xref: /linux/kernel/exit.c (revision 2de4e82318c7f9d34f4b08599a612cd4cd10bf0b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71 
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 	nr_threads--;
75 	detach_pid(p, PIDTYPE_PID);
76 	if (group_dead) {
77 		detach_pid(p, PIDTYPE_TGID);
78 		detach_pid(p, PIDTYPE_PGID);
79 		detach_pid(p, PIDTYPE_SID);
80 
81 		list_del_rcu(&p->tasks);
82 		list_del_init(&p->sibling);
83 		__this_cpu_dec(process_counts);
84 	}
85 	list_del_rcu(&p->thread_group);
86 	list_del_rcu(&p->thread_node);
87 }
88 
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94 	struct signal_struct *sig = tsk->signal;
95 	bool group_dead = thread_group_leader(tsk);
96 	struct sighand_struct *sighand;
97 	struct tty_struct *uninitialized_var(tty);
98 	u64 utime, stime;
99 
100 	sighand = rcu_dereference_check(tsk->sighand,
101 					lockdep_tasklist_lock_is_held());
102 	spin_lock(&sighand->siglock);
103 
104 #ifdef CONFIG_POSIX_TIMERS
105 	posix_cpu_timers_exit(tsk);
106 	if (group_dead) {
107 		posix_cpu_timers_exit_group(tsk);
108 	} else {
109 		/*
110 		 * This can only happen if the caller is de_thread().
111 		 * FIXME: this is the temporary hack, we should teach
112 		 * posix-cpu-timers to handle this case correctly.
113 		 */
114 		if (unlikely(has_group_leader_pid(tsk)))
115 			posix_cpu_timers_exit_group(tsk);
116 	}
117 #endif
118 
119 	if (group_dead) {
120 		tty = sig->tty;
121 		sig->tty = NULL;
122 	} else {
123 		/*
124 		 * If there is any task waiting for the group exit
125 		 * then notify it:
126 		 */
127 		if (sig->notify_count > 0 && !--sig->notify_count)
128 			wake_up_process(sig->group_exit_task);
129 
130 		if (tsk == sig->curr_target)
131 			sig->curr_target = next_thread(tsk);
132 	}
133 
134 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
135 			      sizeof(unsigned long long));
136 
137 	/*
138 	 * Accumulate here the counters for all threads as they die. We could
139 	 * skip the group leader because it is the last user of signal_struct,
140 	 * but we want to avoid the race with thread_group_cputime() which can
141 	 * see the empty ->thread_head list.
142 	 */
143 	task_cputime(tsk, &utime, &stime);
144 	write_seqlock(&sig->stats_lock);
145 	sig->utime += utime;
146 	sig->stime += stime;
147 	sig->gtime += task_gtime(tsk);
148 	sig->min_flt += tsk->min_flt;
149 	sig->maj_flt += tsk->maj_flt;
150 	sig->nvcsw += tsk->nvcsw;
151 	sig->nivcsw += tsk->nivcsw;
152 	sig->inblock += task_io_get_inblock(tsk);
153 	sig->oublock += task_io_get_oublock(tsk);
154 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
155 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
156 	sig->nr_threads--;
157 	__unhash_process(tsk, group_dead);
158 	write_sequnlock(&sig->stats_lock);
159 
160 	/*
161 	 * Do this under ->siglock, we can race with another thread
162 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
163 	 */
164 	flush_sigqueue(&tsk->pending);
165 	tsk->sighand = NULL;
166 	spin_unlock(&sighand->siglock);
167 
168 	__cleanup_sighand(sighand);
169 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
170 	if (group_dead) {
171 		flush_sigqueue(&sig->shared_pending);
172 		tty_kref_put(tty);
173 	}
174 }
175 
176 static void delayed_put_task_struct(struct rcu_head *rhp)
177 {
178 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
179 
180 	perf_event_delayed_put(tsk);
181 	trace_sched_process_free(tsk);
182 	put_task_struct(tsk);
183 }
184 
185 void put_task_struct_rcu_user(struct task_struct *task)
186 {
187 	if (refcount_dec_and_test(&task->rcu_users))
188 		call_rcu(&task->rcu, delayed_put_task_struct);
189 }
190 
191 void release_task(struct task_struct *p)
192 {
193 	struct task_struct *leader;
194 	struct pid *thread_pid;
195 	int zap_leader;
196 repeat:
197 	/* don't need to get the RCU readlock here - the process is dead and
198 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
199 	rcu_read_lock();
200 	atomic_dec(&__task_cred(p)->user->processes);
201 	rcu_read_unlock();
202 
203 	cgroup_release(p);
204 
205 	write_lock_irq(&tasklist_lock);
206 	ptrace_release_task(p);
207 	thread_pid = get_pid(p->thread_pid);
208 	__exit_signal(p);
209 
210 	/*
211 	 * If we are the last non-leader member of the thread
212 	 * group, and the leader is zombie, then notify the
213 	 * group leader's parent process. (if it wants notification.)
214 	 */
215 	zap_leader = 0;
216 	leader = p->group_leader;
217 	if (leader != p && thread_group_empty(leader)
218 			&& leader->exit_state == EXIT_ZOMBIE) {
219 		/*
220 		 * If we were the last child thread and the leader has
221 		 * exited already, and the leader's parent ignores SIGCHLD,
222 		 * then we are the one who should release the leader.
223 		 */
224 		zap_leader = do_notify_parent(leader, leader->exit_signal);
225 		if (zap_leader)
226 			leader->exit_state = EXIT_DEAD;
227 	}
228 
229 	write_unlock_irq(&tasklist_lock);
230 	proc_flush_pid(thread_pid);
231 	release_thread(p);
232 	put_task_struct_rcu_user(p);
233 
234 	p = leader;
235 	if (unlikely(zap_leader))
236 		goto repeat;
237 }
238 
239 void rcuwait_wake_up(struct rcuwait *w)
240 {
241 	struct task_struct *task;
242 
243 	rcu_read_lock();
244 
245 	/*
246 	 * Order condition vs @task, such that everything prior to the load
247 	 * of @task is visible. This is the condition as to why the user called
248 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
249 	 * barrier (A) in rcuwait_wait_event().
250 	 *
251 	 *    WAIT                WAKE
252 	 *    [S] tsk = current	  [S] cond = true
253 	 *        MB (A)	      MB (B)
254 	 *    [L] cond		  [L] tsk
255 	 */
256 	smp_mb(); /* (B) */
257 
258 	task = rcu_dereference(w->task);
259 	if (task)
260 		wake_up_process(task);
261 	rcu_read_unlock();
262 }
263 
264 /*
265  * Determine if a process group is "orphaned", according to the POSIX
266  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
267  * by terminal-generated stop signals.  Newly orphaned process groups are
268  * to receive a SIGHUP and a SIGCONT.
