1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_io_accounting_ops.h> 53 #include <linux/tracehook.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 67 #include <linux/uaccess.h> 68 #include <asm/unistd.h> 69 #include <asm/pgtable.h> 70 #include <asm/mmu_context.h> 71 72 static void __unhash_process(struct task_struct *p, bool group_dead) 73 { 74 nr_threads--; 75 detach_pid(p, PIDTYPE_PID); 76 if (group_dead) { 77 detach_pid(p, PIDTYPE_TGID); 78 detach_pid(p, PIDTYPE_PGID); 79 detach_pid(p, PIDTYPE_SID); 80 81 list_del_rcu(&p->tasks); 82 list_del_init(&p->sibling); 83 __this_cpu_dec(process_counts); 84 } 85 list_del_rcu(&p->thread_group); 86 list_del_rcu(&p->thread_node); 87 } 88 89 /* 90 * This function expects the tasklist_lock write-locked. 91 */ 92 static void __exit_signal(struct task_struct *tsk) 93 { 94 struct signal_struct *sig = tsk->signal; 95 bool group_dead = thread_group_leader(tsk); 96 struct sighand_struct *sighand; 97 struct tty_struct *uninitialized_var(tty); 98 u64 utime, stime; 99 100 sighand = rcu_dereference_check(tsk->sighand, 101 lockdep_tasklist_lock_is_held()); 102 spin_lock(&sighand->siglock); 103 104 #ifdef CONFIG_POSIX_TIMERS 105 posix_cpu_timers_exit(tsk); 106 if (group_dead) { 107 posix_cpu_timers_exit_group(tsk); 108 } else { 109 /* 110 * This can only happen if the caller is de_thread(). 111 * FIXME: this is the temporary hack, we should teach 112 * posix-cpu-timers to handle this case correctly. 113 */ 114 if (unlikely(has_group_leader_pid(tsk))) 115 posix_cpu_timers_exit_group(tsk); 116 } 117 #endif 118 119 if (group_dead) { 120 tty = sig->tty; 121 sig->tty = NULL; 122 } else { 123 /* 124 * If there is any task waiting for the group exit 125 * then notify it: 126 */ 127 if (sig->notify_count > 0 && !--sig->notify_count) 128 wake_up_process(sig->group_exit_task); 129 130 if (tsk == sig->curr_target) 131 sig->curr_target = next_thread(tsk); 132 } 133 134 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 135 sizeof(unsigned long long)); 136 137 /* 138 * Accumulate here the counters for all threads as they die. We could 139 * skip the group leader because it is the last user of signal_struct, 140 * but we want to avoid the race with thread_group_cputime() which can 141 * see the empty ->thread_head list. 142 */ 143 task_cputime(tsk, &utime, &stime); 144 write_seqlock(&sig->stats_lock); 145 sig->utime += utime; 146 sig->stime += stime; 147 sig->gtime += task_gtime(tsk); 148 sig->min_flt += tsk->min_flt; 149 sig->maj_flt += tsk->maj_flt; 150 sig->nvcsw += tsk->nvcsw; 151 sig->nivcsw += tsk->nivcsw; 152 sig->inblock += task_io_get_inblock(tsk); 153 sig->oublock += task_io_get_oublock(tsk); 154 task_io_accounting_add(&sig->ioac, &tsk->ioac); 155 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 156 sig->nr_threads--; 157 __unhash_process(tsk, group_dead); 158 write_sequnlock(&sig->stats_lock); 159 160 /* 161 * Do this under ->siglock, we can race with another thread 162 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 163 */ 164 flush_sigqueue(&tsk->pending); 165 tsk->sighand = NULL; 166 spin_unlock(&sighand->siglock); 167 168 __cleanup_sighand(sighand); 169 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 170 if (group_dead) { 171 flush_sigqueue(&sig->shared_pending); 172 tty_kref_put(tty); 173 } 174 } 175 176 static void delayed_put_task_struct(struct rcu_head *rhp) 177 { 178 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 179 180 perf_event_delayed_put(tsk); 181 trace_sched_process_free(tsk); 182 put_task_struct(tsk); 183 } 184 185 186 void release_task(struct task_struct *p) 187 { 188 struct task_struct *leader; 189 int zap_leader; 190 repeat: 191 /* don't need to get the RCU readlock here - the process is dead and 192 * can't be modifying its own credentials. But shut RCU-lockdep up */ 193 rcu_read_lock(); 194 atomic_dec(&__task_cred(p)->user->processes); 195 rcu_read_unlock(); 196 197 proc_flush_task(p); 198 cgroup_release(p); 199 200 write_lock_irq(&tasklist_lock); 201 ptrace_release_task(p); 202 __exit_signal(p); 203 204 /* 205 * If we are the last non-leader member of the thread 206 * group, and the leader is zombie, then notify the 207 * group leader's parent process. (if it wants notification.) 208 */ 209 zap_leader = 0; 210 leader = p->group_leader; 211 if (leader != p && thread_group_empty(leader) 212 && leader->exit_state == EXIT_ZOMBIE) { 213 /* 214 * If we were the last child thread and the leader has 215 * exited already, and the leader's parent ignores SIGCHLD, 216 * then we are the one who should release the leader. 217 */ 218 zap_leader = do_notify_parent(leader, leader->exit_signal); 219 if (zap_leader) 220 leader->exit_state = EXIT_DEAD; 221 } 222 223 write_unlock_irq(&tasklist_lock); 224 release_thread(p); 225 call_rcu(&p->rcu, delayed_put_task_struct); 226 227 p = leader; 228 if (unlikely(zap_leader)) 229 goto repeat; 230 } 231 232 /* 233 * Note that if this function returns a valid task_struct pointer (!NULL) 234 * task->usage must remain >0 for the duration of the RCU critical section. 235 */ 236 struct task_struct *task_rcu_dereference(struct task_struct **ptask) 237 { 238 struct sighand_struct *sighand; 239 struct task_struct *task; 240 241 /* 242 * We need to verify that release_task() was not called and thus 243 * delayed_put_task_struct() can't run and drop the last reference 244 * before rcu_read_unlock(). We check task->sighand != NULL, 245 * but we can read the already freed and reused memory. 246 */ 247 retry: 248 task = rcu_dereference(*ptask); 249 if (!task) 250 return NULL; 251 252 probe_kernel_address(&task->sighand, sighand); 253 254 /* 255 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task 256 * was already freed we can not miss the preceding update of this 257 * pointer. 258 */ 259 smp_rmb(); 260 if (unlikely(task != READ_ONCE(*ptask))) 261 goto retry; 262 263 /* 264 * We've re-checked that "task == *ptask", now we have two different 265 * cases: 266 * 267 * 1. This is actually the same task/task_struct. In this case 268 * sighand != NULL tells us it is still alive. 