1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/iocontext.h> 17 #include <linux/key.h> 18 #include <linux/security.h> 19 #include <linux/cpu.h> 20 #include <linux/acct.h> 21 #include <linux/tsacct_kern.h> 22 #include <linux/file.h> 23 #include <linux/fdtable.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/freezer.h> 36 #include <linux/cgroup.h> 37 #include <linux/syscalls.h> 38 #include <linux/signal.h> 39 #include <linux/posix-timers.h> 40 #include <linux/cn_proc.h> 41 #include <linux/mutex.h> 42 #include <linux/futex.h> 43 #include <linux/compat.h> 44 #include <linux/pipe_fs_i.h> 45 #include <linux/audit.h> /* for audit_free() */ 46 #include <linux/resource.h> 47 #include <linux/blkdev.h> 48 #include <linux/task_io_accounting_ops.h> 49 50 #include <asm/uaccess.h> 51 #include <asm/unistd.h> 52 #include <asm/pgtable.h> 53 #include <asm/mmu_context.h> 54 55 static void exit_mm(struct task_struct * tsk); 56 57 static inline int task_detached(struct task_struct *p) 58 { 59 return p->exit_signal == -1; 60 } 61 62 static void __unhash_process(struct task_struct *p) 63 { 64 nr_threads--; 65 detach_pid(p, PIDTYPE_PID); 66 if (thread_group_leader(p)) { 67 detach_pid(p, PIDTYPE_PGID); 68 detach_pid(p, PIDTYPE_SID); 69 70 list_del_rcu(&p->tasks); 71 __get_cpu_var(process_counts)--; 72 } 73 list_del_rcu(&p->thread_group); 74 list_del_init(&p->sibling); 75 } 76 77 /* 78 * This function expects the tasklist_lock write-locked. 79 */ 80 static void __exit_signal(struct task_struct *tsk) 81 { 82 struct signal_struct *sig = tsk->signal; 83 struct sighand_struct *sighand; 84 85 BUG_ON(!sig); 86 BUG_ON(!atomic_read(&sig->count)); 87 88 rcu_read_lock(); 89 sighand = rcu_dereference(tsk->sighand); 90 spin_lock(&sighand->siglock); 91 92 posix_cpu_timers_exit(tsk); 93 if (atomic_dec_and_test(&sig->count)) 94 posix_cpu_timers_exit_group(tsk); 95 else { 96 /* 97 * If there is any task waiting for the group exit 98 * then notify it: 99 */ 100 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 101 wake_up_process(sig->group_exit_task); 102 103 if (tsk == sig->curr_target) 104 sig->curr_target = next_thread(tsk); 105 /* 106 * Accumulate here the counters for all threads but the 107 * group leader as they die, so they can be added into 108 * the process-wide totals when those are taken. 109 * The group leader stays around as a zombie as long 110 * as there are other threads. When it gets reaped, 111 * the exit.c code will add its counts into these totals. 112 * We won't ever get here for the group leader, since it 113 * will have been the last reference on the signal_struct. 114 */ 115 sig->utime = cputime_add(sig->utime, tsk->utime); 116 sig->stime = cputime_add(sig->stime, tsk->stime); 117 sig->gtime = cputime_add(sig->gtime, tsk->gtime); 118 sig->min_flt += tsk->min_flt; 119 sig->maj_flt += tsk->maj_flt; 120 sig->nvcsw += tsk->nvcsw; 121 sig->nivcsw += tsk->nivcsw; 122 sig->inblock += task_io_get_inblock(tsk); 123 sig->oublock += task_io_get_oublock(tsk); 124 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 125 sig = NULL; /* Marker for below. */ 126 } 127 128 __unhash_process(tsk); 129 130 /* 131 * Do this under ->siglock, we can race with another thread 132 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 133 */ 134 flush_sigqueue(&tsk->pending); 135 136 tsk->signal = NULL; 137 tsk->sighand = NULL; 138 spin_unlock(&sighand->siglock); 139 rcu_read_unlock(); 140 141 __cleanup_sighand(sighand); 142 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 143 if (sig) { 144 flush_sigqueue(&sig->shared_pending); 145 taskstats_tgid_free(sig); 146 __cleanup_signal(sig); 147 } 148 } 149 150 static void delayed_put_task_struct(struct rcu_head *rhp) 151 { 152 put_task_struct(container_of(rhp, struct task_struct, rcu)); 153 } 154 155 /* 156 * Do final ptrace-related cleanup of a zombie being reaped. 157 * 158 * Called with write_lock(&tasklist_lock) held. 159 */ 160 static void ptrace_release_task(struct task_struct *p) 161 { 162 BUG_ON(!list_empty(&p->ptraced)); 163 ptrace_unlink(p); 164 BUG_ON(!list_empty(&p->ptrace_entry)); 165 } 166 167 void release_task(struct task_struct * p) 168 { 169 struct task_struct *leader; 170 int zap_leader; 171 repeat: 172 atomic_dec(&p->user->processes); 173 proc_flush_task(p); 174 write_lock_irq(&tasklist_lock); 175 ptrace_release_task(p); 176 __exit_signal(p); 177 178 /* 179 * If we are the last non-leader member of the thread 180 * group, and the leader is zombie, then notify the 181 * group leader's parent process. (if it wants notification.) 182 */ 183 zap_leader = 0; 184 leader = p->group_leader; 185 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 186 BUG_ON(task_detached(leader)); 187 do_notify_parent(leader, leader->exit_signal); 188 /* 189 * If we were the last child thread and the leader has 190 * exited already, and the leader's parent ignores SIGCHLD, 191 * then we are the one who should release the leader. 192 * 193 * do_notify_parent() will have marked it self-reaping in 194 * that case. 195 */ 196 zap_leader = task_detached(leader); 197 } 198 199 write_unlock_irq(&tasklist_lock); 200 release_thread(p); 201 call_rcu(&p->rcu, delayed_put_task_struct); 202 203 p = leader; 204 if (unlikely(zap_leader)) 205 goto repeat; 206 } 207 208 /* 209 * This checks not only the pgrp, but falls back on the pid if no 210 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 211 * without this... 212 * 213 * The caller must hold rcu lock or the tasklist lock. 214 */ 215 struct pid *session_of_pgrp(struct pid *pgrp) 216 { 217 struct task_struct *p; 218 struct pid *sid = NULL; 219 220 p = pid_task(pgrp, PIDTYPE_PGID); 221 if (p == NULL) 222 p = pid_task(pgrp, PIDTYPE_PID); 223 if (p != NULL) 224 sid = task_session(p); 225 226 return sid; 227 } 228 229 /* 230 * Determine if a process group is "orphaned", according to the POSIX 231 * definition in 2.2.2.52. Orphaned process groups are not to be affected 232 * by terminal-generated stop signals. Newly orphaned process groups are 233 * to receive a SIGHUP and a SIGCONT. 234 * 235 * "I ask you, have you ever known what it is to be an orphan?" 