xref: /linux/kernel/exit.c (revision 2ad3479decccd12301a3f9920a22fa567d4bdae8)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/smp_lock.h>
11 #include <linux/module.h>
12 #include <linux/capability.h>
13 #include <linux/completion.h>
14 #include <linux/personality.h>
15 #include <linux/tty.h>
16 #include <linux/namespace.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/ptrace.h>
24 #include <linux/profile.h>
25 #include <linux/mount.h>
26 #include <linux/proc_fs.h>
27 #include <linux/mempolicy.h>
28 #include <linux/taskstats_kern.h>
29 #include <linux/delayacct.h>
30 #include <linux/cpuset.h>
31 #include <linux/syscalls.h>
32 #include <linux/signal.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cn_proc.h>
35 #include <linux/mutex.h>
36 #include <linux/futex.h>
37 #include <linux/compat.h>
38 #include <linux/pipe_fs_i.h>
39 #include <linux/audit.h> /* for audit_free() */
40 #include <linux/resource.h>
41 
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/pgtable.h>
45 #include <asm/mmu_context.h>
46 
47 extern void sem_exit (void);
48 extern struct task_struct *child_reaper;
49 
50 static void exit_mm(struct task_struct * tsk);
51 
52 static void __unhash_process(struct task_struct *p)
53 {
54 	nr_threads--;
55 	detach_pid(p, PIDTYPE_PID);
56 	if (thread_group_leader(p)) {
57 		detach_pid(p, PIDTYPE_PGID);
58 		detach_pid(p, PIDTYPE_SID);
59 
60 		list_del_rcu(&p->tasks);
61 		__get_cpu_var(process_counts)--;
62 	}
63 	list_del_rcu(&p->thread_group);
64 	remove_parent(p);
65 }
66 
67 /*
68  * This function expects the tasklist_lock write-locked.
69  */
70 static void __exit_signal(struct task_struct *tsk)
71 {
72 	struct signal_struct *sig = tsk->signal;
73 	struct sighand_struct *sighand;
74 
75 	BUG_ON(!sig);
76 	BUG_ON(!atomic_read(&sig->count));
77 
78 	rcu_read_lock();
79 	sighand = rcu_dereference(tsk->sighand);
80 	spin_lock(&sighand->siglock);
81 
82 	posix_cpu_timers_exit(tsk);
83 	if (atomic_dec_and_test(&sig->count))
84 		posix_cpu_timers_exit_group(tsk);
85 	else {
86 		/*
87 		 * If there is any task waiting for the group exit
88 		 * then notify it:
89 		 */
90 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
91 			wake_up_process(sig->group_exit_task);
92 			sig->group_exit_task = NULL;
93 		}
94 		if (tsk == sig->curr_target)
95 			sig->curr_target = next_thread(tsk);
96 		/*
97 		 * Accumulate here the counters for all threads but the
98 		 * group leader as they die, so they can be added into
99 		 * the process-wide totals when those are taken.
100 		 * The group leader stays around as a zombie as long
101 		 * as there are other threads.  When it gets reaped,
102 		 * the exit.c code will add its counts into these totals.
103 		 * We won't ever get here for the group leader, since it
104 		 * will have been the last reference on the signal_struct.
105 		 */
106 		sig->utime = cputime_add(sig->utime, tsk->utime);
107 		sig->stime = cputime_add(sig->stime, tsk->stime);
108 		sig->min_flt += tsk->min_flt;
109 		sig->maj_flt += tsk->maj_flt;
110 		sig->nvcsw += tsk->nvcsw;
111 		sig->nivcsw += tsk->nivcsw;
112 		sig->sched_time += tsk->sched_time;
113 		sig = NULL; /* Marker for below. */
114 	}
115 
116 	__unhash_process(tsk);
117 
118 	tsk->signal = NULL;
119 	tsk->sighand = NULL;
120 	spin_unlock(&sighand->siglock);
121 	rcu_read_unlock();
122 
123 	__cleanup_sighand(sighand);
124 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
125 	flush_sigqueue(&tsk->pending);
126 	if (sig) {
127 		flush_sigqueue(&sig->shared_pending);
128 		__cleanup_signal(sig);
129 	}
130 }
131 
132 static void delayed_put_task_struct(struct rcu_head *rhp)
133 {
134 	put_task_struct(container_of(rhp, struct task_struct, rcu));
135 }
136 
137 void release_task(struct task_struct * p)
138 {
139 	struct task_struct *leader;
140 	int zap_leader;
141 repeat:
142 	atomic_dec(&p->user->processes);
143 	write_lock_irq(&tasklist_lock);
144 	ptrace_unlink(p);
145 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
146 	__exit_signal(p);
147 
148 	/*
149 	 * If we are the last non-leader member of the thread
150 	 * group, and the leader is zombie, then notify the
151 	 * group leader's parent process. (if it wants notification.)
152 	 */
153 	zap_leader = 0;
154 	leader = p->group_leader;
155 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
156 		BUG_ON(leader->exit_signal == -1);
157 		do_notify_parent(leader, leader->exit_signal);
158 		/*
159 		 * If we were the last child thread and the leader has
160 		 * exited already, and the leader's parent ignores SIGCHLD,
161 		 * then we are the one who should release the leader.
162 		 *
163 		 * do_notify_parent() will have marked it self-reaping in
164 		 * that case.
165 		 */
166 		zap_leader = (leader->exit_signal == -1);
167 	}
168 
169 	sched_exit(p);
170 	write_unlock_irq(&tasklist_lock);
171 	proc_flush_task(p);
172 	release_thread(p);
173 	call_rcu(&p->rcu, delayed_put_task_struct);
174 
175 	p = leader;
176 	if (unlikely(zap_leader))
177 		goto repeat;
178 }
179 
180 /*
181  * This checks not only the pgrp, but falls back on the pid if no
182  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
183  * without this...
184  */
185 int session_of_pgrp(int pgrp)
186 {
187 	struct task_struct *p;
188 	int sid = -1;
189 
190 	read_lock(&tasklist_lock);
191 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
192 		if (p->signal->session > 0) {
193 			sid = p->signal->session;
194 			goto out;
195 		}
196 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
197 	p = find_task_by_pid(pgrp);
198 	if (p)
199 		sid = p->signal->session;
200 out:
201 	read_unlock(&tasklist_lock);
202 
203 	return sid;
204 }
205 
206 /*
207  * Determine if a process group is "orphaned", according to the POSIX
208  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
209  * by terminal-generated stop signals.  Newly orphaned process groups are
210  * to receive a SIGHUP and a SIGCONT.
211  *
212  * "I ask you, have you ever known what it is to be an orphan?"
