A) in rcuwait_wait_event(). 253 * 254 * WAIT WAKE 255 * [S] tsk = current [S] cond = true 256 * MB (A) MB (B) 257 * [L] cond [L] tsk 258 */ 259 smp_mb(); /* (B) */ 260 261 task = rcu_dereference(w->task); 262 if (task) 263 ret = wake_up_process(task); 264 rcu_read_unlock(); 265 266 return ret; 267 } 268 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 269 270 /* 271 * Determine if a process group is "orphaned", according to the POSIX 272 * definition in 2.2.2.52. Orphaned process groups are not to be affected 273 * by terminal-generated stop signals. Newly orphaned process groups are 274 * to receive a SIGHUP and a SIGCONT. 275 * 276 * "I ask you, have you ever known what it is to be an orphan?" 277 */ 278 static int will_become_orphaned_pgrp(struct pid *pgrp, 279 struct task_struct *ignored_task) 280 { 281 struct task_struct *p; 282 283 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 284 if ((p == ignored_task) || 285 (p->exit_state && thread_group_empty(p)) || 286 is_global_init(p->real_parent)) 287 continue; 288 289 if (task_pgrp(p->real_parent) != pgrp && 290 task_session(p->real_parent) == task_session(p)) 291 return 0; 292 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 293 294 return 1; 295 } 296 297 int is_current_pgrp_orphaned(void) 298 { 299 int retval; 300 301 read_lock(&tasklist_lock); 302 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 303 read_unlock(&tasklist_lock); 304 305 return retval; 306 } 307 308 static bool has_stopped_jobs(struct pid *pgrp) 309 { 310 struct task_struct *p; 311 312 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 313 if (p->signal->flags & SIGNAL_STOP_STOPPED) 314 return true; 315 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 316 317 return false; 318 } 319 320 /* 321 * Check to see if any process groups have become orphaned as 322 * a result of our exiting, and if they have any stopped jobs, 323 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 324 */ 325 static void 326 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 327 { 328 struct pid *pgrp = task_pgrp(tsk); 329 struct task_struct *ignored_task = tsk; 330 331 if (!parent) 332 /* exit: our father is in a different pgrp than 333 * we are and we were the only connection outside. 334 */ 335 parent = tsk->real_parent; 336 else 337 /* reparent: our child is in a different pgrp than 338 * we are, and it was the only connection outside. 339 */ 340 ignored_task = NULL; 341 342 if (task_pgrp(parent) != pgrp && 343 task_session(parent) == task_session(tsk) && 344 will_become_orphaned_pgrp(pgrp, ignored_task) && 345 has_stopped_jobs(pgrp)) { 346 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 347 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 348 } 349 } 350 351 static void coredump_task_exit(struct task_struct *tsk) 352 { 353 struct core_state *core_state; 354 355 /* 356 * Serialize with any possible pending coredump. 357 * We must hold siglock around checking core_state 358 * and setting PF_POSTCOREDUMP. The core-inducing thread 359 * will increment ->nr_threads for each thread in the 360 * group without PF_POSTCOREDUMP set. 361 */ 362 spin_lock_irq(&tsk->sighand->siglock); 363 tsk->flags |= PF_POSTCOREDUMP; 364 core_state = tsk->signal->core_state; 365 spin_unlock_irq(&tsk->sighand->siglock); 366 if (core_state) { 367 struct core_thread self; 368 369 self.task = current; 370 if (self.task->flags & PF_SIGNALED) 371 self.next = xchg(&core_state->dumper.next, &self); 372 else 373 self.task = NULL; 374 /* 375 * Implies mb(), the result of xchg() must be visible 376 * to core_state->dumper. 377 */ 378 if (atomic_dec_and_test(&core_state->nr_threads)) 379 complete(&core_state->startup); 380 381 for (;;) { 382 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE); 383 if (!self.task) /* see coredump_finish() */ 384 break; 385 schedule(); 386 } 387 __set_current_state(TASK_RUNNING); 388 } 389 } 390 391 #ifdef CONFIG_MEMCG 392 /* 393 * A task is exiting. If it owned this mm, find a new owner for the mm. 394 */ 395 void mm_update_next_owner(struct mm_struct *mm) 396 { 397 struct task_struct *c, *g, *p = current; 398 399 retry: 400 /* 401 * If the exiting or execing task is not the owner, it's 402 * someone else's problem. 403 */ 404 if (mm->owner != p) 405 return; 406 /* 407 * The current owner is exiting/execing and there are no other 408 * candidates. Do not leave the mm pointing to a possibly 409 * freed task structure. 410 */ 411 if (atomic_read(&mm->mm_users) <= 1) { 412 WRITE_ONCE(mm->owner, NULL); 413 return; 414 } 415 416 read_lock(&tasklist_lock); 417 /* 418 * Search in the children 419 */ 420 list_for_each_entry(c, &p->children, sibling) { 421 if (c->mm == mm) 422 goto assign_new_owner; 423 } 424 425 /* 426 * Search in the siblings 427 */ 428 list_for_each_entry(c, &p->real_parent->children, sibling) { 429 if (c->mm == mm) 430 goto assign_new_owner; 431 } 432 433 /* 434 * Search through everything else, we should not get here often. 435 */ 436 for_each_process(g) { 437 if (g->flags & PF_KTHREAD) 438 continue; 439 for_each_thread(g, c) { 440 if (c->mm == mm) 441 goto assign_new_owner; 442 if (c->mm) 443 break; 444 } 445 } 446 read_unlock(&tasklist_lock); 447 /* 448 * We found no owner yet mm_users > 1: this implies that we are 449 * most likely racing with swapoff (try_to_unuse()) or /proc or 450 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 451 */ 452 WRITE_ONCE(mm->owner, NULL); 453 return; 454 455 assign_new_owner: 456 BUG_ON(c == p); 457 get_task_struct(c); 458 /* 459 * The task_lock protects c->mm from changing. 