269 * 270 * 2. This is another task which got the same memory for task_struct. 271 * We can't know this of course, and we can not trust 272 * sighand != NULL. 273 * 274 * In this case we actually return a random value, but this is 275 * correct. 276 * 277 * If we return NULL - we can pretend that we actually noticed that 278 * *ptask was updated when the previous task has exited. Or pretend 279 * that probe_slab_address(&sighand) reads NULL. 280 * 281 * If we return the new task (because sighand is not NULL for any 282 * reason) - this is fine too. This (new) task can't go away before 283 * another gp pass. 284 * 285 * And note: We could even eliminate the false positive if re-read 286 * task->sighand once again to avoid the falsely NULL. But this case 287 * is very unlikely so we don't care. 288 */ 289 if (!sighand) 290 return NULL; 291 292 return task; 293 } 294 295 void rcuwait_wake_up(struct rcuwait *w) 296 { 297 struct task_struct *task; 298 299 rcu_read_lock(); 300 301 /* 302 * Order condition vs @task, such that everything prior to the load 303 * of @task is visible. This is the condition as to why the user called 304 * rcuwait_trywake() in the first place. Pairs with set_current_state() 305 * barrier (A) in rcuwait_wait_event(). 306 * 307 * WAIT WAKE 308 * [S] tsk = current [S] cond = true 309 * MB (A) MB (B) 310 * [L] cond [L] tsk 311 */ 312 smp_mb(); /* (B) */ 313 314 /* 315 * Avoid using task_rcu_dereference() magic as long as we are careful, 316 * see comment in rcuwait_wait_event() regarding ->exit_state. 317 */ 318 task = rcu_dereference(w->task); 319 if (task) 320 wake_up_process(task); 321 rcu_read_unlock(); 322 } 323 324 /* 325 * Determine if a process group is "orphaned", according to the POSIX 326 * definition in 2.2.2.52. Orphaned process groups are not to be affected 327 * by terminal-generated stop signals. Newly orphaned process groups are 328 * to receive a SIGHUP and a SIGCONT. 329 * 330 * "I ask you, have you ever known what it is to be an orphan?" 331 */ 332 static int will_become_orphaned_pgrp(struct pid *pgrp, 333 struct task_struct *ignored_task) 334 { 335 struct task_struct *p; 336 337 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 338 if ((p == ignored_task) || 339 (p->exit_state && thread_group_empty(p)) || 340 is_global_init(p->real_parent)) 341 continue; 342 343 if (task_pgrp(p->real_parent) != pgrp && 344 task_session(p->real_parent) == task_session(p)) 345 return 0; 346 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 347 348 return 1; 349 } 350 351 int is_current_pgrp_orphaned(void) 352 { 353 int retval; 354 355 read_lock(&tasklist_lock); 356 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 357 read_unlock(&tasklist_lock); 358 359 return retval; 360 } 361 362 static bool has_stopped_jobs(struct pid *pgrp) 363 { 364 struct task_struct *p; 365 366 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 367 if (p->signal->flags & SIGNAL_STOP_STOPPED) 368 return true; 369 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 370 371 return false; 372 } 373 374 /* 375 * Check to see if any process groups have become orphaned as 376 * a result of our exiting, and if they have any stopped jobs, 377 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 378 */ 379 static void 380 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 381 { 382 struct pid *pgrp = task_pgrp(tsk); 383 struct task_struct *ignored_task = tsk; 384 385 if (!parent) 386 /* exit: our father is in a different pgrp than 387 * we are and we were the only connection outside. 388 */ 389 parent = tsk->real_parent; 390 else 391 /* reparent: our child is in a different pgrp than 392 * we are, and it was the only connection outside. 393 */ 394 ignored_task = NULL; 395 396 if (task_pgrp(parent) != pgrp && 397 task_session(parent) == task_session(tsk) && 398 will_become_orphaned_pgrp(pgrp, ignored_task) && 399 has_stopped_jobs(pgrp)) { 400 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 401 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 402 } 403 } 404 405 #ifdef CONFIG_MEMCG 406 /* 407 * A task is exiting. If it owned this mm, find a new owner for the mm. 408 */ 409 void mm_update_next_owner(struct mm_struct *mm) 410 { 411 struct task_struct *c, *g, *p = current; 412 413 retry: 414 /* 415 * If the exiting or execing task is not the owner, it's 416 * someone else's problem. 417 */ 418 if (mm->owner != p) 419 return; 420 /* 421 * The current owner is exiting/execing and there are no other 422 * candidates. Do not leave the mm pointing to a possibly 423 * freed task structure. 424 */ 425 if (atomic_read(&mm->mm_users) <= 1) { 426 WRITE_ONCE(mm->owner, NULL); 427 return; 428 } 429 430 read_lock(&tasklist_lock); 431 /* 432 * Search in the children 433 */ 434 list_for_each_entry(c, &p->children, sibling) { 435 if (c->mm == mm) 436 goto assign_new_owner; 437 } 438 439 /* 440 * Search in the siblings 441 */ 442 list_for_each_entry(c, &p->real_parent->children, sibling) { 443 if (c->mm == mm) 444 goto assign_new_owner; 445 } 446 447 /* 448 * Search through everything else, we should not get here often. 449 */ 450 for_each_process(g) { 451 if (g->flags & PF_KTHREAD) 452 continue; 453 for_each_thread(g, c) { 454 if (c->mm == mm) 455 goto assign_new_owner; 456 if (c->mm) 457 break; 458 } 459 } 460 read_unlock(&tasklist_lock); 461 /* 462 * We found no owner yet mm_users > 1: this implies that we are 463 * most likely racing with swapoff (try_to_unuse()) or /proc or 464 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 465 */ 466 WRITE_ONCE(mm->owner, NULL); 467 return; 468 469 assign_new_owner: 470 BUG_ON(c == p); 471 get_task_struct(c); 472 /* 473 * The task_lock protects c->mm from changing. 474 * We always want mm->owner->mm == mm 475 */ 476 task_lock(c); 477 /* 478 * Delay read_unlock() till we have the task_lock() 479 * to ensure that c does not slip away underneath us 480 */ 481 read_unlock(&tasklist_lock); 482 if (c->mm != mm) { 483 task_unlock(c); 484 put_task_struct(c); 485 goto retry; 486 } 487 WRITE_ONCE(mm->owner, c); 488 task_unlock(c); 489 put_task_struct(c); 490 } 491 #endif /* CONFIG_MEMCG */ 492 493 /* 494 * Turn us into a lazy TLB process if we 495 * aren't already.. 