269  *
270  * "I ask you, have you ever known what it is to be an orphan?"
271  */
272 static int will_become_orphaned_pgrp(struct pid *pgrp,
273 					struct task_struct *ignored_task)
274 {
275 	struct task_struct *p;
276 
277 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278 		if ((p == ignored_task) ||
279 		    (p->exit_state && thread_group_empty(p)) ||
280 		    is_global_init(p->real_parent))
281 			continue;
282 
283 		if (task_pgrp(p->real_parent) != pgrp &&
284 		    task_session(p->real_parent) == task_session(p))
285 			return 0;
286 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
287 
288 	return 1;
289 }
290 
291 int is_current_pgrp_orphaned(void)
292 {
293 	int retval;
294 
295 	read_lock(&tasklist_lock);
296 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
297 	read_unlock(&tasklist_lock);
298 
299 	return retval;
300 }
301 
302 static bool has_stopped_jobs(struct pid *pgrp)
303 {
304 	struct task_struct *p;
305 
306 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
307 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
308 			return true;
309 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
310 
311 	return false;
312 }
313 
314 /*
315  * Check to see if any process groups have become orphaned as
316  * a result of our exiting, and if they have any stopped jobs,
317  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
318  */
319 static void
320 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
321 {
322 	struct pid *pgrp = task_pgrp(tsk);
323 	struct task_struct *ignored_task = tsk;
324 
325 	if (!parent)
326 		/* exit: our father is in a different pgrp than
327 		 * we are and we were the only connection outside.
328 		 */
329 		parent = tsk->real_parent;
330 	else
331 		/* reparent: our child is in a different pgrp than
332 		 * we are, and it was the only connection outside.
333 		 */
334 		ignored_task = NULL;
335 
336 	if (task_pgrp(parent) != pgrp &&
337 	    task_session(parent) == task_session(tsk) &&
338 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
339 	    has_stopped_jobs(pgrp)) {
340 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
341 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
342 	}
343 }
344 
345 #ifdef CONFIG_MEMCG
346 /*
347  * A task is exiting.   If it owned this mm, find a new owner for the mm.
348  */
349 void mm_update_next_owner(struct mm_struct *mm)
350 {
351 	struct task_struct *c, *g, *p = current;
352 
353 retry:
354 	/*
355 	 * If the exiting or execing task is not the owner, it's
356 	 * someone else's problem.
357 	 */
358 	if (mm->owner != p)
359 		return;
360 	/*
361 	 * The current owner is exiting/execing and there are no other
362 	 * candidates.  Do not leave the mm pointing to a possibly
363 	 * freed task structure.
364 	 */
365 	if (atomic_read(&mm->mm_users) <= 1) {
366 		WRITE_ONCE(mm->owner, NULL);
367 		return;
368 	}
369 
370 	read_lock(&tasklist_lock);
371 	/*
372 	 * Search in the children
373 	 */
374 	list_for_each_entry(c, &p->children, sibling) {
375 		if (c->mm == mm)
376 			goto assign_new_owner;
377 	}
378 
379 	/*
380 	 * Search in the siblings
381 	 */
382 	list_for_each_entry(c, &p->real_parent->children, sibling) {
383 		if (c->mm == mm)
384 			goto assign_new_owner;
385 	}
386 
387 	/*
388 	 * Search through everything else, we should not get here often.
389 	 */
390 	for_each_process(g) {
391 		if (g->flags & PF_KTHREAD)
392 			continue;
393 		for_each_thread(g, c) {
394 			if (c->mm == mm)
395 				goto assign_new_owner;
396 			if (c->mm)
397 				break;
398 		}
399 	}
400 	read_unlock(&tasklist_lock);
401 	/*
402 	 * We found no owner yet mm_users > 1: this implies that we are
403 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
404 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
405 	 */
406 	WRITE_ONCE(mm->owner, NULL);
407 	return;
408 
409 assign_new_owner:
410 	BUG_ON(c == p);
411 	get_task_struct(c);
412 	/*
413 	 * The task_lock protects c->mm from changing.
414 	 * We always want mm->owner->mm == mm
415 	 */
416 	task_lock(c);
417 	/*
418 	 * Delay read_unlock() till we have the task_lock()
419 	 * to ensure that c does not slip away underneath us
420 	 */
421 	read_unlock(&tasklist_lock);
422 	if (c->mm != mm) {
423 		task_unlock(c);
424 		put_task_struct(c);
425 		goto retry;
426 	}
427 	WRITE_ONCE(mm->owner, c);
428 	task_unlock(c);
429 	put_task_struct(c);
430 }
431 #endif /* CONFIG_MEMCG */
432 
433 /*
434  * Turn us into a lazy TLB process if we
435  * aren't already..
436  */
437 static void exit_mm(void)
438 {
439 	struct mm_struct *mm = current->mm;
440 	struct core_state *core_state;
441 
442 	exit_mm_release(current, mm);
443 	if (!mm)
444 		return;
445 	sync_mm_rss(mm);
446 	/*
447 	 * Serialize with any possible pending coredump.
448 	 * We must hold mmap_sem around checking core_state
449 	 * and clearing tsk->mm.  The core-inducing thread
450 	 * will increment ->nr_threads for each thread in the
451 	 * group with ->mm != NULL.
452 	 */
453 	down_read(&mm->mmap_sem);
454 	core_state = mm->core_state;
455 	if (core_state) {
456 		struct core_thread self;
457 
458 		up_read(&mm->mmap_sem);
459 
460 		self.task = current;
461 		self.next = xchg(&core_state->dumper.next, &self);
462 		/*
463 		 * Implies mb(), the result of xchg() must be visible
464 		 * to core_state->dumper.
