1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_io_accounting_ops.h> 53 #include <linux/tracehook.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 67 #include <linux/uaccess.h> 68 #include <asm/unistd.h> 69 #include <asm/pgtable.h> 70 #include <asm/mmu_context.h> 71 72 static void __unhash_process(struct task_struct *p, bool group_dead) 73 { 74 nr_threads--; 75 detach_pid(p, PIDTYPE_PID); 76 if (group_dead) { 77 detach_pid(p, PIDTYPE_TGID); 78 detach_pid(p, PIDTYPE_PGID); 79 detach_pid(p, PIDTYPE_SID); 80 81 list_del_rcu(&p->tasks); 82 list_del_init(&p->sibling); 83 __this_cpu_dec(process_counts); 84 } 85 list_del_rcu(&p->thread_group); 86 list_del_rcu(&p->thread_node); 87 } 88 89 /* 90 * This function expects the tasklist_lock write-locked. 91 */ 92 static void __exit_signal(struct task_struct *tsk) 93 { 94 struct signal_struct *sig = tsk->signal; 95 bool group_dead = thread_group_leader(tsk); 96 struct sighand_struct *sighand; 97 struct tty_struct *uninitialized_var(tty); 98 u64 utime, stime; 99 100 sighand = rcu_dereference_check(tsk->sighand, 101 lockdep_tasklist_lock_is_held()); 102 spin_lock(&sighand->siglock); 103 104 #ifdef CONFIG_POSIX_TIMERS 105 posix_cpu_timers_exit(tsk); 106 if (group_dead) { 107 posix_cpu_timers_exit_group(tsk); 108 } else { 109 /* 110 * This can only happen if the caller is de_thread(). 111 * FIXME: this is the temporary hack, we should teach 112 * posix-cpu-timers to handle this case correctly. 113 */ 114 if (unlikely(has_group_leader_pid(tsk))) 115 posix_cpu_timers_exit_group(tsk); 116 } 117 #endif 118 119 if (group_dead) { 120 tty = sig->tty; 121 sig->tty = NULL; 122 } else { 123 /* 124 * If there is any task waiting for the group exit 125 * then notify it: 126 */ 127 if (sig->notify_count > 0 && !--sig->notify_count) 128 wake_up_process(sig->group_exit_task); 129 130 if (tsk == sig->curr_target) 131 sig->curr_target = next_thread(tsk); 132 } 133 134 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 135 sizeof(unsigned long long)); 136 137 /* 138 * Accumulate here the counters for all threads as they die. We could 139 * skip the group leader because it is the last user of signal_struct, 140 * but we want to avoid the race with thread_group_cputime() which can 141 * see the empty ->thread_head list. 142 */ 143 task_cputime(tsk, &utime, &stime); 144 write_seqlock(&sig->stats_lock); 145 sig->utime += utime; 146 sig->stime += stime; 147 sig->gtime += task_gtime(tsk); 148 sig->min_flt += tsk->min_flt; 149 sig->maj_flt += tsk->maj_flt; 150 sig->nvcsw += tsk->nvcsw; 151 sig->nivcsw += tsk->nivcsw; 152 sig->inblock += task_io_get_inblock(tsk); 153 sig->oublock += task_io_get_oublock(tsk); 154 task_io_accounting_add(&sig->ioac, &tsk->ioac); 155 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 156 sig->nr_threads--; 157 __unhash_process(tsk, group_dead); 158 write_sequnlock(&sig->stats_lock); 159 160 /* 161 * Do this under ->siglock, we can race with another thread 162 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 163 */ 164 flush_sigqueue(&tsk->pending); 165 tsk->sighand = NULL; 166 spin_unlock(&sighand->siglock); 167 168 __cleanup_sighand(sighand); 169 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 170 if (group_dead) { 171 flush_sigqueue(&sig->shared_pending); 172 tty_kref_put(tty); 173 } 174 } 175 176 static void delayed_put_task_struct(struct rcu_head *rhp) 177 { 178 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 179 180 perf_event_delayed_put(tsk); 181 trace_sched_process_free(tsk); 182 put_task_struct(tsk); 183 } 184 185 void put_task_struct_rcu_user(struct task_struct *task) 186 { 187 if (refcount_dec_and_test(&task->rcu_users)) 188 call_rcu(&task->rcu, delayed_put_task_struct); 189 } 190 191 void release_task(struct task_struct *p) 192 { 193 struct task_struct *leader; 194 int zap_leader; 195 repeat: 196 /* don't need to get the RCU readlock here - the process is dead and 197 * can't be modifying its own credentials. But shut RCU-lockdep up */ 198 rcu_read_lock(); 199 atomic_dec(&__task_cred(p)->user->processes); 200 rcu_read_unlock(); 201 202 proc_flush_task(p); 203 cgroup_release(p); 204 205 write_lock_irq(&tasklist_lock); 206 ptrace_release_task(p); 207 __exit_signal(p); 208 209 /* 210 * If we are the last non-leader member of the thread 211 * group, and the leader is zombie, then notify the 212 * group leader's parent process. (if it wants notification.) 213 */ 214 zap_leader = 0; 215 leader = p->group_leader; 216 if (leader != p && thread_group_empty(leader) 217 && leader->exit_state == EXIT_ZOMBIE) { 218 /* 219 * If we were the last child thread and the leader has 220 * exited already, and the leader's parent ignores SIGCHLD, 221 * then we are the one who should release the leader. 222 */ 223 zap_leader = do_notify_parent(leader, leader->exit_signal); 224 if (zap_leader) 225 leader->exit_state = EXIT_DEAD; 226 } 227 228 write_unlock_irq(&tasklist_lock); 229 release_thread(p); 230 put_task_struct_rcu_user(p); 231 232 p = leader; 233 if (unlikely(zap_leader)) 234 goto repeat; 235 } 236 237 void rcuwait_wake_up(struct rcuwait *w) 238 { 239 struct task_struct *task; 240 241 rcu_read_lock(); 242 243 /* 244 * Order condition vs @task, such that everything prior to the load 245 * of @task is visible. This is the condition as to why the user called 246 * rcuwait_trywake() in the first place. Pairs with set_current_state() 247 * barrier (A) in rcuwait_wait_event(). 248 * 249 * WAIT WAKE 250 * [S] tsk = current [S] cond = true 251 * MB (A) MB (B) 252 * [L] cond [L] tsk 253 */ 254 smp_mb(); /* (B) */ 255 256 task = rcu_dereference(w->task); 257 if (task) 258 wake_up_process(task); 259 rcu_read_unlock(); 260 } 261 262 /* 263 * Determine if a process group is "orphaned", according to the POSIX 264 * definition in 2.2.2.52. Orphaned process groups are not to be affected 265 * by terminal-generated stop signals. Newly orphaned process groups are 266 * to receive a SIGHUP and a SIGCONT. 