460 * We always want mm->owner->mm == mm 461 */ 462 task_lock(c); 463 /* 464 * Delay read_unlock() till we have the task_lock() 465 * to ensure that c does not slip away underneath us 466 */ 467 read_unlock(&tasklist_lock); 468 if (c->mm != mm) { 469 task_unlock(c); 470 put_task_struct(c); 471 goto retry; 472 } 473 WRITE_ONCE(mm->owner, c); 474 lru_gen_migrate_mm(mm); 475 task_unlock(c); 476 put_task_struct(c); 477 } 478 #endif /* CONFIG_MEMCG */ 479 480 /* 481 * Turn us into a lazy TLB process if we 482 * aren't already.. 483 */ 484 static void exit_mm(void) 485 { 486 struct mm_struct *mm = current->mm; 487 488 exit_mm_release(current, mm); 489 if (!mm) 490 return; 491 sync_mm_rss(mm); 492 mmap_read_lock(mm); 493 mmgrab(mm); 494 BUG_ON(mm != current->active_mm); 495 /* more a memory barrier than a real lock */ 496 task_lock(current); 497 /* 498 * When a thread stops operating on an address space, the loop 499 * in membarrier_private_expedited() may not observe that 500 * tsk->mm, and the loop in membarrier_global_expedited() may 501 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 502 * rq->membarrier_state, so those would not issue an IPI. 503 * Membarrier requires a memory barrier after accessing 504 * user-space memory, before clearing tsk->mm or the 505 * rq->membarrier_state. 506 */ 507 smp_mb__after_spinlock(); 508 local_irq_disable(); 509 current->mm = NULL; 510 membarrier_update_current_mm(NULL); 511 enter_lazy_tlb(mm, current); 512 local_irq_enable(); 513 task_unlock(current); 514 mmap_read_unlock(mm); 515 mm_update_next_owner(mm); 516 mmput(mm); 517 if (test_thread_flag(TIF_MEMDIE)) 518 exit_oom_victim(); 519 } 520 521 static struct task_struct *find_alive_thread(struct task_struct *p) 522 { 523 struct task_struct *t; 524 525 for_each_thread(p, t) { 526 if (!(t->flags & PF_EXITING)) 527 return t; 528 } 529 return NULL; 530 } 531 532 static struct task_struct *find_child_reaper(struct task_struct *father, 533 struct list_head *dead) 534 __releases(&tasklist_lock) 535 __acquires(&tasklist_lock) 536 { 537 struct pid_namespace *pid_ns = task_active_pid_ns(father); 538 struct task_struct *reaper = pid_ns->child_reaper; 539 struct task_struct *p, *n; 540 541 if (likely(reaper != father)) 542 return reaper; 543 544 reaper = find_alive_thread(father); 545 if (reaper) { 546 pid_ns->child_reaper = reaper; 547 return reaper; 548 } 549 550 write_unlock_irq(&tasklist_lock); 551 552 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 553 list_del_init(&p->ptrace_entry); 554 release_task(p); 555 } 556 557 zap_pid_ns_processes(pid_ns); 558 write_lock_irq(&tasklist_lock); 559 560 return father; 561 } 562 563 /* 564 * When we die, we re-parent all our children, and try to: 565 * 1. give them to another thread in our thread group, if such a member exists 566 * 2. give it to the first ancestor process which prctl'd itself as a 567 * child_subreaper for its children (like a service manager) 568 * 3. give it to the init process (PID 1) in our pid namespace 569 */ 570 static struct task_struct *find_new_reaper(struct task_struct *father, 571 struct task_struct *child_reaper) 572 { 573 struct task_struct *thread, *reaper; 574 575 thread = find_alive_thread(father); 576 if (thread) 577 return thread; 578 579 if (father->signal->has_child_subreaper) { 580 unsigned int ns_level = task_pid(father)->level; 581 /* 582 * Find the first ->is_child_subreaper ancestor in our pid_ns. 583 * We can't check reaper != child_reaper to ensure we do not 584 * cross the namespaces, the exiting parent could be injected 585 * by setns() + fork(). 586 * We check pid->level, this is slightly more efficient than 587 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 588 */ 589 for (reaper = father->real_parent; 590 task_pid(reaper)->level == ns_level; 591 reaper = reaper->real_parent) { 592 if (reaper == &init_task) 593 break; 594 if (!reaper->signal->is_child_subreaper) 595 continue; 596 thread = find_alive_thread(reaper); 597 if (thread) 598 return thread; 599 } 600 } 601 602 return child_reaper; 603 } 604 605 /* 606 * Any that need to be release_task'd are put on the @dead list. 607 */ 608 static void reparent_leader(struct task_struct *father, struct task_struct *p, 609 struct list_head *dead) 610 { 611 if (unlikely(p->exit_state == EXIT_DEAD)) 612 return; 613 614 /* We don't want people slaying init. */ 615 p->exit_signal = SIGCHLD; 616 617 /* If it has exited notify the new parent about this child's death. */ 618 if (!p->ptrace && 619 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 620 if (do_notify_parent(p, p->exit_signal)) { 621 p->exit_state = EXIT_DEAD; 622 list_add(&p->ptrace_entry, dead); 623 } 624 } 625 626 kill_orphaned_pgrp(p, father); 627 } 628 629 /* 630 * This does two things: 631 * 632 * A. Make init inherit all the child processes 633 * B. Check to see if any process groups have become orphaned 634 * as a result of our exiting, and if they have any stopped 635 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 636 */ 637 static void forget_original_parent(struct task_struct *father, 638 struct list_head *dead) 639 { 640 struct task_struct *p, *t, *reaper; 641 642 if (unlikely(!list_empty(&father->ptraced))) 643 exit_ptrace(father, dead); 644 645 /* Can drop and reacquire tasklist_lock */ 646 reaper = find_child_reaper(father, dead); 647 if (list_empty(&father->children)) 648 return; 649 650 reaper = find_new_reaper(father, reaper); 651 list_for_each_entry(p, &father->children, sibling) { 652 for_each_thread(p, t) { 653 RCU_INIT_POINTER(t->real_parent, reaper); 654 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 655 if (likely(!t->ptrace)) 656 t->parent = t->real_parent; 657 if (t->pdeath_signal) 658 group_send_sig_info(t->pdeath_signal, 659 SEND_SIG_NOINFO, t, 660 PIDTYPE_TGID); 661 } 662 /* 663 * If this is a threaded reparent there is no need to 664 * notify anyone anything has happened. 