496 */ 497 static void exit_mm(void) 498 { 499 struct mm_struct *mm = current->mm; 500 struct core_state *core_state; 501 502 mm_release(current, mm); 503 if (!mm) 504 return; 505 sync_mm_rss(mm); 506 /* 507 * Serialize with any possible pending coredump. 508 * We must hold mmap_sem around checking core_state 509 * and clearing tsk->mm. The core-inducing thread 510 * will increment ->nr_threads for each thread in the 511 * group with ->mm != NULL. 512 */ 513 down_read(&mm->mmap_sem); 514 core_state = mm->core_state; 515 if (core_state) { 516 struct core_thread self; 517 518 up_read(&mm->mmap_sem); 519 520 self.task = current; 521 self.next = xchg(&core_state->dumper.next, &self); 522 /* 523 * Implies mb(), the result of xchg() must be visible 524 * to core_state->dumper. 525 */ 526 if (atomic_dec_and_test(&core_state->nr_threads)) 527 complete(&core_state->startup); 528 529 for (;;) { 530 set_current_state(TASK_UNINTERRUPTIBLE); 531 if (!self.task) /* see coredump_finish() */ 532 break; 533 freezable_schedule(); 534 } 535 __set_current_state(TASK_RUNNING); 536 down_read(&mm->mmap_sem); 537 } 538 mmgrab(mm); 539 BUG_ON(mm != current->active_mm); 540 /* more a memory barrier than a real lock */ 541 task_lock(current); 542 current->mm = NULL; 543 up_read(&mm->mmap_sem); 544 enter_lazy_tlb(mm, current); 545 task_unlock(current); 546 mm_update_next_owner(mm); 547 mmput(mm); 548 if (test_thread_flag(TIF_MEMDIE)) 549 exit_oom_victim(); 550 } 551 552 static struct task_struct *find_alive_thread(struct task_struct *p) 553 { 554 struct task_struct *t; 555 556 for_each_thread(p, t) { 557 if (!(t->flags & PF_EXITING)) 558 return t; 559 } 560 return NULL; 561 } 562 563 static struct task_struct *find_child_reaper(struct task_struct *father, 564 struct list_head *dead) 565 __releases(&tasklist_lock) 566 __acquires(&tasklist_lock) 567 { 568 struct pid_namespace *pid_ns = task_active_pid_ns(father); 569 struct task_struct *reaper = pid_ns->child_reaper; 570 struct task_struct *p, *n; 571 572 if (likely(reaper != father)) 573 return reaper; 574 575 reaper = find_alive_thread(father); 576 if (reaper) { 577 pid_ns->child_reaper = reaper; 578 return reaper; 579 } 580 581 write_unlock_irq(&tasklist_lock); 582 if (unlikely(pid_ns == &init_pid_ns)) { 583 panic("Attempted to kill init! exitcode=0x%08x\n", 584 father->signal->group_exit_code ?: father->exit_code); 585 } 586 587 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 588 list_del_init(&p->ptrace_entry); 589 release_task(p); 590 } 591 592 zap_pid_ns_processes(pid_ns); 593 write_lock_irq(&tasklist_lock); 594 595 return father; 596 } 597 598 /* 599 * When we die, we re-parent all our children, and try to: 600 * 1. give them to another thread in our thread group, if such a member exists 601 * 2. give it to the first ancestor process which prctl'd itself as a 602 * child_subreaper for its children (like a service manager) 603 * 3. give it to the init process (PID 1) in our pid namespace 604 */ 605 static struct task_struct *find_new_reaper(struct task_struct *father, 606 struct task_struct *child_reaper) 607 { 608 struct task_struct *thread, *reaper; 609 610 thread = find_alive_thread(father); 611 if (thread) 612 return thread; 613 614 if (father->signal->has_child_subreaper) { 615 unsigned int ns_level = task_pid(father)->level; 616 /* 617 * Find the first ->is_child_subreaper ancestor in our pid_ns. 618 * We can't check reaper != child_reaper to ensure we do not 619 * cross the namespaces, the exiting parent could be injected 620 * by setns() + fork(). 621 * We check pid->level, this is slightly more efficient than 622 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 623 */ 624 for (reaper = father->real_parent; 625 task_pid(reaper)->level == ns_level; 626 reaper = reaper->real_parent) { 627 if (reaper == &init_task) 628 break; 629 if (!reaper->signal->is_child_subreaper) 630 continue; 631 thread = find_alive_thread(reaper); 632 if (thread) 633 return thread; 634 } 635 } 636 637 return child_reaper; 638 } 639 640 /* 641 * Any that need to be release_task'd are put on the @dead list. 642 */ 643 static void reparent_leader(struct task_struct *father, struct task_struct *p, 644 struct list_head *dead) 645 { 646 if (unlikely(p->exit_state == EXIT_DEAD)) 647 return; 648 649 /* We don't want people slaying init. */ 650 p->exit_signal = SIGCHLD; 651 652 /* If it has exited notify the new parent about this child's death. */ 653 if (!p->ptrace && 654 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 655 if (do_notify_parent(p, p->exit_signal)) { 656 p->exit_state = EXIT_DEAD; 657 list_add(&p->ptrace_entry, dead); 658 } 659 } 660 661 kill_orphaned_pgrp(p, father); 662 } 663 664 /* 665 * This does two things: 666 * 667 * A. Make init inherit all the child processes 668 * B. Check to see if any process groups have become orphaned 669 * as a result of our exiting, and if they have any stopped 670 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 671 */ 672 static void forget_original_parent(struct task_struct *father, 673 struct list_head *dead) 674 { 675 struct task_struct *p, *t, *reaper; 676 677 if (unlikely(!list_empty(&father->ptraced))) 678 exit_ptrace(father, dead); 679 680 /* Can drop and reacquire tasklist_lock */ 681 reaper = find_child_reaper(father, dead); 682 if (list_empty(&father->children)) 683 return; 684 685 reaper = find_new_reaper(father, reaper); 686 list_for_each_entry(p, &father->children, sibling) { 687 for_each_thread(p, t) { 688 t->real_parent = reaper; 689 BUG_ON((!t->ptrace) != (t->parent == father)); 690 if (likely(!t->ptrace)) 691 t->parent = t->real_parent; 692 if (t->pdeath_signal) 693 group_send_sig_info(t->pdeath_signal, 694 SEND_SIG_NOINFO, t, 695 PIDTYPE_TGID); 696 } 697 /* 698 * If this is a threaded reparent there is no need to 699 * notify anyone anything has happened. 