1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_io_accounting_ops.h> 53 #include <linux/tracehook.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 67 #include <linux/uaccess.h> 68 #include <asm/unistd.h> 69 #include <asm/pgtable.h> 70 #include <asm/mmu_context.h> 71 72 static void __unhash_process(struct task_struct *p, bool group_dead) 73 { 74 nr_threads--; 75 detach_pid(p, PIDTYPE_PID); 76 if (group_dead) { 77 detach_pid(p, PIDTYPE_TGID); 78 detach_pid(p, PIDTYPE_PGID); 79 detach_pid(p, PIDTYPE_SID); 80 81 list_del_rcu(&p->tasks); 82 list_del_init(&p->sibling); 83 __this_cpu_dec(process_counts); 84 } 85 list_del_rcu(&p->thread_group); 86 list_del_rcu(&p->thread_node); 87 } 88 89 /* 90 * This function expects the tasklist_lock write-locked. 91 */ 92 static void __exit_signal(struct task_struct *tsk) 93 { 94 struct signal_struct *sig = tsk->signal; 95 bool group_dead = thread_group_leader(tsk); 96 struct sighand_struct *sighand; 97 struct tty_struct *uninitialized_var(tty); 98 u64 utime, stime; 99 100 sighand = rcu_dereference_check(tsk->sighand, 101 lockdep_tasklist_lock_is_held()); 102 spin_lock(&sighand->siglock); 103 104 #ifdef CONFIG_POSIX_TIMERS 105 posix_cpu_timers_exit(tsk); 106 if (group_dead) { 107 posix_cpu_timers_exit_group(tsk); 108 } else { 109 /* 110 * This can only happen if the caller is de_thread(). 111 * FIXME: this is the temporary hack, we should teach 112 * posix-cpu-timers to handle this case correctly. 113 */ 114 if (unlikely(has_group_leader_pid(tsk))) 115 posix_cpu_timers_exit_group(tsk); 116 } 117 #endif 118 119 if (group_dead) { 120 tty = sig->tty; 121 sig->tty = NULL; 122 } else { 123 /* 124 * If there is any task waiting for the group exit 125 * then notify it: 126 */ 127 if (sig->notify_count > 0 && !--sig->notify_count) 128 wake_up_process(sig->group_exit_task); 129 130 if (tsk == sig->curr_target) 131 sig->curr_target = next_thread(tsk); 132 } 133 134 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 135 sizeof(unsigned long long)); 136 137 /* 138 * Accumulate here the counters for all threads as they die. We could 139 * skip the group leader because it is the last user of signal_struct, 140 * but we want to avoid the race with thread_group_cputime() which can 141 * see the empty ->thread_head list. 142 */ 143 task_cputime(tsk, &utime, &stime); 144 write_seqlock(&sig->stats_lock); 145 sig->utime += utime; 146 sig->stime += stime; 147 sig->gtime += task_gtime(tsk); 148 sig->min_flt += tsk->min_flt; 149 sig->maj_flt += tsk->maj_flt; 150 sig->nvcsw += tsk->nvcsw; 151 sig->nivcsw += tsk->nivcsw; 152 sig->inblock += task_io_get_inblock(tsk); 153 sig->oublock += task_io_get_oublock(tsk); 154 task_io_accounting_add(&sig->ioac, &tsk->ioac); 155 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 156 sig->nr_threads--; 157 __unhash_process(tsk, group_dead); 158 write_sequnlock(&sig->stats_lock); 159 160 /* 161 * Do this under ->siglock, we can race with another thread 162 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 163 */ 164 flush_sigqueue(&tsk->pending); 165 tsk->sighand = NULL; 166 spin_unlock(&sighand->siglock); 167 168 __cleanup_sighand(sighand); 169 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 170 if (group_dead) { 171 flush_sigqueue(&sig->shared_pending); 172 tty_kref_put(tty); 173 } 174 } 175 176 static void delayed_put_task_struct(struct rcu_head *rhp) 177 { 178 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 179 180 perf_event_delayed_put(tsk); 181 trace_sched_process_free(tsk); 182 put_task_struct(tsk); 183 } 184 185 void put_task_struct_rcu_user(struct task_struct *task) 186 { 187 if (refcount_dec_and_test(&task->rcu_users)) 188 call_rcu(&task->rcu, delayed_put_task_struct); 189 } 190 191 void release_task(struct task_struct *p) 192 { 193 struct task_struct *leader; 194 struct pid *thread_pid; 195 int zap_leader; 196 repeat: 197 /* don't need to get the RCU readlock here - the process is dead and 198 * can't be modifying its own credentials. But shut RCU-lockdep up */ 199 rcu_read_lock(); 200 atomic_dec(&__task_cred(p)->user->processes); 201 rcu_read_unlock(); 202 203 cgroup_release(p); 204 205 write_lock_irq(&tasklist_lock); 206 ptrace_release_task(p); 207 thread_pid = get_pid(p->thread_pid); 208 __exit_signal(p); 209 210 /* 211 * If we are the last non-leader member of the thread 212 * group, and the leader is zombie, then notify the 213 * group leader's parent process. (if it wants notification.) 214 */ 215 zap_leader = 0; 216 leader = p->group_leader; 217 if (leader != p && thread_group_empty(leader) 218 && leader->exit_state == EXIT_ZOMBIE) { 219 /* 220 * If we were the last child thread and the leader has 221 * exited already, and the leader's parent ignores SIGCHLD, 222 * then we are the one who should release the leader. 223 */ 224 zap_leader = do_notify_parent(leader, leader->exit_signal); 225 if (zap_leader) 226 leader->exit_state = EXIT_DEAD; 227 } 228 229 write_unlock_irq(&tasklist_lock); 230 proc_flush_pid(thread_pid); 231 release_thread(p); 232 put_task_struct_rcu_user(p); 233 234 p = leader; 235 if (unlikely(zap_leader)) 236 goto repeat; 237 } 238 239 void rcuwait_wake_up(struct rcuwait *w) 240 { 241 struct task_struct *task; 242 243 rcu_read_lock(); 244 245 /* 246 * Order condition vs @task, such that everything prior to the load 247 * of @task is visible. This is the condition as to why the user called 248 * rcuwait_trywake() in the first place. Pairs with set_current_state() 249 * barrier (A) in rcuwait_wait_event(). 