1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/freezer.h> 29 #include <linux/binfmts.h> 30 #include <linux/nsproxy.h> 31 #include <linux/pid_namespace.h> 32 #include <linux/ptrace.h> 33 #include <linux/profile.h> 34 #include <linux/mount.h> 35 #include <linux/proc_fs.h> 36 #include <linux/kthread.h> 37 #include <linux/mempolicy.h> 38 #include <linux/taskstats_kern.h> 39 #include <linux/delayacct.h> 40 #include <linux/cgroup.h> 41 #include <linux/syscalls.h> 42 #include <linux/signal.h> 43 #include <linux/posix-timers.h> 44 #include <linux/cn_proc.h> 45 #include <linux/mutex.h> 46 #include <linux/futex.h> 47 #include <linux/pipe_fs_i.h> 48 #include <linux/audit.h> /* for audit_free() */ 49 #include <linux/resource.h> 50 #include <linux/task_io_accounting_ops.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_work.h> 53 #include <linux/fs_struct.h> 54 #include <linux/init_task.h> 55 #include <linux/perf_event.h> 56 #include <trace/events/sched.h> 57 #include <linux/hw_breakpoint.h> 58 #include <linux/oom.h> 59 #include <linux/writeback.h> 60 #include <linux/shm.h> 61 #include <linux/kcov.h> 62 #include <linux/kmsan.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 #include <linux/io_uring.h> 67 #include <linux/kprobes.h> 68 #include <linux/rethook.h> 69 #include <linux/sysfs.h> 70 #include <linux/user_events.h> 71 #include <linux/uaccess.h> 72 #include <linux/pidfs.h> 73 74 #include <uapi/linux/wait.h> 75 76 #include <asm/unistd.h> 77 #include <asm/mmu_context.h> 78 79 #include "exit.h" 80 81 /* 82 * The default value should be high enough to not crash a system that randomly 83 * crashes its kernel from time to time, but low enough to at least not permit 84 * overflowing 32-bit refcounts or the ldsem writer count. 85 */ 86 static unsigned int oops_limit = 10000; 87 88 #ifdef CONFIG_SYSCTL 89 static const struct ctl_table kern_exit_table[] = { 90 { 91 .procname = "oops_limit", 92 .data = &oops_limit, 93 .maxlen = sizeof(oops_limit), 94 .mode = 0644, 95 .proc_handler = proc_douintvec, 96 }, 97 }; 98 99 static __init int kernel_exit_sysctls_init(void) 100 { 101 register_sysctl_init("kernel", kern_exit_table); 102 return 0; 103 } 104 late_initcall(kernel_exit_sysctls_init); 105 #endif 106 107 static atomic_t oops_count = ATOMIC_INIT(0); 108 109 #ifdef CONFIG_SYSFS 110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr, 111 char *page) 112 { 113 return sysfs_emit(page, "%d\n", atomic_read(&oops_count)); 114 } 115 116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count); 117 118 static __init int kernel_exit_sysfs_init(void) 119 { 120 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL); 121 return 0; 122 } 123 late_initcall(kernel_exit_sysfs_init); 124 #endif 125 126 /* 127 * For things release_task() would like to do *after* tasklist_lock is released. 128 */ 129 struct release_task_post { 130 struct pid *pids[PIDTYPE_MAX]; 131 }; 132 133 static void __unhash_process(struct release_task_post *post, struct task_struct *p, 134 bool group_dead) 135 { 136 struct pid *pid = task_pid(p); 137 138 nr_threads--; 139 140 detach_pid(post->pids, p, PIDTYPE_PID); 141 wake_up_all(&pid->wait_pidfd); 142 143 if (group_dead) { 144 detach_pid(post->pids, p, PIDTYPE_TGID); 145 detach_pid(post->pids, p, PIDTYPE_PGID); 146 detach_pid(post->pids, p, PIDTYPE_SID); 147 148 list_del_rcu(&p->tasks); 149 list_del_init(&p->sibling); 150 __this_cpu_dec(process_counts); 151 } 152 list_del_rcu(&p->thread_node); 153 } 154 155 /* 156 * This function expects the tasklist_lock write-locked. 