267 * 268 * "I ask you, have you ever known what it is to be an orphan?" 269 */ 270 static int will_become_orphaned_pgrp(struct pid *pgrp, 271 struct task_struct *ignored_task) 272 { 273 struct task_struct *p; 274 275 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 276 if ((p == ignored_task) || 277 (p->exit_state && thread_group_empty(p)) || 278 is_global_init(p->real_parent)) 279 continue; 280 281 if (task_pgrp(p->real_parent) != pgrp && 282 task_session(p->real_parent) == task_session(p)) 283 return 0; 284 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 285 286 return 1; 287 } 288 289 int is_current_pgrp_orphaned(void) 290 { 291 int retval; 292 293 read_lock(&tasklist_lock); 294 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 295 read_unlock(&tasklist_lock); 296 297 return retval; 298 } 299 300 static bool has_stopped_jobs(struct pid *pgrp) 301 { 302 struct task_struct *p; 303 304 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 305 if (p->signal->flags & SIGNAL_STOP_STOPPED) 306 return true; 307 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 308 309 return false; 310 } 311 312 /* 313 * Check to see if any process groups have become orphaned as 314 * a result of our exiting, and if they have any stopped jobs, 315 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 316 */ 317 static void 318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 319 { 320 struct pid *pgrp = task_pgrp(tsk); 321 struct task_struct *ignored_task = tsk; 322 323 if (!parent) 324 /* exit: our father is in a different pgrp than 325 * we are and we were the only connection outside. 326 */ 327 parent = tsk->real_parent; 328 else 329 /* reparent: our child is in a different pgrp than 330 * we are, and it was the only connection outside. 331 */ 332 ignored_task = NULL; 333 334 if (task_pgrp(parent) != pgrp && 335 task_session(parent) == task_session(tsk) && 336 will_become_orphaned_pgrp(pgrp, ignored_task) && 337 has_stopped_jobs(pgrp)) { 338 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 339 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 340 } 341 } 342 343 #ifdef CONFIG_MEMCG 344 /* 345 * A task is exiting. If it owned this mm, find a new owner for the mm. 346 */ 347 void mm_update_next_owner(struct mm_struct *mm) 348 { 349 struct task_struct *c, *g, *p = current; 350 351 retry: 352 /* 353 * If the exiting or execing task is not the owner, it's 354 * someone else's problem. 355 */ 356 if (mm->owner != p) 357 return; 358 /* 359 * The current owner is exiting/execing and there are no other 360 * candidates. Do not leave the mm pointing to a possibly 361 * freed task structure. 362 */ 363 if (atomic_read(&mm->mm_users) <= 1) { 364 WRITE_ONCE(mm->owner, NULL); 365 return; 366 } 367 368 read_lock(&tasklist_lock); 369 /* 370 * Search in the children 371 */ 372 list_for_each_entry(c, &p->children, sibling) { 373 if (c->mm == mm) 374 goto assign_new_owner; 375 } 376 377 /* 378 * Search in the siblings 379 */ 380 list_for_each_entry(c, &p->real_parent->children, sibling) { 381 if (c->mm == mm) 382 goto assign_new_owner; 383 } 384 385 /* 386 * Search through everything else, we should not get here often. 387 */ 388 for_each_process(g) { 389 if (g->flags & PF_KTHREAD) 390 continue; 391 for_each_thread(g, c) { 392 if (c->mm == mm) 393 goto assign_new_owner; 394 if (c->mm) 395 break; 396 } 397 } 398 read_unlock(&tasklist_lock); 399 /* 400 * We found no owner yet mm_users > 1: this implies that we are 401 * most likely racing with swapoff (try_to_unuse()) or /proc or 402 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 403 */ 404 WRITE_ONCE(mm->owner, NULL); 405 return; 406 407 assign_new_owner: 408 BUG_ON(c == p); 409 get_task_struct(c); 410 /* 411 * The task_lock protects c->mm from changing. 412 * We always want mm->owner->mm == mm 413 */ 414 task_lock(c); 415 /* 416 * Delay read_unlock() till we have the task_lock() 417 * to ensure that c does not slip away underneath us 418 */ 419 read_unlock(&tasklist_lock); 420 if (c->mm != mm) { 421 task_unlock(c); 422 put_task_struct(c); 423 goto retry; 424 } 425 WRITE_ONCE(mm->owner, c); 426 task_unlock(c); 427 put_task_struct(c); 428 } 429 #endif /* CONFIG_MEMCG */ 430 431 /* 432 * Turn us into a lazy TLB process if we 433 * aren't already.. 434 */ 435 static void exit_mm(void) 436 { 437 struct mm_struct *mm = current->mm; 438 struct core_state *core_state; 439 440 exit_mm_release(current, mm); 441 if (!mm) 442 return; 443 sync_mm_rss(mm); 444 /* 445 * Serialize with any possible pending coredump. 446 * We must hold mmap_sem around checking core_state 447 * and clearing tsk->mm. The core-inducing thread 448 * will increment ->nr_threads for each thread in the 449 * group with ->mm != NULL. 450 */ 451 down_read(&mm->mmap_sem); 452 core_state = mm->core_state; 453 if (core_state) { 454 struct core_thread self; 455 456 up_read(&mm->mmap_sem); 457 458 self.task = current; 459 self.next = xchg(&core_state->dumper.next, &self); 460 /* 461 * Implies mb(), the result of xchg() must be visible 462 * to core_state->dumper. 