250 * 251 * WAIT WAKE 252 * [S] tsk = current [S] cond = true 253 * MB (A) MB (B) 254 * [L] cond [L] tsk 255 */ 256 smp_mb(); /* (B) */ 257 258 task = rcu_dereference(w->task); 259 if (task) 260 wake_up_process(task); 261 rcu_read_unlock(); 262 } 263 264 /* 265 * Determine if a process group is "orphaned", according to the POSIX 266 * definition in 2.2.2.52. Orphaned process groups are not to be affected 267 * by terminal-generated stop signals. Newly orphaned process groups are 268 * to receive a SIGHUP and a SIGCONT. 269 * 270 * "I ask you, have you ever known what it is to be an orphan?" 271 */ 272 static int will_become_orphaned_pgrp(struct pid *pgrp, 273 struct task_struct *ignored_task) 274 { 275 struct task_struct *p; 276 277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 278 if ((p == ignored_task) || 279 (p->exit_state && thread_group_empty(p)) || 280 is_global_init(p->real_parent)) 281 continue; 282 283 if (task_pgrp(p->real_parent) != pgrp && 284 task_session(p->real_parent) == task_session(p)) 285 return 0; 286 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 287 288 return 1; 289 } 290 291 int is_current_pgrp_orphaned(void) 292 { 293 int retval; 294 295 read_lock(&tasklist_lock); 296 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 297 read_unlock(&tasklist_lock); 298 299 return retval; 300 } 301 302 static bool has_stopped_jobs(struct pid *pgrp) 303 { 304 struct task_struct *p; 305 306 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 307 if (p->signal->flags & SIGNAL_STOP_STOPPED) 308 return true; 309 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 310 311 return false; 312 } 313 314 /* 315 * Check to see if any process groups have become orphaned as 316 * a result of our exiting, and if they have any stopped jobs, 317 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 318 */ 319 static void 320 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 321 { 322 struct pid *pgrp = task_pgrp(tsk); 323 struct task_struct *ignored_task = tsk; 324 325 if (!parent) 326 /* exit: our father is in a different pgrp than 327 * we are and we were the only connection outside. 328 */ 329 parent = tsk->real_parent; 330 else 331 /* reparent: our child is in a different pgrp than 332 * we are, and it was the only connection outside. 333 */ 334 ignored_task = NULL; 335 336 if (task_pgrp(parent) != pgrp && 337 task_session(parent) == task_session(tsk) && 338 will_become_orphaned_pgrp(pgrp, ignored_task) && 339 has_stopped_jobs(pgrp)) { 340 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 341 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 342 } 343 } 344 345 #ifdef CONFIG_MEMCG 346 /* 347 * A task is exiting. If it owned this mm, find a new owner for the mm. 348 */ 349 void mm_update_next_owner(struct mm_struct *mm) 350 { 351 struct task_struct *c, *g, *p = current; 352 353 retry: 354 /* 355 * If the exiting or execing task is not the owner, it's 356 * someone else's problem. 357 */ 358 if (mm->owner != p) 359 return; 360 /* 361 * The current owner is exiting/execing and there are no other 362 * candidates. Do not leave the mm pointing to a possibly 363 * freed task structure. 364 */ 365 if (atomic_read(&mm->mm_users) <= 1) { 366 WRITE_ONCE(mm->owner, NULL); 367 return; 368 } 369 370 read_lock(&tasklist_lock); 371 /* 372 * Search in the children 373 */ 374 list_for_each_entry(c, &p->children, sibling) { 375 if (c->mm == mm) 376 goto assign_new_owner; 377 } 378 379 /* 380 * Search in the siblings 381 */ 382 list_for_each_entry(c, &p->real_parent->children, sibling) { 383 if (c->mm == mm) 384 goto assign_new_owner; 385 } 386 387 /* 388 * Search through everything else, we should not get here often. 389 */ 390 for_each_process(g) { 391 if (g->flags & PF_KTHREAD) 392 continue; 393 for_each_thread(g, c) { 394 if (c->mm == mm) 395 goto assign_new_owner; 396 if (c->mm) 397 break; 398 } 399 } 400 read_unlock(&tasklist_lock); 401 /* 402 * We found no owner yet mm_users > 1: this implies that we are 403 * most likely racing with swapoff (try_to_unuse()) or /proc or 404 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 405 */ 406 WRITE_ONCE(mm->owner, NULL); 407 return; 408 409 assign_new_owner: 410 BUG_ON(c == p); 411 get_task_struct(c); 412 /* 413 * The task_lock protects c->mm from changing. 414 * We always want mm->owner->mm == mm 415 */ 416 task_lock(c); 417 /* 418 * Delay read_unlock() till we have the task_lock() 419 * to ensure that c does not slip away underneath us 420 */ 421 read_unlock(&tasklist_lock); 422 if (c->mm != mm) { 423 task_unlock(c); 424 put_task_struct(c); 425 goto retry; 426 } 427 WRITE_ONCE(mm->owner, c); 428 task_unlock(c); 429 put_task_struct(c); 430 } 431 #endif /* CONFIG_MEMCG */ 432 433 /* 434 * Turn us into a lazy TLB process if we 435 * aren't already.. 436 */ 437 static void exit_mm(void) 438 { 439 struct mm_struct *mm = current->mm; 440 struct core_state *core_state; 441 442 exit_mm_release(current, mm); 443 if (!mm) 444 return; 445 sync_mm_rss(mm); 446 /* 447 * Serialize with any possible pending coredump. 448 * We must hold mmap_sem around checking core_state 449 * and clearing tsk->mm. The core-inducing thread 450 * will increment ->nr_threads for each thread in the 451 * group with ->mm != NULL. 452 */ 453 down_read(&mm->mmap_sem); 454 core_state = mm->core_state; 455 if (core_state) { 456 struct core_thread self; 457 458 up_read(&mm->mmap_sem); 459 460 self.task = current; 461 self.next = xchg(&core_state->dumper.next, &self); 462 /* 463 * Implies mb(), the result of xchg() must be visible 464 * to core_state->dumper. 