465 		 */
466 		if (atomic_dec_and_test(&core_state->nr_threads))
467 			complete(&core_state->startup);
468 
469 		for (;;) {
470 			set_current_state(TASK_UNINTERRUPTIBLE);
471 			if (!self.task) /* see coredump_finish() */
472 				break;
473 			freezable_schedule();
474 		}
475 		__set_current_state(TASK_RUNNING);
476 		down_read(&mm->mmap_sem);
477 	}
478 	mmgrab(mm);
479 	BUG_ON(mm != current->active_mm);
480 	/* more a memory barrier than a real lock */
481 	task_lock(current);
482 	current->mm = NULL;
483 	up_read(&mm->mmap_sem);
484 	enter_lazy_tlb(mm, current);
485 	task_unlock(current);
486 	mm_update_next_owner(mm);
487 	mmput(mm);
488 	if (test_thread_flag(TIF_MEMDIE))
489 		exit_oom_victim();
490 }
491 
492 static struct task_struct *find_alive_thread(struct task_struct *p)
493 {
494 	struct task_struct *t;
495 
496 	for_each_thread(p, t) {
497 		if (!(t->flags & PF_EXITING))
498 			return t;
499 	}
500 	return NULL;
501 }
502 
503 static struct task_struct *find_child_reaper(struct task_struct *father,
504 						struct list_head *dead)
505 	__releases(&tasklist_lock)
506 	__acquires(&tasklist_lock)
507 {
508 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
509 	struct task_struct *reaper = pid_ns->child_reaper;
510 	struct task_struct *p, *n;
511 
512 	if (likely(reaper != father))
513 		return reaper;
514 
515 	reaper = find_alive_thread(father);
516 	if (reaper) {
517 		pid_ns->child_reaper = reaper;
518 		return reaper;
519 	}
520 
521 	write_unlock_irq(&tasklist_lock);
522 
523 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
524 		list_del_init(&p->ptrace_entry);
525 		release_task(p);
526 	}
527 
528 	zap_pid_ns_processes(pid_ns);
529 	write_lock_irq(&tasklist_lock);
530 
531 	return father;
532 }
533 
534 /*
535  * When we die, we re-parent all our children, and try to:
536  * 1. give them to another thread in our thread group, if such a member exists
537  * 2. give it to the first ancestor process which prctl'd itself as a
538  *    child_subreaper for its children (like a service manager)
539  * 3. give it to the init process (PID 1) in our pid namespace
540  */
541 static struct task_struct *find_new_reaper(struct task_struct *father,
542 					   struct task_struct *child_reaper)
543 {
544 	struct task_struct *thread, *reaper;
545 
546 	thread = find_alive_thread(father);
547 	if (thread)
548 		return thread;
549 
550 	if (father->signal->has_child_subreaper) {
551 		unsigned int ns_level = task_pid(father)->level;
552 		/*
553 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
554 		 * We can't check reaper != child_reaper to ensure we do not
555 		 * cross the namespaces, the exiting parent could be injected
556 		 * by setns() + fork().
557 		 * We check pid->level, this is slightly more efficient than
558 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
559 		 */
560 		for (reaper = father->real_parent;
561 		     task_pid(reaper)->level == ns_level;
562 		     reaper = reaper->real_parent) {
563 			if (reaper == &init_task)
564 				break;
565 			if (!reaper->signal->is_child_subreaper)
566 				continue;
567 			thread = find_alive_thread(reaper);
568 			if (thread)
569 				return thread;
570 		}
571 	}
572 
573 	return child_reaper;
574 }
575 
576 /*
577 * Any that need to be release_task'd are put on the @dead list.
578  */
579 static void reparent_leader(struct task_struct *father, struct task_struct *p,
580 				struct list_head *dead)
581 {
582 	if (unlikely(p->exit_state == EXIT_DEAD))
583 		return;
584 
585 	/* We don't want people slaying init. */
586 	p->exit_signal = SIGCHLD;
587 
588 	/* If it has exited notify the new parent about this child's death. */
589 	if (!p->ptrace &&
590 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
591 		if (do_notify_parent(p, p->exit_signal)) {
592 			p->exit_state = EXIT_DEAD;
593 			list_add(&p->ptrace_entry, dead);
594 		}
595 	}
596 
597 	kill_orphaned_pgrp(p, father);
598 }
599 
600 /*
601  * This does two things:
602  *
603  * A.  Make init inherit all the child processes
604  * B.  Check to see if any process groups have become orphaned
605  *	as a result of our exiting, and if they have any stopped
606  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
607  */
608 static void forget_original_parent(struct task_struct *father,
609 					struct list_head *dead)
610 {
611 	struct task_struct *p, *t, *reaper;
612 
613 	if (unlikely(!list_empty(&father->ptraced)))
614 		exit_ptrace(father, dead);
615 
616 	/* Can drop and reacquire tasklist_lock */
617 	reaper = find_child_reaper(father, dead);
618 	if (list_empty(&father->children))
619 		return;
620 
621 	reaper = find_new_reaper(father, reaper);
622 	list_for_each_entry(p, &father->children, sibling) {
623 		for_each_thread(p, t) {
624 			t->real_parent = reaper;
625 			BUG_ON((!t->ptrace) != (t->parent == father));
626 			if (likely(!t->ptrace))
627 				t->parent = t->real_parent;
628 			if (t->pdeath_signal)
629 				group_send_sig_info(t->pdeath_signal,
630 						    SEND_SIG_NOINFO, t,
631 						    PIDTYPE_TGID);
632 		}
633 		/*
634 		 * If this is a threaded reparent there is no need to
635 		 * notify anyone anything has happened.
636 		 */
637 		if (!same_thread_group(reaper, father))
638 			reparent_leader(father, p, dead);
639 	}
640 	list_splice_tail_init(&father->children, &reaper->children);
641 }
642 
643 /*
644  * Send signals to all our closest relatives so that they know
645  * to properly mourn us..
646  */
647 static void exit_notify(struct task_struct *tsk, int group_dead)
648 {
649 	bool autoreap;
650 	struct task_struct *p, *n;
651 	LIST_HEAD(dead);
652 
653 	write_lock_irq(&tasklist_lock);
654 	forget_original_parent(tsk, &dead);
655 
656 	if (group_dead)
657 		kill_orphaned_pgrp(tsk->group_leader, NULL);
658 
659 	tsk->exit_state = EXIT_ZOMBIE;
660 	if (unlikely(tsk->ptrace)) {
661 		int sig = thread_group_leader(tsk) &&
662 				thread_group_empty(tsk) &&
663 				!ptrace_reparented(tsk) ?