463 */ 464 if (atomic_dec_and_test(&core_state->nr_threads)) 465 complete(&core_state->startup); 466 467 for (;;) { 468 set_current_state(TASK_UNINTERRUPTIBLE); 469 if (!self.task) /* see coredump_finish() */ 470 break; 471 freezable_schedule(); 472 } 473 __set_current_state(TASK_RUNNING); 474 down_read(&mm->mmap_sem); 475 } 476 mmgrab(mm); 477 BUG_ON(mm != current->active_mm); 478 /* more a memory barrier than a real lock */ 479 task_lock(current); 480 current->mm = NULL; 481 up_read(&mm->mmap_sem); 482 enter_lazy_tlb(mm, current); 483 task_unlock(current); 484 mm_update_next_owner(mm); 485 mmput(mm); 486 if (test_thread_flag(TIF_MEMDIE)) 487 exit_oom_victim(); 488 } 489 490 static struct task_struct *find_alive_thread(struct task_struct *p) 491 { 492 struct task_struct *t; 493 494 for_each_thread(p, t) { 495 if (!(t->flags & PF_EXITING)) 496 return t; 497 } 498 return NULL; 499 } 500 501 static struct task_struct *find_child_reaper(struct task_struct *father, 502 struct list_head *dead) 503 __releases(&tasklist_lock) 504 __acquires(&tasklist_lock) 505 { 506 struct pid_namespace *pid_ns = task_active_pid_ns(father); 507 struct task_struct *reaper = pid_ns->child_reaper; 508 struct task_struct *p, *n; 509 510 if (likely(reaper != father)) 511 return reaper; 512 513 reaper = find_alive_thread(father); 514 if (reaper) { 515 pid_ns->child_reaper = reaper; 516 return reaper; 517 } 518 519 write_unlock_irq(&tasklist_lock); 520 if (unlikely(pid_ns == &init_pid_ns)) { 521 panic("Attempted to kill init! exitcode=0x%08x\n", 522 father->signal->group_exit_code ?: father->exit_code); 523 } 524 525 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 526 list_del_init(&p->ptrace_entry); 527 release_task(p); 528 } 529 530 zap_pid_ns_processes(pid_ns); 531 write_lock_irq(&tasklist_lock); 532 533 return father; 534 } 535 536 /* 537 * When we die, we re-parent all our children, and try to: 538 * 1. give them to another thread in our thread group, if such a member exists 539 * 2. give it to the first ancestor process which prctl'd itself as a 540 * child_subreaper for its children (like a service manager) 541 * 3. give it to the init process (PID 1) in our pid namespace 542 */ 543 static struct task_struct *find_new_reaper(struct task_struct *father, 544 struct task_struct *child_reaper) 545 { 546 struct task_struct *thread, *reaper; 547 548 thread = find_alive_thread(father); 549 if (thread) 550 return thread; 551 552 if (father->signal->has_child_subreaper) { 553 unsigned int ns_level = task_pid(father)->level; 554 /* 555 * Find the first ->is_child_subreaper ancestor in our pid_ns. 556 * We can't check reaper != child_reaper to ensure we do not 557 * cross the namespaces, the exiting parent could be injected 558 * by setns() + fork(). 559 * We check pid->level, this is slightly more efficient than 560 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 561 */ 562 for (reaper = father->real_parent; 563 task_pid(reaper)->level == ns_level; 564 reaper = reaper->real_parent) { 565 if (reaper == &init_task) 566 break; 567 if (!reaper->signal->is_child_subreaper) 568 continue; 569 thread = find_alive_thread(reaper); 570 if (thread) 571 return thread; 572 } 573 } 574 575 return child_reaper; 576 } 577 578 /* 579 * Any that need to be release_task'd are put on the @dead list. 580 */ 581 static void reparent_leader(struct task_struct *father, struct task_struct *p, 582 struct list_head *dead) 583 { 584 if (unlikely(p->exit_state == EXIT_DEAD)) 585 return; 586 587 /* We don't want people slaying init. */ 588 p->exit_signal = SIGCHLD; 589 590 /* If it has exited notify the new parent about this child's death. */ 591 if (!p->ptrace && 592 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 593 if (do_notify_parent(p, p->exit_signal)) { 594 p->exit_state = EXIT_DEAD; 595 list_add(&p->ptrace_entry, dead); 596 } 597 } 598 599 kill_orphaned_pgrp(p, father); 600 } 601 602 /* 603 * This does two things: 604 * 605 * A. Make init inherit all the child processes 606 * B. Check to see if any process groups have become orphaned 607 * as a result of our exiting, and if they have any stopped 608 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 609 */ 610 static void forget_original_parent(struct task_struct *father, 611 struct list_head *dead) 612 { 613 struct task_struct *p, *t, *reaper; 614 615 if (unlikely(!list_empty(&father->ptraced))) 616 exit_ptrace(father, dead); 617 618 /* Can drop and reacquire tasklist_lock */ 619 reaper = find_child_reaper(father, dead); 620 if (list_empty(&father->children)) 621 return; 622 623 reaper = find_new_reaper(father, reaper); 624 list_for_each_entry(p, &father->children, sibling) { 625 for_each_thread(p, t) { 626 t->real_parent = reaper; 627 BUG_ON((!t->ptrace) != (t->parent == father)); 628 if (likely(!t->ptrace)) 629 t->parent = t->real_parent; 630 if (t->pdeath_signal) 631 group_send_sig_info(t->pdeath_signal, 632 SEND_SIG_NOINFO, t, 633 PIDTYPE_TGID); 634 } 635 /* 636 * If this is a threaded reparent there is no need to 637 * notify anyone anything has happened. 638 */ 639 if (!same_thread_group(reaper, father)) 640 reparent_leader(father, p, dead); 641 } 642 list_splice_tail_init(&father->children, &reaper->children); 643 } 644 645 /* 646 * Send signals to all our closest relatives so that they know 647 * to properly mourn us.. 648 */ 649 static void exit_notify(struct task_struct *tsk, int group_dead) 650 { 651 bool autoreap; 652 struct task_struct *p, *n; 653 LIST_HEAD(dead); 654 655 write_lock_irq(&tasklist_lock); 656 forget_original_parent(tsk, &dead); 657 658 if (group_dead) 659 kill_orphaned_pgrp(tsk->group_leader, NULL); 660 661 tsk->exit_state = EXIT_ZOMBIE; 662 if (unlikely(tsk->ptrace)) { 663 int sig = thread_group_leader(tsk) && 664 thread_group_empty(tsk) && 665 !ptrace_reparented(tsk) ? 