236 */ 237 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 238 { 239 struct task_struct *p; 240 241 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 242 if ((p == ignored_task) || 243 (p->exit_state && thread_group_empty(p)) || 244 is_global_init(p->real_parent)) 245 continue; 246 247 if (task_pgrp(p->real_parent) != pgrp && 248 task_session(p->real_parent) == task_session(p)) 249 return 0; 250 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 251 252 return 1; 253 } 254 255 int is_current_pgrp_orphaned(void) 256 { 257 int retval; 258 259 read_lock(&tasklist_lock); 260 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 261 read_unlock(&tasklist_lock); 262 263 return retval; 264 } 265 266 static int has_stopped_jobs(struct pid *pgrp) 267 { 268 int retval = 0; 269 struct task_struct *p; 270 271 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 272 if (!task_is_stopped(p)) 273 continue; 274 retval = 1; 275 break; 276 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 277 return retval; 278 } 279 280 /* 281 * Check to see if any process groups have become orphaned as 282 * a result of our exiting, and if they have any stopped jobs, 283 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 284 */ 285 static void 286 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 287 { 288 struct pid *pgrp = task_pgrp(tsk); 289 struct task_struct *ignored_task = tsk; 290 291 if (!parent) 292 /* exit: our father is in a different pgrp than 293 * we are and we were the only connection outside. 294 */ 295 parent = tsk->real_parent; 296 else 297 /* reparent: our child is in a different pgrp than 298 * we are, and it was the only connection outside. 299 */ 300 ignored_task = NULL; 301 302 if (task_pgrp(parent) != pgrp && 303 task_session(parent) == task_session(tsk) && 304 will_become_orphaned_pgrp(pgrp, ignored_task) && 305 has_stopped_jobs(pgrp)) { 306 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 307 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 308 } 309 } 310 311 /** 312 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 313 * 314 * If a kernel thread is launched as a result of a system call, or if 315 * it ever exits, it should generally reparent itself to kthreadd so it 316 * isn't in the way of other processes and is correctly cleaned up on exit. 317 * 318 * The various task state such as scheduling policy and priority may have 319 * been inherited from a user process, so we reset them to sane values here. 320 * 321 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 322 */ 323 static void reparent_to_kthreadd(void) 324 { 325 write_lock_irq(&tasklist_lock); 326 327 ptrace_unlink(current); 328 /* Reparent to init */ 329 current->real_parent = current->parent = kthreadd_task; 330 list_move_tail(¤t->sibling, ¤t->real_parent->children); 331 332 /* Set the exit signal to SIGCHLD so we signal init on exit */ 333 current->exit_signal = SIGCHLD; 334 335 if (task_nice(current) < 0) 336 set_user_nice(current, 0); 337 /* cpus_allowed? */ 338 /* rt_priority? */ 339 /* signals? */ 340 security_task_reparent_to_init(current); 341 memcpy(current->signal->rlim, init_task.signal->rlim, 342 sizeof(current->signal->rlim)); 343 atomic_inc(&(INIT_USER->__count)); 344 write_unlock_irq(&tasklist_lock); 345 switch_uid(INIT_USER); 346 } 347 348 void __set_special_pids(struct pid *pid) 349 { 350 struct task_struct *curr = current->group_leader; 351 pid_t nr = pid_nr(pid); 352 353 if (task_session(curr) != pid) { 354 change_pid(curr, PIDTYPE_SID, pid); 355 set_task_session(curr, nr); 356 } 357 if (task_pgrp(curr) != pid) { 358 change_pid(curr, PIDTYPE_PGID, pid); 359 set_task_pgrp(curr, nr); 360 } 361 } 362 363 static void set_special_pids(struct pid *pid) 364 { 365 write_lock_irq(&tasklist_lock); 366 __set_special_pids(pid); 367 write_unlock_irq(&tasklist_lock); 368 } 369 370 /* 371 * Let kernel threads use this to say that they 372 * allow a certain signal (since daemonize() will 373 * have disabled all of them by default). 374 */ 375 int allow_signal(int sig) 376 { 377 if (!valid_signal(sig) || sig < 1) 378 return -EINVAL; 379 380 spin_lock_irq(¤t->sighand->siglock); 381 sigdelset(¤t->blocked, sig); 382 if (!current->mm) { 383 /* Kernel threads handle their own signals. 384 Let the signal code know it'll be handled, so 385 that they don't get converted to SIGKILL or 386 just silently dropped */ 387 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 388 } 389 recalc_sigpending(); 390 spin_unlock_irq(¤t->sighand->siglock); 391 return 0; 392 } 393 394 EXPORT_SYMBOL(allow_signal); 395 396 int disallow_signal(int sig) 397 { 398 if (!valid_signal(sig) || sig < 1) 399 return -EINVAL; 400 401 spin_lock_irq(¤t->sighand->siglock); 402 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 403 recalc_sigpending(); 404 spin_unlock_irq(¤t->sighand->siglock); 405 return 0; 406 } 407 408 EXPORT_SYMBOL(disallow_signal); 409 410 /* 411 * Put all the gunge required to become a kernel thread without 412 * attached user resources in one place where it belongs. 413 */ 414 415 void daemonize(const char *name, ...) 416 { 417 va_list args; 418 struct fs_struct *fs; 419 sigset_t blocked; 420 421 va_start(args, name); 422 vsnprintf(current->comm, sizeof(current->comm), name, args); 423 va_end(args); 424 425 /* 426 * If we were started as result of loading a module, close all of the 427 * user space pages. We don't need them, and if we didn't close them 428 * they would be locked into memory. 429 */ 430 exit_mm(current); 431 /* 432 * We don't want to have TIF_FREEZE set if the system-wide hibernation 433 * or suspend transition begins right now. 434 */ 435 current->flags |= PF_NOFREEZE; 436 437 if (current->nsproxy != &init_nsproxy) { 438 get_nsproxy(&init_nsproxy); 439 switch_task_namespaces(current, &init_nsproxy); 440 } 441 set_special_pids(&init_struct_pid); 442 proc_clear_tty(current); 443 444 /* Block and flush all signals */ 445 sigfillset(&blocked); 446 sigprocmask(SIG_BLOCK, &blocked, NULL); 447 flush_signals(current); 448 449 /* Become as one with the init task */ 450 451 exit_fs(current); /* current->fs->count--; */ 452 fs = init_task.fs; 453 current->fs = fs; 454 atomic_inc(&fs->count); 455 456 exit_files(current); 457 current->files = init_task.files; 458 atomic_inc(¤t->files->count); 459 460 reparent_to_kthreadd(); 461 } 462 463 EXPORT_SYMBOL(daemonize); 464 465 static void close_files(struct files_struct * files) 466 { 467 int i, j; 468 struct fdtable *fdt; 469 470 j = 0; 471 472 /* 473 * It is safe to dereference the fd table without RCU or 474 * ->file_lock because this is the last reference to the 475 * files structure. 