664 			tsk->exit_signal : SIGCHLD;
665 		autoreap = do_notify_parent(tsk, sig);
666 	} else if (thread_group_leader(tsk)) {
667 		autoreap = thread_group_empty(tsk) &&
668 			do_notify_parent(tsk, tsk->exit_signal);
669 	} else {
670 		autoreap = true;
671 	}
672 
673 	if (autoreap) {
674 		tsk->exit_state = EXIT_DEAD;
675 		list_add(&tsk->ptrace_entry, &dead);
676 	}
677 
678 	/* mt-exec, de_thread() is waiting for group leader */
679 	if (unlikely(tsk->signal->notify_count < 0))
680 		wake_up_process(tsk->signal->group_exit_task);
681 	write_unlock_irq(&tasklist_lock);
682 
683 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
684 		list_del_init(&p->ptrace_entry);
685 		release_task(p);
686 	}
687 }
688 
689 #ifdef CONFIG_DEBUG_STACK_USAGE
690 static void check_stack_usage(void)
691 {
692 	static DEFINE_SPINLOCK(low_water_lock);
693 	static int lowest_to_date = THREAD_SIZE;
694 	unsigned long free;
695 
696 	free = stack_not_used(current);
697 
698 	if (free >= lowest_to_date)
699 		return;
700 
701 	spin_lock(&low_water_lock);
702 	if (free < lowest_to_date) {
703 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
704 			current->comm, task_pid_nr(current), free);
705 		lowest_to_date = free;
706 	}
707 	spin_unlock(&low_water_lock);
708 }
709 #else
710 static inline void check_stack_usage(void) {}
711 #endif
712 
713 void __noreturn do_exit(long code)
714 {
715 	struct task_struct *tsk = current;
716 	int group_dead;
717 
718 	profile_task_exit(tsk);
719 	kcov_task_exit(tsk);
720 
721 	WARN_ON(blk_needs_flush_plug(tsk));
722 
723 	if (unlikely(in_interrupt()))
724 		panic("Aiee, killing interrupt handler!");
725 	if (unlikely(!tsk->pid))
726 		panic("Attempted to kill the idle task!");
727 
728 	/*
729 	 * If do_exit is called because this processes oopsed, it's possible
730 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
731 	 * continuing. Amongst other possible reasons, this is to prevent
732 	 * mm_release()->clear_child_tid() from writing to a user-controlled
733 	 * kernel address.
734 	 */
735 	set_fs(USER_DS);
736 
737 	ptrace_event(PTRACE_EVENT_EXIT, code);
738 
739 	validate_creds_for_do_exit(tsk);
740 
741 	/*
742 	 * We're taking recursive faults here in do_exit. Safest is to just
743 	 * leave this task alone and wait for reboot.
744 	 */
745 	if (unlikely(tsk->flags & PF_EXITING)) {
746 		pr_alert("Fixing recursive fault but reboot is needed!\n");
747 		futex_exit_recursive(tsk);
748 		set_current_state(TASK_UNINTERRUPTIBLE);
749 		schedule();
750 	}
751 
752 	exit_signals(tsk);  /* sets PF_EXITING */
753 
754 	if (unlikely(in_atomic())) {
755 		pr_info("note: %s[%d] exited with preempt_count %d\n",
756 			current->comm, task_pid_nr(current),
757 			preempt_count());
758 		preempt_count_set(PREEMPT_ENABLED);
759 	}
760 
761 	/* sync mm's RSS info before statistics gathering */
762 	if (tsk->mm)
763 		sync_mm_rss(tsk->mm);
764 	acct_update_integrals(tsk);
765 	group_dead = atomic_dec_and_test(&tsk->signal->live);
766 	if (group_dead) {
767 		/*
768 		 * If the last thread of global init has exited, panic
769 		 * immediately to get a useable coredump.
770 		 */
771 		if (unlikely(is_global_init(tsk)))
772 			panic("Attempted to kill init! exitcode=0x%08x\n",
773 				tsk->signal->group_exit_code ?: (int)code);
774 
775 #ifdef CONFIG_POSIX_TIMERS
776 		hrtimer_cancel(&tsk->signal->real_timer);
777 		exit_itimers(tsk->signal);
778 #endif
779 		if (tsk->mm)
780 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
781 	}
782 	acct_collect(code, group_dead);
783 	if (group_dead)
784 		tty_audit_exit();
785 	audit_free(tsk);
786 
787 	tsk->exit_code = code;
788 	taskstats_exit(tsk, group_dead);
789 
790 	exit_mm();
791 
792 	if (group_dead)
793 		acct_process();
794 	trace_sched_process_exit(tsk);
795 
796 	exit_sem(tsk);
797 	exit_shm(tsk);
798 	exit_files(tsk);
799 	exit_fs(tsk);
800 	if (group_dead)
801 		disassociate_ctty(1);
802 	exit_task_namespaces(tsk);
803 	exit_task_work(tsk);
804 	exit_thread(tsk);
805 	exit_umh(tsk);
806 
807 	/*
808 	 * Flush inherited counters to the parent - before the parent
809 	 * gets woken up by child-exit notifications.
810 	 *
811 	 * because of cgroup mode, must be called before cgroup_exit()
812 	 */
813 	perf_event_exit_task(tsk);
814 
815 	sched_autogroup_exit_task(tsk);
816 	cgroup_exit(tsk);
817 
818 	/*
819 	 * FIXME: do that only when needed, using sched_exit tracepoint
820 	 */
821 	flush_ptrace_hw_breakpoint(tsk);
822 
823 	exit_tasks_rcu_start();
824 	exit_notify(tsk, group_dead);
825 	proc_exit_connector(tsk);
826 	mpol_put_task_policy(tsk);
827 #ifdef CONFIG_FUTEX
828 	if (unlikely(current->pi_state_cache))
829 		kfree(current->pi_state_cache);
830 #endif
831 	/*
832 	 * Make sure we are holding no locks:
833 	 */
834 	debug_check_no_locks_held();
835 
836 	if (tsk->io_context)
837 		exit_io_context(tsk);
838 
839 	if (tsk->splice_pipe)
840 		free_pipe_info(tsk->splice_pipe);
841 
842 	if (tsk->task_frag.page)
843 		put_page(tsk->task_frag.page);
844 
845 	validate_creds_for_do_exit(tsk);
846 
847 	check_stack_usage();
848 	preempt_disable();
849 	if (tsk->nr_dirtied)
850 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
851 	exit_rcu();
852 	exit_tasks_rcu_finish();
853 
854 	lockdep_free_task(tsk);
855 	do_task_dead();
856 }
857 EXPORT_SYMBOL_GPL(do_exit);
858 
859 void complete_and_exit(struct completion *comp, long code)
860 {
861 	if (comp)
862 		complete(comp);
863 
864 	do_exit(code);
865 }
866 EXPORT_SYMBOL(complete_and_exit);
867 
868 SYSCALL_DEFINE1(exit, int, error_code)
869 {
870 	do_exit((error_code&0xff)<<8);
871 }
872 
873 /*
874  * Take down every thread in the group.  This is called by fatal signals
875  * as well as by sys_exit_group (below).