665 */ 666 if (!same_thread_group(reaper, father)) 667 reparent_leader(father, p, dead); 668 } 669 list_splice_tail_init(&father->children, &reaper->children); 670 } 671 672 /* 673 * Send signals to all our closest relatives so that they know 674 * to properly mourn us.. 675 */ 676 static void exit_notify(struct task_struct *tsk, int group_dead) 677 { 678 bool autoreap; 679 struct task_struct *p, *n; 680 LIST_HEAD(dead); 681 682 write_lock_irq(&tasklist_lock); 683 forget_original_parent(tsk, &dead); 684 685 if (group_dead) 686 kill_orphaned_pgrp(tsk->group_leader, NULL); 687 688 tsk->exit_state = EXIT_ZOMBIE; 689 if (unlikely(tsk->ptrace)) { 690 int sig = thread_group_leader(tsk) && 691 thread_group_empty(tsk) && 692 !ptrace_reparented(tsk) ? 693 tsk->exit_signal : SIGCHLD; 694 autoreap = do_notify_parent(tsk, sig); 695 } else if (thread_group_leader(tsk)) { 696 autoreap = thread_group_empty(tsk) && 697 do_notify_parent(tsk, tsk->exit_signal); 698 } else { 699 autoreap = true; 700 } 701 702 if (autoreap) { 703 tsk->exit_state = EXIT_DEAD; 704 list_add(&tsk->ptrace_entry, &dead); 705 } 706 707 /* mt-exec, de_thread() is waiting for group leader */ 708 if (unlikely(tsk->signal->notify_count < 0)) 709 wake_up_process(tsk->signal->group_exec_task); 710 write_unlock_irq(&tasklist_lock); 711 712 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 713 list_del_init(&p->ptrace_entry); 714 release_task(p); 715 } 716 } 717 718 #ifdef CONFIG_DEBUG_STACK_USAGE 719 static void check_stack_usage(void) 720 { 721 static DEFINE_SPINLOCK(low_water_lock); 722 static int lowest_to_date = THREAD_SIZE; 723 unsigned long free; 724 725 free = stack_not_used(current); 726 727 if (free >= lowest_to_date) 728 return; 729 730 spin_lock(&low_water_lock); 731 if (free < lowest_to_date) { 732 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 733 current->comm, task_pid_nr(current), free); 734 lowest_to_date = free; 735 } 736 spin_unlock(&low_water_lock); 737 } 738 #else 739 static inline void check_stack_usage(void) {} 740 #endif 741 742 static void synchronize_group_exit(struct task_struct *tsk, long code) 743 { 744 struct sighand_struct *sighand = tsk->sighand; 745 struct signal_struct *signal = tsk->signal; 746 747 spin_lock_irq(&sighand->siglock); 748 signal->quick_threads--; 749 if ((signal->quick_threads == 0) && 750 !(signal->flags & SIGNAL_GROUP_EXIT)) { 751 signal->flags = SIGNAL_GROUP_EXIT; 752 signal->group_exit_code = code; 753 signal->group_stop_count = 0; 754 } 755 spin_unlock_irq(&sighand->siglock); 756 } 757 758 void __noreturn do_exit(long code) 759 { 760 struct task_struct *tsk = current; 761 int group_dead; 762 763 synchronize_group_exit(tsk, code); 764 765 WARN_ON(tsk->plug); 766 767 kcov_task_exit(tsk); 768 kmsan_task_exit(tsk); 769 770 coredump_task_exit(tsk); 771 ptrace_event(PTRACE_EVENT_EXIT, code); 772 773 validate_creds_for_do_exit(tsk); 774 775 io_uring_files_cancel(); 776 exit_signals(tsk); /* sets PF_EXITING */ 777 778 /* sync mm's RSS info before statistics gathering */ 779 if (tsk->mm) 780 sync_mm_rss(tsk->mm); 781 acct_update_integrals(tsk); 782 group_dead = atomic_dec_and_test(&tsk->signal->live); 783 if (group_dead) { 784 /* 785 * If the last thread of global init has exited, panic 786 * immediately to get a useable coredump. 787 */ 788 if (unlikely(is_global_init(tsk))) 789 panic("Attempted to kill init! exitcode=0x%08x\n", 790 tsk->signal->group_exit_code ?: (int)code); 791 792 #ifdef CONFIG_POSIX_TIMERS 793 hrtimer_cancel(&tsk->signal->real_timer); 794 exit_itimers(tsk); 795 #endif 796 if (tsk->mm) 797 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 798 } 799 acct_collect(code, group_dead); 800 if (group_dead) 801 tty_audit_exit(); 802 audit_free(tsk); 803 804 tsk->exit_code = code; 805 taskstats_exit(tsk, group_dead); 806 807 exit_mm(); 808 809 if (group_dead) 810 acct_process(); 811 trace_sched_process_exit(tsk); 812 813 exit_sem(tsk); 814 exit_shm(tsk); 815 exit_files(tsk); 816 exit_fs(tsk); 817 if (group_dead) 818 disassociate_ctty(1); 819 exit_task_namespaces(tsk); 820 exit_task_work(tsk); 821 exit_thread(tsk); 822 823 /* 824 * Flush inherited counters to the parent - before the parent 825 * gets woken up by child-exit notifications. 826 * 827 * because of cgroup mode, must be called before cgroup_exit() 828 */ 829 perf_event_exit_task(tsk); 830 831 sched_autogroup_exit_task(tsk); 832 cgroup_exit(tsk); 833 834 /* 835 * FIXME: do that only when needed, using sched_exit tracepoint 836 */ 837 flush_ptrace_hw_breakpoint(tsk); 838 839 exit_tasks_rcu_start(); 840 exit_notify(tsk, group_dead); 841 proc_exit_connector(tsk); 842 mpol_put_task_policy(tsk); 843 #ifdef CONFIG_FUTEX 844 if (unlikely(current->pi_state_cache)) 845 kfree(current->pi_state_cache); 846 #endif 847 /* 848 * Make sure we are holding no locks: 849 */ 850 debug_check_no_locks_held(); 851 852 if (tsk->io_context) 853 exit_io_context(tsk); 854 855 if (tsk->splice_pipe) 856 free_pipe_info(tsk->splice_pipe); 857 858 if (tsk->task_frag.page) 859 put_page(tsk->task_frag.page); 860 861 validate_creds_for_do_exit(tsk); 862 exit_task_stack_account(tsk); 863 864 check_stack_usage(); 865 preempt_disable(); 866 if (tsk->nr_dirtied) 867 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 868 exit_rcu(); 869 exit_tasks_rcu_finish(); 870 871 lockdep_free_task(tsk); 872 do_task_dead(); 873 } 874 875 void __noreturn make_task_dead(int signr) 876 { 877 /* 878 * Take the task off the cpu after something catastrophic has 879 * happened. 