476 */ 477 fdt = files_fdtable(files); 478 for (;;) { 479 unsigned long set; 480 i = j * __NFDBITS; 481 if (i >= fdt->max_fds) 482 break; 483 set = fdt->open_fds->fds_bits[j++]; 484 while (set) { 485 if (set & 1) { 486 struct file * file = xchg(&fdt->fd[i], NULL); 487 if (file) { 488 filp_close(file, files); 489 cond_resched(); 490 } 491 } 492 i++; 493 set >>= 1; 494 } 495 } 496 } 497 498 struct files_struct *get_files_struct(struct task_struct *task) 499 { 500 struct files_struct *files; 501 502 task_lock(task); 503 files = task->files; 504 if (files) 505 atomic_inc(&files->count); 506 task_unlock(task); 507 508 return files; 509 } 510 511 void put_files_struct(struct files_struct *files) 512 { 513 struct fdtable *fdt; 514 515 if (atomic_dec_and_test(&files->count)) { 516 close_files(files); 517 /* 518 * Free the fd and fdset arrays if we expanded them. 519 * If the fdtable was embedded, pass files for freeing 520 * at the end of the RCU grace period. Otherwise, 521 * you can free files immediately. 522 */ 523 fdt = files_fdtable(files); 524 if (fdt != &files->fdtab) 525 kmem_cache_free(files_cachep, files); 526 free_fdtable(fdt); 527 } 528 } 529 530 void reset_files_struct(struct files_struct *files) 531 { 532 struct task_struct *tsk = current; 533 struct files_struct *old; 534 535 old = tsk->files; 536 task_lock(tsk); 537 tsk->files = files; 538 task_unlock(tsk); 539 put_files_struct(old); 540 } 541 542 void exit_files(struct task_struct *tsk) 543 { 544 struct files_struct * files = tsk->files; 545 546 if (files) { 547 task_lock(tsk); 548 tsk->files = NULL; 549 task_unlock(tsk); 550 put_files_struct(files); 551 } 552 } 553 554 void put_fs_struct(struct fs_struct *fs) 555 { 556 /* No need to hold fs->lock if we are killing it */ 557 if (atomic_dec_and_test(&fs->count)) { 558 path_put(&fs->root); 559 path_put(&fs->pwd); 560 if (fs->altroot.dentry) 561 path_put(&fs->altroot); 562 kmem_cache_free(fs_cachep, fs); 563 } 564 } 565 566 void exit_fs(struct task_struct *tsk) 567 { 568 struct fs_struct * fs = tsk->fs; 569 570 if (fs) { 571 task_lock(tsk); 572 tsk->fs = NULL; 573 task_unlock(tsk); 574 put_fs_struct(fs); 575 } 576 } 577 578 EXPORT_SYMBOL_GPL(exit_fs); 579 580 #ifdef CONFIG_MM_OWNER 581 /* 582 * Task p is exiting and it owned mm, lets find a new owner for it 583 */ 584 static inline int 585 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 586 { 587 /* 588 * If there are other users of the mm and the owner (us) is exiting 589 * we need to find a new owner to take on the responsibility. 590 */ 591 if (!mm) 592 return 0; 593 if (atomic_read(&mm->mm_users) <= 1) 594 return 0; 595 if (mm->owner != p) 596 return 0; 597 return 1; 598 } 599 600 void mm_update_next_owner(struct mm_struct *mm) 601 { 602 struct task_struct *c, *g, *p = current; 603 604 retry: 605 if (!mm_need_new_owner(mm, p)) 606 return; 607 608 read_lock(&tasklist_lock); 609 /* 610 * Search in the children 611 */ 612 list_for_each_entry(c, &p->children, sibling) { 613 if (c->mm == mm) 614 goto assign_new_owner; 615 } 616 617 /* 618 * Search in the siblings 619 */ 620 list_for_each_entry(c, &p->parent->children, sibling) { 621 if (c->mm == mm) 622 goto assign_new_owner; 623 } 624 625 /* 626 * Search through everything else. We should not get 627 * here often 628 */ 629 do_each_thread(g, c) { 630 if (c->mm == mm) 631 goto assign_new_owner; 632 } while_each_thread(g, c); 633 634 read_unlock(&tasklist_lock); 635 return; 636 637 assign_new_owner: 638 BUG_ON(c == p); 639 get_task_struct(c); 640 /* 641 * The task_lock protects c->mm from changing. 642 * We always want mm->owner->mm == mm 643 */ 644 task_lock(c); 645 /* 646 * Delay read_unlock() till we have the task_lock() 647 * to ensure that c does not slip away underneath us 648 */ 649 read_unlock(&tasklist_lock); 650 if (c->mm != mm) { 651 task_unlock(c); 652 put_task_struct(c); 653 goto retry; 654 } 655 cgroup_mm_owner_callbacks(mm->owner, c); 656 mm->owner = c; 657 task_unlock(c); 658 put_task_struct(c); 659 } 660 #endif /* CONFIG_MM_OWNER */ 661 662 /* 663 * Turn us into a lazy TLB process if we 664 * aren't already.. 665 */ 666 static void exit_mm(struct task_struct * tsk) 667 { 668 struct mm_struct *mm = tsk->mm; 669 670 mm_release(tsk, mm); 671 if (!mm) 672 return; 673 /* 674 * Serialize with any possible pending coredump. 675 * We must hold mmap_sem around checking core_waiters 676 * and clearing tsk->mm. The core-inducing thread 677 * will increment core_waiters for each thread in the 678 * group with ->mm != NULL. 679 */ 680 down_read(&mm->mmap_sem); 681 if (mm->core_waiters) { 682 up_read(&mm->mmap_sem); 683 down_write(&mm->mmap_sem); 684 if (!--mm->core_waiters) 685 complete(mm->core_startup_done); 686 up_write(&mm->mmap_sem); 687 688 wait_for_completion(&mm->core_done); 689 down_read(&mm->mmap_sem); 690 } 691 atomic_inc(&mm->mm_count); 692 BUG_ON(mm != tsk->active_mm); 693 /* more a memory barrier than a real lock */ 694 task_lock(tsk); 695 tsk->mm = NULL; 696 up_read(&mm->mmap_sem); 697 enter_lazy_tlb(mm, current); 698 /* We don't want this task to be frozen prematurely */ 699 clear_freeze_flag(tsk); 700 task_unlock(tsk); 701 mm_update_next_owner(mm); 702 mmput(mm); 703 } 704 705 /* 706 * Return nonzero if @parent's children should reap themselves. 707 * 708 * Called with write_lock_irq(&tasklist_lock) held. 709 */ 710 static int ignoring_children(struct task_struct *parent) 711 { 712 int ret; 713 struct sighand_struct *psig = parent->sighand; 714 unsigned long flags; 715 spin_lock_irqsave(&psig->siglock, flags); 716 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 717 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT)); 718 spin_unlock_irqrestore(&psig->siglock, flags); 719 return ret; 720 } 721 722 /* 723 * Detach all tasks we were using ptrace on. 724 * Any that need to be release_task'd are put on the @dead list. 725 * 726 * Called with write_lock(&tasklist_lock) held. 727 */ 728 static void ptrace_exit(struct task_struct *parent, struct list_head *dead) 729 { 730 struct task_struct *p, *n; 731 int ign = -1; 732 733 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) { 734 __ptrace_unlink(p); 735 736 if (p->exit_state != EXIT_ZOMBIE) 737 continue; 738 739 /* 740 * If it's a zombie, our attachedness prevented normal 741 * parent notification or self-reaping. Do notification 742 * now if it would have happened earlier. If it should 743 * reap itself, add it to the @dead list. We can't call 744 * release_task() here because we already hold tasklist_lock. 745 * 746 * If it's our own child, there is no notification to do. 747 * But if our normal children self-reap, then this child 748 * was prevented by ptrace and we must reap it now. 749 */ 750 if (!task_detached(p) && thread_group_empty(p)) { 751 if (!same_thread_group(p->real_parent, parent)) 752 do_notify_parent(p, p->exit_signal); 753 else { 754 if (ign < 0) 755 ign = ignoring_children(parent); 756 if (ign) 757 p->exit_signal = -1; 758 } 759 } 760 761 if (task_detached(p)) { 762 /* 763 * Mark it as in the process of being reaped. 