876  */
877 void
878 do_group_exit(int exit_code)
879 {
880 	struct signal_struct *sig = current->signal;
881 
882 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
883 
884 	if (signal_group_exit(sig))
885 		exit_code = sig->group_exit_code;
886 	else if (!thread_group_empty(current)) {
887 		struct sighand_struct *const sighand = current->sighand;
888 
889 		spin_lock_irq(&sighand->siglock);
890 		if (signal_group_exit(sig))
891 			/* Another thread got here before we took the lock.  */
892 			exit_code = sig->group_exit_code;
893 		else {
894 			sig->group_exit_code = exit_code;
895 			sig->flags = SIGNAL_GROUP_EXIT;
896 			zap_other_threads(current);
897 		}
898 		spin_unlock_irq(&sighand->siglock);
899 	}
900 
901 	do_exit(exit_code);
902 	/* NOTREACHED */
903 }
904 
905 /*
906  * this kills every thread in the thread group. Note that any externally
907  * wait4()-ing process will get the correct exit code - even if this
908  * thread is not the thread group leader.
909  */
910 SYSCALL_DEFINE1(exit_group, int, error_code)
911 {
912 	do_group_exit((error_code & 0xff) << 8);
913 	/* NOTREACHED */
914 	return 0;
915 }
916 
917 struct waitid_info {
918 	pid_t pid;
919 	uid_t uid;
920 	int status;
921 	int cause;
922 };
923 
924 struct wait_opts {
925 	enum pid_type		wo_type;
926 	int			wo_flags;
927 	struct pid		*wo_pid;
928 
929 	struct waitid_info	*wo_info;
930 	int			wo_stat;
931 	struct rusage		*wo_rusage;
932 
933 	wait_queue_entry_t		child_wait;
934 	int			notask_error;
935 };
936 
937 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
938 {
939 	return	wo->wo_type == PIDTYPE_MAX ||
940 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
941 }
942 
943 static int
944 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
945 {
946 	if (!eligible_pid(wo, p))
947 		return 0;
948 
949 	/*
950 	 * Wait for all children (clone and not) if __WALL is set or
951 	 * if it is traced by us.
952 	 */
953 	if (ptrace || (wo->wo_flags & __WALL))
954 		return 1;
955 
956 	/*
957 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
958 	 * otherwise, wait for non-clone children *only*.
959 	 *
960 	 * Note: a "clone" child here is one that reports to its parent
961 	 * using a signal other than SIGCHLD, or a non-leader thread which
962 	 * we can only see if it is traced by us.
963 	 */
964 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
965 		return 0;
966 
967 	return 1;
968 }
969 
970 /*
971  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
972  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
973  * the lock and this task is uninteresting.  If we return nonzero, we have
974  * released the lock and the system call should return.
975  */
976 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
977 {
978 	int state, status;
979 	pid_t pid = task_pid_vnr(p);
980 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
981 	struct waitid_info *infop;
982 
983 	if (!likely(wo->wo_flags & WEXITED))
984 		return 0;
985 
986 	if (unlikely(wo->wo_flags & WNOWAIT)) {
987 		status = p->exit_code;
988 		get_task_struct(p);
989 		read_unlock(&tasklist_lock);
990 		sched_annotate_sleep();
991 		if (wo->wo_rusage)
992 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
993 		put_task_struct(p);
994 		goto out_info;
995 	}
996 	/*
997 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
998 	 */
999 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1000 		EXIT_TRACE : EXIT_DEAD;
1001 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1002 		return 0;
1003 	/*
1004 	 * We own this thread, nobody else can reap it.
1005 	 */
1006 	read_unlock(&tasklist_lock);
1007 	sched_annotate_sleep();
1008 
1009 	/*
1010 	 * Check thread_group_leader() to exclude the traced sub-threads.
1011 	 */
1012 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1013 		struct signal_struct *sig = p->signal;
1014 		struct signal_struct *psig = current->signal;
1015 		unsigned long maxrss;
1016 		u64 tgutime, tgstime;
1017 
1018 		/*
1019 		 * The resource counters for the group leader are in its
1020 		 * own task_struct.  Those for dead threads in the group
1021 		 * are in its signal_struct, as are those for the child
1022 		 * processes it has previously reaped.  All these
1023 		 * accumulate in the parent's signal_struct c* fields.
1024 		 *
1025 		 * We don't bother to take a lock here to protect these
1026 		 * p->signal fields because the whole thread group is dead
1027 		 * and nobody can change them.
1028 		 *
1029 		 * psig->stats_lock also protects us from our sub-theads
1030 		 * which can reap other children at the same time. Until
1031 		 * we change k_getrusage()-like users to rely on this lock
1032 		 * we have to take ->siglock as well.
1033 		 *
1034 		 * We use thread_group_cputime_adjusted() to get times for
1035 		 * the thread group, which consolidates times for all threads
1036 		 * in the group including the group leader.
1037 		 */
1038 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1039 		spin_lock_irq(&current->sighand->siglock);
1040 		write_seqlock(&psig->stats_lock);
1041 		psig->cutime += tgutime + sig->cutime;
1042 		psig->cstime += tgstime + sig->cstime;
1043 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1044 		psig->cmin_flt +=
1045 			p->min_flt + sig->min_flt + sig->cmin_flt;
1046 		psig->cmaj_flt +=
1047 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1048 		psig->cnvcsw +=
1049 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1050 		psig->cnivcsw +=
1051 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1052 		psig->cinblock +=
1053 			task_io_get_inblock(p) +
1054 			sig->inblock + sig->cinblock;
1055 		psig->coublock +=
1056 			task_io_get_oublock(p) +
1057 			sig->oublock + sig->coublock;
1058 		maxrss = max(sig->maxrss, sig->cmaxrss);
1059 		if (psig->cmaxrss < maxrss)
1060 			psig->cmaxrss = maxrss;
1061 		task_io_accounting_add(&psig->ioac, &p->ioac);
1062 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1063 		write_sequnlock(&psig->stats_lock);
1064 		spin_unlock_irq(&current->sighand->siglock);
1065 	}
1066 
1067 	if (wo->wo_rusage)
1068 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1069 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1070 		? p->signal->group_exit_code : p->exit_code;
1071 	wo->wo_stat = status;
1072 
1073 	if (state == EXIT_TRACE) {
1074 		write_lock_irq(&tasklist_lock);
1075 		/* We dropped tasklist, ptracer could die and untrace */
1076 		ptrace_unlink(p);
1077 
1078 		/* If parent wants a zombie, don't release it now */
1079 		state = EXIT_ZOMBIE;
1080 		if (do_notify_parent(p, p->exit_signal))
1081 			state = EXIT_DEAD;
1082 		p->exit_state = state;
1083 		write_unlock_irq(&tasklist_lock);
1084 	}
1085 	if (state == EXIT_DEAD)
1086 		release_task(p);
1087 
1088 out_info:
1089 	infop = wo->wo_info;
1090 	if (infop) {
1091 		if ((status & 0x7f) == 0) {
1092 			infop->cause = CLD_EXITED;
1093 			infop->status = status >> 8;
1094 		} else {
1095 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1096 			infop->status = status & 0x7f;
1097 		}
1098 		infop->pid = pid;
1099 		infop->uid = uid;
1100 	}
1101 
1102 	return pid;
1103 }
1104 
1105 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1106 {
1107 	if (ptrace) {
1108 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1109 			return &p->exit_code;
1110 	} else {
1111 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1112 			return &p->signal->group_exit_code;
1113 	}
1114 	return NULL;
1115 }
1116 
1117 /**
1118  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1119  * @wo: wait options
1120  * @ptrace: is the wait for ptrace
1121  * @p: task to wait for
1122  *
1123  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1124  *
1125  * CONTEXT:
1126  * read_lock(&tasklist_lock), which is released if return value is
1127  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1128  *
1129  * RETURNS:
1130  * 0 if wait condition didn't exist and search for other wait conditions
1131  * should continue.  Non-zero return, -errno on failure and @p's pid on
1132  * success, implies that tasklist_lock is released and wait condition
1133  * search should terminate.