666 tsk->exit_signal : SIGCHLD; 667 autoreap = do_notify_parent(tsk, sig); 668 } else if (thread_group_leader(tsk)) { 669 autoreap = thread_group_empty(tsk) && 670 do_notify_parent(tsk, tsk->exit_signal); 671 } else { 672 autoreap = true; 673 } 674 675 if (autoreap) { 676 tsk->exit_state = EXIT_DEAD; 677 list_add(&tsk->ptrace_entry, &dead); 678 } 679 680 /* mt-exec, de_thread() is waiting for group leader */ 681 if (unlikely(tsk->signal->notify_count < 0)) 682 wake_up_process(tsk->signal->group_exit_task); 683 write_unlock_irq(&tasklist_lock); 684 685 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 686 list_del_init(&p->ptrace_entry); 687 release_task(p); 688 } 689 } 690 691 #ifdef CONFIG_DEBUG_STACK_USAGE 692 static void check_stack_usage(void) 693 { 694 static DEFINE_SPINLOCK(low_water_lock); 695 static int lowest_to_date = THREAD_SIZE; 696 unsigned long free; 697 698 free = stack_not_used(current); 699 700 if (free >= lowest_to_date) 701 return; 702 703 spin_lock(&low_water_lock); 704 if (free < lowest_to_date) { 705 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 706 current->comm, task_pid_nr(current), free); 707 lowest_to_date = free; 708 } 709 spin_unlock(&low_water_lock); 710 } 711 #else 712 static inline void check_stack_usage(void) {} 713 #endif 714 715 void __noreturn do_exit(long code) 716 { 717 struct task_struct *tsk = current; 718 int group_dead; 719 720 profile_task_exit(tsk); 721 kcov_task_exit(tsk); 722 723 WARN_ON(blk_needs_flush_plug(tsk)); 724 725 if (unlikely(in_interrupt())) 726 panic("Aiee, killing interrupt handler!"); 727 if (unlikely(!tsk->pid)) 728 panic("Attempted to kill the idle task!"); 729 730 /* 731 * If do_exit is called because this processes oopsed, it's possible 732 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 733 * continuing. Amongst other possible reasons, this is to prevent 734 * mm_release()->clear_child_tid() from writing to a user-controlled 735 * kernel address. 736 */ 737 set_fs(USER_DS); 738 739 ptrace_event(PTRACE_EVENT_EXIT, code); 740 741 validate_creds_for_do_exit(tsk); 742 743 /* 744 * We're taking recursive faults here in do_exit. Safest is to just 745 * leave this task alone and wait for reboot. 746 */ 747 if (unlikely(tsk->flags & PF_EXITING)) { 748 pr_alert("Fixing recursive fault but reboot is needed!\n"); 749 futex_exit_recursive(tsk); 750 set_current_state(TASK_UNINTERRUPTIBLE); 751 schedule(); 752 } 753 754 exit_signals(tsk); /* sets PF_EXITING */ 755 756 if (unlikely(in_atomic())) { 757 pr_info("note: %s[%d] exited with preempt_count %d\n", 758 current->comm, task_pid_nr(current), 759 preempt_count()); 760 preempt_count_set(PREEMPT_ENABLED); 761 } 762 763 /* sync mm's RSS info before statistics gathering */ 764 if (tsk->mm) 765 sync_mm_rss(tsk->mm); 766 acct_update_integrals(tsk); 767 group_dead = atomic_dec_and_test(&tsk->signal->live); 768 if (group_dead) { 769 #ifdef CONFIG_POSIX_TIMERS 770 hrtimer_cancel(&tsk->signal->real_timer); 771 exit_itimers(tsk->signal); 772 #endif 773 if (tsk->mm) 774 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 775 } 776 acct_collect(code, group_dead); 777 if (group_dead) 778 tty_audit_exit(); 779 audit_free(tsk); 780 781 tsk->exit_code = code; 782 taskstats_exit(tsk, group_dead); 783 784 exit_mm(); 785 786 if (group_dead) 787 acct_process(); 788 trace_sched_process_exit(tsk); 789 790 exit_sem(tsk); 791 exit_shm(tsk); 792 exit_files(tsk); 793 exit_fs(tsk); 794 if (group_dead) 795 disassociate_ctty(1); 796 exit_task_namespaces(tsk); 797 exit_task_work(tsk); 798 exit_thread(tsk); 799 exit_umh(tsk); 800 801 /* 802 * Flush inherited counters to the parent - before the parent 803 * gets woken up by child-exit notifications. 804 * 805 * because of cgroup mode, must be called before cgroup_exit() 806 */ 807 perf_event_exit_task(tsk); 808 809 sched_autogroup_exit_task(tsk); 810 cgroup_exit(tsk); 811 812 /* 813 * FIXME: do that only when needed, using sched_exit tracepoint 814 */ 815 flush_ptrace_hw_breakpoint(tsk); 816 817 exit_tasks_rcu_start(); 818 exit_notify(tsk, group_dead); 819 proc_exit_connector(tsk); 820 mpol_put_task_policy(tsk); 821 #ifdef CONFIG_FUTEX 822 if (unlikely(current->pi_state_cache)) 823 kfree(current->pi_state_cache); 824 #endif 825 /* 826 * Make sure we are holding no locks: 827 */ 828 debug_check_no_locks_held(); 829 830 if (tsk->io_context) 831 exit_io_context(tsk); 832 833 if (tsk->splice_pipe) 834 free_pipe_info(tsk->splice_pipe); 835 836 if (tsk->task_frag.page) 837 put_page(tsk->task_frag.page); 838 839 validate_creds_for_do_exit(tsk); 840 841 check_stack_usage(); 842 preempt_disable(); 843 if (tsk->nr_dirtied) 844 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 845 exit_rcu(); 846 exit_tasks_rcu_finish(); 847 848 lockdep_free_task(tsk); 849 do_task_dead(); 850 } 851 EXPORT_SYMBOL_GPL(do_exit); 852 853 void complete_and_exit(struct completion *comp, long code) 854 { 855 if (comp) 856 complete(comp); 857 858 do_exit(code); 859 } 860 EXPORT_SYMBOL(complete_and_exit); 861 862 SYSCALL_DEFINE1(exit, int, error_code) 863 { 864 do_exit((error_code&0xff)<<8); 865 } 866 867 /* 868 * Take down every thread in the group. This is called by fatal signals 869 * as well as by sys_exit_group (below). 870 */ 871 void 872 do_group_exit(int exit_code) 873 { 874 struct signal_struct *sig = current->signal; 875 876 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 877 878 if (signal_group_exit(sig)) 879 exit_code = sig->group_exit_code; 880 else if (!thread_group_empty(current)) { 881 struct sighand_struct *const sighand = current->sighand; 882 883 spin_lock_irq(&sighand->siglock); 884 if (signal_group_exit(sig)) 885 /* Another thread got here before we took the lock. */ 886 exit_code = sig->group_exit_code; 887 else { 888 sig->group_exit_code = exit_code; 889 sig->flags = SIGNAL_GROUP_EXIT; 890 zap_other_threads(current); 891 } 892 spin_unlock_irq(&sighand->siglock); 893 } 894 895 do_exit(exit_code); 896 /* NOTREACHED */ 897 } 898 899 /* 900 * this kills every thread in the thread group. Note that any externally 901 * wait4()-ing process will get the correct exit code - even if this 902 * thread is not the thread group leader. 