157 */ 158 static void __exit_signal(struct release_task_post *post, struct task_struct *tsk) 159 { 160 struct signal_struct *sig = tsk->signal; 161 bool group_dead = thread_group_leader(tsk); 162 struct sighand_struct *sighand; 163 struct tty_struct *tty; 164 u64 utime, stime; 165 166 sighand = rcu_dereference_check(tsk->sighand, 167 lockdep_tasklist_lock_is_held()); 168 spin_lock(&sighand->siglock); 169 170 #ifdef CONFIG_POSIX_TIMERS 171 posix_cpu_timers_exit(tsk); 172 if (group_dead) 173 posix_cpu_timers_exit_group(tsk); 174 #endif 175 176 if (group_dead) { 177 tty = sig->tty; 178 sig->tty = NULL; 179 } else { 180 /* 181 * If there is any task waiting for the group exit 182 * then notify it: 183 */ 184 if (sig->notify_count > 0 && !--sig->notify_count) 185 wake_up_process(sig->group_exec_task); 186 187 if (tsk == sig->curr_target) 188 sig->curr_target = next_thread(tsk); 189 } 190 191 /* 192 * Accumulate here the counters for all threads as they die. We could 193 * skip the group leader because it is the last user of signal_struct, 194 * but we want to avoid the race with thread_group_cputime() which can 195 * see the empty ->thread_head list. 196 */ 197 task_cputime(tsk, &utime, &stime); 198 write_seqlock(&sig->stats_lock); 199 sig->utime += utime; 200 sig->stime += stime; 201 sig->gtime += task_gtime(tsk); 202 sig->min_flt += tsk->min_flt; 203 sig->maj_flt += tsk->maj_flt; 204 sig->nvcsw += tsk->nvcsw; 205 sig->nivcsw += tsk->nivcsw; 206 sig->inblock += task_io_get_inblock(tsk); 207 sig->oublock += task_io_get_oublock(tsk); 208 task_io_accounting_add(&sig->ioac, &tsk->ioac); 209 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 210 sig->nr_threads--; 211 __unhash_process(post, tsk, group_dead); 212 write_sequnlock(&sig->stats_lock); 213 214 tsk->sighand = NULL; 215 spin_unlock(&sighand->siglock); 216 217 __cleanup_sighand(sighand); 218 if (group_dead) 219 tty_kref_put(tty); 220 } 221 222 static void delayed_put_task_struct(struct rcu_head *rhp) 223 { 224 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 225 226 kprobe_flush_task(tsk); 227 rethook_flush_task(tsk); 228 perf_event_delayed_put(tsk); 229 trace_sched_process_free(tsk); 230 put_task_struct(tsk); 231 } 232 233 void put_task_struct_rcu_user(struct task_struct *task) 234 { 235 if (refcount_dec_and_test(&task->rcu_users)) 236 call_rcu(&task->rcu, delayed_put_task_struct); 237 } 238 239 void __weak release_thread(struct task_struct *dead_task) 240 { 241 } 242 243 void release_task(struct task_struct *p) 244 { 245 struct release_task_post post; 246 struct task_struct *leader; 247 struct pid *thread_pid; 248 int zap_leader; 249 repeat: 250 memset(&post, 0, sizeof(post)); 251 252 /* don't need to get the RCU readlock here - the process is dead and 253 * can't be modifying its own credentials. But shut RCU-lockdep up */ 254 rcu_read_lock(); 255 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 256 rcu_read_unlock(); 257 258 pidfs_exit(p); 259 cgroup_release(p); 260 261 /* Retrieve @thread_pid before __unhash_process() may set it to NULL. */ 262 thread_pid = task_pid(p); 263 264 write_lock_irq(&tasklist_lock); 265 ptrace_release_task(p); 266 __exit_signal(&post, p); 267 268 /* 269 * If we are the last non-leader member of the thread 270 * group, and the leader is zombie, then notify the 271 * group leader's parent process. (if it wants notification.) 272 */ 273 zap_leader = 0; 274 leader = p->group_leader; 275 if (leader != p && thread_group_empty(leader) 276 && leader->exit_state == EXIT_ZOMBIE) { 277 /* for pidfs_exit() and do_notify_parent() */ 278 if (leader->signal->flags & SIGNAL_GROUP_EXIT) 279 leader->exit_code = leader->signal->group_exit_code; 280 /* 281 * If we were the last child thread and the leader has 282 * exited already, and the leader's parent ignores SIGCHLD, 283 * then we are the one who should release the leader. 