1134  */
1135 static int wait_task_stopped(struct wait_opts *wo,
1136 				int ptrace, struct task_struct *p)
1137 {
1138 	struct waitid_info *infop;
1139 	int exit_code, *p_code, why;
1140 	uid_t uid = 0; /* unneeded, required by compiler */
1141 	pid_t pid;
1142 
1143 	/*
1144 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1145 	 */
1146 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1147 		return 0;
1148 
1149 	if (!task_stopped_code(p, ptrace))
1150 		return 0;
1151 
1152 	exit_code = 0;
1153 	spin_lock_irq(&p->sighand->siglock);
1154 
1155 	p_code = task_stopped_code(p, ptrace);
1156 	if (unlikely(!p_code))
1157 		goto unlock_sig;
1158 
1159 	exit_code = *p_code;
1160 	if (!exit_code)
1161 		goto unlock_sig;
1162 
1163 	if (!unlikely(wo->wo_flags & WNOWAIT))
1164 		*p_code = 0;
1165 
1166 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1167 unlock_sig:
1168 	spin_unlock_irq(&p->sighand->siglock);
1169 	if (!exit_code)
1170 		return 0;
1171 
1172 	/*
1173 	 * Now we are pretty sure this task is interesting.
1174 	 * Make sure it doesn't get reaped out from under us while we
1175 	 * give up the lock and then examine it below.  We don't want to
1176 	 * keep holding onto the tasklist_lock while we call getrusage and
1177 	 * possibly take page faults for user memory.
1178 	 */
1179 	get_task_struct(p);
1180 	pid = task_pid_vnr(p);
1181 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1182 	read_unlock(&tasklist_lock);
1183 	sched_annotate_sleep();
1184 	if (wo->wo_rusage)
1185 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1186 	put_task_struct(p);
1187 
1188 	if (likely(!(wo->wo_flags & WNOWAIT)))
1189 		wo->wo_stat = (exit_code << 8) | 0x7f;
1190 
1191 	infop = wo->wo_info;
1192 	if (infop) {
1193 		infop->cause = why;
1194 		infop->status = exit_code;
1195 		infop->pid = pid;
1196 		infop->uid = uid;
1197 	}
1198 	return pid;
1199 }
1200 
1201 /*
1202  * Handle do_wait work for one task in a live, non-stopped state.
1203  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1204  * the lock and this task is uninteresting.  If we return nonzero, we have
1205  * released the lock and the system call should return.
1206  */
1207 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1208 {
1209 	struct waitid_info *infop;
1210 	pid_t pid;
1211 	uid_t uid;
1212 
1213 	if (!unlikely(wo->wo_flags & WCONTINUED))
1214 		return 0;
1215 
1216 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1217 		return 0;
1218 
1219 	spin_lock_irq(&p->sighand->siglock);
1220 	/* Re-check with the lock held.  */
1221 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1222 		spin_unlock_irq(&p->sighand->siglock);
1223 		return 0;
1224 	}
1225 	if (!unlikely(wo->wo_flags & WNOWAIT))
1226 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1227 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1228 	spin_unlock_irq(&p->sighand->siglock);
1229 
1230 	pid = task_pid_vnr(p);
1231 	get_task_struct(p);
1232 	read_unlock(&tasklist_lock);
1233 	sched_annotate_sleep();
1234 	if (wo->wo_rusage)
1235 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1236 	put_task_struct(p);
1237 
1238 	infop = wo->wo_info;
1239 	if (!infop) {
1240 		wo->wo_stat = 0xffff;
1241 	} else {
1242 		infop->cause = CLD_CONTINUED;
1243 		infop->pid = pid;
1244 		infop->uid = uid;
1245 		infop->status = SIGCONT;
1246 	}
1247 	return pid;
1248 }
1249 
1250 /*
1251  * Consider @p for a wait by @parent.
1252  *
1253  * -ECHILD should be in ->notask_error before the first call.
1254  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1255  * Returns zero if the search for a child should continue;
1256  * then ->notask_error is 0 if @p is an eligible child,
1257  * or still -ECHILD.
1258  */
1259 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1260 				struct task_struct *p)
1261 {
1262 	/*
1263 	 * We can race with wait_task_zombie() from another thread.
1264 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1265 	 * can't confuse the checks below.
1266 	 */
1267 	int exit_state = READ_ONCE(p->exit_state);
1268 	int ret;
1269 
1270 	if (unlikely(exit_state == EXIT_DEAD))
1271 		return 0;
1272 
1273 	ret = eligible_child(wo, ptrace, p);
1274 	if (!ret)
1275 		return ret;
1276 
1277 	if (unlikely(exit_state == EXIT_TRACE)) {
1278 		/*
1279 		 * ptrace == 0 means we are the natural parent. In this case
1280 		 * we should clear notask_error, debugger will notify us.
1281 		 */
1282 		if (likely(!ptrace))
1283 			wo->notask_error = 0;
1284 		return 0;
1285 	}
1286 
1287 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1288 		/*
1289 		 * If it is traced by its real parent's group, just pretend
1290 		 * the caller is ptrace_do_wait() and reap this child if it
1291 		 * is zombie.