213  */
214 static int will_become_orphaned_pgrp(int pgrp, struct task_struct *ignored_task)
215 {
216 	struct task_struct *p;
217 	int ret = 1;
218 
219 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
220 		if (p == ignored_task
221 				|| p->exit_state
222 				|| is_init(p->real_parent))
223 			continue;
224 		if (process_group(p->real_parent) != pgrp
225 			    && p->real_parent->signal->session == p->signal->session) {
226 			ret = 0;
227 			break;
228 		}
229 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
230 	return ret;	/* (sighing) "Often!" */
231 }
232 
233 int is_orphaned_pgrp(int pgrp)
234 {
235 	int retval;
236 
237 	read_lock(&tasklist_lock);
238 	retval = will_become_orphaned_pgrp(pgrp, NULL);
239 	read_unlock(&tasklist_lock);
240 
241 	return retval;
242 }
243 
244 static int has_stopped_jobs(int pgrp)
245 {
246 	int retval = 0;
247 	struct task_struct *p;
248 
249 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
250 		if (p->state != TASK_STOPPED)
251 			continue;
252 
253 		/* If p is stopped by a debugger on a signal that won't
254 		   stop it, then don't count p as stopped.  This isn't
255 		   perfect but it's a good approximation.  */
256 		if (unlikely (p->ptrace)
257 		    && p->exit_code != SIGSTOP
258 		    && p->exit_code != SIGTSTP
259 		    && p->exit_code != SIGTTOU
260 		    && p->exit_code != SIGTTIN)
261 			continue;
262 
263 		retval = 1;
264 		break;
265 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
266 	return retval;
267 }
268 
269 /**
270  * reparent_to_init - Reparent the calling kernel thread to the init task.
271  *
272  * If a kernel thread is launched as a result of a system call, or if
273  * it ever exits, it should generally reparent itself to init so that
274  * it is correctly cleaned up on exit.
275  *
276  * The various task state such as scheduling policy and priority may have
277  * been inherited from a user process, so we reset them to sane values here.
278  *
279  * NOTE that reparent_to_init() gives the caller full capabilities.
280  */
281 static void reparent_to_init(void)
282 {
283 	write_lock_irq(&tasklist_lock);
284 
285 	ptrace_unlink(current);
286 	/* Reparent to init */
287 	remove_parent(current);
288 	current->parent = child_reaper;
289 	current->real_parent = child_reaper;
290 	add_parent(current);
291 
292 	/* Set the exit signal to SIGCHLD so we signal init on exit */
293 	current->exit_signal = SIGCHLD;
294 
295 	if ((current->policy == SCHED_NORMAL ||
296 			current->policy == SCHED_BATCH)
297 				&& (task_nice(current) < 0))
298 		set_user_nice(current, 0);
299 	/* cpus_allowed? */
300 	/* rt_priority? */
301 	/* signals? */
302 	security_task_reparent_to_init(current);
303 	memcpy(current->signal->rlim, init_task.signal->rlim,
304 	       sizeof(current->signal->rlim));
305 	atomic_inc(&(INIT_USER->__count));
306 	write_unlock_irq(&tasklist_lock);
307 	switch_uid(INIT_USER);
308 }
309 
310 void __set_special_pids(pid_t session, pid_t pgrp)
311 {
312 	struct task_struct *curr = current->group_leader;
313 
314 	if (curr->signal->session != session) {
315 		detach_pid(curr, PIDTYPE_SID);
316 		curr->signal->session = session;
317 		attach_pid(curr, PIDTYPE_SID, session);
318 	}
319 	if (process_group(curr) != pgrp) {
320 		detach_pid(curr, PIDTYPE_PGID);
321 		curr->signal->pgrp = pgrp;
322 		attach_pid(curr, PIDTYPE_PGID, pgrp);
323 	}
324 }
325 
326 void set_special_pids(pid_t session, pid_t pgrp)
327 {
328 	write_lock_irq(&tasklist_lock);
329 	__set_special_pids(session, pgrp);
330 	write_unlock_irq(&tasklist_lock);
331 }
332 
333 /*
334  * Let kernel threads use this to say that they
335  * allow a certain signal (since daemonize() will
336  * have disabled all of them by default).
337  */
338 int allow_signal(int sig)
339 {
340 	if (!valid_signal(sig) || sig < 1)
341 		return -EINVAL;
342 
343 	spin_lock_irq(&current->sighand->siglock);
344 	sigdelset(&current->blocked, sig);
345 	if (!current->mm) {
346 		/* Kernel threads handle their own signals.
347 		   Let the signal code know it'll be handled, so
348 		   that they don't get converted to SIGKILL or
349 		   just silently dropped */
350 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
351 	}
352 	recalc_sigpending();
353 	spin_unlock_irq(&current->sighand->siglock);
354 	return 0;
355 }
356 
357 EXPORT_SYMBOL(allow_signal);
358 
359 int disallow_signal(int sig)
360 {
361 	if (!valid_signal(sig) || sig < 1)
362 		return -EINVAL;
363 
364 	spin_lock_irq(&current->sighand->siglock);
365 	sigaddset(&current->blocked, sig);
366 	recalc_sigpending();
367 	spin_unlock_irq(&current->sighand->siglock);
368 	return 0;
369 }
370 
371 EXPORT_SYMBOL(disallow_signal);
372 
373 /*
374  *	Put all the gunge required to become a kernel thread without
375  *	attached user resources in one place where it belongs.
376  */
377 
378 void daemonize(const char *name, ...)
379 {
380 	va_list args;
381 	struct fs_struct *fs;
382 	sigset_t blocked;
383 
384 	va_start(args, name);
385 	vsnprintf(current->comm, sizeof(current->comm), name, args);
386 	va_end(args);
387 
388 	/*
389 	 * If we were started as result of loading a module, close all of the
390 	 * user space pages.  We don't need them, and if we didn't close them
391 	 * they would be locked into memory.
392 	 */
393 	exit_mm(current);
394 
395 	set_special_pids(1, 1);
396 	mutex_lock(&tty_mutex);
397 	current->signal->tty = NULL;
398 	mutex_unlock(&tty_mutex);
399 
400 	/* Block and flush all signals */
401 	sigfillset(&blocked);
402 	sigprocmask(SIG_BLOCK, &blocked, NULL);
403 	flush_signals(current);
404 
405 	/* Become as one with the init task */
406 
407 	exit_fs(current);	/* current->fs->count--; */
408 	fs = init_task.fs;
409 	current->fs = fs;
410 	atomic_inc(&fs->count);
411 	exit_namespace(current);
412 	current->namespace = init_task.namespace;
413 	get_namespace(current->namespace);
414  	exit_files(current);
415 	current->files = init_task.files;
416 	atomic_inc(&current->files->count);
417 
418 	reparent_to_init();
419 }
420 
421 EXPORT_SYMBOL(daemonize);
422 
423 static void close_files(struct files_struct * files)
424 {
425 	int i, j;
426 	struct fdtable *fdt;
427 
428 	j = 0;
429 
430 	/*
431 	 * It is safe to dereference the fd table without RCU or
432 	 * ->file_lock because this is the last reference to the
433 	 * files structure.