465 */ 466 if (atomic_dec_and_test(&core_state->nr_threads)) 467 complete(&core_state->startup); 468 469 for (;;) { 470 set_current_state(TASK_UNINTERRUPTIBLE); 471 if (!self.task) /* see coredump_finish() */ 472 break; 473 freezable_schedule(); 474 } 475 __set_current_state(TASK_RUNNING); 476 down_read(&mm->mmap_sem); 477 } 478 mmgrab(mm); 479 BUG_ON(mm != current->active_mm); 480 /* more a memory barrier than a real lock */ 481 task_lock(current); 482 current->mm = NULL; 483 up_read(&mm->mmap_sem); 484 enter_lazy_tlb(mm, current); 485 task_unlock(current); 486 mm_update_next_owner(mm); 487 mmput(mm); 488 if (test_thread_flag(TIF_MEMDIE)) 489 exit_oom_victim(); 490 } 491 492 static struct task_struct *find_alive_thread(struct task_struct *p) 493 { 494 struct task_struct *t; 495 496 for_each_thread(p, t) { 497 if (!(t->flags & PF_EXITING)) 498 return t; 499 } 500 return NULL; 501 } 502 503 static struct task_struct *find_child_reaper(struct task_struct *father, 504 struct list_head *dead) 505 __releases(&tasklist_lock) 506 __acquires(&tasklist_lock) 507 { 508 struct pid_namespace *pid_ns = task_active_pid_ns(father); 509 struct task_struct *reaper = pid_ns->child_reaper; 510 struct task_struct *p, *n; 511 512 if (likely(reaper != father)) 513 return reaper; 514 515 reaper = find_alive_thread(father); 516 if (reaper) { 517 pid_ns->child_reaper = reaper; 518 return reaper; 519 } 520 521 write_unlock_irq(&tasklist_lock); 522 523 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 524 list_del_init(&p->ptrace_entry); 525 release_task(p); 526 } 527 528 zap_pid_ns_processes(pid_ns); 529 write_lock_irq(&tasklist_lock); 530 531 return father; 532 } 533 534 /* 535 * When we die, we re-parent all our children, and try to: 536 * 1. give them to another thread in our thread group, if such a member exists 537 * 2. give it to the first ancestor process which prctl'd itself as a 538 * child_subreaper for its children (like a service manager) 539 * 3. give it to the init process (PID 1) in our pid namespace 540 */ 541 static struct task_struct *find_new_reaper(struct task_struct *father, 542 struct task_struct *child_reaper) 543 { 544 struct task_struct *thread, *reaper; 545 546 thread = find_alive_thread(father); 547 if (thread) 548 return thread; 549 550 if (father->signal->has_child_subreaper) { 551 unsigned int ns_level = task_pid(father)->level; 552 /* 553 * Find the first ->is_child_subreaper ancestor in our pid_ns. 554 * We can't check reaper != child_reaper to ensure we do not 555 * cross the namespaces, the exiting parent could be injected 556 * by setns() + fork(). 557 * We check pid->level, this is slightly more efficient than 558 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 559 */ 560 for (reaper = father->real_parent; 561 task_pid(reaper)->level == ns_level; 562 reaper = reaper->real_parent) { 563 if (reaper == &init_task) 564 break; 565 if (!reaper->signal->is_child_subreaper) 566 continue; 567 thread = find_alive_thread(reaper); 568 if (thread) 569 return thread; 570 } 571 } 572 573 return child_reaper; 574 } 575 576 /* 577 * Any that need to be release_task'd are put on the @dead list. 578 */ 579 static void reparent_leader(struct task_struct *father, struct task_struct *p, 580 struct list_head *dead) 581 { 582 if (unlikely(p->exit_state == EXIT_DEAD)) 583 return; 584 585 /* We don't want people slaying init. */ 586 p->exit_signal = SIGCHLD; 587 588 /* If it has exited notify the new parent about this child's death. */ 589 if (!p->ptrace && 590 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 591 if (do_notify_parent(p, p->exit_signal)) { 592 p->exit_state = EXIT_DEAD; 593 list_add(&p->ptrace_entry, dead); 594 } 595 } 596 597 kill_orphaned_pgrp(p, father); 598 } 599 600 /* 601 * This does two things: 602 * 603 * A. Make init inherit all the child processes 604 * B. Check to see if any process groups have become orphaned 605 * as a result of our exiting, and if they have any stopped 606 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 607 */ 608 static void forget_original_parent(struct task_struct *father, 609 struct list_head *dead) 610 { 611 struct task_struct *p, *t, *reaper; 612 613 if (unlikely(!list_empty(&father->ptraced))) 614 exit_ptrace(father, dead); 615 616 /* Can drop and reacquire tasklist_lock */ 617 reaper = find_child_reaper(father, dead); 618 if (list_empty(&father->children)) 619 return; 620 621 reaper = find_new_reaper(father, reaper); 622 list_for_each_entry(p, &father->children, sibling) { 623 for_each_thread(p, t) { 624 t->real_parent = reaper; 625 BUG_ON((!t->ptrace) != (t->parent == father)); 626 if (likely(!t->ptrace)) 627 t->parent = t->real_parent; 628 if (t->pdeath_signal) 629 group_send_sig_info(t->pdeath_signal, 630 SEND_SIG_NOINFO, t, 631 PIDTYPE_TGID); 632 } 633 /* 634 * If this is a threaded reparent there is no need to 635 * notify anyone anything has happened. 636 */ 637 if (!same_thread_group(reaper, father)) 638 reparent_leader(father, p, dead); 639 } 640 list_splice_tail_init(&father->children, &reaper->children); 641 } 642 643 /* 644 * Send signals to all our closest relatives so that they know 645 * to properly mourn us.. 646 */ 647 static void exit_notify(struct task_struct *tsk, int group_dead) 648 { 649 bool autoreap; 650 struct task_struct *p, *n; 651 LIST_HEAD(dead); 652 653 write_lock_irq(&tasklist_lock); 654 forget_original_parent(tsk, &dead); 655 656 if (group_dead) 657 kill_orphaned_pgrp(tsk->group_leader, NULL); 658 659 tsk->exit_state = EXIT_ZOMBIE; 660 if (unlikely(tsk->ptrace)) { 661 int sig = thread_group_leader(tsk) && 662 thread_group_empty(tsk) && 663 !ptrace_reparented(tsk) ? 