700 */ 701 if (!same_thread_group(reaper, father)) 702 reparent_leader(father, p, dead); 703 } 704 list_splice_tail_init(&father->children, &reaper->children); 705 } 706 707 /* 708 * Send signals to all our closest relatives so that they know 709 * to properly mourn us.. 710 */ 711 static void exit_notify(struct task_struct *tsk, int group_dead) 712 { 713 bool autoreap; 714 struct task_struct *p, *n; 715 LIST_HEAD(dead); 716 717 write_lock_irq(&tasklist_lock); 718 forget_original_parent(tsk, &dead); 719 720 if (group_dead) 721 kill_orphaned_pgrp(tsk->group_leader, NULL); 722 723 if (unlikely(tsk->ptrace)) { 724 int sig = thread_group_leader(tsk) && 725 thread_group_empty(tsk) && 726 !ptrace_reparented(tsk) ? 727 tsk->exit_signal : SIGCHLD; 728 autoreap = do_notify_parent(tsk, sig); 729 } else if (thread_group_leader(tsk)) { 730 autoreap = thread_group_empty(tsk) && 731 do_notify_parent(tsk, tsk->exit_signal); 732 } else { 733 autoreap = true; 734 } 735 736 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 737 if (tsk->exit_state == EXIT_DEAD) 738 list_add(&tsk->ptrace_entry, &dead); 739 740 /* mt-exec, de_thread() is waiting for group leader */ 741 if (unlikely(tsk->signal->notify_count < 0)) 742 wake_up_process(tsk->signal->group_exit_task); 743 write_unlock_irq(&tasklist_lock); 744 745 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 746 list_del_init(&p->ptrace_entry); 747 release_task(p); 748 } 749 } 750 751 #ifdef CONFIG_DEBUG_STACK_USAGE 752 static void check_stack_usage(void) 753 { 754 static DEFINE_SPINLOCK(low_water_lock); 755 static int lowest_to_date = THREAD_SIZE; 756 unsigned long free; 757 758 free = stack_not_used(current); 759 760 if (free >= lowest_to_date) 761 return; 762 763 spin_lock(&low_water_lock); 764 if (free < lowest_to_date) { 765 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 766 current->comm, task_pid_nr(current), free); 767 lowest_to_date = free; 768 } 769 spin_unlock(&low_water_lock); 770 } 771 #else 772 static inline void check_stack_usage(void) {} 773 #endif 774 775 void __noreturn do_exit(long code) 776 { 777 struct task_struct *tsk = current; 778 int group_dead; 779 780 profile_task_exit(tsk); 781 kcov_task_exit(tsk); 782 783 WARN_ON(blk_needs_flush_plug(tsk)); 784 785 if (unlikely(in_interrupt())) 786 panic("Aiee, killing interrupt handler!"); 787 if (unlikely(!tsk->pid)) 788 panic("Attempted to kill the idle task!"); 789 790 /* 791 * If do_exit is called because this processes oopsed, it's possible 792 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 793 * continuing. Amongst other possible reasons, this is to prevent 794 * mm_release()->clear_child_tid() from writing to a user-controlled 795 * kernel address. 796 */ 797 set_fs(USER_DS); 798 799 ptrace_event(PTRACE_EVENT_EXIT, code); 800 801 validate_creds_for_do_exit(tsk); 802 803 /* 804 * We're taking recursive faults here in do_exit. Safest is to just 805 * leave this task alone and wait for reboot. 806 */ 807 if (unlikely(tsk->flags & PF_EXITING)) { 808 pr_alert("Fixing recursive fault but reboot is needed!\n"); 809 /* 810 * We can do this unlocked here. The futex code uses 811 * this flag just to verify whether the pi state 812 * cleanup has been done or not. In the worst case it 813 * loops once more. We pretend that the cleanup was 814 * done as there is no way to return. Either the 815 * OWNER_DIED bit is set by now or we push the blocked 816 * task into the wait for ever nirwana as well. 817 */ 818 tsk->flags |= PF_EXITPIDONE; 819 set_current_state(TASK_UNINTERRUPTIBLE); 820 schedule(); 821 } 822 823 exit_signals(tsk); /* sets PF_EXITING */ 824 /* 825 * Ensure that all new tsk->pi_lock acquisitions must observe 826 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner(). 827 */ 828 smp_mb(); 829 /* 830 * Ensure that we must observe the pi_state in exit_mm() -> 831 * mm_release() -> exit_pi_state_list(). 832 */ 833 raw_spin_lock_irq(&tsk->pi_lock); 834 raw_spin_unlock_irq(&tsk->pi_lock); 835 836 if (unlikely(in_atomic())) { 837 pr_info("note: %s[%d] exited with preempt_count %d\n", 838 current->comm, task_pid_nr(current), 839 preempt_count()); 840 preempt_count_set(PREEMPT_ENABLED); 841 } 842 843 /* sync mm's RSS info before statistics gathering */ 844 if (tsk->mm) 845 sync_mm_rss(tsk->mm); 846 acct_update_integrals(tsk); 847 group_dead = atomic_dec_and_test(&tsk->signal->live); 848 if (group_dead) { 849 #ifdef CONFIG_POSIX_TIMERS 850 hrtimer_cancel(&tsk->signal->real_timer); 851 exit_itimers(tsk->signal); 852 #endif 853 if (tsk->mm) 854 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 855 } 856 acct_collect(code, group_dead); 857 if (group_dead) 858 tty_audit_exit(); 859 audit_free(tsk); 860 861 tsk->exit_code = code; 862 taskstats_exit(tsk, group_dead); 863 864 exit_mm(); 865 866 if (group_dead) 867 acct_process(); 868 trace_sched_process_exit(tsk); 869 870 exit_sem(tsk); 871 exit_shm(tsk); 872 exit_files(tsk); 873 exit_fs(tsk); 874 if (group_dead) 875 disassociate_ctty(1); 876 exit_task_namespaces(tsk); 877 exit_task_work(tsk); 878 exit_thread(tsk); 879 exit_umh(tsk); 880 881 /* 882 * Flush inherited counters to the parent - before the parent 883 * gets woken up by child-exit notifications. 