764 */ 765 p->exit_state = EXIT_DEAD; 766 list_add(&p->ptrace_entry, dead); 767 } 768 } 769 } 770 771 /* 772 * Finish up exit-time ptrace cleanup. 773 * 774 * Called without locks. 775 */ 776 static void ptrace_exit_finish(struct task_struct *parent, 777 struct list_head *dead) 778 { 779 struct task_struct *p, *n; 780 781 BUG_ON(!list_empty(&parent->ptraced)); 782 783 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 784 list_del_init(&p->ptrace_entry); 785 release_task(p); 786 } 787 } 788 789 static void reparent_thread(struct task_struct *p, struct task_struct *father) 790 { 791 if (p->pdeath_signal) 792 /* We already hold the tasklist_lock here. */ 793 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 794 795 list_move_tail(&p->sibling, &p->real_parent->children); 796 797 /* If this is a threaded reparent there is no need to 798 * notify anyone anything has happened. 799 */ 800 if (same_thread_group(p->real_parent, father)) 801 return; 802 803 /* We don't want people slaying init. */ 804 if (!task_detached(p)) 805 p->exit_signal = SIGCHLD; 806 807 /* If we'd notified the old parent about this child's death, 808 * also notify the new parent. 809 */ 810 if (!ptrace_reparented(p) && 811 p->exit_state == EXIT_ZOMBIE && 812 !task_detached(p) && thread_group_empty(p)) 813 do_notify_parent(p, p->exit_signal); 814 815 kill_orphaned_pgrp(p, father); 816 } 817 818 /* 819 * When we die, we re-parent all our children. 820 * Try to give them to another thread in our thread 821 * group, and if no such member exists, give it to 822 * the child reaper process (ie "init") in our pid 823 * space. 824 */ 825 static void forget_original_parent(struct task_struct *father) 826 { 827 struct task_struct *p, *n, *reaper = father; 828 LIST_HEAD(ptrace_dead); 829 830 write_lock_irq(&tasklist_lock); 831 832 /* 833 * First clean up ptrace if we were using it. 834 */ 835 ptrace_exit(father, &ptrace_dead); 836 837 do { 838 reaper = next_thread(reaper); 839 if (reaper == father) { 840 reaper = task_child_reaper(father); 841 break; 842 } 843 } while (reaper->flags & PF_EXITING); 844 845 list_for_each_entry_safe(p, n, &father->children, sibling) { 846 p->real_parent = reaper; 847 if (p->parent == father) { 848 BUG_ON(p->ptrace); 849 p->parent = p->real_parent; 850 } 851 reparent_thread(p, father); 852 } 853 854 write_unlock_irq(&tasklist_lock); 855 BUG_ON(!list_empty(&father->children)); 856 857 ptrace_exit_finish(father, &ptrace_dead); 858 } 859 860 /* 861 * Send signals to all our closest relatives so that they know 862 * to properly mourn us.. 863 */ 864 static void exit_notify(struct task_struct *tsk, int group_dead) 865 { 866 int state; 867 868 /* 869 * This does two things: 870 * 871 * A. Make init inherit all the child processes 872 * B. Check to see if any process groups have become orphaned 873 * as a result of our exiting, and if they have any stopped 874 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 875 */ 876 forget_original_parent(tsk); 877 exit_task_namespaces(tsk); 878 879 write_lock_irq(&tasklist_lock); 880 if (group_dead) 881 kill_orphaned_pgrp(tsk->group_leader, NULL); 882 883 /* Let father know we died 884 * 885 * Thread signals are configurable, but you aren't going to use 886 * that to send signals to arbitary processes. 887 * That stops right now. 888 * 889 * If the parent exec id doesn't match the exec id we saved 890 * when we started then we know the parent has changed security 891 * domain. 892 * 893 * If our self_exec id doesn't match our parent_exec_id then 894 * we have changed execution domain as these two values started 895 * the same after a fork. 896 */ 897 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 898 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 899 tsk->self_exec_id != tsk->parent_exec_id) && 900 !capable(CAP_KILL)) 901 tsk->exit_signal = SIGCHLD; 902 903 /* If something other than our normal parent is ptracing us, then 904 * send it a SIGCHLD instead of honoring exit_signal. exit_signal 905 * only has special meaning to our real parent. 906 */ 907 if (!task_detached(tsk) && thread_group_empty(tsk)) { 908 int signal = ptrace_reparented(tsk) ? 909 SIGCHLD : tsk->exit_signal; 910 do_notify_parent(tsk, signal); 911 } else if (tsk->ptrace) { 912 do_notify_parent(tsk, SIGCHLD); 913 } 914 915 state = EXIT_ZOMBIE; 916 if (task_detached(tsk) && likely(!tsk->ptrace)) 917 state = EXIT_DEAD; 918 tsk->exit_state = state; 919 920 /* mt-exec, de_thread() is waiting for us */ 921 if (thread_group_leader(tsk) && 922 tsk->signal->notify_count < 0 && 923 tsk->signal->group_exit_task) 924 wake_up_process(tsk->signal->group_exit_task); 925 926 write_unlock_irq(&tasklist_lock); 927 928 /* If the process is dead, release it - nobody will wait for it */ 929 if (state == EXIT_DEAD) 930 release_task(tsk); 931 } 932 933 #ifdef CONFIG_DEBUG_STACK_USAGE 934 static void check_stack_usage(void) 935 { 936 static DEFINE_SPINLOCK(low_water_lock); 937 static int lowest_to_date = THREAD_SIZE; 938 unsigned long *n = end_of_stack(current); 939 unsigned long free; 940 941 while (*n == 0) 942 n++; 943 free = (unsigned long)n - (unsigned long)end_of_stack(current); 944 945 if (free >= lowest_to_date) 946 return; 947 948 spin_lock(&low_water_lock); 949 if (free < lowest_to_date) { 950 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 951 "left\n", 952 current->comm, free); 953 lowest_to_date = free; 954 } 955 spin_unlock(&low_water_lock); 956 } 957 #else 958 static inline void check_stack_usage(void) {} 959 #endif 960 961 static inline void exit_child_reaper(struct task_struct *tsk) 962 { 963 if (likely(tsk->group_leader != task_child_reaper(tsk))) 964 return; 965 966 if (tsk->nsproxy->pid_ns == &init_pid_ns) 967 panic("Attempted to kill init!"); 968 969 /* 970 * @tsk is the last thread in the 'cgroup-init' and is exiting. 