284 */ 285 zap_leader = do_notify_parent(leader, leader->exit_signal); 286 if (zap_leader) 287 leader->exit_state = EXIT_DEAD; 288 } 289 290 write_unlock_irq(&tasklist_lock); 291 /* @thread_pid can't go away until free_pids() below */ 292 proc_flush_pid(thread_pid); 293 add_device_randomness(&p->se.sum_exec_runtime, 294 sizeof(p->se.sum_exec_runtime)); 295 free_pids(post.pids); 296 release_thread(p); 297 /* 298 * This task was already removed from the process/thread/pid lists 299 * and lock_task_sighand(p) can't succeed. Nobody else can touch 300 * ->pending or, if group dead, signal->shared_pending. We can call 301 * flush_sigqueue() lockless. 302 */ 303 flush_sigqueue(&p->pending); 304 if (thread_group_leader(p)) 305 flush_sigqueue(&p->signal->shared_pending); 306 307 put_task_struct_rcu_user(p); 308 309 p = leader; 310 if (unlikely(zap_leader)) 311 goto repeat; 312 } 313 314 int rcuwait_wake_up(struct rcuwait *w) 315 { 316 int ret = 0; 317 struct task_struct *task; 318 319 rcu_read_lock(); 320 321 /* 322 * Order condition vs @task, such that everything prior to the load 323 * of @task is visible. This is the condition as to why the user called 324 * rcuwait_wake() in the first place. Pairs with set_current_state() 325 * barrier (A) in rcuwait_wait_event(). 326 * 327 * WAIT WAKE 328 * [S] tsk = current [S] cond = true 329 * MB (A) MB (B) 330 * [L] cond [L] tsk 331 */ 332 smp_mb(); /* (B) */ 333 334 task = rcu_dereference(w->task); 335 if (task) 336 ret = wake_up_process(task); 337 rcu_read_unlock(); 338 339 return ret; 340 } 341 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 342 343 /* 344 * Determine if a process group is "orphaned", according to the POSIX 345 * definition in 2.2.2.52. Orphaned process groups are not to be affected 346 * by terminal-generated stop signals. Newly orphaned process groups are 347 * to receive a SIGHUP and a SIGCONT. 348 * 349 * "I ask you, have you ever known what it is to be an orphan?" 350 */ 351 static int will_become_orphaned_pgrp(struct pid *pgrp, 352 struct task_struct *ignored_task) 353 { 354 struct task_struct *p; 355 356 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 357 if ((p == ignored_task) || 358 (p->exit_state && thread_group_empty(p)) || 359 is_global_init(p->real_parent)) 360 continue; 361 362 if (task_pgrp(p->real_parent) != pgrp && 363 task_session(p->real_parent) == task_session(p)) 364 return 0; 365 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 366 367 return 1; 368 } 369 370 int is_current_pgrp_orphaned(void) 371 { 372 int retval; 373 374 read_lock(&tasklist_lock); 375 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 376 read_unlock(&tasklist_lock); 377 378 return retval; 379 } 380 381 static bool has_stopped_jobs(struct pid *pgrp) 382 { 383 struct task_struct *p; 384 385 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 386 if (p->signal->flags & SIGNAL_STOP_STOPPED) 387 return true; 388 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 389 390 return false; 391 } 392 393 /* 394 * Check to see if any process groups have become orphaned as 395 * a result of our exiting, and if they have any stopped jobs, 396 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 397 */ 398 static void 399 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 400 { 401 struct pid *pgrp = task_pgrp(tsk); 402 struct task_struct *ignored_task = tsk; 403 404 if (!parent) 405 /* exit: our father is in a different pgrp than 406 * we are and we were the only connection outside. 407 */ 408 parent = tsk->real_parent; 409 else 410 /* reparent: our child is in a different pgrp than 411 * we are, and it was the only connection outside. 