664 tsk->exit_signal : SIGCHLD; 665 autoreap = do_notify_parent(tsk, sig); 666 } else if (thread_group_leader(tsk)) { 667 autoreap = thread_group_empty(tsk) && 668 do_notify_parent(tsk, tsk->exit_signal); 669 } else { 670 autoreap = true; 671 } 672 673 if (autoreap) { 674 tsk->exit_state = EXIT_DEAD; 675 list_add(&tsk->ptrace_entry, &dead); 676 } 677 678 /* mt-exec, de_thread() is waiting for group leader */ 679 if (unlikely(tsk->signal->notify_count < 0)) 680 wake_up_process(tsk->signal->group_exit_task); 681 write_unlock_irq(&tasklist_lock); 682 683 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 684 list_del_init(&p->ptrace_entry); 685 release_task(p); 686 } 687 } 688 689 #ifdef CONFIG_DEBUG_STACK_USAGE 690 static void check_stack_usage(void) 691 { 692 static DEFINE_SPINLOCK(low_water_lock); 693 static int lowest_to_date = THREAD_SIZE; 694 unsigned long free; 695 696 free = stack_not_used(current); 697 698 if (free >= lowest_to_date) 699 return; 700 701 spin_lock(&low_water_lock); 702 if (free < lowest_to_date) { 703 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 704 current->comm, task_pid_nr(current), free); 705 lowest_to_date = free; 706 } 707 spin_unlock(&low_water_lock); 708 } 709 #else 710 static inline void check_stack_usage(void) {} 711 #endif 712 713 void __noreturn do_exit(long code) 714 { 715 struct task_struct *tsk = current; 716 int group_dead; 717 718 profile_task_exit(tsk); 719 kcov_task_exit(tsk); 720 721 WARN_ON(blk_needs_flush_plug(tsk)); 722 723 if (unlikely(in_interrupt())) 724 panic("Aiee, killing interrupt handler!"); 725 if (unlikely(!tsk->pid)) 726 panic("Attempted to kill the idle task!"); 727 728 /* 729 * If do_exit is called because this processes oopsed, it's possible 730 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 731 * continuing. Amongst other possible reasons, this is to prevent 732 * mm_release()->clear_child_tid() from writing to a user-controlled 733 * kernel address. 734 */ 735 set_fs(USER_DS); 736 737 ptrace_event(PTRACE_EVENT_EXIT, code); 738 739 validate_creds_for_do_exit(tsk); 740 741 /* 742 * We're taking recursive faults here in do_exit. Safest is to just 743 * leave this task alone and wait for reboot. 744 */ 745 if (unlikely(tsk->flags & PF_EXITING)) { 746 pr_alert("Fixing recursive fault but reboot is needed!\n"); 747 futex_exit_recursive(tsk); 748 set_current_state(TASK_UNINTERRUPTIBLE); 749 schedule(); 750 } 751 752 exit_signals(tsk); /* sets PF_EXITING */ 753 754 if (unlikely(in_atomic())) { 755 pr_info("note: %s[%d] exited with preempt_count %d\n", 756 current->comm, task_pid_nr(current), 757 preempt_count()); 758 preempt_count_set(PREEMPT_ENABLED); 759 } 760 761 /* sync mm's RSS info before statistics gathering */ 762 if (tsk->mm) 763 sync_mm_rss(tsk->mm); 764 acct_update_integrals(tsk); 765 group_dead = atomic_dec_and_test(&tsk->signal->live); 766 if (group_dead) { 767 /* 768 * If the last thread of global init has exited, panic 769 * immediately to get a useable coredump. 770 */ 771 if (unlikely(is_global_init(tsk))) 772 panic("Attempted to kill init! exitcode=0x%08x\n", 773 tsk->signal->group_exit_code ?: (int)code); 774 775 #ifdef CONFIG_POSIX_TIMERS 776 hrtimer_cancel(&tsk->signal->real_timer); 777 exit_itimers(tsk->signal); 778 #endif 779 if (tsk->mm) 780 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 781 } 782 acct_collect(code, group_dead); 783 if (group_dead) 784 tty_audit_exit(); 785 audit_free(tsk); 786 787 tsk->exit_code = code; 788 taskstats_exit(tsk, group_dead); 789 790 exit_mm(); 791 792 if (group_dead) 793 acct_process(); 794 trace_sched_process_exit(tsk); 795 796 exit_sem(tsk); 797 exit_shm(tsk); 798 exit_files(tsk); 799 exit_fs(tsk); 800 if (group_dead) 801 disassociate_ctty(1); 802 exit_task_namespaces(tsk); 803 exit_task_work(tsk); 804 exit_thread(tsk); 805 exit_umh(tsk); 806 807 /* 808 * Flush inherited counters to the parent - before the parent 809 * gets woken up by child-exit notifications. 810 * 811 * because of cgroup mode, must be called before cgroup_exit() 812 */ 813 perf_event_exit_task(tsk); 814 815 sched_autogroup_exit_task(tsk); 816 cgroup_exit(tsk); 817 818 /* 819 * FIXME: do that only when needed, using sched_exit tracepoint 820 */ 821 flush_ptrace_hw_breakpoint(tsk); 822 823 exit_tasks_rcu_start(); 824 exit_notify(tsk, group_dead); 825 proc_exit_connector(tsk); 826 mpol_put_task_policy(tsk); 827 #ifdef CONFIG_FUTEX 828 if (unlikely(current->pi_state_cache)) 829 kfree(current->pi_state_cache); 830 #endif 831 /* 832 * Make sure we are holding no locks: 833 */ 834 debug_check_no_locks_held(); 835 836 if (tsk->io_context) 837 exit_io_context(tsk); 838 839 if (tsk->splice_pipe) 840 free_pipe_info(tsk->splice_pipe); 841 842 if (tsk->task_frag.page) 843 put_page(tsk->task_frag.page); 844 845 validate_creds_for_do_exit(tsk); 846 847 check_stack_usage(); 848 preempt_disable(); 849 if (tsk->nr_dirtied) 850 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 851 exit_rcu(); 852 exit_tasks_rcu_finish(); 853 854 lockdep_free_task(tsk); 855 do_task_dead(); 856 } 857 EXPORT_SYMBOL_GPL(do_exit); 858 859 void complete_and_exit(struct completion *comp, long code) 860 { 861 if (comp) 862 complete(comp); 863 864 do_exit(code); 865 } 866 EXPORT_SYMBOL(complete_and_exit); 867 868 SYSCALL_DEFINE1(exit, int, error_code) 869 { 870 do_exit((error_code&0xff)<<8); 871 } 872 873 /* 874 * Take down every thread in the group. This is called by fatal signals 875 * as well as by sys_exit_group (below). 876 */ 877 void 878 do_group_exit(int exit_code) 879 { 880 struct signal_struct *sig = current->signal; 881 882 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 883 884 if (signal_group_exit(sig)) 885 exit_code = sig->group_exit_code; 886 else if (!thread_group_empty(current)) { 887 struct sighand_struct *const sighand = current->sighand; 888 889 spin_lock_irq(&sighand->siglock); 890 if (signal_group_exit(sig)) 891 /* Another thread got here before we took the lock. */ 892 exit_code = sig->group_exit_code; 893 else { 894 sig->group_exit_code = exit_code; 895 sig->flags = SIGNAL_GROUP_EXIT; 896 zap_other_threads(current); 897 } 898 spin_unlock_irq(&sighand->siglock); 899 } 900 901 do_exit(exit_code); 902 /* NOTREACHED */ 903 } 904 905 /* 906 * this kills every thread in the thread group. Note that any externally 907 * wait4()-ing process will get the correct exit code - even if this 908 * thread is not the thread group leader. 