880 * 881 * We can get here from a kernel oops, sometimes with preemption off. 882 * Start by checking for critical errors. 883 * Then fix up important state like USER_DS and preemption. 884 * Then do everything else. 885 */ 886 struct task_struct *tsk = current; 887 888 if (unlikely(in_interrupt())) 889 panic("Aiee, killing interrupt handler!"); 890 if (unlikely(!tsk->pid)) 891 panic("Attempted to kill the idle task!"); 892 893 if (unlikely(in_atomic())) { 894 pr_info("note: %s[%d] exited with preempt_count %d\n", 895 current->comm, task_pid_nr(current), 896 preempt_count()); 897 preempt_count_set(PREEMPT_ENABLED); 898 } 899 900 /* 901 * We're taking recursive faults here in make_task_dead. Safest is to just 902 * leave this task alone and wait for reboot. 903 */ 904 if (unlikely(tsk->flags & PF_EXITING)) { 905 pr_alert("Fixing recursive fault but reboot is needed!\n"); 906 futex_exit_recursive(tsk); 907 tsk->exit_state = EXIT_DEAD; 908 refcount_inc(&tsk->rcu_users); 909 do_task_dead(); 910 } 911 912 do_exit(signr); 913 } 914 915 SYSCALL_DEFINE1(exit, int, error_code) 916 { 917 do_exit((error_code&0xff)<<8); 918 } 919 920 /* 921 * Take down every thread in the group. This is called by fatal signals 922 * as well as by sys_exit_group (below). 923 */ 924 void __noreturn 925 do_group_exit(int exit_code) 926 { 927 struct signal_struct *sig = current->signal; 928 929 if (sig->flags & SIGNAL_GROUP_EXIT) 930 exit_code = sig->group_exit_code; 931 else if (sig->group_exec_task) 932 exit_code = 0; 933 else { 934 struct sighand_struct *const sighand = current->sighand; 935 936 spin_lock_irq(&sighand->siglock); 937 if (sig->flags & SIGNAL_GROUP_EXIT) 938 /* Another thread got here before we took the lock. */ 939 exit_code = sig->group_exit_code; 940 else if (sig->group_exec_task) 941 exit_code = 0; 942 else { 943 sig->group_exit_code = exit_code; 944 sig->flags = SIGNAL_GROUP_EXIT; 945 zap_other_threads(current); 946 } 947 spin_unlock_irq(&sighand->siglock); 948 } 949 950 do_exit(exit_code); 951 /* NOTREACHED */ 952 } 953 954 /* 955 * this kills every thread in the thread group. Note that any externally 956 * wait4()-ing process will get the correct exit code - even if this 957 * thread is not the thread group leader. 958 */ 959 SYSCALL_DEFINE1(exit_group, int, error_code) 960 { 961 do_group_exit((error_code & 0xff) << 8); 962 /* NOTREACHED */ 963 return 0; 964 } 965 966 struct waitid_info { 967 pid_t pid; 968 uid_t uid; 969 int status; 970 int cause; 971 }; 972 973 struct wait_opts { 974 enum pid_type wo_type; 975 int wo_flags; 976 struct pid *wo_pid; 977 978 struct waitid_info *wo_info; 979 int wo_stat; 980 struct rusage *wo_rusage; 981 982 wait_queue_entry_t child_wait; 983 int notask_error; 984 }; 985 986 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 987 { 988 return wo->wo_type == PIDTYPE_MAX || 989 task_pid_type(p, wo->wo_type) == wo->wo_pid; 990 } 991 992 static int 993 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 994 { 995 if (!eligible_pid(wo, p)) 996 return 0; 997 998 /* 999 * Wait for all children (clone and not) if __WALL is set or 1000 * if it is traced by us. 1001 */ 1002 if (ptrace || (wo->wo_flags & __WALL)) 1003 return 1; 1004 1005 /* 1006 * Otherwise, wait for clone children *only* if __WCLONE is set; 1007 * otherwise, wait for non-clone children *only*. 1008 * 1009 * Note: a "clone" child here is one that reports to its parent 1010 * using a signal other than SIGCHLD, or a non-leader thread which 1011 * we can only see if it is traced by us. 1012 */ 1013 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1014 return 0; 1015 1016 return 1; 1017 } 1018 1019 /* 1020 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1021 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1022 * the lock and this task is uninteresting. If we return nonzero, we have 1023 * released the lock and the system call should return. 1024 */ 1025 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1026 { 1027 int state, status; 1028 pid_t pid = task_pid_vnr(p); 1029 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1030 struct waitid_info *infop; 1031 1032 if (!likely(wo->wo_flags & WEXITED)) 1033 return 0; 1034 1035 if (unlikely(wo->wo_flags & WNOWAIT)) { 1036 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1037 ? p->signal->group_exit_code : p->exit_code; 1038 get_task_struct(p); 1039 read_unlock(&tasklist_lock); 1040 sched_annotate_sleep(); 1041 if (wo->wo_rusage) 1042 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1043 put_task_struct(p); 1044 goto out_info; 1045 } 1046 /* 1047 * Move the task's state to DEAD/TRACE, only one thread can do this. 1048 */ 1049 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1050 EXIT_TRACE : EXIT_DEAD; 1051 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1052 return 0; 1053 /* 1054 * We own this thread, nobody else can reap it. 1055 */ 1056 read_unlock(&tasklist_lock); 1057 sched_annotate_sleep(); 1058 1059 /* 1060 * Check thread_group_leader() to exclude the traced sub-threads. 