1292 		 *
1293 		 * This also hides group stop state from real parent; otherwise
1294 		 * a single stop can be reported twice as group and ptrace stop.
1295 		 * If a ptracer wants to distinguish these two events for its
1296 		 * own children it should create a separate process which takes
1297 		 * the role of real parent.
1298 		 */
1299 		if (!ptrace_reparented(p))
1300 			ptrace = 1;
1301 	}
1302 
1303 	/* slay zombie? */
1304 	if (exit_state == EXIT_ZOMBIE) {
1305 		/* we don't reap group leaders with subthreads */
1306 		if (!delay_group_leader(p)) {
1307 			/*
1308 			 * A zombie ptracee is only visible to its ptracer.
1309 			 * Notification and reaping will be cascaded to the
1310 			 * real parent when the ptracer detaches.
1311 			 */
1312 			if (unlikely(ptrace) || likely(!p->ptrace))
1313 				return wait_task_zombie(wo, p);
1314 		}
1315 
1316 		/*
1317 		 * Allow access to stopped/continued state via zombie by
1318 		 * falling through.  Clearing of notask_error is complex.
1319 		 *
1320 		 * When !@ptrace:
1321 		 *
1322 		 * If WEXITED is set, notask_error should naturally be
1323 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1324 		 * so, if there are live subthreads, there are events to
1325 		 * wait for.  If all subthreads are dead, it's still safe
1326 		 * to clear - this function will be called again in finite
1327 		 * amount time once all the subthreads are released and
1328 		 * will then return without clearing.
1329 		 *
1330 		 * When @ptrace:
1331 		 *
1332 		 * Stopped state is per-task and thus can't change once the
1333 		 * target task dies.  Only continued and exited can happen.
1334 		 * Clear notask_error if WCONTINUED | WEXITED.
1335 		 */
1336 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1337 			wo->notask_error = 0;
1338 	} else {
1339 		/*
1340 		 * @p is alive and it's gonna stop, continue or exit, so
1341 		 * there always is something to wait for.
1342 		 */
1343 		wo->notask_error = 0;
1344 	}
1345 
1346 	/*
1347 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1348 	 * is used and the two don't interact with each other.
1349 	 */
1350 	ret = wait_task_stopped(wo, ptrace, p);
1351 	if (ret)
1352 		return ret;
1353 
1354 	/*
1355 	 * Wait for continued.  There's only one continued state and the
1356 	 * ptracer can consume it which can confuse the real parent.  Don't
1357 	 * use WCONTINUED from ptracer.  You don't need or want it.
1358 	 */
1359 	return wait_task_continued(wo, p);
1360 }
1361 
1362 /*
1363  * Do the work of do_wait() for one thread in the group, @tsk.
1364  *
1365  * -ECHILD should be in ->notask_error before the first call.
1366  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1367  * Returns zero if the search for a child should continue; then
1368  * ->notask_error is 0 if there were any eligible children,
1369  * or still -ECHILD.
1370  */
1371 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1372 {
1373 	struct task_struct *p;
1374 
1375 	list_for_each_entry(p, &tsk->children, sibling) {
1376 		int ret = wait_consider_task(wo, 0, p);
1377 
1378 		if (ret)
1379 			return ret;
1380 	}
1381 
1382 	return 0;
1383 }
1384 
1385 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1386 {
1387 	struct task_struct *p;
1388 
1389 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1390 		int ret = wait_consider_task(wo, 1, p);
1391 
1392 		if (ret)
1393 			return ret;
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1400 				int sync, void *key)
1401 {
1402 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1403 						child_wait);
1404 	struct task_struct *p = key;
1405 
1406 	if (!eligible_pid(wo, p))
1407 		return 0;
1408 
1409 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1410 		return 0;
1411 
1412 	return default_wake_function(wait, mode, sync, key);
1413 }
1414 
1415 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1416 {
1417 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1418 			   TASK_INTERRUPTIBLE, p);
1419 }
1420 
1421 static long do_wait(struct wait_opts *wo)
1422 {
1423 	struct task_struct *tsk;
1424 	int retval;
1425 
1426 	trace_sched_process_wait(wo->wo_pid);
1427 
1428 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1429 	wo->child_wait.private = current;
1430 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1431 repeat:
1432 	/*
1433 	 * If there is nothing that can match our criteria, just get out.
1434 	 * We will clear ->notask_error to zero if we see any child that
1435 	 * might later match our criteria, even if we are not able to reap
1436 	 * it yet.
1437 	 */
1438 	wo->notask_error = -ECHILD;
1439 	if ((wo->wo_type < PIDTYPE_MAX) &&
1440 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1441 		goto notask;
1442 
1443 	set_current_state(TASK_INTERRUPTIBLE);
1444 	read_lock(&tasklist_lock);
1445 	tsk = current;
1446 	do {
1447 		retval = do_wait_thread(wo, tsk);
1448 		if (retval)
1449 			goto end;
1450 
1451 		retval = ptrace_do_wait(wo, tsk);
1452 		if (retval)
1453 			goto end;
1454 
1455 		if (wo->wo_flags & __WNOTHREAD)
1456 			break;
1457 	} while_each_thread(current, tsk);
1458 	read_unlock(&tasklist_lock);
1459 
1460 notask:
1461 	retval = wo->notask_error;
1462 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1463 		retval = -ERESTARTSYS;
1464 		if (!signal_pending(current)) {
1465 			schedule();
1466 			goto repeat;
1467 		}
1468 	}
1469 end:
1470 	__set_current_state(TASK_RUNNING);
1471 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1472 	return retval;
1473 }
1474 
1475 static struct pid *pidfd_get_pid(unsigned int fd)
1476 {
1477 	struct fd f;
1478 	struct pid *pid;
1479 
1480 	f = fdget(fd);
1481 	if (!f.file)
1482 		return ERR_PTR(-EBADF);
1483 
1484 	pid = pidfd_pid(f.file);
1485 	if (!IS_ERR(pid))
1486 		get_pid(pid);
1487 
1488 	fdput(f);
1489 	return pid;
1490 }
1491 
1492 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1493 			  int options, struct rusage *ru)