971 * Terminate all remaining processes in the namespace and reap them 972 * before exiting @tsk. 973 * 974 * Note that @tsk (last thread of cgroup-init) may not necessarily 975 * be the child-reaper (i.e main thread of cgroup-init) of the 976 * namespace i.e the child_reaper may have already exited. 977 * 978 * Even after a child_reaper exits, we let it inherit orphaned children, 979 * because, pid_ns->child_reaper remains valid as long as there is 980 * at least one living sub-thread in the cgroup init. 981 982 * This living sub-thread of the cgroup-init will be notified when 983 * a child inherited by the 'child-reaper' exits (do_notify_parent() 984 * uses __group_send_sig_info()). Further, when reaping child processes, 985 * do_wait() iterates over children of all living sub threads. 986 987 * i.e even though 'child_reaper' thread is listed as the parent of the 988 * orphaned children, any living sub-thread in the cgroup-init can 989 * perform the role of the child_reaper. 990 */ 991 zap_pid_ns_processes(tsk->nsproxy->pid_ns); 992 } 993 994 NORET_TYPE void do_exit(long code) 995 { 996 struct task_struct *tsk = current; 997 int group_dead; 998 999 profile_task_exit(tsk); 1000 1001 WARN_ON(atomic_read(&tsk->fs_excl)); 1002 1003 if (unlikely(in_interrupt())) 1004 panic("Aiee, killing interrupt handler!"); 1005 if (unlikely(!tsk->pid)) 1006 panic("Attempted to kill the idle task!"); 1007 1008 if (unlikely(current->ptrace & PT_TRACE_EXIT)) { 1009 current->ptrace_message = code; 1010 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); 1011 } 1012 1013 /* 1014 * We're taking recursive faults here in do_exit. Safest is to just 1015 * leave this task alone and wait for reboot. 1016 */ 1017 if (unlikely(tsk->flags & PF_EXITING)) { 1018 printk(KERN_ALERT 1019 "Fixing recursive fault but reboot is needed!\n"); 1020 /* 1021 * We can do this unlocked here. The futex code uses 1022 * this flag just to verify whether the pi state 1023 * cleanup has been done or not. In the worst case it 1024 * loops once more. We pretend that the cleanup was 1025 * done as there is no way to return. Either the 1026 * OWNER_DIED bit is set by now or we push the blocked 1027 * task into the wait for ever nirwana as well. 1028 */ 1029 tsk->flags |= PF_EXITPIDONE; 1030 if (tsk->io_context) 1031 exit_io_context(); 1032 set_current_state(TASK_UNINTERRUPTIBLE); 1033 schedule(); 1034 } 1035 1036 exit_signals(tsk); /* sets PF_EXITING */ 1037 /* 1038 * tsk->flags are checked in the futex code to protect against 1039 * an exiting task cleaning up the robust pi futexes. 1040 */ 1041 smp_mb(); 1042 spin_unlock_wait(&tsk->pi_lock); 1043 1044 if (unlikely(in_atomic())) 1045 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 1046 current->comm, task_pid_nr(current), 1047 preempt_count()); 1048 1049 acct_update_integrals(tsk); 1050 if (tsk->mm) { 1051 update_hiwater_rss(tsk->mm); 1052 update_hiwater_vm(tsk->mm); 1053 } 1054 group_dead = atomic_dec_and_test(&tsk->signal->live); 1055 if (group_dead) { 1056 exit_child_reaper(tsk); 1057 hrtimer_cancel(&tsk->signal->real_timer); 1058 exit_itimers(tsk->signal); 1059 } 1060 acct_collect(code, group_dead); 1061 #ifdef CONFIG_FUTEX 1062 if (unlikely(tsk->robust_list)) 1063 exit_robust_list(tsk); 1064 #ifdef CONFIG_COMPAT 1065 if (unlikely(tsk->compat_robust_list)) 1066 compat_exit_robust_list(tsk); 1067 #endif 1068 #endif 1069 if (group_dead) 1070 tty_audit_exit(); 1071 if (unlikely(tsk->audit_context)) 1072 audit_free(tsk); 1073 1074 tsk->exit_code = code; 1075 taskstats_exit(tsk, group_dead); 1076 1077 exit_mm(tsk); 1078 1079 if (group_dead) 1080 acct_process(); 1081 exit_sem(tsk); 1082 exit_files(tsk); 1083 exit_fs(tsk); 1084 check_stack_usage(); 1085 exit_thread(); 1086 cgroup_exit(tsk, 1); 1087 exit_keys(tsk); 1088 1089 if (group_dead && tsk->signal->leader) 1090 disassociate_ctty(1); 1091 1092 module_put(task_thread_info(tsk)->exec_domain->module); 1093 if (tsk->binfmt) 1094 module_put(tsk->binfmt->module); 1095 1096 proc_exit_connector(tsk); 1097 exit_notify(tsk, group_dead); 1098 #ifdef CONFIG_NUMA 1099 mpol_put(tsk->mempolicy); 1100 tsk->mempolicy = NULL; 1101 #endif 1102 #ifdef CONFIG_FUTEX 1103 /* 1104 * This must happen late, after the PID is not 1105 * hashed anymore: 1106 */ 1107 if (unlikely(!list_empty(&tsk->pi_state_list))) 1108 exit_pi_state_list(tsk); 1109 if (unlikely(current->pi_state_cache)) 1110 kfree(current->pi_state_cache); 1111 #endif 1112 /* 1113 * Make sure we are holding no locks: 1114 */ 1115 debug_check_no_locks_held(tsk); 1116 /* 1117 * We can do this unlocked here. The futex code uses this flag 1118 * just to verify whether the pi state cleanup has been done 1119 * or not. In the worst case it loops once more. 1120 */ 1121 tsk->flags |= PF_EXITPIDONE; 1122 1123 if (tsk->io_context) 1124 exit_io_context(); 1125 1126 if (tsk->splice_pipe) 1127 __free_pipe_info(tsk->splice_pipe); 1128 1129 preempt_disable(); 1130 /* causes final put_task_struct in finish_task_switch(). */ 1131 tsk->state = TASK_DEAD; 1132 1133 schedule(); 1134 BUG(); 1135 /* Avoid "noreturn function does return". */ 1136 for (;;) 1137 cpu_relax(); /* For when BUG is null */ 1138 } 1139 1140 EXPORT_SYMBOL_GPL(do_exit); 1141 1142 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1143 { 1144 if (comp) 1145 complete(comp); 1146 1147 do_exit(code); 1148 } 1149 1150 EXPORT_SYMBOL(complete_and_exit); 1151 1152 asmlinkage long sys_exit(int error_code) 1153 { 1154 do_exit((error_code&0xff)<<8); 1155 } 1156 1157 /* 1158 * Take down every thread in the group. This is called by fatal signals 1159 * as well as by sys_exit_group (below). 1160 */ 1161 NORET_TYPE void 1162 do_group_exit(int exit_code) 1163 { 1164 struct signal_struct *sig = current->signal; 1165 1166 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1167 1168 if (signal_group_exit(sig)) 1169 exit_code = sig->group_exit_code; 1170 else if (!thread_group_empty(current)) { 1171 struct sighand_struct *const sighand = current->sighand; 1172 spin_lock_irq(&sighand->siglock); 1173 if (signal_group_exit(sig)) 1174 /* Another thread got here before we took the lock. */ 1175 exit_code = sig->group_exit_code; 1176 else { 1177 sig->group_exit_code = exit_code; 1178 sig->flags = SIGNAL_GROUP_EXIT; 1179 zap_other_threads(current); 1180 } 1181 spin_unlock_irq(&sighand->siglock); 1182 } 1183 1184 do_exit(exit_code); 1185 /* NOTREACHED */ 1186 } 1187 1188 /* 1189 * this kills every thread in the thread group. Note that any externally 1190 * wait4()-ing process will get the correct exit code - even if this 1191 * thread is not the thread group leader. 