412 */ 413 ignored_task = NULL; 414 415 if (task_pgrp(parent) != pgrp && 416 task_session(parent) == task_session(tsk) && 417 will_become_orphaned_pgrp(pgrp, ignored_task) && 418 has_stopped_jobs(pgrp)) { 419 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 420 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 421 } 422 } 423 424 static void coredump_task_exit(struct task_struct *tsk, 425 struct core_state *core_state) 426 { 427 struct core_thread self; 428 429 self.task = tsk; 430 if (self.task->flags & PF_SIGNALED) 431 self.next = xchg(&core_state->dumper.next, &self); 432 else 433 self.task = NULL; 434 /* 435 * Implies mb(), the result of xchg() must be visible 436 * to core_state->dumper. 437 */ 438 if (atomic_dec_and_test(&core_state->nr_threads)) 439 complete(&core_state->startup); 440 441 for (;;) { 442 set_current_state(TASK_IDLE|TASK_FREEZABLE); 443 if (!self.task) /* see coredump_finish() */ 444 break; 445 schedule(); 446 } 447 __set_current_state(TASK_RUNNING); 448 } 449 450 #ifdef CONFIG_MEMCG 451 /* drops tasklist_lock if succeeds */ 452 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm) 453 { 454 bool ret = false; 455 456 task_lock(tsk); 457 if (likely(tsk->mm == mm)) { 458 /* tsk can't pass exit_mm/exec_mmap and exit */ 459 read_unlock(&tasklist_lock); 460 WRITE_ONCE(mm->owner, tsk); 461 lru_gen_migrate_mm(mm); 462 ret = true; 463 } 464 task_unlock(tsk); 465 return ret; 466 } 467 468 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm) 469 { 470 struct task_struct *t; 471 472 for_each_thread(g, t) { 473 struct mm_struct *t_mm = READ_ONCE(t->mm); 474 if (t_mm == mm) { 475 if (__try_to_set_owner(t, mm)) 476 return true; 477 } else if (t_mm) 478 break; 479 } 480 481 return false; 482 } 483 484 /* 485 * A task is exiting. If it owned this mm, find a new owner for the mm. 486 */ 487 void mm_update_next_owner(struct mm_struct *mm) 488 { 489 struct task_struct *g, *p = current; 490 491 /* 492 * If the exiting or execing task is not the owner, it's 493 * someone else's problem. 494 */ 495 if (mm->owner != p) 496 return; 497 /* 498 * The current owner is exiting/execing and there are no other 499 * candidates. Do not leave the mm pointing to a possibly 500 * freed task structure. 501 */ 502 if (atomic_read(&mm->mm_users) <= 1) { 503 WRITE_ONCE(mm->owner, NULL); 504 return; 505 } 506 507 read_lock(&tasklist_lock); 508 /* 509 * Search in the children 510 */ 511 list_for_each_entry(g, &p->children, sibling) { 512 if (try_to_set_owner(g, mm)) 513 goto ret; 514 } 515 /* 516 * Search in the siblings 517 */ 518 list_for_each_entry(g, &p->real_parent->children, sibling) { 519 if (try_to_set_owner(g, mm)) 520 goto ret; 521 } 522 /* 523 * Search through everything else, we should not get here often. 524 */ 525 for_each_process(g) { 526 if (atomic_read(&mm->mm_users) <= 1) 527 break; 528 if (g->flags & PF_KTHREAD) 529 continue; 530 if (try_to_set_owner(g, mm)) 531 goto ret; 532 } 533 read_unlock(&tasklist_lock); 534 /* 535 * We found no owner yet mm_users > 1: this implies that we are 536 * most likely racing with swapoff (try_to_unuse()) or /proc or 537 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 538 */ 539 WRITE_ONCE(mm->owner, NULL); 540 ret: 541 return; 542 543 } 544 #endif /* CONFIG_MEMCG */ 545 546 /* 547 * Turn us into a lazy TLB process if we 548 * aren't already.. 