1494 {
1495 	struct wait_opts wo;
1496 	struct pid *pid = NULL;
1497 	enum pid_type type;
1498 	long ret;
1499 
1500 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1501 			__WNOTHREAD|__WCLONE|__WALL))
1502 		return -EINVAL;
1503 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1504 		return -EINVAL;
1505 
1506 	switch (which) {
1507 	case P_ALL:
1508 		type = PIDTYPE_MAX;
1509 		break;
1510 	case P_PID:
1511 		type = PIDTYPE_PID;
1512 		if (upid <= 0)
1513 			return -EINVAL;
1514 
1515 		pid = find_get_pid(upid);
1516 		break;
1517 	case P_PGID:
1518 		type = PIDTYPE_PGID;
1519 		if (upid < 0)
1520 			return -EINVAL;
1521 
1522 		if (upid)
1523 			pid = find_get_pid(upid);
1524 		else
1525 			pid = get_task_pid(current, PIDTYPE_PGID);
1526 		break;
1527 	case P_PIDFD:
1528 		type = PIDTYPE_PID;
1529 		if (upid < 0)
1530 			return -EINVAL;
1531 
1532 		pid = pidfd_get_pid(upid);
1533 		if (IS_ERR(pid))
1534 			return PTR_ERR(pid);
1535 		break;
1536 	default:
1537 		return -EINVAL;
1538 	}
1539 
1540 	wo.wo_type	= type;
1541 	wo.wo_pid	= pid;
1542 	wo.wo_flags	= options;
1543 	wo.wo_info	= infop;
1544 	wo.wo_rusage	= ru;
1545 	ret = do_wait(&wo);
1546 
1547 	put_pid(pid);
1548 	return ret;
1549 }
1550 
1551 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1552 		infop, int, options, struct rusage __user *, ru)
1553 {
1554 	struct rusage r;
1555 	struct waitid_info info = {.status = 0};
1556 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1557 	int signo = 0;
1558 
1559 	if (err > 0) {
1560 		signo = SIGCHLD;
1561 		err = 0;
1562 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1563 			return -EFAULT;
1564 	}
1565 	if (!infop)
1566 		return err;
1567 
1568 	if (!user_access_begin(infop, sizeof(*infop)))
1569 		return -EFAULT;
1570 
1571 	unsafe_put_user(signo, &infop->si_signo, Efault);
1572 	unsafe_put_user(0, &infop->si_errno, Efault);
1573 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1574 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1575 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1576 	unsafe_put_user(info.status, &infop->si_status, Efault);
1577 	user_access_end();
1578 	return err;
1579 Efault:
1580 	user_access_end();
1581 	return -EFAULT;
1582 }
1583 
1584 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1585 		  struct rusage *ru)
1586 {
1587 	struct wait_opts wo;
1588 	struct pid *pid = NULL;
1589 	enum pid_type type;
1590 	long ret;
1591 
1592 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1593 			__WNOTHREAD|__WCLONE|__WALL))
1594 		return -EINVAL;
1595 
1596 	/* -INT_MIN is not defined */
1597 	if (upid == INT_MIN)
1598 		return -ESRCH;
1599 
1600 	if (upid == -1)
1601 		type = PIDTYPE_MAX;
1602 	else if (upid < 0) {
1603 		type = PIDTYPE_PGID;
1604 		pid = find_get_pid(-upid);
1605 	} else if (upid == 0) {
1606 		type = PIDTYPE_PGID;
1607 		pid = get_task_pid(current, PIDTYPE_PGID);
1608 	} else /* upid > 0 */ {
1609 		type = PIDTYPE_PID;
1610 		pid = find_get_pid(upid);
1611 	}
1612 
1613 	wo.wo_type	= type;
1614 	wo.wo_pid	= pid;
1615 	wo.wo_flags	= options | WEXITED;
1616 	wo.wo_info	= NULL;
1617 	wo.wo_stat	= 0;
1618 	wo.wo_rusage	= ru;
1619 	ret = do_wait(&wo);
1620 	put_pid(pid);
1621 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1622 		ret = -EFAULT;
1623 
1624 	return ret;
1625 }
1626 
1627 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1628 		int, options, struct rusage __user *, ru)
1629 {
1630 	struct rusage r;
1631 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1632 
1633 	if (err > 0) {
1634 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1635 			return -EFAULT;
1636 	}
1637 	return err;
1638 }
1639 
1640 #ifdef __ARCH_WANT_SYS_WAITPID
1641 
1642 /*
1643  * sys_waitpid() remains for compatibility. waitpid() should be
1644  * implemented by calling sys_wait4() from libc.a.
1645  */
1646 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1647 {
1648 	return kernel_wait4(pid, stat_addr, options, NULL);
1649 }
1650 
1651 #endif
1652 
1653 #ifdef CONFIG_COMPAT
1654 COMPAT_SYSCALL_DEFINE4(wait4,
1655 	compat_pid_t, pid,
1656 	compat_uint_t __user *, stat_addr,
1657 	int, options,
1658 	struct compat_rusage __user *, ru)
1659 {
1660 	struct rusage r;
1661 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1662 	if (err > 0) {
1663 		if (ru && put_compat_rusage(&r, ru))
1664 			return -EFAULT;
1665 	}
1666 	return err;
1667 }
1668 
1669 COMPAT_SYSCALL_DEFINE5(waitid,
1670 		int, which, compat_pid_t, pid,
1671 		struct compat_siginfo __user *, infop, int, options,
1672 		struct compat_rusage __user *, uru)
1673 {
1674 	struct rusage ru;
1675 	struct waitid_info info = {.status = 0};
1676 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1677 	int signo = 0;
1678 	if (err > 0) {
1679 		signo = SIGCHLD;
1680 		err = 0;
1681 		if (uru) {
1682 			/* kernel_waitid() overwrites everything in ru */
1683 			if (COMPAT_USE_64BIT_TIME)
1684 				err = copy_to_user(uru, &ru, sizeof(ru));
1685 			else
1686 				err = put_compat_rusage(&ru, uru);
1687 			if (err)
1688 				return -EFAULT;
1689 		}
1690 	}
1691 
1692 	if (!infop)
1693 		return err;
1694 
1695 	if (!user_access_begin(infop, sizeof(*infop)))
1696 		return -EFAULT;
1697 
1698 	unsafe_put_user(signo, &infop->si_signo, Efault);
1699 	unsafe_put_user(0, &infop->si_errno, Efault);
1700 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1701 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1702 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1703 	unsafe_put_user(info.status, &infop->si_status, Efault);
1704 	user_access_end();
1705 	return err;
1706 Efault:
1707 	user_access_end();
1708 	return -EFAULT;
1709 }
1710 #endif
1711 
1712 __weak void abort(void)
1713 {
1714 	BUG();
1715 
1716 	/* if that doesn't kill us, halt */
1717 	panic("Oops failed to kill thread");
1718 }
1719 EXPORT_SYMBOL(abort);
1720