884 * 885 * because of cgroup mode, must be called before cgroup_exit() 886 */ 887 perf_event_exit_task(tsk); 888 889 sched_autogroup_exit_task(tsk); 890 cgroup_exit(tsk); 891 892 /* 893 * FIXME: do that only when needed, using sched_exit tracepoint 894 */ 895 flush_ptrace_hw_breakpoint(tsk); 896 897 exit_tasks_rcu_start(); 898 exit_notify(tsk, group_dead); 899 proc_exit_connector(tsk); 900 mpol_put_task_policy(tsk); 901 #ifdef CONFIG_FUTEX 902 if (unlikely(current->pi_state_cache)) 903 kfree(current->pi_state_cache); 904 #endif 905 /* 906 * Make sure we are holding no locks: 907 */ 908 debug_check_no_locks_held(); 909 /* 910 * We can do this unlocked here. The futex code uses this flag 911 * just to verify whether the pi state cleanup has been done 912 * or not. In the worst case it loops once more. 913 */ 914 tsk->flags |= PF_EXITPIDONE; 915 916 if (tsk->io_context) 917 exit_io_context(tsk); 918 919 if (tsk->splice_pipe) 920 free_pipe_info(tsk->splice_pipe); 921 922 if (tsk->task_frag.page) 923 put_page(tsk->task_frag.page); 924 925 validate_creds_for_do_exit(tsk); 926 927 check_stack_usage(); 928 preempt_disable(); 929 if (tsk->nr_dirtied) 930 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 931 exit_rcu(); 932 exit_tasks_rcu_finish(); 933 934 lockdep_free_task(tsk); 935 do_task_dead(); 936 } 937 EXPORT_SYMBOL_GPL(do_exit); 938 939 void complete_and_exit(struct completion *comp, long code) 940 { 941 if (comp) 942 complete(comp); 943 944 do_exit(code); 945 } 946 EXPORT_SYMBOL(complete_and_exit); 947 948 SYSCALL_DEFINE1(exit, int, error_code) 949 { 950 do_exit((error_code&0xff)<<8); 951 } 952 953 /* 954 * Take down every thread in the group. This is called by fatal signals 955 * as well as by sys_exit_group (below). 956 */ 957 void 958 do_group_exit(int exit_code) 959 { 960 struct signal_struct *sig = current->signal; 961 962 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 963 964 if (signal_group_exit(sig)) 965 exit_code = sig->group_exit_code; 966 else if (!thread_group_empty(current)) { 967 struct sighand_struct *const sighand = current->sighand; 968 969 spin_lock_irq(&sighand->siglock); 970 if (signal_group_exit(sig)) 971 /* Another thread got here before we took the lock. */ 972 exit_code = sig->group_exit_code; 973 else { 974 sig->group_exit_code = exit_code; 975 sig->flags = SIGNAL_GROUP_EXIT; 976 zap_other_threads(current); 977 } 978 spin_unlock_irq(&sighand->siglock); 979 } 980 981 do_exit(exit_code); 982 /* NOTREACHED */ 983 } 984 985 /* 986 * this kills every thread in the thread group. Note that any externally 987 * wait4()-ing process will get the correct exit code - even if this 988 * thread is not the thread group leader. 989 */ 990 SYSCALL_DEFINE1(exit_group, int, error_code) 991 { 992 do_group_exit((error_code & 0xff) << 8); 993 /* NOTREACHED */ 994 return 0; 995 } 996 997 struct waitid_info { 998 pid_t pid; 999 uid_t uid; 1000 int status; 1001 int cause; 1002 }; 1003 1004 struct wait_opts { 1005 enum pid_type wo_type; 1006 int wo_flags; 1007 struct pid *wo_pid; 1008 1009 struct waitid_info *wo_info; 1010 int wo_stat; 1011 struct rusage *wo_rusage; 1012 1013 wait_queue_entry_t child_wait; 1014 int notask_error; 1015 }; 1016 1017 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1018 { 1019 return wo->wo_type == PIDTYPE_MAX || 1020 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1021 } 1022 1023 static int 1024 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1025 { 1026 if (!eligible_pid(wo, p)) 1027 return 0; 1028 1029 /* 1030 * Wait for all children (clone and not) if __WALL is set or 1031 * if it is traced by us. 1032 */ 1033 if (ptrace || (wo->wo_flags & __WALL)) 1034 return 1; 1035 1036 /* 1037 * Otherwise, wait for clone children *only* if __WCLONE is set; 1038 * otherwise, wait for non-clone children *only*. 1039 * 1040 * Note: a "clone" child here is one that reports to its parent 1041 * using a signal other than SIGCHLD, or a non-leader thread which 1042 * we can only see if it is traced by us. 1043 */ 1044 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1045 return 0; 1046 1047 return 1; 1048 } 1049 1050 /* 1051 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1052 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1053 * the lock and this task is uninteresting. If we return nonzero, we have 1054 * released the lock and the system call should return. 1055 */ 1056 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1057 { 1058 int state, status; 1059 pid_t pid = task_pid_vnr(p); 1060 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1061 struct waitid_info *infop; 1062 1063 if (!likely(wo->wo_flags & WEXITED)) 1064 return 0; 1065 1066 if (unlikely(wo->wo_flags & WNOWAIT)) { 1067 status = p->exit_code; 1068 get_task_struct(p); 1069 read_unlock(&tasklist_lock); 1070 sched_annotate_sleep(); 1071 if (wo->wo_rusage) 1072 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1073 put_task_struct(p); 1074 goto out_info; 1075 } 1076 /* 1077 * Move the task's state to DEAD/TRACE, only one thread can do this. 1078 */ 1079 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1080 EXIT_TRACE : EXIT_DEAD; 1081 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1082 return 0; 1083 /* 1084 * We own this thread, nobody else can reap it. 1085 */ 1086 read_unlock(&tasklist_lock); 1087 sched_annotate_sleep(); 1088 1089 /* 1090 * Check thread_group_leader() to exclude the traced sub-threads. 1091 */ 1092 if (state == EXIT_DEAD && thread_group_leader(p)) { 1093 struct signal_struct *sig = p->signal; 1094 struct signal_struct *psig = current->signal; 1095 unsigned long maxrss; 1096 u64 tgutime, tgstime; 1097 1098 /* 1099 * The resource counters for the group leader are in its 1100 * own task_struct. Those for dead threads in the group 1101 * are in its signal_struct, as are those for the child 1102 * processes it has previously reaped. All these 1103 * accumulate in the parent's signal_struct c* fields. 1104 * 1105 * We don't bother to take a lock here to protect these 1106 * p->signal fields because the whole thread group is dead 1107 * and nobody can change them. 1108 * 1109 * psig->stats_lock also protects us from our sub-theads 1110 * which can reap other children at the same time. Until 1111 * we change k_getrusage()-like users to rely on this lock 1112 * we have to take ->siglock as well. 1113 * 1114 * We use thread_group_cputime_adjusted() to get times for 1115 * the thread group, which consolidates times for all threads 1116 * in the group including the group leader. 