1192 */ 1193 asmlinkage void sys_exit_group(int error_code) 1194 { 1195 do_group_exit((error_code & 0xff) << 8); 1196 } 1197 1198 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1199 { 1200 struct pid *pid = NULL; 1201 if (type == PIDTYPE_PID) 1202 pid = task->pids[type].pid; 1203 else if (type < PIDTYPE_MAX) 1204 pid = task->group_leader->pids[type].pid; 1205 return pid; 1206 } 1207 1208 static int eligible_child(enum pid_type type, struct pid *pid, int options, 1209 struct task_struct *p) 1210 { 1211 int err; 1212 1213 if (type < PIDTYPE_MAX) { 1214 if (task_pid_type(p, type) != pid) 1215 return 0; 1216 } 1217 1218 /* Wait for all children (clone and not) if __WALL is set; 1219 * otherwise, wait for clone children *only* if __WCLONE is 1220 * set; otherwise, wait for non-clone children *only*. (Note: 1221 * A "clone" child here is one that reports to its parent 1222 * using a signal other than SIGCHLD.) */ 1223 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1224 && !(options & __WALL)) 1225 return 0; 1226 1227 err = security_task_wait(p); 1228 if (err) 1229 return err; 1230 1231 return 1; 1232 } 1233 1234 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1235 int why, int status, 1236 struct siginfo __user *infop, 1237 struct rusage __user *rusagep) 1238 { 1239 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1240 1241 put_task_struct(p); 1242 if (!retval) 1243 retval = put_user(SIGCHLD, &infop->si_signo); 1244 if (!retval) 1245 retval = put_user(0, &infop->si_errno); 1246 if (!retval) 1247 retval = put_user((short)why, &infop->si_code); 1248 if (!retval) 1249 retval = put_user(pid, &infop->si_pid); 1250 if (!retval) 1251 retval = put_user(uid, &infop->si_uid); 1252 if (!retval) 1253 retval = put_user(status, &infop->si_status); 1254 if (!retval) 1255 retval = pid; 1256 return retval; 1257 } 1258 1259 /* 1260 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1261 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1262 * the lock and this task is uninteresting. If we return nonzero, we have 1263 * released the lock and the system call should return. 1264 */ 1265 static int wait_task_zombie(struct task_struct *p, int options, 1266 struct siginfo __user *infop, 1267 int __user *stat_addr, struct rusage __user *ru) 1268 { 1269 unsigned long state; 1270 int retval, status, traced; 1271 pid_t pid = task_pid_vnr(p); 1272 1273 if (!likely(options & WEXITED)) 1274 return 0; 1275 1276 if (unlikely(options & WNOWAIT)) { 1277 uid_t uid = p->uid; 1278 int exit_code = p->exit_code; 1279 int why, status; 1280 1281 get_task_struct(p); 1282 read_unlock(&tasklist_lock); 1283 if ((exit_code & 0x7f) == 0) { 1284 why = CLD_EXITED; 1285 status = exit_code >> 8; 1286 } else { 1287 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1288 status = exit_code & 0x7f; 1289 } 1290 return wait_noreap_copyout(p, pid, uid, why, 1291 status, infop, ru); 1292 } 1293 1294 /* 1295 * Try to move the task's state to DEAD 1296 * only one thread is allowed to do this: 1297 */ 1298 state = xchg(&p->exit_state, EXIT_DEAD); 1299 if (state != EXIT_ZOMBIE) { 1300 BUG_ON(state != EXIT_DEAD); 1301 return 0; 1302 } 1303 1304 traced = ptrace_reparented(p); 1305 1306 if (likely(!traced)) { 1307 struct signal_struct *psig; 1308 struct signal_struct *sig; 1309 1310 /* 1311 * The resource counters for the group leader are in its 1312 * own task_struct. Those for dead threads in the group 1313 * are in its signal_struct, as are those for the child 1314 * processes it has previously reaped. All these 1315 * accumulate in the parent's signal_struct c* fields. 1316 * 1317 * We don't bother to take a lock here to protect these 1318 * p->signal fields, because they are only touched by 1319 * __exit_signal, which runs with tasklist_lock 1320 * write-locked anyway, and so is excluded here. We do 1321 * need to protect the access to p->parent->signal fields, 1322 * as other threads in the parent group can be right 1323 * here reaping other children at the same time. 1324 */ 1325 spin_lock_irq(&p->parent->sighand->siglock); 1326 psig = p->parent->signal; 1327 sig = p->signal; 1328 psig->cutime = 1329 cputime_add(psig->cutime, 1330 cputime_add(p->utime, 1331 cputime_add(sig->utime, 1332 sig->cutime))); 1333 psig->cstime = 1334 cputime_add(psig->cstime, 1335 cputime_add(p->stime, 1336 cputime_add(sig->stime, 1337 sig->cstime))); 1338 psig->cgtime = 1339 cputime_add(psig->cgtime, 1340 cputime_add(p->gtime, 1341 cputime_add(sig->gtime, 1342 sig->cgtime))); 1343 psig->cmin_flt += 1344 p->min_flt + sig->min_flt + sig->cmin_flt; 1345 psig->cmaj_flt += 1346 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1347 psig->cnvcsw += 1348 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1349 psig->cnivcsw += 1350 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1351 psig->cinblock += 1352 task_io_get_inblock(p) + 1353 sig->inblock + sig->cinblock; 1354 psig->coublock += 1355 task_io_get_oublock(p) + 1356 sig->oublock + sig->coublock; 1357 spin_unlock_irq(&p->parent->sighand->siglock); 1358 } 1359 1360 /* 1361 * Now we are sure this task is interesting, and no other 1362 * thread can reap it because we set its state to EXIT_DEAD. 1363 */ 1364 read_unlock(&tasklist_lock); 1365 1366 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1367 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1368 ? p->signal->group_exit_code : p->exit_code; 1369 if (!retval && stat_addr) 1370 retval = put_user(status, stat_addr); 1371 if (!retval && infop) 1372 retval = put_user(SIGCHLD, &infop->si_signo); 1373 if (!retval && infop) 1374 retval = put_user(0, &infop->si_errno); 1375 if (!retval && infop) { 1376 int why; 1377 1378 if ((status & 0x7f) == 0) { 1379 why = CLD_EXITED; 1380 status >>= 8; 1381 } else { 1382 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1383 status &= 0x7f; 1384 } 1385 retval = put_user((short)why, &infop->si_code); 1386 if (!retval) 1387 retval = put_user(status, &infop->si_status); 1388 } 1389 if (!retval && infop) 1390 retval = put_user(pid, &infop->si_pid); 1391 if (!retval && infop) 1392 retval = put_user(p->uid, &infop->si_uid); 1393 if (!retval) 1394 retval = pid; 1395 1396 if (traced) { 1397 write_lock_irq(&tasklist_lock); 1398 /* We dropped tasklist, ptracer could die and untrace */ 1399 ptrace_unlink(p); 1400 /* 1401 * If this is not a detached task, notify the parent. 