434 	 */
435 	fdt = files_fdtable(files);
436 	for (;;) {
437 		unsigned long set;
438 		i = j * __NFDBITS;
439 		if (i >= fdt->max_fdset || i >= fdt->max_fds)
440 			break;
441 		set = fdt->open_fds->fds_bits[j++];
442 		while (set) {
443 			if (set & 1) {
444 				struct file * file = xchg(&fdt->fd[i], NULL);
445 				if (file)
446 					filp_close(file, files);
447 			}
448 			i++;
449 			set >>= 1;
450 		}
451 	}
452 }
453 
454 struct files_struct *get_files_struct(struct task_struct *task)
455 {
456 	struct files_struct *files;
457 
458 	task_lock(task);
459 	files = task->files;
460 	if (files)
461 		atomic_inc(&files->count);
462 	task_unlock(task);
463 
464 	return files;
465 }
466 
467 void fastcall put_files_struct(struct files_struct *files)
468 {
469 	struct fdtable *fdt;
470 
471 	if (atomic_dec_and_test(&files->count)) {
472 		close_files(files);
473 		/*
474 		 * Free the fd and fdset arrays if we expanded them.
475 		 * If the fdtable was embedded, pass files for freeing
476 		 * at the end of the RCU grace period. Otherwise,
477 		 * you can free files immediately.
478 		 */
479 		fdt = files_fdtable(files);
480 		if (fdt == &files->fdtab)
481 			fdt->free_files = files;
482 		else
483 			kmem_cache_free(files_cachep, files);
484 		free_fdtable(fdt);
485 	}
486 }
487 
488 EXPORT_SYMBOL(put_files_struct);
489 
490 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
491 {
492 	struct files_struct *old;
493 
494 	old = tsk->files;
495 	task_lock(tsk);
496 	tsk->files = files;
497 	task_unlock(tsk);
498 	put_files_struct(old);
499 }
500 EXPORT_SYMBOL(reset_files_struct);
501 
502 static inline void __exit_files(struct task_struct *tsk)
503 {
504 	struct files_struct * files = tsk->files;
505 
506 	if (files) {
507 		task_lock(tsk);
508 		tsk->files = NULL;
509 		task_unlock(tsk);
510 		put_files_struct(files);
511 	}
512 }
513 
514 void exit_files(struct task_struct *tsk)
515 {
516 	__exit_files(tsk);
517 }
518 
519 static inline void __put_fs_struct(struct fs_struct *fs)
520 {
521 	/* No need to hold fs->lock if we are killing it */
522 	if (atomic_dec_and_test(&fs->count)) {
523 		dput(fs->root);
524 		mntput(fs->rootmnt);
525 		dput(fs->pwd);
526 		mntput(fs->pwdmnt);
527 		if (fs->altroot) {
528 			dput(fs->altroot);
529 			mntput(fs->altrootmnt);
530 		}
531 		kmem_cache_free(fs_cachep, fs);
532 	}
533 }
534 
535 void put_fs_struct(struct fs_struct *fs)
536 {
537 	__put_fs_struct(fs);
538 }
539 
540 static inline void __exit_fs(struct task_struct *tsk)
541 {
542 	struct fs_struct * fs = tsk->fs;
543 
544 	if (fs) {
545 		task_lock(tsk);
546 		tsk->fs = NULL;
547 		task_unlock(tsk);
548 		__put_fs_struct(fs);
549 	}
550 }
551 
552 void exit_fs(struct task_struct *tsk)
553 {
554 	__exit_fs(tsk);
555 }
556 
557 EXPORT_SYMBOL_GPL(exit_fs);
558 
559 /*
560  * Turn us into a lazy TLB process if we
561  * aren't already..
562  */
563 static void exit_mm(struct task_struct * tsk)
564 {
565 	struct mm_struct *mm = tsk->mm;
566 
567 	mm_release(tsk, mm);
568 	if (!mm)
569 		return;
570 	/*
571 	 * Serialize with any possible pending coredump.
572 	 * We must hold mmap_sem around checking core_waiters
573 	 * and clearing tsk->mm.  The core-inducing thread
574 	 * will increment core_waiters for each thread in the
575 	 * group with ->mm != NULL.
576 	 */
577 	down_read(&mm->mmap_sem);
578 	if (mm->core_waiters) {
579 		up_read(&mm->mmap_sem);
580 		down_write(&mm->mmap_sem);
581 		if (!--mm->core_waiters)
582 			complete(mm->core_startup_done);
583 		up_write(&mm->mmap_sem);
584 
585 		wait_for_completion(&mm->core_done);
586 		down_read(&mm->mmap_sem);
587 	}
588 	atomic_inc(&mm->mm_count);
589 	BUG_ON(mm != tsk->active_mm);
590 	/* more a memory barrier than a real lock */
591 	task_lock(tsk);
592 	tsk->mm = NULL;
593 	up_read(&mm->mmap_sem);
594 	enter_lazy_tlb(mm, current);
595 	task_unlock(tsk);
596 	mmput(mm);
597 }
598 
599 static inline void
600 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
601 {
602 	/*
603 	 * Make sure we're not reparenting to ourselves and that
604 	 * the parent is not a zombie.
605 	 */
606 	BUG_ON(p == reaper || reaper->exit_state);
607 	p->real_parent = reaper;
608 }
609 
610 static void
611 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
612 {
613 	/* We don't want people slaying init.  */
614 	if (p->exit_signal != -1)
615 		p->exit_signal = SIGCHLD;
616 
617 	if (p->pdeath_signal)
618 		/* We already hold the tasklist_lock here.  */
619 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
620 
621 	/* Move the child from its dying parent to the new one.  */
622 	if (unlikely(traced)) {
623 		/* Preserve ptrace links if someone else is tracing this child.  */
624 		list_del_init(&p->ptrace_list);
625 		if (p->parent != p->real_parent)
626 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
627 	} else {
628 		/* If this child is being traced, then we're the one tracing it
629 		 * anyway, so let go of it.
630 		 */
631 		p->ptrace = 0;
632 		remove_parent(p);
633 		p->parent = p->real_parent;
634 		add_parent(p);
635 
636 		/* If we'd notified the old parent about this child's death,
637 		 * also notify the new parent.
638 		 */
639 		if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
640 		    thread_group_empty(p))
641 			do_notify_parent(p, p->exit_signal);
642 		else if (p->state == TASK_TRACED) {
643 			/*
644 			 * If it was at a trace stop, turn it into
645 			 * a normal stop since it's no longer being
646 			 * traced.