1117 */ 1118 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1119 spin_lock_irq(¤t->sighand->siglock); 1120 write_seqlock(&psig->stats_lock); 1121 psig->cutime += tgutime + sig->cutime; 1122 psig->cstime += tgstime + sig->cstime; 1123 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1124 psig->cmin_flt += 1125 p->min_flt + sig->min_flt + sig->cmin_flt; 1126 psig->cmaj_flt += 1127 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1128 psig->cnvcsw += 1129 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1130 psig->cnivcsw += 1131 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1132 psig->cinblock += 1133 task_io_get_inblock(p) + 1134 sig->inblock + sig->cinblock; 1135 psig->coublock += 1136 task_io_get_oublock(p) + 1137 sig->oublock + sig->coublock; 1138 maxrss = max(sig->maxrss, sig->cmaxrss); 1139 if (psig->cmaxrss < maxrss) 1140 psig->cmaxrss = maxrss; 1141 task_io_accounting_add(&psig->ioac, &p->ioac); 1142 task_io_accounting_add(&psig->ioac, &sig->ioac); 1143 write_sequnlock(&psig->stats_lock); 1144 spin_unlock_irq(¤t->sighand->siglock); 1145 } 1146 1147 if (wo->wo_rusage) 1148 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1149 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1150 ? p->signal->group_exit_code : p->exit_code; 1151 wo->wo_stat = status; 1152 1153 if (state == EXIT_TRACE) { 1154 write_lock_irq(&tasklist_lock); 1155 /* We dropped tasklist, ptracer could die and untrace */ 1156 ptrace_unlink(p); 1157 1158 /* If parent wants a zombie, don't release it now */ 1159 state = EXIT_ZOMBIE; 1160 if (do_notify_parent(p, p->exit_signal)) 1161 state = EXIT_DEAD; 1162 p->exit_state = state; 1163 write_unlock_irq(&tasklist_lock); 1164 } 1165 if (state == EXIT_DEAD) 1166 release_task(p); 1167 1168 out_info: 1169 infop = wo->wo_info; 1170 if (infop) { 1171 if ((status & 0x7f) == 0) { 1172 infop->cause = CLD_EXITED; 1173 infop->status = status >> 8; 1174 } else { 1175 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1176 infop->status = status & 0x7f; 1177 } 1178 infop->pid = pid; 1179 infop->uid = uid; 1180 } 1181 1182 return pid; 1183 } 1184 1185 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1186 { 1187 if (ptrace) { 1188 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1189 return &p->exit_code; 1190 } else { 1191 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1192 return &p->signal->group_exit_code; 1193 } 1194 return NULL; 1195 } 1196 1197 /** 1198 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1199 * @wo: wait options 1200 * @ptrace: is the wait for ptrace 1201 * @p: task to wait for 1202 * 1203 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1204 * 1205 * CONTEXT: 1206 * read_lock(&tasklist_lock), which is released if return value is 1207 * non-zero. Also, grabs and releases @p->sighand->siglock. 1208 * 1209 * RETURNS: 1210 * 0 if wait condition didn't exist and search for other wait conditions 1211 * should continue. Non-zero return, -errno on failure and @p's pid on 1212 * success, implies that tasklist_lock is released and wait condition 1213 * search should terminate. 1214 */ 1215 static int wait_task_stopped(struct wait_opts *wo, 1216 int ptrace, struct task_struct *p) 1217 { 1218 struct waitid_info *infop; 1219 int exit_code, *p_code, why; 1220 uid_t uid = 0; /* unneeded, required by compiler */ 1221 pid_t pid; 1222 1223 /* 1224 * Traditionally we see ptrace'd stopped tasks regardless of options. 1225 */ 1226 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1227 return 0; 1228 1229 if (!task_stopped_code(p, ptrace)) 1230 return 0; 1231 1232 exit_code = 0; 1233 spin_lock_irq(&p->sighand->siglock); 1234 1235 p_code = task_stopped_code(p, ptrace); 1236 if (unlikely(!p_code)) 1237 goto unlock_sig; 1238 1239 exit_code = *p_code; 1240 if (!exit_code) 1241 goto unlock_sig; 1242 1243 if (!unlikely(wo->wo_flags & WNOWAIT)) 1244 *p_code = 0; 1245 1246 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1247 unlock_sig: 1248 spin_unlock_irq(&p->sighand->siglock); 1249 if (!exit_code) 1250 return 0; 1251 1252 /* 1253 * Now we are pretty sure this task is interesting. 1254 * Make sure it doesn't get reaped out from under us while we 1255 * give up the lock and then examine it below. We don't want to 1256 * keep holding onto the tasklist_lock while we call getrusage and 1257 * possibly take page faults for user memory. 1258 */ 1259 get_task_struct(p); 1260 pid = task_pid_vnr(p); 1261 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1262 read_unlock(&tasklist_lock); 1263 sched_annotate_sleep(); 1264 if (wo->wo_rusage) 1265 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1266 put_task_struct(p); 1267 1268 if (likely(!(wo->wo_flags & WNOWAIT))) 1269 wo->wo_stat = (exit_code << 8) | 0x7f; 1270 1271 infop = wo->wo_info; 1272 if (infop) { 1273 infop->cause = why; 1274 infop->status = exit_code; 1275 infop->pid = pid; 1276 infop->uid = uid; 1277 } 1278 return pid; 1279 } 1280 1281 /* 1282 * Handle do_wait work for one task in a live, non-stopped state. 1283 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1284 * the lock and this task is uninteresting. If we return nonzero, we have 1285 * released the lock and the system call should return. 1286 */ 1287 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1288 { 1289 struct waitid_info *infop; 1290 pid_t pid; 1291 uid_t uid; 1292 1293 if (!unlikely(wo->wo_flags & WCONTINUED)) 1294 return 0; 1295 1296 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1297 return 0; 1298 1299 spin_lock_irq(&p->sighand->siglock); 1300 /* Re-check with the lock held. */ 1301 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1302 spin_unlock_irq(&p->sighand->siglock); 1303 return 0; 1304 } 1305 if (!unlikely(wo->wo_flags & WNOWAIT)) 1306 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1307 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1308 spin_unlock_irq(&p->sighand->siglock); 1309 1310 pid = task_pid_vnr(p); 1311 get_task_struct(p); 1312 read_unlock(&tasklist_lock); 1313 sched_annotate_sleep(); 1314 if (wo->wo_rusage) 1315 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1316 put_task_struct(p); 1317 1318 infop = wo->wo_info; 1319 if (!infop) { 1320 wo->wo_stat = 0xffff; 1321 } else { 1322 infop->cause = CLD_CONTINUED; 1323 infop->pid = pid; 1324 infop->uid = uid; 1325 infop->status = SIGCONT; 1326 } 1327 return pid; 1328 } 1329 1330 /* 1331 * Consider @p for a wait by @parent. 