909 */ 910 SYSCALL_DEFINE1(exit_group, int, error_code) 911 { 912 do_group_exit((error_code & 0xff) << 8); 913 /* NOTREACHED */ 914 return 0; 915 } 916 917 struct waitid_info { 918 pid_t pid; 919 uid_t uid; 920 int status; 921 int cause; 922 }; 923 924 struct wait_opts { 925 enum pid_type wo_type; 926 int wo_flags; 927 struct pid *wo_pid; 928 929 struct waitid_info *wo_info; 930 int wo_stat; 931 struct rusage *wo_rusage; 932 933 wait_queue_entry_t child_wait; 934 int notask_error; 935 }; 936 937 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 938 { 939 return wo->wo_type == PIDTYPE_MAX || 940 task_pid_type(p, wo->wo_type) == wo->wo_pid; 941 } 942 943 static int 944 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 945 { 946 if (!eligible_pid(wo, p)) 947 return 0; 948 949 /* 950 * Wait for all children (clone and not) if __WALL is set or 951 * if it is traced by us. 952 */ 953 if (ptrace || (wo->wo_flags & __WALL)) 954 return 1; 955 956 /* 957 * Otherwise, wait for clone children *only* if __WCLONE is set; 958 * otherwise, wait for non-clone children *only*. 959 * 960 * Note: a "clone" child here is one that reports to its parent 961 * using a signal other than SIGCHLD, or a non-leader thread which 962 * we can only see if it is traced by us. 963 */ 964 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 965 return 0; 966 967 return 1; 968 } 969 970 /* 971 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 972 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 973 * the lock and this task is uninteresting. If we return nonzero, we have 974 * released the lock and the system call should return. 975 */ 976 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 977 { 978 int state, status; 979 pid_t pid = task_pid_vnr(p); 980 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 981 struct waitid_info *infop; 982 983 if (!likely(wo->wo_flags & WEXITED)) 984 return 0; 985 986 if (unlikely(wo->wo_flags & WNOWAIT)) { 987 status = p->exit_code; 988 get_task_struct(p); 989 read_unlock(&tasklist_lock); 990 sched_annotate_sleep(); 991 if (wo->wo_rusage) 992 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 993 put_task_struct(p); 994 goto out_info; 995 } 996 /* 997 * Move the task's state to DEAD/TRACE, only one thread can do this. 998 */ 999 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1000 EXIT_TRACE : EXIT_DEAD; 1001 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1002 return 0; 1003 /* 1004 * We own this thread, nobody else can reap it. 1005 */ 1006 read_unlock(&tasklist_lock); 1007 sched_annotate_sleep(); 1008 1009 /* 1010 * Check thread_group_leader() to exclude the traced sub-threads. 1011 */ 1012 if (state == EXIT_DEAD && thread_group_leader(p)) { 1013 struct signal_struct *sig = p->signal; 1014 struct signal_struct *psig = current->signal; 1015 unsigned long maxrss; 1016 u64 tgutime, tgstime; 1017 1018 /* 1019 * The resource counters for the group leader are in its 1020 * own task_struct. Those for dead threads in the group 1021 * are in its signal_struct, as are those for the child 1022 * processes it has previously reaped. All these 1023 * accumulate in the parent's signal_struct c* fields. 1024 * 1025 * We don't bother to take a lock here to protect these 1026 * p->signal fields because the whole thread group is dead 1027 * and nobody can change them. 1028 * 1029 * psig->stats_lock also protects us from our sub-theads 1030 * which can reap other children at the same time. Until 1031 * we change k_getrusage()-like users to rely on this lock 1032 * we have to take ->siglock as well. 1033 * 1034 * We use thread_group_cputime_adjusted() to get times for 1035 * the thread group, which consolidates times for all threads 1036 * in the group including the group leader. 1037 */ 1038 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1039 spin_lock_irq(¤t->sighand->siglock); 1040 write_seqlock(&psig->stats_lock); 1041 psig->cutime += tgutime + sig->cutime; 1042 psig->cstime += tgstime + sig->cstime; 1043 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1044 psig->cmin_flt += 1045 p->min_flt + sig->min_flt + sig->cmin_flt; 1046 psig->cmaj_flt += 1047 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1048 psig->cnvcsw += 1049 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1050 psig->cnivcsw += 1051 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1052 psig->cinblock += 1053 task_io_get_inblock(p) + 1054 sig->inblock + sig->cinblock; 1055 psig->coublock += 1056 task_io_get_oublock(p) + 1057 sig->oublock + sig->coublock; 1058 maxrss = max(sig->maxrss, sig->cmaxrss); 1059 if (psig->cmaxrss < maxrss) 1060 psig->cmaxrss = maxrss; 1061 task_io_accounting_add(&psig->ioac, &p->ioac); 1062 task_io_accounting_add(&psig->ioac, &sig->ioac); 1063 write_sequnlock(&psig->stats_lock); 1064 spin_unlock_irq(¤t->sighand->siglock); 1065 } 1066 1067 if (wo->wo_rusage) 1068 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1069 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1070 ? p->signal->group_exit_code : p->exit_code; 1071 wo->wo_stat = status; 1072 1073 if (state == EXIT_TRACE) { 1074 write_lock_irq(&tasklist_lock); 1075 /* We dropped tasklist, ptracer could die and untrace */ 1076 ptrace_unlink(p); 1077 1078 /* If parent wants a zombie, don't release it now */ 1079 state = EXIT_ZOMBIE; 1080 if (do_notify_parent(p, p->exit_signal)) 1081 state = EXIT_DEAD; 1082 p->exit_state = state; 1083 write_unlock_irq(&tasklist_lock); 1084 } 1085 if (state == EXIT_DEAD) 1086 