647 			 */
648 			ptrace_untrace(p);
649 		}
650 	}
651 
652 	/*
653 	 * process group orphan check
654 	 * Case ii: Our child is in a different pgrp
655 	 * than we are, and it was the only connection
656 	 * outside, so the child pgrp is now orphaned.
657 	 */
658 	if ((process_group(p) != process_group(father)) &&
659 	    (p->signal->session == father->signal->session)) {
660 		int pgrp = process_group(p);
661 
662 		if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
663 			__kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
664 			__kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
665 		}
666 	}
667 }
668 
669 /*
670  * When we die, we re-parent all our children.
671  * Try to give them to another thread in our thread
672  * group, and if no such member exists, give it to
673  * the global child reaper process (ie "init")
674  */
675 static void
676 forget_original_parent(struct task_struct *father, struct list_head *to_release)
677 {
678 	struct task_struct *p, *reaper = father;
679 	struct list_head *_p, *_n;
680 
681 	do {
682 		reaper = next_thread(reaper);
683 		if (reaper == father) {
684 			reaper = child_reaper;
685 			break;
686 		}
687 	} while (reaper->exit_state);
688 
689 	/*
690 	 * There are only two places where our children can be:
691 	 *
692 	 * - in our child list
693 	 * - in our ptraced child list
694 	 *
695 	 * Search them and reparent children.
696 	 */
697 	list_for_each_safe(_p, _n, &father->children) {
698 		int ptrace;
699 		p = list_entry(_p, struct task_struct, sibling);
700 
701 		ptrace = p->ptrace;
702 
703 		/* if father isn't the real parent, then ptrace must be enabled */
704 		BUG_ON(father != p->real_parent && !ptrace);
705 
706 		if (father == p->real_parent) {
707 			/* reparent with a reaper, real father it's us */
708 			choose_new_parent(p, reaper);
709 			reparent_thread(p, father, 0);
710 		} else {
711 			/* reparent ptraced task to its real parent */
712 			__ptrace_unlink (p);
713 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
714 			    thread_group_empty(p))
715 				do_notify_parent(p, p->exit_signal);
716 		}
717 
718 		/*
719 		 * if the ptraced child is a zombie with exit_signal == -1
720 		 * we must collect it before we exit, or it will remain
721 		 * zombie forever since we prevented it from self-reap itself
722 		 * while it was being traced by us, to be able to see it in wait4.
723 		 */
724 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
725 			list_add(&p->ptrace_list, to_release);
726 	}
727 	list_for_each_safe(_p, _n, &father->ptrace_children) {
728 		p = list_entry(_p, struct task_struct, ptrace_list);
729 		choose_new_parent(p, reaper);
730 		reparent_thread(p, father, 1);
731 	}
732 }
733 
734 /*
735  * Send signals to all our closest relatives so that they know
736  * to properly mourn us..
737  */
738 static void exit_notify(struct task_struct *tsk)
739 {
740 	int state;
741 	struct task_struct *t;
742 	struct list_head ptrace_dead, *_p, *_n;
743 
744 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
745 	    && !thread_group_empty(tsk)) {
746 		/*
747 		 * This occurs when there was a race between our exit
748 		 * syscall and a group signal choosing us as the one to
749 		 * wake up.  It could be that we are the only thread
750 		 * alerted to check for pending signals, but another thread
751 		 * should be woken now to take the signal since we will not.
752 		 * Now we'll wake all the threads in the group just to make
753 		 * sure someone gets all the pending signals.
754 		 */
755 		read_lock(&tasklist_lock);
756 		spin_lock_irq(&tsk->sighand->siglock);
757 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
758 			if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
759 				recalc_sigpending_tsk(t);
760 				if (signal_pending(t))
761 					signal_wake_up(t, 0);
762 			}
763 		spin_unlock_irq(&tsk->sighand->siglock);
764 		read_unlock(&tasklist_lock);
765 	}
766 
767 	write_lock_irq(&tasklist_lock);
768 
769 	/*
770 	 * This does two things:
771 	 *
772   	 * A.  Make init inherit all the child processes
773 	 * B.  Check to see if any process groups have become orphaned
774 	 *	as a result of our exiting, and if they have any stopped
775 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
776 	 */
777 
778 	INIT_LIST_HEAD(&ptrace_dead);
779 	forget_original_parent(tsk, &ptrace_dead);
780 	BUG_ON(!list_empty(&tsk->children));
781 	BUG_ON(!list_empty(&tsk->ptrace_children));
782 
783 	/*
784 	 * Check to see if any process groups have become orphaned
785 	 * as a result of our exiting, and if they have any stopped
786 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
787 	 *
788 	 * Case i: Our father is in a different pgrp than we are
789 	 * and we were the only connection outside, so our pgrp
790 	 * is about to become orphaned.
791 	 */
792 
793 	t = tsk->real_parent;
794 
795 	if ((process_group(t) != process_group(tsk)) &&
796 	    (t->signal->session == tsk->signal->session) &&
797 	    will_become_orphaned_pgrp(process_group(tsk), tsk) &&
798 	    has_stopped_jobs(process_group(tsk))) {
799 		__kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
800 		__kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
801 	}
802 
803 	/* Let father know we died
804 	 *
805 	 * Thread signals are configurable, but you aren't going to use
806 	 * that to send signals to arbitary processes.
807 	 * That stops right now.
808 	 *
809 	 * If the parent exec id doesn't match the exec id we saved
810 	 * when we started then we know the parent has changed security
811 	 * domain.
812 	 *
813 	 * If our self_exec id doesn't match our parent_exec_id then
814 	 * we have changed execution domain as these two values started
815 	 * the same after a fork.
816 	 *
817 	 */
818 
819 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
820 	    ( tsk->parent_exec_id != t->self_exec_id  ||
821 	      tsk->self_exec_id != tsk->parent_exec_id)
822 	    && !capable(CAP_KILL))
823 		tsk->exit_signal = SIGCHLD;
824 
825 
826 	/* If something other than our normal parent is ptracing us, then
827 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
828 	 * only has special meaning to our real parent.