903 */ 904 SYSCALL_DEFINE1(exit_group, int, error_code) 905 { 906 do_group_exit((error_code & 0xff) << 8); 907 /* NOTREACHED */ 908 return 0; 909 } 910 911 struct waitid_info { 912 pid_t pid; 913 uid_t uid; 914 int status; 915 int cause; 916 }; 917 918 struct wait_opts { 919 enum pid_type wo_type; 920 int wo_flags; 921 struct pid *wo_pid; 922 923 struct waitid_info *wo_info; 924 int wo_stat; 925 struct rusage *wo_rusage; 926 927 wait_queue_entry_t child_wait; 928 int notask_error; 929 }; 930 931 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 932 { 933 return wo->wo_type == PIDTYPE_MAX || 934 task_pid_type(p, wo->wo_type) == wo->wo_pid; 935 } 936 937 static int 938 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 939 { 940 if (!eligible_pid(wo, p)) 941 return 0; 942 943 /* 944 * Wait for all children (clone and not) if __WALL is set or 945 * if it is traced by us. 946 */ 947 if (ptrace || (wo->wo_flags & __WALL)) 948 return 1; 949 950 /* 951 * Otherwise, wait for clone children *only* if __WCLONE is set; 952 * otherwise, wait for non-clone children *only*. 953 * 954 * Note: a "clone" child here is one that reports to its parent 955 * using a signal other than SIGCHLD, or a non-leader thread which 956 * we can only see if it is traced by us. 957 */ 958 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 959 return 0; 960 961 return 1; 962 } 963 964 /* 965 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 966 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 967 * the lock and this task is uninteresting. If we return nonzero, we have 968 * released the lock and the system call should return. 969 */ 970 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 971 { 972 int state, status; 973 pid_t pid = task_pid_vnr(p); 974 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 975 struct waitid_info *infop; 976 977 if (!likely(wo->wo_flags & WEXITED)) 978 return 0; 979 980 if (unlikely(wo->wo_flags & WNOWAIT)) { 981 status = p->exit_code; 982 get_task_struct(p); 983 read_unlock(&tasklist_lock); 984 sched_annotate_sleep(); 985 if (wo->wo_rusage) 986 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 987 put_task_struct(p); 988 goto out_info; 989 } 990 /* 991 * Move the task's state to DEAD/TRACE, only one thread can do this. 992 */ 993 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 994 EXIT_TRACE : EXIT_DEAD; 995 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 996 return 0; 997 /* 998 * We own this thread, nobody else can reap it. 999 */ 1000 read_unlock(&tasklist_lock); 1001 sched_annotate_sleep(); 1002 1003 /* 1004 * Check thread_group_leader() to exclude the traced sub-threads. 1005 */ 1006 if (state == EXIT_DEAD && thread_group_leader(p)) { 1007 struct signal_struct *sig = p->signal; 1008 struct signal_struct *psig = current->signal; 1009 unsigned long maxrss; 1010 u64 tgutime, tgstime; 1011 1012 /* 1013 * The resource counters for the group leader are in its 1014 * own task_struct. Those for dead threads in the group 1015 * are in its signal_struct, as are those for the child 1016 * processes it has previously reaped. All these 1017 * accumulate in the parent's signal_struct c* fields. 1018 * 1019 * We don't bother to take a lock here to protect these 1020 * p->signal fields because the whole thread group is dead 1021 * and nobody can change them. 1022 * 1023 * psig->stats_lock also protects us from our sub-theads 1024 * which can reap other children at the same time. Until 1025 * we change k_getrusage()-like users to rely on this lock 1026 * we have to take ->siglock as well. 1027 * 1028 * We use thread_group_cputime_adjusted() to get times for 1029 * the thread group, which consolidates times for all threads 1030 * in the group including the group leader. 1031 */ 1032 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1033 spin_lock_irq(¤t->sighand->siglock); 1034 write_seqlock(&psig->stats_lock); 1035 psig->cutime += tgutime + sig->cutime; 1036 psig->cstime += tgstime + sig->cstime; 1037 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1038 psig->cmin_flt += 1039 p->min_flt + sig->min_flt + sig->cmin_flt; 1040 psig->cmaj_flt += 1041 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1042 psig->cnvcsw += 1043 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1044 psig->cnivcsw += 1045 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1046 psig->cinblock += 1047 task_io_get_inblock(p) + 1048 sig->inblock + sig->cinblock; 1049 psig->coublock += 1050 task_io_get_oublock(p) + 1051 sig->oublock + sig->coublock; 1052 maxrss = max(sig->maxrss, sig->cmaxrss); 1053 if (psig->cmaxrss < maxrss) 1054 psig->cmaxrss = maxrss; 1055 task_io_accounting_add(&psig->ioac, &p->ioac); 1056 task_io_accounting_add(&psig->ioac, &sig->ioac); 1057 write_sequnlock(&psig->stats_lock); 1058 spin_unlock_irq(¤t->sighand->siglock); 1059 } 1060 1061 if (wo->wo_rusage) 1062 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1063 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1064 ? p->signal->group_exit_code : p->exit_code; 1065 wo->wo_stat = status; 1066 1067 if (state == EXIT_TRACE) { 1068 write_lock_irq(&tasklist_lock); 1069 /* We dropped tasklist, ptracer could die and untrace */ 1070 ptrace_unlink(p); 1071 1072 /* If parent wants a zombie, don't release it now */ 1073 state = EXIT_ZOMBIE; 1074 if (do_notify_parent(p, p->exit_signal)) 1075 state = EXIT_DEAD; 1076 p->exit_state = state; 1077 write_unlock_irq(&tasklist_lock); 1078 } 1079 if (state == EXIT_DEAD) 1080 release_task(p); 1081 1082 out_info: 1083 infop = wo->wo_info; 1084 if (infop) { 1085 if ((status & 0x7f) == 0) { 1086 infop->cause = CLD_EXITED; 1087 infop->status = status >> 8; 1088 } else { 1089 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1090 infop->status = status & 0x7f; 1091 } 1092 infop->pid = pid; 1093 infop->uid = uid; 1094 } 1095 1096 return pid; 1097 } 1098 1099 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1100 { 1101 if (ptrace) { 1102 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1103 return &p->exit_code; 1104 } else { 1105 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1106 return &p->signal->group_exit_code; 1107 } 1108 return NULL; 1109 } 1110 1111 /** 1112 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1113 * @wo: wait options 1114 * @ptrace: is the wait for ptrace 1115 * @p: task to wait for 1116 * 1117 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1118 * 1119 * CONTEXT: 1120 * read_lock(&tasklist_lock), which is released if return value is 1121 * non-zero. Also, grabs and releases @p->sighand->siglock. 1122 * 1123 * RETURNS: 1124 * 0 if wait condition didn't exist and search for other wait conditions 1125 * should continue. Non-zero return, -errno on failure and @p's pid on 1126 * success, implies that tasklist_lock is released and wait condition 1127 * search should terminate. 1128 */ 1129 static int wait_task_stopped(struct wait_opts *wo, 1130 int ptrace, struct task_struct *p) 1131 { 1132 struct waitid_info *infop; 1133 int exit_code, *p_code, why; 1134 uid_t uid = 0; /* unneeded, required by compiler */ 1135 pid_t pid; 1136 1137 /* 1138 * Traditionally we see ptrace'd stopped tasks regardless of options. 1139 */ 1140 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1141 return 0; 1142 1143 if (!task_stopped_code(p, ptrace)) 1144 return 0; 1145 1146 exit_code = 0; 1147 spin_lock_irq(&p->sighand->siglock); 1148 1149 p_code = task_stopped_code(p, ptrace); 1150 if (unlikely(!p_code)) 1151 goto unlock_sig; 1152 1153 exit_code = *p_code; 1154 if (!exit_code) 1155 goto unlock_sig; 1156 1157 if (!unlikely(wo->wo_flags & WNOWAIT)) 1158 *p_code = 0; 1159 1160 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1161 unlock_sig: 1162 spin_unlock_irq(&p->sighand->siglock); 1163 if (!exit_code) 1164 return 0; 1165 1166 /* 1167 * Now we are pretty sure this task is interesting. 1168 * Make sure it doesn't get reaped out from under us while we 1169 * give up the lock and then examine it below. We don't want to 1170 * keep holding onto the tasklist_lock while we call getrusage and 1171 * possibly take page faults for user memory. 1172 */ 1173 get_task_struct(p); 1174 pid = task_pid_vnr(p); 1175 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1176 read_unlock(&tasklist_lock); 1177 sched_annotate_sleep(); 1178 if (wo->wo_rusage) 1179 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1180 put_task_struct(p); 1181 1182 if (likely(!(wo->wo_flags & WNOWAIT))) 1183 wo->wo_stat = (exit_code << 8) | 0x7f; 1184 1185 infop = wo->wo_info; 1186 if (infop) { 1187 infop->cause = why; 1188 infop->status = exit_code; 1189 infop->pid = pid; 1190 infop->uid = uid; 1191 } 1192 return pid; 1193 } 1194 1195 /* 1196 * Handle do_wait work for one task in a live, non-stopped state. 1197 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1198 * the lock and this task is uninteresting. If we return nonzero, we have 1199 * released the lock and the system call should return. 1200 */ 1201 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1202 { 1203 struct waitid_info *infop; 1204 pid_t pid; 1205 uid_t uid; 1206 1207 if (!unlikely(wo->wo_flags & WCONTINUED)) 1208 return 0; 1209 1210 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1211 return 0; 1212 1213 spin_lock_irq(&p->sighand->siglock); 1214 /* Re-check with the lock held. */ 1215 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1216 spin_unlock_irq(&p->sighand->siglock); 1217 return 0; 1218 } 1219 if (!unlikely(wo->wo_flags & WNOWAIT)) 1220 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1221 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1222 spin_unlock_irq(&p->sighand->siglock); 1223 1224 pid = task_pid_vnr(p); 1225 get_task_struct(p); 1226 read_unlock(&tasklist_lock); 1227 sched_annotate_sleep(); 1228 if (wo->wo_rusage) 1229 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1230 put_task_struct(p); 1231 1232 infop = wo->wo_info; 1233 if (!infop) { 1234 wo->wo_stat = 0xffff; 1235 } else { 1236 infop->cause = CLD_CONTINUED; 1237 infop->pid = pid; 1238 infop->uid = uid; 1239 infop->status = SIGCONT; 1240 } 1241 return pid; 1242 } 1243 1244 /* 1245 * Consider @p for a wait by @parent. 1246 * 1247 * -ECHILD should be in ->notask_error before the first call. 1248 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1249 * Returns zero if the search for a child should continue; 1250 * then ->notask_error is 0 if @p is an eligible child, 1251 * or still -ECHILD. 1252 */ 1253 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1254 struct task_struct *p) 1255 { 1256 /* 1257 * We can race with wait_task_zombie() from another thread. 1258 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1259 * can't confuse the checks below. 1260 */ 1261 int exit_state = READ_ONCE(p->exit_state); 1262 int ret; 1263 1264 if (unlikely(exit_state == EXIT_DEAD)) 1265 return 0; 1266 1267 ret = eligible_child(wo, ptrace, p); 1268 if (!ret) 1269 return ret; 1270 1271 if (unlikely(exit_state == EXIT_TRACE)) { 1272 /* 1273 * ptrace == 0 means we are the natural parent. In this case 1274 * we should clear notask_error, debugger will notify us. 1275 */ 1276 if (likely(!ptrace)) 1277 wo->notask_error = 0; 1278 return 0; 1279 } 1280 1281 if (likely(!ptrace) && unlikely(p->ptrace)) { 1282 /* 1283 * If it is traced by its real parent's group, just pretend 1284 * the caller is ptrace_do_wait() and reap this child if it 1285 * is zombie. 