release_task(p); 1087 1088 out_info: 1089 infop = wo->wo_info; 1090 if (infop) { 1091 if ((status & 0x7f) == 0) { 1092 infop->cause = CLD_EXITED; 1093 infop->status = status >> 8; 1094 } else { 1095 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1096 infop->status = status & 0x7f; 1097 } 1098 infop->pid = pid; 1099 infop->uid = uid; 1100 } 1101 1102 return pid; 1103 } 1104 1105 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1106 { 1107 if (ptrace) { 1108 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1109 return &p->exit_code; 1110 } else { 1111 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1112 return &p->signal->group_exit_code; 1113 } 1114 return NULL; 1115 } 1116 1117 /** 1118 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1119 * @wo: wait options 1120 * @ptrace: is the wait for ptrace 1121 * @p: task to wait for 1122 * 1123 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1124 * 1125 * CONTEXT: 1126 * read_lock(&tasklist_lock), which is released if return value is 1127 * non-zero. Also, grabs and releases @p->sighand->siglock. 1128 * 1129 * RETURNS: 1130 * 0 if wait condition didn't exist and search for other wait conditions 1131 * should continue. Non-zero return, -errno on failure and @p's pid on 1132 * success, implies that tasklist_lock is released and wait condition 1133 * search should terminate. 1134 */ 1135 static int wait_task_stopped(struct wait_opts *wo, 1136 int ptrace, struct task_struct *p) 1137 { 1138 struct waitid_info *infop; 1139 int exit_code, *p_code, why; 1140 uid_t uid = 0; /* unneeded, required by compiler */ 1141 pid_t pid; 1142 1143 /* 1144 * Traditionally we see ptrace'd stopped tasks regardless of options. 1145 */ 1146 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1147 return 0; 1148 1149 if (!task_stopped_code(p, ptrace)) 1150 return 0; 1151 1152 exit_code = 0; 1153 spin_lock_irq(&p->sighand->siglock); 1154 1155 p_code = task_stopped_code(p, ptrace); 1156 if (unlikely(!p_code)) 1157 goto unlock_sig; 1158 1159 exit_code = *p_code; 1160 if (!exit_code) 1161 goto unlock_sig; 1162 1163 if (!unlikely(wo->wo_flags & WNOWAIT)) 1164 *p_code = 0; 1165 1166 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1167 unlock_sig: 1168 spin_unlock_irq(&p->sighand->siglock); 1169 if (!exit_code) 1170 return 0; 1171 1172 /* 1173 * Now we are pretty sure this task is interesting. 1174 * Make sure it doesn't get reaped out from under us while we 1175 * give up the lock and then examine it below. We don't want to 1176 * keep holding onto the tasklist_lock while we call getrusage and 1177 * possibly take page faults for user memory. 1178 */ 1179 get_task_struct(p); 1180 pid = task_pid_vnr(p); 1181 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1182 read_unlock(&tasklist_lock); 1183 sched_annotate_sleep(); 1184 if (wo->wo_rusage) 1185 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1186 put_task_struct(p); 1187 1188 if (likely(!(wo->wo_flags & WNOWAIT))) 1189 wo->wo_stat = (exit_code << 8) | 0x7f; 1190 1191 infop = wo->wo_info; 1192 if (infop) { 1193 infop->cause = why; 1194 infop->status = exit_code; 1195 infop->pid = pid; 1196 infop->uid = uid; 1197 } 1198 return pid; 1199 } 1200 1201 /* 1202 * Handle do_wait work for one task in a live, non-stopped state. 1203 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1204 * the lock and this task is uninteresting. If we return nonzero, we have 1205 * released the lock and the system call should return. 1206 */ 1207 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1208 { 1209 struct waitid_info *infop; 1210 pid_t pid; 1211 uid_t uid; 1212 1213 if (!unlikely(wo->wo_flags & WCONTINUED)) 1214 return 0; 1215 1216 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1217 return 0; 1218 1219 spin_lock_irq(&p->sighand->siglock); 1220 /* Re-check with the lock held. */ 1221 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1222 spin_unlock_irq(&p->sighand->siglock); 1223 return 0; 1224 } 1225 if (!unlikely(wo->wo_flags & WNOWAIT)) 1226 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1227 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1228 spin_unlock_irq(&p->sighand->siglock); 1229 1230 pid = task_pid_vnr(p); 1231 get_task_struct(p); 1232 read_unlock(&tasklist_lock); 1233 sched_annotate_sleep(); 1234 if (wo->wo_rusage) 1235 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1236 put_task_struct(p); 1237 1238 infop = wo->wo_info; 1239 if (!infop) { 1240 wo->wo_stat = 0xffff; 1241 } else { 1242 infop->cause = CLD_CONTINUED; 1243 infop->pid = pid; 1244 infop->uid = uid; 1245 infop->status = SIGCONT; 1246 } 1247 return pid; 1248 } 1249 1250 /* 1251 * Consider @p for a wait by @parent. 1252 * 1253 * -ECHILD should be in ->notask_error before the first call. 1254 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1255 * Returns zero if the search for a child should continue; 1256 * then ->notask_error is 0 if @p is an eligible child, 1257 * or still -ECHILD. 1258 */ 1259 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1260 struct task_struct *p) 1261 { 1262 /* 1263 * We can race with wait_task_zombie() from another thread. 1264 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1265 * can't confuse the checks below. 1266 */ 1267 int exit_state = READ_ONCE(p->exit_state); 1268 int ret; 1269 1270 if (unlikely(exit_state == EXIT_DEAD)) 1271 return 0; 1272 1273 ret = eligible_child(wo, ptrace, p); 1274 if (!ret) 1275 return ret; 1276 1277 if (unlikely(exit_state == EXIT_TRACE)) { 1278 /* 1279 * ptrace == 0 means we are the natural parent. In this case 1280 * we should clear notask_error, debugger will notify us. 1281 */ 1282 if (likely(!ptrace)) 1283 wo->notask_error = 0; 1284 return 0; 1285 } 1286 1287 if (likely(!ptrace) && unlikely(p->ptrace)) { 1288 /* 1289 * If it is traced by its real parent's group, just pretend 1290 * the caller is ptrace_do_wait() and reap this child if it 1291 * is zombie. 