829 	 */
830 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
831 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
832 		do_notify_parent(tsk, signal);
833 	} else if (tsk->ptrace) {
834 		do_notify_parent(tsk, SIGCHLD);
835 	}
836 
837 	state = EXIT_ZOMBIE;
838 	if (tsk->exit_signal == -1 &&
839 	    (likely(tsk->ptrace == 0) ||
840 	     unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
841 		state = EXIT_DEAD;
842 	tsk->exit_state = state;
843 
844 	write_unlock_irq(&tasklist_lock);
845 
846 	list_for_each_safe(_p, _n, &ptrace_dead) {
847 		list_del_init(_p);
848 		t = list_entry(_p, struct task_struct, ptrace_list);
849 		release_task(t);
850 	}
851 
852 	/* If the process is dead, release it - nobody will wait for it */
853 	if (state == EXIT_DEAD)
854 		release_task(tsk);
855 }
856 
857 fastcall NORET_TYPE void do_exit(long code)
858 {
859 	struct task_struct *tsk = current;
860 	struct taskstats *tidstats;
861 	int group_dead;
862 	unsigned int mycpu;
863 
864 	profile_task_exit(tsk);
865 
866 	WARN_ON(atomic_read(&tsk->fs_excl));
867 
868 	if (unlikely(in_interrupt()))
869 		panic("Aiee, killing interrupt handler!");
870 	if (unlikely(!tsk->pid))
871 		panic("Attempted to kill the idle task!");
872 	if (unlikely(tsk == child_reaper))
873 		panic("Attempted to kill init!");
874 
875 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
876 		current->ptrace_message = code;
877 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
878 	}
879 
880 	/*
881 	 * We're taking recursive faults here in do_exit. Safest is to just
882 	 * leave this task alone and wait for reboot.
883 	 */
884 	if (unlikely(tsk->flags & PF_EXITING)) {
885 		printk(KERN_ALERT
886 			"Fixing recursive fault but reboot is needed!\n");
887 		if (tsk->io_context)
888 			exit_io_context();
889 		set_current_state(TASK_UNINTERRUPTIBLE);
890 		schedule();
891 	}
892 
893 	tsk->flags |= PF_EXITING;
894 
895 	if (unlikely(in_atomic()))
896 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
897 				current->comm, current->pid,
898 				preempt_count());
899 
900 	taskstats_exit_alloc(&tidstats, &mycpu);
901 
902 	acct_update_integrals(tsk);
903 	if (tsk->mm) {
904 		update_hiwater_rss(tsk->mm);
905 		update_hiwater_vm(tsk->mm);
906 	}
907 	group_dead = atomic_dec_and_test(&tsk->signal->live);
908 	if (group_dead) {
909  		hrtimer_cancel(&tsk->signal->real_timer);
910 		exit_itimers(tsk->signal);
911 	}
912 	acct_collect(code, group_dead);
913 	if (unlikely(tsk->robust_list))
914 		exit_robust_list(tsk);
915 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
916 	if (unlikely(tsk->compat_robust_list))
917 		compat_exit_robust_list(tsk);
918 #endif
919 	if (unlikely(tsk->audit_context))
920 		audit_free(tsk);
921 	taskstats_exit_send(tsk, tidstats, group_dead, mycpu);
922 	taskstats_exit_free(tidstats);
923 
924 	exit_mm(tsk);
925 
926 	if (group_dead)
927 		acct_process();
928 	exit_sem(tsk);
929 	__exit_files(tsk);
930 	__exit_fs(tsk);
931 	exit_namespace(tsk);
932 	exit_thread();
933 	cpuset_exit(tsk);
934 	exit_keys(tsk);
935 
936 	if (group_dead && tsk->signal->leader)
937 		disassociate_ctty(1);
938 
939 	module_put(task_thread_info(tsk)->exec_domain->module);
940 	if (tsk->binfmt)
941 		module_put(tsk->binfmt->module);
942 
943 	tsk->exit_code = code;
944 	proc_exit_connector(tsk);
945 	exit_notify(tsk);
946 #ifdef CONFIG_NUMA
947 	mpol_free(tsk->mempolicy);
948 	tsk->mempolicy = NULL;
949 #endif
950 	/*
951 	 * This must happen late, after the PID is not
952 	 * hashed anymore:
953 	 */
954 	if (unlikely(!list_empty(&tsk->pi_state_list)))
955 		exit_pi_state_list(tsk);
956 	if (unlikely(current->pi_state_cache))
957 		kfree(current->pi_state_cache);
958 	/*
959 	 * Make sure we are holding no locks:
960 	 */
961 	debug_check_no_locks_held(tsk);
962 
963 	if (tsk->io_context)
964 		exit_io_context();
965 
966 	if (tsk->splice_pipe)
967 		__free_pipe_info(tsk->splice_pipe);
968 
969 	/* PF_DEAD causes final put_task_struct after we schedule. */
970 	preempt_disable();
971 	BUG_ON(tsk->flags & PF_DEAD);
972 	tsk->flags |= PF_DEAD;
973 
974 	schedule();
975 	BUG();
976 	/* Avoid "noreturn function does return".  */
977 	for (;;) ;
978 }
979 
980 EXPORT_SYMBOL_GPL(do_exit);
981 
982 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
983 {
984 	if (comp)
985 		complete(comp);
986 
987 	do_exit(code);
988 }
989 
990 EXPORT_SYMBOL(complete_and_exit);
991 
992 asmlinkage long sys_exit(int error_code)
993 {
994 	do_exit((error_code&0xff)<<8);
995 }
996 
997 /*
998  * Take down every thread in the group.  This is called by fatal signals
999  * as well as by sys_exit_group (below).
1000  */
1001 NORET_TYPE void
1002 do_group_exit(int exit_code)
1003 {
1004 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1005 
1006 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1007 		exit_code = current->signal->group_exit_code;
1008 	else if (!thread_group_empty(current)) {
1009 		struct signal_struct *const sig = current->signal;
1010 		struct sighand_struct *const sighand = current->sighand;
1011 		spin_lock_irq(&sighand->siglock);
1012 		if (sig->flags & SIGNAL_GROUP_EXIT)
1013 			/* Another thread got here before we took the lock.  */
1014 			exit_code = sig->group_exit_code;
1015 		else {
1016 			sig->group_exit_code = exit_code;
1017 			zap_other_threads(current);
1018 		}
1019 		spin_unlock_irq(&sighand->siglock);
1020 	}
1021 
1022 	do_exit(exit_code);
1023 	/* NOTREACHED */
1024 }
1025 
1026 /*
1027  * this kills every thread in the thread group. Note that any externally
1028  * wait4()-ing process will get the correct exit code - even if this
1029  * thread is not the thread group leader.