1332 * 1333 * -ECHILD should be in ->notask_error before the first call. 1334 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1335 * Returns zero if the search for a child should continue; 1336 * then ->notask_error is 0 if @p is an eligible child, 1337 * or still -ECHILD. 1338 */ 1339 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1340 struct task_struct *p) 1341 { 1342 /* 1343 * We can race with wait_task_zombie() from another thread. 1344 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1345 * can't confuse the checks below. 1346 */ 1347 int exit_state = READ_ONCE(p->exit_state); 1348 int ret; 1349 1350 if (unlikely(exit_state == EXIT_DEAD)) 1351 return 0; 1352 1353 ret = eligible_child(wo, ptrace, p); 1354 if (!ret) 1355 return ret; 1356 1357 if (unlikely(exit_state == EXIT_TRACE)) { 1358 /* 1359 * ptrace == 0 means we are the natural parent. In this case 1360 * we should clear notask_error, debugger will notify us. 1361 */ 1362 if (likely(!ptrace)) 1363 wo->notask_error = 0; 1364 return 0; 1365 } 1366 1367 if (likely(!ptrace) && unlikely(p->ptrace)) { 1368 /* 1369 * If it is traced by its real parent's group, just pretend 1370 * the caller is ptrace_do_wait() and reap this child if it 1371 * is zombie. 1372 * 1373 * This also hides group stop state from real parent; otherwise 1374 * a single stop can be reported twice as group and ptrace stop. 1375 * If a ptracer wants to distinguish these two events for its 1376 * own children it should create a separate process which takes 1377 * the role of real parent. 1378 */ 1379 if (!ptrace_reparented(p)) 1380 ptrace = 1; 1381 } 1382 1383 /* slay zombie? */ 1384 if (exit_state == EXIT_ZOMBIE) { 1385 /* we don't reap group leaders with subthreads */ 1386 if (!delay_group_leader(p)) { 1387 /* 1388 * A zombie ptracee is only visible to its ptracer. 1389 * Notification and reaping will be cascaded to the 1390 * real parent when the ptracer detaches. 1391 */ 1392 if (unlikely(ptrace) || likely(!p->ptrace)) 1393 return wait_task_zombie(wo, p); 1394 } 1395 1396 /* 1397 * Allow access to stopped/continued state via zombie by 1398 * falling through. Clearing of notask_error is complex. 1399 * 1400 * When !@ptrace: 1401 * 1402 * If WEXITED is set, notask_error should naturally be 1403 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1404 * so, if there are live subthreads, there are events to 1405 * wait for. If all subthreads are dead, it's still safe 1406 * to clear - this function will be called again in finite 1407 * amount time once all the subthreads are released and 1408 * will then return without clearing. 1409 * 1410 * When @ptrace: 1411 * 1412 * Stopped state is per-task and thus can't change once the 1413 * target task dies. Only continued and exited can happen. 1414 * Clear notask_error if WCONTINUED | WEXITED. 1415 */ 1416 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1417 wo->notask_error = 0; 1418 } else { 1419 /* 1420 * @p is alive and it's gonna stop, continue or exit, so 1421 * there always is something to wait for. 1422 */ 1423 wo->notask_error = 0; 1424 } 1425 1426 /* 1427 * Wait for stopped. Depending on @ptrace, different stopped state 1428 * is used and the two don't interact with each other. 1429 */ 1430 ret = wait_task_stopped(wo, ptrace, p); 1431 if (ret) 1432 return ret; 1433 1434 /* 1435 * Wait for continued. There's only one continued state and the 1436 * ptracer can consume it which can confuse the real parent. Don't 1437 * use WCONTINUED from ptracer. You don't need or want it. 1438 */ 1439 return wait_task_continued(wo, p); 1440 } 1441 1442 /* 1443 * Do the work of do_wait() for one thread in the group, @tsk. 1444 * 1445 * -ECHILD should be in ->notask_error before the first call. 1446 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1447 * Returns zero if the search for a child should continue; then 1448 * ->notask_error is 0 if there were any eligible children, 1449 * or still -ECHILD. 1450 */ 1451 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1452 { 1453 struct task_struct *p; 1454 1455 list_for_each_entry(p, &tsk->children, sibling) { 1456 int ret = wait_consider_task(wo, 0, p); 1457 1458 if (ret) 1459 return ret; 1460 } 1461 1462 return 0; 1463 } 1464 1465 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1466 { 1467 struct task_struct *p; 1468 1469 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1470 int ret = wait_consider_task(wo, 1, p); 1471 1472 if (ret) 1473 return ret; 1474 } 1475 1476 return 0; 1477 } 1478 1479 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1480 int sync, void *key) 1481 { 1482 struct wait_opts *wo = container_of(wait, struct wait_opts, 1483 child_wait); 1484 struct task_struct *p = key; 1485 1486 if (!eligible_pid(wo, p)) 1487 return 0; 1488 1489 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1490 return 0; 1491 1492 return default_wake_function(wait, mode, sync, key); 1493 } 1494 1495 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1496 { 1497 __wake_up_sync_key(&parent->signal->wait_chldexit, 1498 TASK_INTERRUPTIBLE, 1, p); 1499 } 1500 1501 static long do_wait(struct wait_opts *wo) 1502 { 1503 struct task_struct *tsk; 1504 int retval; 1505 1506 trace_sched_process_wait(wo->wo_pid); 1507 1508 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1509 wo->child_wait.private = current; 1510 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1511 repeat: 1512 /* 1513 * If there is nothing that can match our criteria, just get out. 1514 * We will clear ->notask_error to zero if we see any child that 1515 * might later match our criteria, even if we are not able to reap 1516 * it yet. 1517 */ 1518 wo->notask_error = -ECHILD; 1519 if ((wo->wo_type < PIDTYPE_MAX) && 1520 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1521 goto notask; 1522 1523 set_current_state(TASK_INTERRUPTIBLE); 1524 read_lock(&tasklist_lock); 1525 tsk = current; 1526 do { 1527 retval = do_wait_thread(wo, tsk); 1528 if (retval) 1529 goto end; 1530 1531 retval = ptrace_do_wait(wo, tsk); 1532 if (retval) 1533 goto end; 1534 1535 if (wo->wo_flags & __WNOTHREAD) 1536 break; 1537 } while_each_thread(current, tsk); 1538 read_unlock(&tasklist_lock); 1539 1540 notask: 1541 retval = wo->notask_error; 1542 if (!retval && !