549 */ 550 static void exit_mm(void) 551 { 552 struct mm_struct *mm = current->mm; 553 554 exit_mm_release(current, mm); 555 if (!mm) 556 return; 557 mmap_read_lock(mm); 558 mmgrab_lazy_tlb(mm); 559 BUG_ON(mm != current->active_mm); 560 /* more a memory barrier than a real lock */ 561 task_lock(current); 562 /* 563 * When a thread stops operating on an address space, the loop 564 * in membarrier_private_expedited() may not observe that 565 * tsk->mm, and the loop in membarrier_global_expedited() may 566 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 567 * rq->membarrier_state, so those would not issue an IPI. 568 * Membarrier requires a memory barrier after accessing 569 * user-space memory, before clearing tsk->mm or the 570 * rq->membarrier_state. 571 */ 572 smp_mb__after_spinlock(); 573 local_irq_disable(); 574 current->mm = NULL; 575 membarrier_update_current_mm(NULL); 576 enter_lazy_tlb(mm, current); 577 local_irq_enable(); 578 task_unlock(current); 579 mmap_read_unlock(mm); 580 mm_update_next_owner(mm); 581 mmput(mm); 582 if (test_thread_flag(TIF_MEMDIE)) 583 exit_oom_victim(); 584 } 585 586 static struct task_struct *find_alive_thread(struct task_struct *p) 587 { 588 struct task_struct *t; 589 590 for_each_thread(p, t) { 591 if (!(t->flags & PF_EXITING)) 592 return t; 593 } 594 return NULL; 595 } 596 597 static struct task_struct *find_child_reaper(struct task_struct *father, 598 struct list_head *dead) 599 __releases(&tasklist_lock) 600 __acquires(&tasklist_lock) 601 { 602 struct pid_namespace *pid_ns = task_active_pid_ns(father); 603 struct task_struct *reaper = pid_ns->child_reaper; 604 struct task_struct *p, *n; 605 606 if (likely(reaper != father)) 607 return reaper; 608 609 reaper = find_alive_thread(father); 610 if (reaper) { 611 pid_ns->child_reaper = reaper; 612 return reaper; 613 } 614 615 write_unlock_irq(&tasklist_lock); 616 617 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 618 list_del_init(&p->ptrace_entry); 619 release_task(p); 620 } 621 622 zap_pid_ns_processes(pid_ns); 623 write_lock_irq(&tasklist_lock); 624 625 return father; 626 } 627 628 /* 629 * When we die, we re-parent all our children, and try to: 630 * 1. give them to another thread in our thread group, if such a member exists 631 * 2. give it to the first ancestor process which prctl'd itself as a 632 * child_subreaper for its children (like a service manager) 633 * 3. give it to the init process (PID 1) in our pid namespace 634 */ 635 static struct task_struct *find_new_reaper(struct task_struct *father, 636 struct task_struct *child_reaper) 637 { 638 struct task_struct *thread, *reaper; 639 640 thread = find_alive_thread(father); 641 if (thread) 642 return thread; 643 644 if (father->signal->has_child_subreaper) { 645 unsigned int ns_level = task_pid(father)->level; 646 /* 647 * Find the first ->is_child_subreaper ancestor in our pid_ns. 648 * We can't check reaper != child_reaper to ensure we do not 649 * cross the namespaces, the exiting parent could be injected 650 * by setns() + fork(). 651 * We check pid->level, this is slightly more efficient than 652 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 653 */ 654 for (reaper = father->real_parent; 655 task_pid(reaper)->level == ns_level; 656 reaper = reaper->real_parent) { 657 if (reaper == &init_task) 658 break; 659 if (!reaper->signal->is_child_subreaper) 660 continue; 661 thread = find_alive_thread(reaper); 662 if (thread) 663 return thread; 664 } 665 } 666 667 return child_reaper; 668 } 669 670 /* 671 * Any that need to be release_task'd are put on the @dead list. 672 */ 673 static void reparent_leader(struct task_struct *father, struct task_struct *p, 674 struct list_head *dead) 675 { 676 if (unlikely(p->exit_state == EXIT_DEAD)) 677 return; 678 679 /* We don't want people slaying init. */ 680 p->exit_signal = SIGCHLD; 681 682 /* If it has exited notify the new parent about this