1030  */
1031 asmlinkage void sys_exit_group(int error_code)
1032 {
1033 	do_group_exit((error_code & 0xff) << 8);
1034 }
1035 
1036 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1037 {
1038 	if (pid > 0) {
1039 		if (p->pid != pid)
1040 			return 0;
1041 	} else if (!pid) {
1042 		if (process_group(p) != process_group(current))
1043 			return 0;
1044 	} else if (pid != -1) {
1045 		if (process_group(p) != -pid)
1046 			return 0;
1047 	}
1048 
1049 	/*
1050 	 * Do not consider detached threads that are
1051 	 * not ptraced:
1052 	 */
1053 	if (p->exit_signal == -1 && !p->ptrace)
1054 		return 0;
1055 
1056 	/* Wait for all children (clone and not) if __WALL is set;
1057 	 * otherwise, wait for clone children *only* if __WCLONE is
1058 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1059 	 * A "clone" child here is one that reports to its parent
1060 	 * using a signal other than SIGCHLD.) */
1061 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1062 	    && !(options & __WALL))
1063 		return 0;
1064 	/*
1065 	 * Do not consider thread group leaders that are
1066 	 * in a non-empty thread group:
1067 	 */
1068 	if (delay_group_leader(p))
1069 		return 2;
1070 
1071 	if (security_task_wait(p))
1072 		return 0;
1073 
1074 	return 1;
1075 }
1076 
1077 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1078 			       int why, int status,
1079 			       struct siginfo __user *infop,
1080 			       struct rusage __user *rusagep)
1081 {
1082 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1083 
1084 	put_task_struct(p);
1085 	if (!retval)
1086 		retval = put_user(SIGCHLD, &infop->si_signo);
1087 	if (!retval)
1088 		retval = put_user(0, &infop->si_errno);
1089 	if (!retval)
1090 		retval = put_user((short)why, &infop->si_code);
1091 	if (!retval)
1092 		retval = put_user(pid, &infop->si_pid);
1093 	if (!retval)
1094 		retval = put_user(uid, &infop->si_uid);
1095 	if (!retval)
1096 		retval = put_user(status, &infop->si_status);
1097 	if (!retval)
1098 		retval = pid;
1099 	return retval;
1100 }
1101 
1102 /*
1103  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1104  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1105  * the lock and this task is uninteresting.  If we return nonzero, we have
1106  * released the lock and the system call should return.
1107  */
1108 static int wait_task_zombie(struct task_struct *p, int noreap,
1109 			    struct siginfo __user *infop,
1110 			    int __user *stat_addr, struct rusage __user *ru)
1111 {
1112 	unsigned long state;
1113 	int retval;
1114 	int status;
1115 
1116 	if (unlikely(noreap)) {
1117 		pid_t pid = p->pid;
1118 		uid_t uid = p->uid;
1119 		int exit_code = p->exit_code;
1120 		int why, status;
1121 
1122 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1123 			return 0;
1124 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1125 			return 0;
1126 		get_task_struct(p);
1127 		read_unlock(&tasklist_lock);
1128 		if ((exit_code & 0x7f) == 0) {
1129 			why = CLD_EXITED;
1130 			status = exit_code >> 8;
1131 		} else {
1132 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1133 			status = exit_code & 0x7f;
1134 		}
1135 		return wait_noreap_copyout(p, pid, uid, why,
1136 					   status, infop, ru);
1137 	}
1138 
1139 	/*
1140 	 * Try to move the task's state to DEAD
1141 	 * only one thread is allowed to do this:
1142 	 */
1143 	state = xchg(&p->exit_state, EXIT_DEAD);
1144 	if (state != EXIT_ZOMBIE) {
1145 		BUG_ON(state != EXIT_DEAD);
1146 		return 0;
1147 	}
1148 	if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1149 		/*
1150 		 * This can only happen in a race with a ptraced thread
1151 		 * dying on another processor.
1152 		 */
1153 		return 0;
1154 	}
1155 
1156 	if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1157 		struct signal_struct *psig;
1158 		struct signal_struct *sig;
1159 
1160 		/*
1161 		 * The resource counters for the group leader are in its
1162 		 * own task_struct.  Those for dead threads in the group
1163 		 * are in its signal_struct, as are those for the child
1164 		 * processes it has previously reaped.  All these
1165 		 * accumulate in the parent's signal_struct c* fields.
1166 		 *
1167 		 * We don't bother to take a lock here to protect these
1168 		 * p->signal fields, because they are only touched by
1169 		 * __exit_signal, which runs with tasklist_lock
1170 		 * write-locked anyway, and so is excluded here.  We do
1171 		 * need to protect the access to p->parent->signal fields,
1172 		 * as other threads in the parent group can be right
1173 		 * here reaping other children at the same time.
1174 		 */
1175 		spin_lock_irq(&p->parent->sighand->siglock);
1176 		psig = p->parent->signal;
1177 		sig = p->signal;
1178 		psig->cutime =
1179 			cputime_add(psig->cutime,
1180 			cputime_add(p->utime,
1181 			cputime_add(sig->utime,
1182 				    sig->cutime)));
1183 		psig->cstime =
1184 			cputime_add(psig->cstime,
1185 			cputime_add(p->stime,
1186 			cputime_add(sig->stime,
1187 				    sig->cstime)));
1188 		psig->cmin_flt +=
1189 			p->min_flt + sig->min_flt + sig->cmin_flt;
1190 		psig->cmaj_flt +=
1191 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1192 		psig->cnvcsw +=
1193 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1194 		psig->cnivcsw +=
1195 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1196 		spin_unlock_irq(&p->parent->sighand->siglock);
1197 	}
1198 
1199 	/*
1200 	 * Now we are sure this task is interesting, and no other
1201 	 * thread can reap it because we set its state to EXIT_DEAD.
1202 	 */
1203 	read_unlock(&tasklist_lock);
1204 
1205 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1206 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1207 		? p->signal->group_exit_code : p->exit_code;
1208 	if (!retval && stat_addr)
1209 		retval = put_user(status, stat_addr);
1210 	if (!retval && infop)
1211 		retval = put_user(SIGCHLD, &infop->si_signo);
1212 	if (!retval && infop)
1213 		retval = put_user(0, &infop->si_errno);
1214 	if (!retval && infop) {
1215 		int why;
1216 
1217 		if ((status & 0x7f) == 0) {
1218 			why = CLD_EXITED;
1219 			status >>= 8;
1220 		} else {
1221 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1222 			status &= 0x7f;
1223 		}
1224 		retval = put_user((short)why, &infop->si_code);
1225 		if (!retval)
1226 			retval = put_user(status, &infop->si_status);
1227 	}
1228 	if (!retval && infop)
1229 		retval = put_user(p->pid, &infop->si_pid);
1230 	if (!retval && infop)
1231 		retval = put_user(p->uid, &infop->si_uid);
1232 	if (retval) {
1233 		// TODO: is this safe?
1234 		p->exit_state = EXIT_ZOMBIE;
1235 		return retval;
1236 	}
1237 	retval = p->pid;
1238 	if (p->real_parent != p->parent) {
1239 		write_lock_irq(&tasklist_lock);
1240 		/* Double-check with lock held.  */
1241 		if (p->real_parent != p->parent) {
1242 			__ptrace_unlink(p);
1243 			// TODO: is this safe?
1244 			p->exit_state = EXIT_ZOMBIE;
1245 			/*
1246 			 * If this is not a detached task, notify the parent.
1247 			 * If it's still not detached after that, don't release
1248 			 * it now.