1402 * If it's still not detached after that, don't release 1403 * it now. 1404 */ 1405 if (!task_detached(p)) { 1406 do_notify_parent(p, p->exit_signal); 1407 if (!task_detached(p)) { 1408 p->exit_state = EXIT_ZOMBIE; 1409 p = NULL; 1410 } 1411 } 1412 write_unlock_irq(&tasklist_lock); 1413 } 1414 if (p != NULL) 1415 release_task(p); 1416 1417 return retval; 1418 } 1419 1420 /* 1421 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1422 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1423 * the lock and this task is uninteresting. If we return nonzero, we have 1424 * released the lock and the system call should return. 1425 */ 1426 static int wait_task_stopped(int ptrace, struct task_struct *p, 1427 int options, struct siginfo __user *infop, 1428 int __user *stat_addr, struct rusage __user *ru) 1429 { 1430 int retval, exit_code, why; 1431 uid_t uid = 0; /* unneeded, required by compiler */ 1432 pid_t pid; 1433 1434 if (!(options & WUNTRACED)) 1435 return 0; 1436 1437 exit_code = 0; 1438 spin_lock_irq(&p->sighand->siglock); 1439 1440 if (unlikely(!task_is_stopped_or_traced(p))) 1441 goto unlock_sig; 1442 1443 if (!ptrace && p->signal->group_stop_count > 0) 1444 /* 1445 * A group stop is in progress and this is the group leader. 1446 * We won't report until all threads have stopped. 1447 */ 1448 goto unlock_sig; 1449 1450 exit_code = p->exit_code; 1451 if (!exit_code) 1452 goto unlock_sig; 1453 1454 if (!unlikely(options & WNOWAIT)) 1455 p->exit_code = 0; 1456 1457 uid = p->uid; 1458 unlock_sig: 1459 spin_unlock_irq(&p->sighand->siglock); 1460 if (!exit_code) 1461 return 0; 1462 1463 /* 1464 * Now we are pretty sure this task is interesting. 1465 * Make sure it doesn't get reaped out from under us while we 1466 * give up the lock and then examine it below. We don't want to 1467 * keep holding onto the tasklist_lock while we call getrusage and 1468 * possibly take page faults for user memory. 1469 */ 1470 get_task_struct(p); 1471 pid = task_pid_vnr(p); 1472 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1473 read_unlock(&tasklist_lock); 1474 1475 if (unlikely(options & WNOWAIT)) 1476 return wait_noreap_copyout(p, pid, uid, 1477 why, exit_code, 1478 infop, ru); 1479 1480 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1481 if (!retval && stat_addr) 1482 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1483 if (!retval && infop) 1484 retval = put_user(SIGCHLD, &infop->si_signo); 1485 if (!retval && infop) 1486 retval = put_user(0, &infop->si_errno); 1487 if (!retval && infop) 1488 retval = put_user((short)why, &infop->si_code); 1489 if (!retval && infop) 1490 retval = put_user(exit_code, &infop->si_status); 1491 if (!retval && infop) 1492 retval = put_user(pid, &infop->si_pid); 1493 if (!retval && infop) 1494 retval = put_user(uid, &infop->si_uid); 1495 if (!retval) 1496 retval = pid; 1497 put_task_struct(p); 1498 1499 BUG_ON(!retval); 1500 return retval; 1501 } 1502 1503 /* 1504 * Handle do_wait work for one task in a live, non-stopped state. 1505 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1506 * the lock and this task is uninteresting. If we return nonzero, we have 1507 * released the lock and the system call should return. 1508 */ 1509 static int wait_task_continued(struct task_struct *p, int options, 1510 struct siginfo __user *infop, 1511 int __user *stat_addr, struct rusage __user *ru) 1512 { 1513 int retval; 1514 pid_t pid; 1515 uid_t uid; 1516 1517 if (!unlikely(options & WCONTINUED)) 1518 return 0; 1519 1520 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1521 return 0; 1522 1523 spin_lock_irq(&p->sighand->siglock); 1524 /* Re-check with the lock held. */ 1525 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1526 spin_unlock_irq(&p->sighand->siglock); 1527 return 0; 1528 } 1529 if (!unlikely(options & WNOWAIT)) 1530 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1531 spin_unlock_irq(&p->sighand->siglock); 1532 1533 pid = task_pid_vnr(p); 1534 uid = p->uid; 1535 get_task_struct(p); 1536 read_unlock(&tasklist_lock); 1537 1538 if (!infop) { 1539 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1540 put_task_struct(p); 1541 if (!retval && stat_addr) 1542 retval = put_user(0xffff, stat_addr); 1543 if (!retval) 1544 retval = pid; 1545 } else { 1546 retval = wait_noreap_copyout(p, pid, uid, 1547 CLD_CONTINUED, SIGCONT, 1548 infop, ru); 1549 BUG_ON(retval == 0); 1550 } 1551 1552 return retval; 1553 } 1554 1555 /* 1556 * Consider @p for a wait by @parent. 1557 * 1558 * -ECHILD should be in *@notask_error before the first call. 1559 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1560 * Returns zero if the search for a child should continue; 1561 * then *@notask_error is 0 if @p is an eligible child, 1562 * or another error from security_task_wait(), or still -ECHILD. 1563 */ 1564 static int wait_consider_task(struct task_struct *parent, int ptrace, 1565 struct task_struct *p, int *notask_error, 1566 enum pid_type type, struct pid *pid, int options, 1567 struct siginfo __user *infop, 1568 int __user *stat_addr, struct rusage __user *ru) 1569 { 1570 int ret = eligible_child(type, pid, options, p); 1571 if (!ret) 1572 return ret; 1573 1574 if (unlikely(ret < 0)) { 1575 /* 1576 * If we have not yet seen any eligible child, 1577 * then let this error code replace -ECHILD. 1578 * A permission error will give the user a clue 1579 * to look for security policy problems, rather 1580 * than for mysterious wait bugs. 1581 */ 1582 if (*notask_error) 1583 *notask_error = ret; 1584 } 1585 1586 if (likely(!ptrace) && unlikely(p->ptrace)) { 1587 /* 1588 * This child is hidden by ptrace. 1589 * We aren't allowed to see it now, but eventually we will. 1590 */ 1591 *notask_error = 0; 1592 return 0; 1593 } 1594 1595 if (p->exit_state == EXIT_DEAD) 1596 return 0; 1597 1598 /* 1599 * We don't reap group leaders with subthreads. 