child's death. */ 683 if (!p->ptrace && 684 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 685 if (do_notify_parent(p, p->exit_signal)) { 686 p->exit_state = EXIT_DEAD; 687 list_add(&p->ptrace_entry, dead); 688 } 689 } 690 691 kill_orphaned_pgrp(p, father); 692 } 693 694 /* 695 * This does two things: 696 * 697 * A. Make init inherit all the child processes 698 * B. Check to see if any process groups have become orphaned 699 * as a result of our exiting, and if they have any stopped 700 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 701 */ 702 static void forget_original_parent(struct task_struct *father, 703 struct list_head *dead) 704 { 705 struct task_struct *p, *t, *reaper; 706 707 if (unlikely(!list_empty(&father->ptraced))) 708 exit_ptrace(father, dead); 709 710 /* Can drop and reacquire tasklist_lock */ 711 reaper = find_child_reaper(father, dead); 712 if (list_empty(&father->children)) 713 return; 714 715 reaper = find_new_reaper(father, reaper); 716 list_for_each_entry(p, &father->children, sibling) { 717 for_each_thread(p, t) { 718 RCU_INIT_POINTER(t->real_parent, reaper); 719 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 720 if (likely(!t->ptrace)) 721 t->parent = t->real_parent; 722 if (t->pdeath_signal) 723 group_send_sig_info(t->pdeath_signal, 724 SEND_SIG_NOINFO, t, 725 PIDTYPE_TGID); 726 } 727 /* 728 * If this is a threaded reparent there is no need to 729 * notify anyone anything has happened. 730 */ 731 if (!same_thread_group(reaper, father)) 732 reparent_leader(father, p, dead); 733 } 734 list_splice_tail_init(&father->children, &reaper->children); 735 } 736 737 /* 738 * Send signals to all our closest relatives so that they know 739 * to properly mourn us.. 740 */ 741 static void exit_notify(struct task_struct *tsk, int group_dead) 742 { 743 bool autoreap; 744 struct task_struct *p, *n; 745 LIST_HEAD(dead); 746 747 write_lock_irq(&tasklist_lock); 748 forget_original_parent(tsk, &dead); 749 750 if (group_dead) 751 kill_orphaned_pgrp(tsk->group_leader, NULL); 752 753 tsk->exit_state = EXIT_ZOMBIE; 754 755 if (unlikely(tsk->ptrace)) { 756 int sig = thread_group_leader(tsk) && 757 thread_group_empty(tsk) && 758 !ptrace_reparented(tsk) ? 759 tsk->exit_signal : SIGCHLD; 760 autoreap = do_notify_parent(tsk, sig); 761 } else if (thread_group_leader(tsk)) { 762 autoreap = thread_group_empty(tsk) && 763 do_notify_parent(tsk, tsk->exit_signal); 764 } else { 765 autoreap = true; 766 /* untraced sub-thread */ 767 do_notify_pidfd(tsk); 768 } 769 770 if (autoreap) { 771 tsk->exit_state = EXIT_DEAD; 772 list_add(&tsk->ptrace_entry, &dead); 773 } 774 775 /* mt-exec, de_thread() is waiting for group leader */ 776 if (unlikely(tsk->signal->notify_count < 0)) 777 wake_up_process(tsk->signal->group_exec_task); 778 write_unlock_irq(&tasklist_lock); 779 780 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 781 list_del_init(&p->ptrace_entry); 782 release_task(p); 783 } 784 } 785 786 #ifdef CONFIG_DEBUG_STACK_USAGE 787 unsigned long stack_not_used(struct task_struct *p) 788 { 789 unsigned long *n = end_of_stack(p); 790 791 do { /* Skip over canary */ 792 # ifdef CONFIG_STACK_GROWSUP 793 n--; 794 # else 795 n++; 796 # endif 797 } while (!