1249 			 */
1250 			if (p->exit_signal != -1) {
1251 				do_notify_parent(p, p->exit_signal);
1252 				if (p->exit_signal != -1)
1253 					p = NULL;
1254 			}
1255 		}
1256 		write_unlock_irq(&tasklist_lock);
1257 	}
1258 	if (p != NULL)
1259 		release_task(p);
1260 	BUG_ON(!retval);
1261 	return retval;
1262 }
1263 
1264 /*
1265  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1266  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1267  * the lock and this task is uninteresting.  If we return nonzero, we have
1268  * released the lock and the system call should return.
1269  */
1270 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1271 			     int noreap, struct siginfo __user *infop,
1272 			     int __user *stat_addr, struct rusage __user *ru)
1273 {
1274 	int retval, exit_code;
1275 
1276 	if (!p->exit_code)
1277 		return 0;
1278 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1279 	    p->signal && p->signal->group_stop_count > 0)
1280 		/*
1281 		 * A group stop is in progress and this is the group leader.
1282 		 * We won't report until all threads have stopped.
1283 		 */
1284 		return 0;
1285 
1286 	/*
1287 	 * Now we are pretty sure this task is interesting.
1288 	 * Make sure it doesn't get reaped out from under us while we
1289 	 * give up the lock and then examine it below.  We don't want to
1290 	 * keep holding onto the tasklist_lock while we call getrusage and
1291 	 * possibly take page faults for user memory.
1292 	 */
1293 	get_task_struct(p);
1294 	read_unlock(&tasklist_lock);
1295 
1296 	if (unlikely(noreap)) {
1297 		pid_t pid = p->pid;
1298 		uid_t uid = p->uid;
1299 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1300 
1301 		exit_code = p->exit_code;
1302 		if (unlikely(!exit_code) ||
1303 		    unlikely(p->state & TASK_TRACED))
1304 			goto bail_ref;
1305 		return wait_noreap_copyout(p, pid, uid,
1306 					   why, (exit_code << 8) | 0x7f,
1307 					   infop, ru);
1308 	}
1309 
1310 	write_lock_irq(&tasklist_lock);
1311 
1312 	/*
1313 	 * This uses xchg to be atomic with the thread resuming and setting
1314 	 * it.  It must also be done with the write lock held to prevent a
1315 	 * race with the EXIT_ZOMBIE case.
1316 	 */
1317 	exit_code = xchg(&p->exit_code, 0);
1318 	if (unlikely(p->exit_state)) {
1319 		/*
1320 		 * The task resumed and then died.  Let the next iteration
1321 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1322 		 * already be zero here if it resumed and did _exit(0).
1323 		 * The task itself is dead and won't touch exit_code again;
1324 		 * other processors in this function are locked out.
1325 		 */
1326 		p->exit_code = exit_code;
1327 		exit_code = 0;
1328 	}
1329 	if (unlikely(exit_code == 0)) {
1330 		/*
1331 		 * Another thread in this function got to it first, or it
1332 		 * resumed, or it resumed and then died.
1333 		 */
1334 		write_unlock_irq(&tasklist_lock);
1335 bail_ref:
1336 		put_task_struct(p);
1337 		/*
1338 		 * We are returning to the wait loop without having successfully
1339 		 * removed the process and having released the lock. We cannot
1340 		 * continue, since the "p" task pointer is potentially stale.
1341 		 *
1342 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1343 		 * beginning. Do _not_ re-acquire the lock.
1344 		 */
1345 		return -EAGAIN;
1346 	}
1347 
1348 	/* move to end of parent's list to avoid starvation */
1349 	remove_parent(p);
1350 	add_parent(p);
1351 
1352 	write_unlock_irq(&tasklist_lock);
1353 
1354 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1355 	if (!retval && stat_addr)
1356 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1357 	if (!retval && infop)
1358 		retval = put_user(SIGCHLD, &infop->si_signo);
1359 	if (!retval && infop)
1360 		retval = put_user(0, &infop->si_errno);
1361 	if (!retval && infop)
1362 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1363 					  ? CLD_TRAPPED : CLD_STOPPED),
1364 				  &infop->si_code);
1365 	if (!retval && infop)
1366 		retval = put_user(exit_code, &infop->si_status);
1367 	if (!retval && infop)
1368 		retval = put_user(p->pid, &infop->si_pid);
1369 	if (!retval && infop)
1370 		retval = put_user(p->uid, &infop->si_uid);
1371 	if (!retval)
1372 		retval = p->pid;
1373 	put_task_struct(p);
1374 
1375 	BUG_ON(!retval);
1376 	return retval;
1377 }
1378 
1379 /*
1380  * Handle do_wait work for one task in a live, non-stopped state.
1381  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1382  * the lock and this task is uninteresting.  If we return nonzero, we have
1383  * released the lock and the system call should return.
1384  */
1385 static int wait_task_continued(struct task_struct *p, int noreap,
1386 			       struct siginfo __user *infop,
1387 			       int __user *stat_addr, struct rusage __user *ru)
1388 {
1389 	int retval;
1390 	pid_t pid;
1391 	uid_t uid;
1392 
1393 	if (unlikely(!p->signal))
1394 		return 0;
1395 
1396 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1397 		return 0;
1398 
1399 	spin_lock_irq(&p->sighand->siglock);
1400 	/* Re-check with the lock held.  */
1401 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1402 		spin_unlock_irq(&p->sighand->siglock);
1403 		return 0;
1404 	}
1405 	if (!noreap)
1406 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1407 	spin_unlock_irq(&p->sighand->siglock);
1408 
1409 	pid = p->pid;
1410 	uid = p->uid;
1411 	get_task_struct(p);
1412 	read_unlock(&tasklist_lock);
1413 
1414 	if (!infop) {
1415 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1416 		put_task_struct(p);
1417 		if (!retval && stat_addr)
1418 			retval = put_user(0xffff, stat_addr);
1419 		if (!retval)
1420 			retval = p->pid;
1421 	} else {
1422 		retval = wait_noreap_copyout(p, pid, uid,
1423 					     CLD_CONTINUED, SIGCONT,
1424 					     infop, ru);
1425 		BUG_ON(retval == 0);
1426 	}
1427 
1428 	return retval;
1429 }
1430 
1431 
1432 static inline int my_ptrace_child(struct task_struct *p)
1433 {
1434 	if (!(p->ptrace & PT_PTRACED))
1435 		return 0;
1436 	if (!(p->ptrace & PT_ATTACHED))
1437 		return 1;
1438 	/*
1439 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1440 	 * we are the attacher.  If we are the real parent, this is a race
1441 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1442 	 * which we have to switch the parent links, but has already set
1443 	 * the flags in p->ptrace.