1061 */ 1062 if (state == EXIT_DEAD && thread_group_leader(p)) { 1063 struct signal_struct *sig = p->signal; 1064 struct signal_struct *psig = current->signal; 1065 unsigned long maxrss; 1066 u64 tgutime, tgstime; 1067 1068 /* 1069 * The resource counters for the group leader are in its 1070 * own task_struct. Those for dead threads in the group 1071 * are in its signal_struct, as are those for the child 1072 * processes it has previously reaped. All these 1073 * accumulate in the parent's signal_struct c* fields. 1074 * 1075 * We don't bother to take a lock here to protect these 1076 * p->signal fields because the whole thread group is dead 1077 * and nobody can change them. 1078 * 1079 * psig->stats_lock also protects us from our sub-threads 1080 * which can reap other children at the same time. Until 1081 * we change k_getrusage()-like users to rely on this lock 1082 * we have to take ->siglock as well. 1083 * 1084 * We use thread_group_cputime_adjusted() to get times for 1085 * the thread group, which consolidates times for all threads 1086 * in the group including the group leader. 1087 */ 1088 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1089 spin_lock_irq(¤t->sighand->siglock); 1090 write_seqlock(&psig->stats_lock); 1091 psig->cutime += tgutime + sig->cutime; 1092 psig->cstime += tgstime + sig->cstime; 1093 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1094 psig->cmin_flt += 1095 p->min_flt + sig->min_flt + sig->cmin_flt; 1096 psig->cmaj_flt += 1097 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1098 psig->cnvcsw += 1099 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1100 psig->cnivcsw += 1101 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1102 psig->cinblock += 1103 task_io_get_inblock(p) + 1104 sig->inblock + sig->cinblock; 1105 psig->coublock += 1106 task_io_get_oublock(p) + 1107 sig->oublock + sig->coublock; 1108 maxrss = max(sig->maxrss, sig->cmaxrss); 1109 if (psig->cmaxrss < maxrss) 1110 psig->cmaxrss = maxrss; 1111 task_io_accounting_add(&psig->ioac, &p->ioac); 1112 task_io_accounting_add(&psig->ioac, &sig->ioac); 1113 write_sequnlock(&psig->stats_lock); 1114 spin_unlock_irq(¤t->sighand->siglock); 1115 } 1116 1117 if (wo->wo_rusage) 1118 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1119 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1120 ? p->signal->group_exit_code : p->exit_code; 1121 wo->wo_stat = status; 1122 1123 if (state == EXIT_TRACE) { 1124 write_lock_irq(&tasklist_lock); 1125 /* We dropped tasklist, ptracer could die and untrace */ 1126 ptrace_unlink(p); 1127 1128 /* If parent wants a zombie, don't release it now */ 1129 state = EXIT_ZOMBIE; 1130 if (do_notify_parent(p, p->exit_signal)) 1131 state = EXIT_DEAD; 1132 p->exit_state = state; 1133 write_unlock_irq(&tasklist_lock); 1134 } 1135 if (state == EXIT_DEAD) 1136 release_task(p); 1137 1138 out_info: 1139 infop = wo->wo_info; 1140 if (infop) { 1141 if ((status & 0x7f) == 0) { 1142 infop->cause = CLD_EXITED; 1143 infop->status = status >> 8; 1144 } else { 1145 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1146 infop->status = status & 0x7f; 1147 } 1148 infop->pid = pid; 1149 infop->uid = uid; 1150 } 1151 1152 return pid; 1153 } 1154 1155 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1156 { 1157 if (ptrace) { 1158 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1159 return &p->exit_code; 1160 } else { 1161 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1162 return &p->signal->group_exit_code; 1163 } 1164 return NULL; 1165 } 1166 1167 /** 1168 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1169 * @wo: wait options 1170 * @ptrace: is the wait for ptrace 1171 * @p: task to wait for 1172 * 1173 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1174 * 1175 * CONTEXT: 1176 * read_lock(&tasklist_lock), which is released if return value is 1177 * non-zero. Also, grabs and releases @p->sighand->siglock. 1178 * 1179 * RETURNS: 1180 * 0 if wait condition didn't exist and search for other wait conditions 1181 * should continue. Non-zero return, -errno on failure and @p's pid on 1182 * success, implies that tasklist_lock is released and wait condition 1183 * search should terminate. 1184 */ 1185 static int wait_task_stopped(struct wait_opts *wo, 1186 int ptrace, struct task_struct *p) 1187 { 1188 struct waitid_info *infop; 1189 int exit_code, *p_code, why; 1190 uid_t uid = 0; /* unneeded, required by compiler */ 1191 pid_t pid; 1192 1193 /* 1194 * Traditionally we see ptrace'd stopped tasks regardless of options. 1195 */ 1196 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1197 return 0; 1198 1199 if (!task_stopped_code(p, ptrace)) 1200 return 0; 1201 1202 exit_code = 0; 1203 spin_lock_irq(&p->sighand->siglock); 1204 1205 p_code = task_stopped_code(p, ptrace); 1206 if (unlikely(!p_code)) 1207 goto unlock_sig; 1208 1209 exit_code = *p_code; 1210 if (!exit_code) 1211 goto unlock_sig; 1212 1213 if (!unlikely(wo->wo_flags & WNOWAIT)) 1214 *p_code = 0; 1215 1216 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1217 unlock_sig: 1218 spin_unlock_irq(&p->sighand->siglock); 1219 if (!exit_code) 1220 return 0; 1221 1222 /* 1223 * Now we are pretty sure this task is interesting. 1224 * Make sure it doesn't get reaped out from under us while we 1225 * give up the lock and then examine it below. We don't want to 1226 * keep holding onto the tasklist_lock while we call getrusage and 1227 * possibly take page faults for user memory. 1228 */ 1229 get_task_struct(p); 1230 pid = task_pid_vnr(p); 1231 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1232 read_unlock(&tasklist_lock); 1233 sched_annotate_sleep(); 1234 if (wo->wo_rusage) 1235 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1236 put_task_struct(p); 1237 1238 if (likely(!