(wo->wo_flags & WNOHANG)) { 1543 retval = -ERESTARTSYS; 1544 if (!signal_pending(current)) { 1545 schedule(); 1546 goto repeat; 1547 } 1548 } 1549 end: 1550 __set_current_state(TASK_RUNNING); 1551 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1552 return retval; 1553 } 1554 1555 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1556 int options, struct rusage *ru) 1557 { 1558 struct wait_opts wo; 1559 struct pid *pid = NULL; 1560 enum pid_type type; 1561 long ret; 1562 1563 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1564 __WNOTHREAD|__WCLONE|__WALL)) 1565 return -EINVAL; 1566 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1567 return -EINVAL; 1568 1569 switch (which) { 1570 case P_ALL: 1571 type = PIDTYPE_MAX; 1572 break; 1573 case P_PID: 1574 type = PIDTYPE_PID; 1575 if (upid <= 0) 1576 return -EINVAL; 1577 break; 1578 case P_PGID: 1579 type = PIDTYPE_PGID; 1580 if (upid <= 0) 1581 return -EINVAL; 1582 break; 1583 default: 1584 return -EINVAL; 1585 } 1586 1587 if (type < PIDTYPE_MAX) 1588 pid = find_get_pid(upid); 1589 1590 wo.wo_type = type; 1591 wo.wo_pid = pid; 1592 wo.wo_flags = options; 1593 wo.wo_info = infop; 1594 wo.wo_rusage = ru; 1595 ret = do_wait(&wo); 1596 1597 put_pid(pid); 1598 return ret; 1599 } 1600 1601 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1602 infop, int, options, struct rusage __user *, ru) 1603 { 1604 struct rusage r; 1605 struct waitid_info info = {.status = 0}; 1606 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1607 int signo = 0; 1608 1609 if (err > 0) { 1610 signo = SIGCHLD; 1611 err = 0; 1612 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1613 return -EFAULT; 1614 } 1615 if (!infop) 1616 return err; 1617 1618 if (!user_access_begin(infop, sizeof(*infop))) 1619 return -EFAULT; 1620 1621 unsafe_put_user(signo, &infop->si_signo, Efault); 1622 unsafe_put_user(0, &infop->si_errno, Efault); 1623 unsafe_put_user(info.cause, &infop->si_code, Efault); 1624 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1625 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1626 unsafe_put_user(info.status, &infop->si_status, Efault); 1627 user_access_end(); 1628 return err; 1629 Efault: 1630 user_access_end(); 1631 return -EFAULT; 1632 } 1633 1634 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1635 struct rusage *ru) 1636 { 1637 struct wait_opts wo; 1638 struct pid *pid = NULL; 1639 enum pid_type type; 1640 long ret; 1641 1642 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1643 __WNOTHREAD|__WCLONE|__WALL)) 1644 return -EINVAL; 1645 1646 /* -INT_MIN is not defined */ 1647 if (upid == INT_MIN) 1648 return -ESRCH; 1649 1650 if (upid == -1) 1651 type = PIDTYPE_MAX; 1652 else if (upid < 0) { 1653 type = PIDTYPE_PGID; 1654 pid = find_get_pid(-upid); 1655 } else if (upid == 0) { 1656 type = PIDTYPE_PGID; 1657 pid = get_task_pid(current, PIDTYPE_PGID); 1658 } else /* upid > 0 */ { 1659 type = PIDTYPE_PID; 1660 pid = find_get_pid(upid); 1661 } 1662 1663 wo.wo_type = type; 1664 wo.wo_pid = pid; 1665 wo.wo_flags = options | WEXITED; 1666 wo.wo_info = NULL; 1667 wo.wo_stat = 0; 1668 wo.wo_rusage = ru; 1669 ret = do_wait(&wo); 1670 put_pid(pid); 1671 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1672 ret = -EFAULT; 1673 1674 return ret; 1675 } 1676 1677 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1678 int, options, struct rusage __user *, ru) 1679 { 1680 struct rusage r; 1681 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1682 1683 if (err > 0) { 1684 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1685 return -EFAULT; 1686 } 1687 return err; 1688 } 1689 1690 #ifdef __ARCH_WANT_SYS_WAITPID 1691 1692 /* 1693 * sys_waitpid() remains for compatibility. waitpid() should be 1694 * implemented by calling sys_wait4() from libc.a. 1695 */ 1696 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1697 { 1698 return kernel_wait4(pid, stat_addr, options, NULL); 1699 } 1700 1701 #endif 1702 1703 #ifdef CONFIG_COMPAT 1704 COMPAT_SYSCALL_DEFINE4(wait4, 1705 compat_pid_t, pid, 1706 compat_uint_t __user *, stat_addr, 1707 int, options, 1708 struct compat_rusage __user *, ru) 1709 { 1710 struct rusage r; 1711 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1712 if (err > 0) { 1713 if (ru && put_compat_rusage(&r, ru)) 1714 return -EFAULT; 1715 } 1716 return err; 1717 } 1718 1719 COMPAT_SYSCALL_DEFINE5(waitid, 1720 int, which, compat_pid_t, pid, 1721 struct compat_siginfo __user *, infop, int, options, 1722 struct compat_rusage __user *, uru) 1723 { 1724 struct rusage ru; 1725 struct waitid_info info = {.status = 0}; 1726 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1727 int signo = 0; 1728 if (err > 0) { 1729 signo = SIGCHLD; 1730 err = 0; 1731 if (uru) { 1732 /* kernel_waitid() overwrites everything in ru */ 1733 if (COMPAT_USE_64BIT_TIME) 1734 err = copy_to_user(uru, &ru, sizeof(ru)); 1735 else 1736 err = put_compat_rusage(&ru, uru); 1737 if (err) 1738 return -EFAULT; 1739 } 1740 } 1741 1742 if (!infop) 1743 return err; 1744 1745 if (!user_access_begin(infop, sizeof(*infop))) 1746 return -EFAULT; 1747 1748 unsafe_put_user(signo, &infop->si_signo, Efault); 1749 unsafe_put_user(0, &infop->si_errno, Efault); 1750 unsafe_put_user(info.cause, &infop->si_code, Efault); 1751 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1752 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1753 unsafe_put_user(info.status, &infop->si_status, Efault); 1754 user_access_end(); 1755 return err; 1756 Efault: 1757 user_access_end(); 1758 return -EFAULT; 1759 } 1760 #endif 1761 1762 __weak void abort(void) 1763 { 1764 BUG(); 1765 1766 /* if that doesn't kill us, halt */ 1767 panic("Oops failed to kill thread"); 1768 } 1769 EXPORT_SYMBOL(abort); 1770