1286 * 1287 * This also hides group stop state from real parent; otherwise 1288 * a single stop can be reported twice as group and ptrace stop. 1289 * If a ptracer wants to distinguish these two events for its 1290 * own children it should create a separate process which takes 1291 * the role of real parent. 1292 */ 1293 if (!ptrace_reparented(p)) 1294 ptrace = 1; 1295 } 1296 1297 /* slay zombie? */ 1298 if (exit_state == EXIT_ZOMBIE) { 1299 /* we don't reap group leaders with subthreads */ 1300 if (!delay_group_leader(p)) { 1301 /* 1302 * A zombie ptracee is only visible to its ptracer. 1303 * Notification and reaping will be cascaded to the 1304 * real parent when the ptracer detaches. 1305 */ 1306 if (unlikely(ptrace) || likely(!p->ptrace)) 1307 return wait_task_zombie(wo, p); 1308 } 1309 1310 /* 1311 * Allow access to stopped/continued state via zombie by 1312 * falling through. Clearing of notask_error is complex. 1313 * 1314 * When !@ptrace: 1315 * 1316 * If WEXITED is set, notask_error should naturally be 1317 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1318 * so, if there are live subthreads, there are events to 1319 * wait for. If all subthreads are dead, it's still safe 1320 * to clear - this function will be called again in finite 1321 * amount time once all the subthreads are released and 1322 * will then return without clearing. 1323 * 1324 * When @ptrace: 1325 * 1326 * Stopped state is per-task and thus can't change once the 1327 * target task dies. Only continued and exited can happen. 1328 * Clear notask_error if WCONTINUED | WEXITED. 1329 */ 1330 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1331 wo->notask_error = 0; 1332 } else { 1333 /* 1334 * @p is alive and it's gonna stop, continue or exit, so 1335 * there always is something to wait for. 1336 */ 1337 wo->notask_error = 0; 1338 } 1339 1340 /* 1341 * Wait for stopped. Depending on @ptrace, different stopped state 1342 * is used and the two don't interact with each other. 1343 */ 1344 ret = wait_task_stopped(wo, ptrace, p); 1345 if (ret) 1346 return ret; 1347 1348 /* 1349 * Wait for continued. There's only one continued state and the 1350 * ptracer can consume it which can confuse the real parent. Don't 1351 * use WCONTINUED from ptracer. You don't need or want it. 1352 */ 1353 return wait_task_continued(wo, p); 1354 } 1355 1356 /* 1357 * Do the work of do_wait() for one thread in the group, @tsk. 1358 * 1359 * -ECHILD should be in ->notask_error before the first call. 1360 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1361 * Returns zero if the search for a child should continue; then 1362 * ->notask_error is 0 if there were any eligible children, 1363 * or still -ECHILD. 1364 */ 1365 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1366 { 1367 struct task_struct *p; 1368 1369 list_for_each_entry(p, &tsk->children, sibling) { 1370 int ret = wait_consider_task(wo, 0, p); 1371 1372 if (ret) 1373 return ret; 1374 } 1375 1376 return 0; 1377 } 1378 1379 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1380 { 1381 struct task_struct *p; 1382 1383 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1384 int ret = wait_consider_task(wo, 1, p); 1385 1386 if (ret) 1387 return ret; 1388 } 1389 1390 return 0; 1391 } 1392 1393 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1394 int sync, void *key) 1395 { 1396 struct wait_opts *wo = container_of(wait, struct wait_opts, 1397 child_wait); 1398 struct task_struct *p = key; 1399 1400 if (!eligible_pid(wo, p)) 1401 return 0; 1402 1403 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1404 return 0; 1405 1406 return default_wake_function(wait, mode, sync, key); 1407 } 1408 1409 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1410 { 1411 __wake_up_sync_key(&parent->signal->wait_chldexit, 1412 TASK_INTERRUPTIBLE, p); 1413 } 1414 1415 static long do_wait(struct wait_opts *wo) 1416 { 1417 struct task_struct *tsk; 1418 int retval; 1419 1420 trace_sched_process_wait(wo->wo_pid); 1421 1422 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1423 wo->child_wait.private = current; 1424 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1425 repeat: 1426 /* 1427 * If there is nothing that can match our criteria, just get out. 1428 * We will clear ->notask_error to zero if we see any child that 1429 * might later match our criteria, even if we are not able to reap 1430 * it yet. 1431 */ 1432 wo->notask_error = -ECHILD; 1433 if ((wo->wo_type < PIDTYPE_MAX) && 1434 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1435 goto notask; 1436 1437 set_current_state(TASK_INTERRUPTIBLE); 1438 read_lock(&tasklist_lock); 1439 tsk = current; 1440 do { 1441 retval = do_wait_thread(wo, tsk); 1442 if (retval) 1443 goto end; 1444 1445 retval = ptrace_do_wait(wo, tsk); 1446 if (retval) 1447 goto end; 1448 1449 if (wo->wo_flags & __WNOTHREAD) 1450 break; 1451 } while_each_thread(current, tsk); 1452 read_unlock(&tasklist_lock); 1453 1454 notask: 1455 retval = wo->notask_error; 1456 if (!retval && !