1600 */ 1601 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1602 return wait_task_zombie(p, options, infop, stat_addr, ru); 1603 1604 /* 1605 * It's stopped or running now, so it might 1606 * later continue, exit, or stop again. 1607 */ 1608 *notask_error = 0; 1609 1610 if (task_is_stopped_or_traced(p)) 1611 return wait_task_stopped(ptrace, p, options, 1612 infop, stat_addr, ru); 1613 1614 return wait_task_continued(p, options, infop, stat_addr, ru); 1615 } 1616 1617 /* 1618 * Do the work of do_wait() for one thread in the group, @tsk. 1619 * 1620 * -ECHILD should be in *@notask_error before the first call. 1621 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1622 * Returns zero if the search for a child should continue; then 1623 * *@notask_error is 0 if there were any eligible children, 1624 * or another error from security_task_wait(), or still -ECHILD. 1625 */ 1626 static int do_wait_thread(struct task_struct *tsk, int *notask_error, 1627 enum pid_type type, struct pid *pid, int options, 1628 struct siginfo __user *infop, int __user *stat_addr, 1629 struct rusage __user *ru) 1630 { 1631 struct task_struct *p; 1632 1633 list_for_each_entry(p, &tsk->children, sibling) { 1634 /* 1635 * Do not consider detached threads. 1636 */ 1637 if (!task_detached(p)) { 1638 int ret = wait_consider_task(tsk, 0, p, notask_error, 1639 type, pid, options, 1640 infop, stat_addr, ru); 1641 if (ret) 1642 return ret; 1643 } 1644 } 1645 1646 return 0; 1647 } 1648 1649 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error, 1650 enum pid_type type, struct pid *pid, int options, 1651 struct siginfo __user *infop, int __user *stat_addr, 1652 struct rusage __user *ru) 1653 { 1654 struct task_struct *p; 1655 1656 /* 1657 * Traditionally we see ptrace'd stopped tasks regardless of options. 1658 */ 1659 options |= WUNTRACED; 1660 1661 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1662 int ret = wait_consider_task(tsk, 1, p, notask_error, 1663 type, pid, options, 1664 infop, stat_addr, ru); 1665 if (ret) 1666 return ret; 1667 } 1668 1669 return 0; 1670 } 1671 1672 static long do_wait(enum pid_type type, struct pid *pid, int options, 1673 struct siginfo __user *infop, int __user *stat_addr, 1674 struct rusage __user *ru) 1675 { 1676 DECLARE_WAITQUEUE(wait, current); 1677 struct task_struct *tsk; 1678 int retval; 1679 1680 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1681 repeat: 1682 /* 1683 * If there is nothing that can match our critiera just get out. 1684 * We will clear @retval to zero if we see any child that might later 1685 * match our criteria, even if we are not able to reap it yet. 1686 */ 1687 retval = -ECHILD; 1688 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type]))) 1689 goto end; 1690 1691 current->state = TASK_INTERRUPTIBLE; 1692 read_lock(&tasklist_lock); 1693 tsk = current; 1694 do { 1695 int tsk_result = do_wait_thread(tsk, &retval, 1696 type, pid, options, 1697 infop, stat_addr, ru); 1698 if (!tsk_result) 1699 tsk_result = ptrace_do_wait(tsk, &retval, 1700 type, pid, options, 1701 infop, stat_addr, ru); 1702 if (tsk_result) { 1703 /* 1704 * tasklist_lock is unlocked and we have a final result. 1705 */ 1706 retval = tsk_result; 1707 goto end; 1708 } 1709 1710 if (options & __WNOTHREAD) 1711 break; 1712 tsk = next_thread(tsk); 1713 BUG_ON(tsk->signal != current->signal); 1714 } while (tsk != current); 1715 read_unlock(&tasklist_lock); 1716 1717 if (!retval && !(options & WNOHANG)) { 1718 retval = -ERESTARTSYS; 1719 if (!signal_pending(current)) { 1720 schedule(); 1721 goto repeat; 1722 } 1723 } 1724 1725 end: 1726 current->state = TASK_RUNNING; 1727 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1728 if (infop) { 1729 if (retval > 0) 1730 retval = 0; 1731 else { 1732 /* 1733 * For a WNOHANG return, clear out all the fields 1734 * we would set so the user can easily tell the 1735 * difference. 1736 */ 1737 if (!retval) 1738 retval = put_user(0, &infop->si_signo); 1739 if (!retval) 1740 retval = put_user(0, &infop->si_errno); 1741 if (!retval) 1742 retval = put_user(0, &infop->si_code); 1743 if (!retval) 1744 retval = put_user(0, &infop->si_pid); 1745 if (!retval) 1746 retval = put_user(0, &infop->si_uid); 1747 if (!retval) 1748 retval = put_user(0, &infop->si_status); 1749 } 1750 } 1751 return retval; 1752 } 1753 1754 asmlinkage long sys_waitid(int which, pid_t upid, 1755 struct siginfo __user *infop, int options, 1756 struct rusage __user *ru) 1757 { 1758 struct pid *pid = NULL; 1759 enum pid_type type; 1760 long ret; 1761 1762 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1763 return -EINVAL; 1764 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1765 return -EINVAL; 1766 1767 switch (which) { 1768 case P_ALL: 1769 type = PIDTYPE_MAX; 1770 break; 1771 case P_PID: 1772 type = PIDTYPE_PID; 1773 if (upid <= 0) 1774 return -EINVAL; 1775 break; 1776 case P_PGID: 1777 type = PIDTYPE_PGID; 1778 if (upid <= 0) 1779 return -EINVAL; 1780 break; 1781 default: 1782 return -EINVAL; 1783 } 1784 1785 if (type < PIDTYPE_MAX) 1786 pid = find_get_pid(upid); 1787 ret = do_wait(type, pid, options, infop, NULL, ru); 1788 put_pid(pid); 1789 1790 /* avoid REGPARM breakage on x86: */ 1791 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1792 return ret; 1793 } 1794 1795 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr, 1796 int options, struct rusage __user *ru) 1797 { 1798 struct pid *pid = NULL; 1799 enum pid_type type; 1800 long ret; 1801 1802 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1803 __WNOTHREAD|__WCLONE|__WALL)) 1804 return -EINVAL; 1805 1806 if (upid == -1) 1807 type = PIDTYPE_MAX; 1808 else if (upid < 0) { 1809 type = PIDTYPE_PGID; 1810 pid = find_get_pid(-upid); 1811 } else if (upid == 0) { 1812 type = PIDTYPE_PGID; 1813 pid = get_pid(task_pgrp(current)); 1814 } else /* upid > 0 */ { 1815 type = PIDTYPE_PID; 1816 pid = find_get_pid(upid); 1817 } 1818 1819 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru); 1820 put_pid(pid); 1821 1822 /* avoid REGPARM breakage on x86: */ 1823 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1824 return ret; 1825 } 1826 1827 #ifdef __ARCH_WANT_SYS_WAITPID 1828 1829 /* 1830 * sys_waitpid() remains for compatibility. waitpid() should be 1831 * implemented by calling sys_wait4() from libc.a. 1832 */ 1833 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1834 { 1835 return sys_wait4(pid, stat_addr, options, NULL); 1836 } 1837 1838 #endif 1839