1292 * 1293 * This also hides group stop state from real parent; otherwise 1294 * a single stop can be reported twice as group and ptrace stop. 1295 * If a ptracer wants to distinguish these two events for its 1296 * own children it should create a separate process which takes 1297 * the role of real parent. 1298 */ 1299 if (!ptrace_reparented(p)) 1300 ptrace = 1; 1301 } 1302 1303 /* slay zombie? */ 1304 if (exit_state == EXIT_ZOMBIE) { 1305 /* we don't reap group leaders with subthreads */ 1306 if (!delay_group_leader(p)) { 1307 /* 1308 * A zombie ptracee is only visible to its ptracer. 1309 * Notification and reaping will be cascaded to the 1310 * real parent when the ptracer detaches. 1311 */ 1312 if (unlikely(ptrace) || likely(!p->ptrace)) 1313 return wait_task_zombie(wo, p); 1314 } 1315 1316 /* 1317 * Allow access to stopped/continued state via zombie by 1318 * falling through. Clearing of notask_error is complex. 1319 * 1320 * When !@ptrace: 1321 * 1322 * If WEXITED is set, notask_error should naturally be 1323 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1324 * so, if there are live subthreads, there are events to 1325 * wait for. If all subthreads are dead, it's still safe 1326 * to clear - this function will be called again in finite 1327 * amount time once all the subthreads are released and 1328 * will then return without clearing. 1329 * 1330 * When @ptrace: 1331 * 1332 * Stopped state is per-task and thus can't change once the 1333 * target task dies. Only continued and exited can happen. 1334 * Clear notask_error if WCONTINUED | WEXITED. 1335 */ 1336 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1337 wo->notask_error = 0; 1338 } else { 1339 /* 1340 * @p is alive and it's gonna stop, continue or exit, so 1341 * there always is something to wait for. 1342 */ 1343 wo->notask_error = 0; 1344 } 1345 1346 /* 1347 * Wait for stopped. Depending on @ptrace, different stopped state 1348 * is used and the two don't interact with each other. 1349 */ 1350 ret = wait_task_stopped(wo, ptrace, p); 1351 if (ret) 1352 return ret; 1353 1354 /* 1355 * Wait for continued. There's only one continued state and the 1356 * ptracer can consume it which can confuse the real parent. Don't 1357 * use WCONTINUED from ptracer. You don't need or want it. 1358 */ 1359 return wait_task_continued(wo, p); 1360 } 1361 1362 /* 1363 * Do the work of do_wait() for one thread in the group, @tsk. 1364 * 1365 * -ECHILD should be in ->notask_error before the first call. 1366 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1367 * Returns zero if the search for a child should continue; then 1368 * ->notask_error is 0 if there were any eligible children, 1369 * or still -ECHILD. 1370 */ 1371 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1372 { 1373 struct task_struct *p; 1374 1375 list_for_each_entry(p, &tsk->children, sibling) { 1376 int ret = wait_consider_task(wo, 0, p); 1377 1378 if (ret) 1379 return ret; 1380 } 1381 1382 return 0; 1383 } 1384 1385 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1386 { 1387 struct task_struct *p; 1388 1389 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1390 int ret = wait_consider_task(wo, 1, p); 1391 1392 if (ret) 1393 return ret; 1394 } 1395 1396 return 0; 1397 } 1398 1399 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1400 int sync, void *key) 1401 { 1402 struct wait_opts *wo = container_of(wait, struct wait_opts, 1403 child_wait); 1404 struct task_struct *p = key; 1405 1406 if (!eligible_pid(wo, p)) 1407 return 0; 1408 1409 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1410 return 0; 1411 1412 return default_wake_function(wait, mode, sync, key); 1413 } 1414 1415 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1416 { 1417 __wake_up_sync_key(&parent->signal->wait_chldexit, 1418 TASK_INTERRUPTIBLE, p); 1419 } 1420 1421 static long do_wait(struct wait_opts *wo) 1422 { 1423 struct task_struct *tsk; 1424 int retval; 1425 1426 trace_sched_process_wait(wo->wo_pid); 1427 1428 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1429 wo->child_wait.private = current; 1430 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1431 repeat: 1432 /* 1433 * If there is nothing that can match our criteria, just get out. 1434 * We will clear ->notask_error to zero if we see any child that 1435 * might later match our criteria, even if we are not able to reap 1436 * it yet. 1437 */ 1438 wo->notask_error = -ECHILD; 1439 if ((wo->wo_type < PIDTYPE_MAX) && 1440 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1441 goto notask; 1442 1443 set_current_state(TASK_INTERRUPTIBLE); 1444 read_lock(&tasklist_lock); 1445 tsk = current; 1446 do { 1447 retval = do_wait_thread(wo, tsk); 1448 if (retval) 1449 goto end; 1450 1451 retval = ptrace_do_wait(wo, tsk); 1452 if (retval) 1453 goto end; 1454 1455 if (wo->wo_flags & __WNOTHREAD) 1456 break; 1457 } while_each_thread(current, tsk); 1458 read_unlock(&tasklist_lock); 1459 1460 notask: 1461 retval = wo->notask_error; 1462 if (!retval && !