(wo->wo_flags & WNOWAIT))) 1239 wo->wo_stat = (exit_code << 8) | 0x7f; 1240 1241 infop = wo->wo_info; 1242 if (infop) { 1243 infop->cause = why; 1244 infop->status = exit_code; 1245 infop->pid = pid; 1246 infop->uid = uid; 1247 } 1248 return pid; 1249 } 1250 1251 /* 1252 * Handle do_wait work for one task in a live, non-stopped state. 1253 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1254 * the lock and this task is uninteresting. If we return nonzero, we have 1255 * released the lock and the system call should return. 1256 */ 1257 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1258 { 1259 struct waitid_info *infop; 1260 pid_t pid; 1261 uid_t uid; 1262 1263 if (!unlikely(wo->wo_flags & WCONTINUED)) 1264 return 0; 1265 1266 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1267 return 0; 1268 1269 spin_lock_irq(&p->sighand->siglock); 1270 /* Re-check with the lock held. */ 1271 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1272 spin_unlock_irq(&p->sighand->siglock); 1273 return 0; 1274 } 1275 if (!unlikely(wo->wo_flags & WNOWAIT)) 1276 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1277 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1278 spin_unlock_irq(&p->sighand->siglock); 1279 1280 pid = task_pid_vnr(p); 1281 get_task_struct(p); 1282 read_unlock(&tasklist_lock); 1283 sched_annotate_sleep(); 1284 if (wo->wo_rusage) 1285 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1286 put_task_struct(p); 1287 1288 infop = wo->wo_info; 1289 if (!infop) { 1290 wo->wo_stat = 0xffff; 1291 } else { 1292 infop->cause = CLD_CONTINUED; 1293 infop->pid = pid; 1294 infop->uid = uid; 1295 infop->status = SIGCONT; 1296 } 1297 return pid; 1298 } 1299 1300 /* 1301 * Consider @p for a wait by @parent. 1302 * 1303 * -ECHILD should be in ->notask_error before the first call. 1304 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1305 * Returns zero if the search for a child should continue; 1306 * then ->notask_error is 0 if @p is an eligible child, 1307 * or still -ECHILD. 1308 */ 1309 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1310 struct task_struct *p) 1311 { 1312 /* 1313 * We can race with wait_task_zombie() from another thread. 1314 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1315 * can't confuse the checks below. 1316 */ 1317 int exit_state = READ_ONCE(p->exit_state); 1318 int ret; 1319 1320 if (unlikely(exit_state == EXIT_DEAD)) 1321 return 0; 1322 1323 ret = eligible_child(wo, ptrace, p); 1324 if (!ret) 1325 return ret; 1326 1327 if (unlikely(exit_state == EXIT_TRACE)) { 1328 /* 1329 * ptrace == 0 means we are the natural parent. In this case 1330 * we should clear notask_error, debugger will notify us. 1331 */ 1332 if (likely(!ptrace)) 1333 wo->notask_error = 0; 1334 return 0; 1335 } 1336 1337 if (likely(!ptrace) && unlikely(p->ptrace)) { 1338 /* 1339 * If it is traced by its real parent's group, just pretend 1340 * the caller is ptrace_do_wait() and reap this child if it 1341 * is zombie. 1342 * 1343 * This also hides group stop state from real parent; otherwise 1344 * a single stop can be reported twice as group and ptrace stop. 1345 * If a ptracer wants to distinguish these two events for its 1346 * own children it should create a separate process which takes 1347 * the role of real parent. 1348 */ 1349 if (!ptrace_reparented(p)) 1350 ptrace = 1; 1351 } 1352 1353 /* slay zombie? */ 1354 if (exit_state == EXIT_ZOMBIE) { 1355 /* we don't reap group leaders with subthreads */ 1356 if (!delay_group_leader(p)) { 1357 /* 1358 * A zombie ptracee is only visible to its ptracer. 1359 * Notification and reaping will be cascaded to the 1360 * real parent when the ptracer detaches. 1361 */ 1362 if (unlikely(ptrace) || likely(!p->ptrace)) 1363 return wait_task_zombie(wo, p); 1364 } 1365 1366 /* 1367 * Allow access to stopped/continued state via zombie by 1368 * falling through. Clearing of notask_error is complex. 1369 * 1370 * When !@ptrace: 1371 * 1372 * If WEXITED is set, notask_error should naturally be 1373 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1374 * so, if there are live subthreads, there are events to 1375 * wait for. If all subthreads are dead, it's still safe 1376 * to clear - this function will be called again in finite 1377 * amount time once all the subthreads are released and 1378 * will then return without clearing. 1379 * 1380 * When @ptrace: 1381 * 1382 * Stopped state is per-task and thus can't change once the 1383 * target task dies. Only continued and exited can happen. 1384 * Clear notask_error if WCONTINUED | WEXITED. 1385 */ 1386 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1387 wo->notask_error = 0; 1388 } else { 1389 /* 1390 * @p is alive and it's gonna stop, continue or exit, so 1391 * there always is something to wait for. 1392 */ 1393 wo->notask_error = 0; 1394 } 1395 1396 /* 1397 * Wait for stopped. Depending on @ptrace, different stopped state 1398 * is used and the two don't interact with each other. 1399 */ 1400 ret = wait_task_stopped(wo, ptrace, p); 1401 if (ret) 1402 return ret; 1403 1404 /* 1405 * Wait for continued. There's only one continued state and the 1406 * ptracer can consume it which can confuse the real parent. Don't 1407 * use WCONTINUED from ptracer. You don't need or want it. 1408 */ 1409 return wait_task_continued(wo, p); 1410 } 1411 1412 /* 1413 * Do the work of do_wait() for one thread in the group, @tsk. 1414 * 1415 * -ECHILD should be in ->notask_error before the first call. 1416 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1417 * Returns zero if the search for a child should continue; then 1418 * ->notask_error is 0 if there were any eligible children, 1419 * or still -ECHILD. 