(wo->wo_flags & WNOHANG)) { 1457 retval = -ERESTARTSYS; 1458 if (!signal_pending(current)) { 1459 schedule(); 1460 goto repeat; 1461 } 1462 } 1463 end: 1464 __set_current_state(TASK_RUNNING); 1465 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1466 return retval; 1467 } 1468 1469 static struct pid *pidfd_get_pid(unsigned int fd) 1470 { 1471 struct fd f; 1472 struct pid *pid; 1473 1474 f = fdget(fd); 1475 if (!f.file) 1476 return ERR_PTR(-EBADF); 1477 1478 pid = pidfd_pid(f.file); 1479 if (!IS_ERR(pid)) 1480 get_pid(pid); 1481 1482 fdput(f); 1483 return pid; 1484 } 1485 1486 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1487 int options, struct rusage *ru) 1488 { 1489 struct wait_opts wo; 1490 struct pid *pid = NULL; 1491 enum pid_type type; 1492 long ret; 1493 1494 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1495 __WNOTHREAD|__WCLONE|__WALL)) 1496 return -EINVAL; 1497 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1498 return -EINVAL; 1499 1500 switch (which) { 1501 case P_ALL: 1502 type = PIDTYPE_MAX; 1503 break; 1504 case P_PID: 1505 type = PIDTYPE_PID; 1506 if (upid <= 0) 1507 return -EINVAL; 1508 1509 pid = find_get_pid(upid); 1510 break; 1511 case P_PGID: 1512 type = PIDTYPE_PGID; 1513 if (upid < 0) 1514 return -EINVAL; 1515 1516 if (upid) 1517 pid = find_get_pid(upid); 1518 else 1519 pid = get_task_pid(current, PIDTYPE_PGID); 1520 break; 1521 case P_PIDFD: 1522 type = PIDTYPE_PID; 1523 if (upid < 0) 1524 return -EINVAL; 1525 1526 pid = pidfd_get_pid(upid); 1527 if (IS_ERR(pid)) 1528 return PTR_ERR(pid); 1529 break; 1530 default: 1531 return -EINVAL; 1532 } 1533 1534 wo.wo_type = type; 1535 wo.wo_pid = pid; 1536 wo.wo_flags = options; 1537 wo.wo_info = infop; 1538 wo.wo_rusage = ru; 1539 ret = do_wait(&wo); 1540 1541 put_pid(pid); 1542 return ret; 1543 } 1544 1545 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1546 infop, int, options, struct rusage __user *, ru) 1547 { 1548 struct rusage r; 1549 struct waitid_info info = {.status = 0}; 1550 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1551 int signo = 0; 1552 1553 if (err > 0) { 1554 signo = SIGCHLD; 1555 err = 0; 1556 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1557 return -EFAULT; 1558 } 1559 if (!infop) 1560 return err; 1561 1562 if (!user_access_begin(infop, sizeof(*infop))) 1563 return -EFAULT; 1564 1565 unsafe_put_user(signo, &infop->si_signo, Efault); 1566 unsafe_put_user(0, &infop->si_errno, Efault); 1567 unsafe_put_user(info.cause, &infop->si_code, Efault); 1568 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1569 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1570 unsafe_put_user(info.status, &infop->si_status, Efault); 1571 user_access_end(); 1572 return err; 1573 Efault: 1574 user_access_end(); 1575 return -EFAULT; 1576 } 1577 1578 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1579 struct rusage *ru) 1580 { 1581 struct wait_opts wo; 1582 struct pid *pid = NULL; 1583 enum pid_type type; 1584 long ret; 1585 1586 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1587 __WNOTHREAD|__WCLONE|__WALL)) 1588 return -EINVAL; 1589 1590 /* -INT_MIN is not defined */ 1591 if (upid == INT_MIN) 1592 return -ESRCH; 1593 1594 if (upid == -1) 1595 type = PIDTYPE_MAX; 1596 else if (upid < 0) { 1597 type = PIDTYPE_PGID; 1598 pid = find_get_pid(-upid); 1599 } else if (upid == 0) { 1600 type = PIDTYPE_PGID; 1601 pid = get_task_pid(current, PIDTYPE_PGID); 1602 } else /* upid > 0 */ { 1603 type = PIDTYPE_PID; 1604 pid = find_get_pid(upid); 1605 } 1606 1607 wo.wo_type = type; 1608 wo.wo_pid = pid; 1609 wo.wo_flags = options | WEXITED; 1610 wo.wo_info = NULL; 1611 wo.wo_stat = 0; 1612 wo.wo_rusage = ru; 1613 ret = do_wait(&wo); 1614 put_pid(pid); 1615 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1616 ret = -EFAULT; 1617 1618 return ret; 1619 } 1620 1621 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1622 int, options, struct rusage __user *, ru) 1623 { 1624 struct rusage r; 1625 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1626 1627 if (err > 0) { 1628 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1629 return -EFAULT; 1630 } 1631 return err; 1632 } 1633 1634 #ifdef __ARCH_WANT_SYS_WAITPID 1635 1636 /* 1637 * sys_waitpid() remains for compatibility. waitpid() should be 1638 * implemented by calling sys_wait4() from libc.a. 1639 */ 1640 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1641 { 1642 return kernel_wait4(pid, stat_addr, options, NULL); 1643 } 1644 1645 #endif 1646 1647 #ifdef CONFIG_COMPAT 1648 COMPAT_SYSCALL_DEFINE4(wait4, 1649 compat_pid_t, pid, 1650 compat_uint_t __user *, stat_addr, 1651 int, options, 1652 struct compat_rusage __user *, ru) 1653 { 1654 struct rusage r; 1655 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1656 if (err > 0) { 1657 if (ru && put_compat_rusage(&r, ru)) 1658 return -EFAULT; 1659 } 1660 return err; 1661 } 1662 1663 COMPAT_SYSCALL_DEFINE5(waitid, 1664 int, which, compat_pid_t, pid, 1665 struct compat_siginfo __user *, infop, int, options, 1666 struct compat_rusage __user *, uru) 1667 { 1668 struct rusage ru; 1669 struct waitid_info info = {.status = 0}; 1670 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1671 int signo = 0; 1672 if (err > 0) { 1673 signo = SIGCHLD; 1674 err = 0; 1675 if (uru) { 1676 /* kernel_waitid() overwrites everything in ru */ 1677 if (COMPAT_USE_64BIT_TIME) 1678 err = copy_to_user(uru, &ru, sizeof(ru)); 1679 else 1680 err = put_compat_rusage(&ru, uru); 1681 if (err) 1682 return -EFAULT; 1683 } 1684 } 1685 1686 if (!infop) 1687 return err; 1688 1689 if (!user_access_begin(infop, sizeof(*infop))) 1690 return -EFAULT; 1691 1692 unsafe_put_user(signo, &infop->si_signo, Efault); 1693 unsafe_put_user(0, &infop->si_errno, Efault); 1694 unsafe_put_user(info.cause, &infop->si_code, Efault); 1695 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1696 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1697 unsafe_put_user(info.status, &infop->si_status, Efault); 1698 user_access_end(); 1699 return err; 1700 Efault: 1701 user_access_end(); 1702 return -EFAULT; 1703 } 1704 #endif 1705 1706 __weak void abort(void) 1707 { 1708 BUG(); 1709 1710 /* if that doesn't kill us, halt */ 1711 panic("Oops failed to kill thread"); 1712 } 1713 EXPORT_SYMBOL(abort); 1714