(wo->wo_flags & WNOHANG)) { 1463 retval = -ERESTARTSYS; 1464 if (!signal_pending(current)) { 1465 schedule(); 1466 goto repeat; 1467 } 1468 } 1469 end: 1470 __set_current_state(TASK_RUNNING); 1471 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1472 return retval; 1473 } 1474 1475 static struct pid *pidfd_get_pid(unsigned int fd) 1476 { 1477 struct fd f; 1478 struct pid *pid; 1479 1480 f = fdget(fd); 1481 if (!f.file) 1482 return ERR_PTR(-EBADF); 1483 1484 pid = pidfd_pid(f.file); 1485 if (!IS_ERR(pid)) 1486 get_pid(pid); 1487 1488 fdput(f); 1489 return pid; 1490 } 1491 1492 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1493 int options, struct rusage *ru) 1494 { 1495 struct wait_opts wo; 1496 struct pid *pid = NULL; 1497 enum pid_type type; 1498 long ret; 1499 1500 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1501 __WNOTHREAD|__WCLONE|__WALL)) 1502 return -EINVAL; 1503 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1504 return -EINVAL; 1505 1506 switch (which) { 1507 case P_ALL: 1508 type = PIDTYPE_MAX; 1509 break; 1510 case P_PID: 1511 type = PIDTYPE_PID; 1512 if (upid <= 0) 1513 return -EINVAL; 1514 1515 pid = find_get_pid(upid); 1516 break; 1517 case P_PGID: 1518 type = PIDTYPE_PGID; 1519 if (upid < 0) 1520 return -EINVAL; 1521 1522 if (upid) 1523 pid = find_get_pid(upid); 1524 else 1525 pid = get_task_pid(current, PIDTYPE_PGID); 1526 break; 1527 case P_PIDFD: 1528 type = PIDTYPE_PID; 1529 if (upid < 0) 1530 return -EINVAL; 1531 1532 pid = pidfd_get_pid(upid); 1533 if (IS_ERR(pid)) 1534 return PTR_ERR(pid); 1535 break; 1536 default: 1537 return -EINVAL; 1538 } 1539 1540 wo.wo_type = type; 1541 wo.wo_pid = pid; 1542 wo.wo_flags = options; 1543 wo.wo_info = infop; 1544 wo.wo_rusage = ru; 1545 ret = do_wait(&wo); 1546 1547 put_pid(pid); 1548 return ret; 1549 } 1550 1551 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1552 infop, int, options, struct rusage __user *, ru) 1553 { 1554 struct rusage r; 1555 struct waitid_info info = {.status = 0}; 1556 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1557 int signo = 0; 1558 1559 if (err > 0) { 1560 signo = SIGCHLD; 1561 err = 0; 1562 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1563 return -EFAULT; 1564 } 1565 if (!infop) 1566 return err; 1567 1568 if (!user_access_begin(infop, sizeof(*infop))) 1569 return -EFAULT; 1570 1571 unsafe_put_user(signo, &infop->si_signo, Efault); 1572 unsafe_put_user(0, &infop->si_errno, Efault); 1573 unsafe_put_user(info.cause, &infop->si_code, Efault); 1574 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1575 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1576 unsafe_put_user(info.status, &infop->si_status, Efault); 1577 user_access_end(); 1578 return err; 1579 Efault: 1580 user_access_end(); 1581 return -EFAULT; 1582 } 1583 1584 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1585 struct rusage *ru) 1586 { 1587 struct wait_opts wo; 1588 struct pid *pid = NULL; 1589 enum pid_type type; 1590 long ret; 1591 1592 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1593 __WNOTHREAD|__WCLONE|__WALL)) 1594 return -EINVAL; 1595 1596 /* -INT_MIN is not defined */ 1597 if (upid == INT_MIN) 1598 return -ESRCH; 1599 1600 if (upid == -1) 1601 type = PIDTYPE_MAX; 1602 else if (upid < 0) { 1603 type = PIDTYPE_PGID; 1604 pid = find_get_pid(-upid); 1605 } else if (upid == 0) { 1606 type = PIDTYPE_PGID; 1607 pid = get_task_pid(current, PIDTYPE_PGID); 1608 } else /* upid > 0 */ { 1609 type = PIDTYPE_PID; 1610 pid = find_get_pid(upid); 1611 } 1612 1613 wo.wo_type = type; 1614 wo.wo_pid = pid; 1615 wo.wo_flags = options | WEXITED; 1616 wo.wo_info = NULL; 1617 wo.wo_stat = 0; 1618 wo.wo_rusage = ru; 1619 ret = do_wait(&wo); 1620 put_pid(pid); 1621 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1622 ret = -EFAULT; 1623 1624 return ret; 1625 } 1626 1627 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1628 int, options, struct rusage __user *, ru) 1629 { 1630 struct rusage r; 1631 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1632 1633 if (err > 0) { 1634 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1635 return -EFAULT; 1636 } 1637 return err; 1638 } 1639 1640 #ifdef __ARCH_WANT_SYS_WAITPID 1641 1642 /* 1643 * sys_waitpid() remains for compatibility. waitpid() should be 1644 * implemented by calling sys_wait4() from libc.a. 1645 */ 1646 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1647 { 1648 return kernel_wait4(pid, stat_addr, options, NULL); 1649 } 1650 1651 #endif 1652 1653 #ifdef CONFIG_COMPAT 1654 COMPAT_SYSCALL_DEFINE4(wait4, 1655 compat_pid_t, pid, 1656 compat_uint_t __user *, stat_addr, 1657 int, options, 1658 struct compat_rusage __user *, ru) 1659 { 1660 struct rusage r; 1661 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1662 if (err > 0) { 1663 if (ru && put_compat_rusage(&r, ru)) 1664 return -EFAULT; 1665 } 1666 return err; 1667 } 1668 1669 COMPAT_SYSCALL_DEFINE5(waitid, 1670 int, which, compat_pid_t, pid, 1671 struct compat_siginfo __user *, infop, int, options, 1672 struct compat_rusage __user *, uru) 1673 { 1674 struct rusage ru; 1675 struct waitid_info info = {.status = 0}; 1676 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1677 int signo = 0; 1678 if (err > 0) { 1679 signo = SIGCHLD; 1680 err = 0; 1681 if (uru) { 1682 /* kernel_waitid() overwrites everything in ru */ 1683 if (COMPAT_USE_64BIT_TIME) 1684 err = copy_to_user(uru, &ru, sizeof(ru)); 1685 else 1686 err = put_compat_rusage(&ru, uru); 1687 if (err) 1688 return -EFAULT; 1689 } 1690 } 1691 1692 if (!infop) 1693 return err; 1694 1695 if (!user_access_begin(infop, sizeof(*infop))) 1696 return -EFAULT; 1697 1698 unsafe_put_user(signo, &infop->si_signo, Efault); 1699 unsafe_put_user(0, &infop->si_errno, Efault); 1700 unsafe_put_user(info.cause, &infop->si_code, Efault); 1701 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1702 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1703 unsafe_put_user(info.status, &infop->si_status, Efault); 1704 user_access_end(); 1705 return err; 1706 Efault: 1707 user_access_end(); 1708 return -EFAULT; 1709 } 1710 #endif 1711 1712 __weak void abort(void) 1713 { 1714 BUG(); 1715 1716 /* if that doesn't kill us, halt */ 1717 panic("Oops failed to kill thread"); 1718 } 1719 EXPORT_SYMBOL(abort); 1720