1444 	 */
1445 	return (p->parent != p->real_parent);
1446 }
1447 
1448 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1449 		    int __user *stat_addr, struct rusage __user *ru)
1450 {
1451 	DECLARE_WAITQUEUE(wait, current);
1452 	struct task_struct *tsk;
1453 	int flag, retval;
1454 
1455 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1456 repeat:
1457 	/*
1458 	 * We will set this flag if we see any child that might later
1459 	 * match our criteria, even if we are not able to reap it yet.
1460 	 */
1461 	flag = 0;
1462 	current->state = TASK_INTERRUPTIBLE;
1463 	read_lock(&tasklist_lock);
1464 	tsk = current;
1465 	do {
1466 		struct task_struct *p;
1467 		struct list_head *_p;
1468 		int ret;
1469 
1470 		list_for_each(_p,&tsk->children) {
1471 			p = list_entry(_p, struct task_struct, sibling);
1472 
1473 			ret = eligible_child(pid, options, p);
1474 			if (!ret)
1475 				continue;
1476 
1477 			switch (p->state) {
1478 			case TASK_TRACED:
1479 				/*
1480 				 * When we hit the race with PTRACE_ATTACH,
1481 				 * we will not report this child.  But the
1482 				 * race means it has not yet been moved to
1483 				 * our ptrace_children list, so we need to
1484 				 * set the flag here to avoid a spurious ECHILD
1485 				 * when the race happens with the only child.
1486 				 */
1487 				flag = 1;
1488 				if (!my_ptrace_child(p))
1489 					continue;
1490 				/*FALLTHROUGH*/
1491 			case TASK_STOPPED:
1492 				/*
1493 				 * It's stopped now, so it might later
1494 				 * continue, exit, or stop again.
1495 				 */
1496 				flag = 1;
1497 				if (!(options & WUNTRACED) &&
1498 				    !my_ptrace_child(p))
1499 					continue;
1500 				retval = wait_task_stopped(p, ret == 2,
1501 							   (options & WNOWAIT),
1502 							   infop,
1503 							   stat_addr, ru);
1504 				if (retval == -EAGAIN)
1505 					goto repeat;
1506 				if (retval != 0) /* He released the lock.  */
1507 					goto end;
1508 				break;
1509 			default:
1510 			// case EXIT_DEAD:
1511 				if (p->exit_state == EXIT_DEAD)
1512 					continue;
1513 			// case EXIT_ZOMBIE:
1514 				if (p->exit_state == EXIT_ZOMBIE) {
1515 					/*
1516 					 * Eligible but we cannot release
1517 					 * it yet:
1518 					 */
1519 					if (ret == 2)
1520 						goto check_continued;
1521 					if (!likely(options & WEXITED))
1522 						continue;
1523 					retval = wait_task_zombie(
1524 						p, (options & WNOWAIT),
1525 						infop, stat_addr, ru);
1526 					/* He released the lock.  */
1527 					if (retval != 0)
1528 						goto end;
1529 					break;
1530 				}
1531 check_continued:
1532 				/*
1533 				 * It's running now, so it might later
1534 				 * exit, stop, or stop and then continue.
1535 				 */
1536 				flag = 1;
1537 				if (!unlikely(options & WCONTINUED))
1538 					continue;
1539 				retval = wait_task_continued(
1540 					p, (options & WNOWAIT),
1541 					infop, stat_addr, ru);
1542 				if (retval != 0) /* He released the lock.  */
1543 					goto end;
1544 				break;
1545 			}
1546 		}
1547 		if (!flag) {
1548 			list_for_each(_p, &tsk->ptrace_children) {
1549 				p = list_entry(_p, struct task_struct,
1550 						ptrace_list);
1551 				if (!eligible_child(pid, options, p))
1552 					continue;
1553 				flag = 1;
1554 				break;
1555 			}
1556 		}
1557 		if (options & __WNOTHREAD)
1558 			break;
1559 		tsk = next_thread(tsk);
1560 		BUG_ON(tsk->signal != current->signal);
1561 	} while (tsk != current);
1562 
1563 	read_unlock(&tasklist_lock);
1564 	if (flag) {
1565 		retval = 0;
1566 		if (options & WNOHANG)
1567 			goto end;
1568 		retval = -ERESTARTSYS;
1569 		if (signal_pending(current))
1570 			goto end;
1571 		schedule();
1572 		goto repeat;
1573 	}
1574 	retval = -ECHILD;
1575 end:
1576 	current->state = TASK_RUNNING;
1577 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1578 	if (infop) {
1579 		if (retval > 0)
1580 		retval = 0;
1581 		else {
1582 			/*
1583 			 * For a WNOHANG return, clear out all the fields
1584 			 * we would set so the user can easily tell the
1585 			 * difference.
1586 			 */
1587 			if (!retval)
1588 				retval = put_user(0, &infop->si_signo);
1589 			if (!retval)
1590 				retval = put_user(0, &infop->si_errno);
1591 			if (!retval)
1592 				retval = put_user(0, &infop->si_code);
1593 			if (!retval)
1594 				retval = put_user(0, &infop->si_pid);
1595 			if (!retval)
1596 				retval = put_user(0, &infop->si_uid);
1597 			if (!retval)
1598 				retval = put_user(0, &infop->si_status);
1599 		}
1600 	}
1601 	return retval;
1602 }
1603 
1604 asmlinkage long sys_waitid(int which, pid_t pid,
1605 			   struct siginfo __user *infop, int options,
1606 			   struct rusage __user *ru)
1607 {
1608 	long ret;
1609 
1610 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1611 		return -EINVAL;
1612 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1613 		return -EINVAL;
1614 
1615 	switch (which) {
1616 	case P_ALL:
1617 		pid = -1;
1618 		break;
1619 	case P_PID:
1620 		if (pid <= 0)
1621 			return -EINVAL;
1622 		break;
1623 	case P_PGID:
1624 		if (pid <= 0)
1625 			return -EINVAL;
1626 		pid = -pid;
1627 		break;
1628 	default:
1629 		return -EINVAL;
1630 	}
1631 
1632 	ret = do_wait(pid, options, infop, NULL, ru);
1633 
1634 	/* avoid REGPARM breakage on x86: */
1635 	prevent_tail_call(ret);
1636 	return ret;
1637 }
1638 
1639 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1640 			  int options, struct rusage __user *ru)
1641 {
1642 	long ret;
1643 
1644 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1645 			__WNOTHREAD|__WCLONE|__WALL))
1646 		return -EINVAL;
1647 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1648 
1649 	/* avoid REGPARM breakage on x86: */
1650 	prevent_tail_call(ret);
1651 	return ret;
1652 }
1653 
1654 #ifdef __ARCH_WANT_SYS_WAITPID
1655 
1656 /*
1657  * sys_waitpid() remains for compatibility. waitpid() should be
1658  * implemented by calling sys_wait4() from libc.a.
1659  */
1660 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1661 {
1662 	return sys_wait4(pid, stat_addr, options, NULL);
1663 }
1664 
1665 #endif
1666