1420 */ 1421 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1422 { 1423 struct task_struct *p; 1424 1425 list_for_each_entry(p, &tsk->children, sibling) { 1426 int ret = wait_consider_task(wo, 0, p); 1427 1428 if (ret) 1429 return ret; 1430 } 1431 1432 return 0; 1433 } 1434 1435 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1436 { 1437 struct task_struct *p; 1438 1439 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1440 int ret = wait_consider_task(wo, 1, p); 1441 1442 if (ret) 1443 return ret; 1444 } 1445 1446 return 0; 1447 } 1448 1449 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1450 int sync, void *key) 1451 { 1452 struct wait_opts *wo = container_of(wait, struct wait_opts, 1453 child_wait); 1454 struct task_struct *p = key; 1455 1456 if (!eligible_pid(wo, p)) 1457 return 0; 1458 1459 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1460 return 0; 1461 1462 return default_wake_function(wait, mode, sync, key); 1463 } 1464 1465 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1466 { 1467 __wake_up_sync_key(&parent->signal->wait_chldexit, 1468 TASK_INTERRUPTIBLE, p); 1469 } 1470 1471 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1472 struct task_struct *target) 1473 { 1474 struct task_struct *parent = 1475 !ptrace ? target->real_parent : target->parent; 1476 1477 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1478 same_thread_group(current, parent)); 1479 } 1480 1481 /* 1482 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1483 * and tracee lists to find the target task. 1484 */ 1485 static int do_wait_pid(struct wait_opts *wo) 1486 { 1487 bool ptrace; 1488 struct task_struct *target; 1489 int retval; 1490 1491 ptrace = false; 1492 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1493 if (target && is_effectively_child(wo, ptrace, target)) { 1494 retval = wait_consider_task(wo, ptrace, target); 1495 if (retval) 1496 return retval; 1497 } 1498 1499 ptrace = true; 1500 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1501 if (target && target->ptrace && 1502 is_effectively_child(wo, ptrace, target)) { 1503 retval = wait_consider_task(wo, ptrace, target); 1504 if (retval) 1505 return retval; 1506 } 1507 1508 return 0; 1509 } 1510 1511 static long do_wait(struct wait_opts *wo) 1512 { 1513 int retval; 1514 1515 trace_sched_process_wait(wo->wo_pid); 1516 1517 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1518 wo->child_wait.private = current; 1519 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1520 repeat: 1521 /* 1522 * If there is nothing that can match our criteria, just get out. 1523 * We will clear ->notask_error to zero if we see any child that 1524 * might later match our criteria, even if we are not able to reap 1525 * it yet. 1526 */ 1527 wo->notask_error = -ECHILD; 1528 if ((wo->wo_type < PIDTYPE_MAX) && 1529 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1530 goto notask; 1531 1532 set_current_state(TASK_INTERRUPTIBLE); 1533 read_lock(&tasklist_lock); 1534 1535 if (wo->wo_type == PIDTYPE_PID) { 1536 retval = do_wait_pid(wo); 1537 if (retval) 1538 goto end; 1539 } else { 1540 struct task_struct *tsk = current; 1541 1542 do { 1543 retval = do_wait_thread(wo, tsk); 1544 if (retval) 1545 goto end; 1546 1547 retval = ptrace_do_wait(wo, tsk); 1548 if (retval) 1549 goto end; 1550 1551 if (wo->wo_flags & __WNOTHREAD) 1552 break; 1553 } while_each_thread(current, tsk); 1554 } 1555 read_unlock(&tasklist_lock); 1556 1557 notask: 1558 retval = wo->notask_error; 1559 if (!retval && !(wo->wo_flags & WNOHANG)) { 1560 retval = -ERESTARTSYS; 1561 if (!signal_pending(current)) { 1562 schedule(); 1563 goto repeat; 1564 } 1565 } 1566 end: 1567 __set_current_state(TASK_RUNNING); 1568 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1569 return retval; 1570 } 1571 1572 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1573 int options, struct rusage *ru) 1574 { 1575 struct wait_opts wo; 1576 struct pid *pid = NULL; 1577 enum pid_type type; 1578 long ret; 1579 unsigned int f_flags = 0; 1580 1581 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1582 __WNOTHREAD|__WCLONE|__WALL)) 1583 return -EINVAL; 1584 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1585 return -EINVAL; 1586 1587 switch (which) { 1588 case P_ALL: 1589 type = PIDTYPE_MAX; 1590 break; 1591 case P_PID: 1592 type = PIDTYPE_PID; 1593 if (upid <= 0) 1594 return -EINVAL; 1595 1596 pid = find_get_pid(upid); 1597 break; 1598 case P_PGID: 1599 type = PIDTYPE_PGID; 1600 if (upid < 0) 1601 return -EINVAL; 1602 1603 if (upid) 1604 pid = find_get_pid(upid); 1605 else 1606 pid = get_task_pid(current, PIDTYPE_PGID); 1607 break; 1608 case P_PIDFD: 1609 type = PIDTYPE_PID; 1610 if (upid < 0) 1611 return -EINVAL; 1612 1613 pid = pidfd_get_pid(upid, &f_flags); 1614 if (IS_ERR(pid)) 1615 return PTR_ERR(pid); 1616 1617 break; 1618 default: 1619 return -EINVAL; 1620 } 1621 1622 wo.wo_type = type; 1623 wo.wo_pid = pid; 1624 wo.wo_flags = options; 1625 wo.wo_info = infop; 1626 wo.wo_rusage = ru; 1627 if (f_flags & O_NONBLOCK) 1628 wo.wo_flags |= WNOHANG; 1629 1630 ret = do_wait(&wo); 1631 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK)) 1632 ret = -EAGAIN; 1633 1634 put_pid(pid); 1635 return ret; 1636 } 1637 1638 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1639 infop, int, options, struct rusage __user *, ru) 1640 { 1641 struct rusage r; 1642 struct waitid_info info = {.status = 0}; 1643 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1644 int signo = 0; 1645 1646 if (err > 0) { 1647 signo = SIGCHLD; 1648 err = 0; 1649 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1650 return -EFAULT; 1651 } 1652 if (!infop) 1653 return err; 1654 1655 if (!user_write_access_begin(infop, sizeof(*infop))) 1656 return -EFAULT; 1657 1658 unsafe_put_user(signo, &infop->si_signo, Efault); 1659 unsafe_put_user(0, &infop->si_errno, Efault); 1660 unsafe_put_user(info.cause, &infop->si_code, Efault); 1661 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1662 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1663 unsafe_put_user(info.status, &infop->si_status, Efault); 1664 user_write_access_end(); 1665 return err; 1666 Efault: 1667 user_write_access_end(); 1668 return -EFAULT; 1669 } 1670 1671 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1672 struct rusage *ru) 1673 { 1674 struct wait_opts wo; 1675 struct pid *pid = NULL; 1676 enum pid_type type; 1677 long ret; 1678 1679 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1680 __WNOTHREAD|__WCLONE|__WALL)) 1681 return -EINVAL; 1682 1683 /* -INT_MIN is not defined */ 1684 if (upid == INT_MIN) 1685 return -ESRCH; 1686 1687 if (upid == -1) 1688 type = PIDTYPE_MAX; 1689 else if (upid < 0) { 1690 type = PIDTYPE_PGID; 1691 pid = find_get_pid(-upid); 1692 } else if (upid == 0) { 1693 type = PIDTYPE_PGID; 1694 pid = get_task_pid(current, PIDTYPE_PGID); 1695 } else /* upid > 0 */ { 1696 type = PIDTYPE_PID; 1697 pid = find_get_pid(upid); 1698 } 1699 1700 wo.wo_type = type; 1701 wo.wo_pid = pid; 1702 wo.wo_flags = options | WEXITED; 1703 wo.wo_info = NULL; 1704 wo.wo_stat = 0; 1705 wo.wo_rusage = ru; 1706 ret = do_wait(&wo); 1707 put_pid(pid); 1708 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1709 ret = -EFAULT; 1710 1711 return ret; 1712 } 1713 1714 int kernel_wait(pid_t pid, int *stat) 1715 { 1716 struct wait_opts wo = { 1717 .wo_type = PIDTYPE_PID, 1718 .wo_pid = find_get_pid(pid), 1719 .wo_flags = WEXITED, 1720 }; 1721 int ret; 1722 1723 ret = do_wait(&wo); 1724 if (ret > 0 && wo.wo_stat) 1725 *stat = wo.wo_stat; 1726 put_pid(wo.wo_pid); 1727 return ret; 1728 } 1729 1730 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1731 int, options, struct rusage __user *, ru) 1732 { 1733 struct rusage r; 1734 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1735 1736 if (err > 0) { 1737 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1738 return -EFAULT; 1739 } 1740 return err; 1741 } 1742 1743 #ifdef __ARCH_WANT_SYS_WAITPID 1744 1745 /* 1746 * sys_waitpid() remains for compatibility. waitpid() should be 1747 * implemented by calling sys_wait4() from libc.a. 1748 */ 1749 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1750 { 1751 return kernel_wait4(pid, stat_addr, options, NULL); 1752 } 1753 1754 #endif 1755 1756 #ifdef CONFIG_COMPAT 1757 COMPAT_SYSCALL_DEFINE4(wait4, 1758 compat_pid_t, pid, 1759 compat_uint_t __user *, stat_addr, 1760 int, options, 1761 struct compat_rusage __user *, ru) 1762 { 1763 struct rusage r; 1764 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1765 if (err > 0) { 1766 if (ru && put_compat_rusage(&r, ru)) 1767 return -EFAULT; 1768 } 1769 return err; 1770 } 1771 1772 COMPAT_SYSCALL_DEFINE5(waitid, 1773 int, which, compat_pid_t, pid, 1774 struct compat_siginfo __user *, infop, int, options, 1775 struct compat_rusage __user *, uru) 1776 { 1777 struct rusage ru; 1778 struct waitid_info info = {.status = 0}; 1779 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1780 int signo = 0; 1781 if (err > 0) { 1782 signo = SIGCHLD; 1783 err = 0; 1784 if (uru) { 1785 /* kernel_waitid() overwrites everything in ru */ 1786 if (COMPAT_USE_64BIT_TIME) 1787 err = copy_to_user(uru, &ru, sizeof(ru)); 1788 else 1789 err = put_compat_rusage(&ru, uru); 1790 if (err) 1791 return -EFAULT; 1792 } 1793 } 1794 1795 if (!infop) 1796 return err; 1797 1798 if (!user_write_access_begin(infop, sizeof(*infop))) 1799 return -EFAULT; 1800 1801 unsafe_put_user(signo, &infop->si_signo, Efault); 1802 unsafe_put_user(0, &infop->si_errno, Efault); 1803 unsafe_put_user(info.cause, &infop->si_code, Efault); 1804 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1805 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1806 unsafe_put_user(info.status, &infop->si_status, Efault); 1807 user_write_access_end(); 1808 return err; 1809 Efault: 1810 user_write_access_end(); 1811 return -EFAULT; 1812 } 1813 #endif 1814 1815 /** 1816 * thread_group_exited - check that a thread group has exited 1817 * @pid: tgid of thread group to be checked. 1818 * 1819 * Test if the thread group represented by tgid has exited (all 1820 * threads are zombies, dead or completely gone). 1821 * 1822 * Return: true if the thread group has exited. false otherwise. 1823 */ 1824 bool thread_group_exited(struct pid *pid) 1825 { 1826 struct task_struct *task; 1827 bool exited; 1828 1829 rcu_read_lock(); 1830 task = pid_task(pid, PIDTYPE_PID); 1831 exited = !task || 1832 (READ_ONCE(task->exit_state) && thread_group_empty(task)); 1833 rcu_read_unlock(); 1834 1835 return exited; 1836 } 1837 EXPORT_SYMBOL(thread_group_exited); 1838 1839 __weak void abort(void) 1840 { 1841 BUG(); 1842 1843 /* if that doesn't kill us, halt */ 1844 panic("Oops failed to kill thread"); 1845 } 1846 EXPORT_SYMBOL(abort); 1847