*n); 798 799 # ifdef CONFIG_STACK_GROWSUP 800 return (unsigned long)end_of_stack(p) - (unsigned long)n; 801 # else 802 return (unsigned long)n - (unsigned long)end_of_stack(p); 803 # endif 804 } 805 806 /* Count the maximum pages reached in kernel stacks */ 807 static inline void kstack_histogram(unsigned long used_stack) 808 { 809 #ifdef CONFIG_VM_EVENT_COUNTERS 810 if (used_stack <= 1024) 811 count_vm_event(KSTACK_1K); 812 #if THREAD_SIZE > 1024 813 else if (used_stack <= 2048) 814 count_vm_event(KSTACK_2K); 815 #endif 816 #if THREAD_SIZE > 2048 817 else if (used_stack <= 4096) 818 count_vm_event(KSTACK_4K); 819 #endif 820 #if THREAD_SIZE > 4096 821 else if (used_stack <= 8192) 822 count_vm_event(KSTACK_8K); 823 #endif 824 #if THREAD_SIZE > 8192 825 else if (used_stack <= 16384) 826 count_vm_event(KSTACK_16K); 827 #endif 828 #if THREAD_SIZE > 16384 829 else if (used_stack <= 32768) 830 count_vm_event(KSTACK_32K); 831 #endif 832 #if THREAD_SIZE > 32768 833 else if (used_stack <= 65536) 834 count_vm_event(KSTACK_64K); 835 #endif 836 #if THREAD_SIZE > 65536 837 else 838 count_vm_event(KSTACK_REST); 839 #endif 840 #endif /* CONFIG_VM_EVENT_COUNTERS */ 841 } 842 843 static void check_stack_usage(void) 844 { 845 static DEFINE_SPINLOCK(low_water_lock); 846 static int lowest_to_date = THREAD_SIZE; 847 unsigned long free; 848 849 free = stack_not_used(current); 850 kstack_histogram(THREAD_SIZE - free); 851 852 if (free >= lowest_to_date) 853 return; 854 855 spin_lock(&low_water_lock); 856 if (free < lowest_to_date) { 857 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 858 current->comm, task_pid_nr(current), free); 859 lowest_to_date = free; 860 } 861 spin_unlock(&low_water_lock); 862 } 863 #else 864 static inline void check_stack_usage(void) {} 865 #endif 866 867 static void synchronize_group_exit(struct task_struct *tsk, long code) 868 { 869 struct sighand_struct *sighand = tsk->sighand; 870 struct signal_struct *signal = tsk->signal; 871 struct core_state *core_state; 872 873 spin_lock_irq(&sighand->siglock); 874 signal->quick_threads--; 875 if ((signal->quick_threads == 0) && 876 !(signal->flags & SIGNAL_GROUP_EXIT)) { 877 signal->flags = SIGNAL_GROUP_EXIT; 878 signal->group_exit_code = code; 879 signal->group_stop_count = 0; 880 } 881 /* 882 * Serialize with any possible pending coredump. 883 * We must hold siglock around checking core_state 884 * and setting PF_POSTCOREDUMP. The core-inducing thread 885 * will increment ->nr_threads for each thread in the 886 * group without PF_POSTCOREDUMP set. 887 */ 888 tsk->flags |= PF_POSTCOREDUMP; 889 core_state = signal->core_state; 890 spin_unlock_irq(&sighand->siglock); 891 892 if (unlikely(core_state)) 893 coredump_task_exit(tsk, core_state); 894 } 895 896 void __noreturn do_exit(long code) 897 { 898 struct task_struct *tsk = current; 899 int group_dead; 900 901 WARN_ON(irqs_disabled()); 902 WARN_ON(tsk->plug); 903 904 kcov_task_exit(tsk); 905 kmsan_task_exit(tsk); 906 907 synchronize_group_exit(tsk, code); 908 ptrace_event(PTRACE_EVENT_EXIT, code); 909 user_events_exit(tsk); 910 911 io_uring_files_cancel(); 912 exit_signals(tsk); /* sets PF_EXITING */ 913 914 seccomp_filter_release(tsk); 915 916 acct_update_integrals(tsk); 917 group_dead = atomic_dec_and_test(&tsk->signal->live); 918 if (group_dead) { 919 /* 920 * If the last thread of global init has exited, panic 921 * immediately to get a useable coredump. 922 */ 923 if (unlikely(is_global_init(tsk))) 924 panic("Attempted to kill init! exitcode=0x%08x\n", 925 tsk->signal->group_exit_code ?: (int)code); 926 927 #ifdef CONFIG_POSIX_TIMERS 928 hrtimer_cancel(&tsk->signal->real_timer); 929 exit_itimers(tsk); 930 #endif 931 if (tsk->mm) 932 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 933 } 934 acct_collect(code, group_dead); 935 if (group_dead) 936 tty_audit_exit(); 937 audit_free(tsk); 938 939 tsk->exit_code = code; 940 taskstats_exit(tsk, group_dead); 941 trace_sched_process_exit(tsk, group_dead); 942 943 exit_mm(); 944 945 if (group_dead) 946 acct_process(); 947 948 exit_sem(tsk); 949 exit_shm(tsk); 950 exit_files(tsk); 951 exit_fs(tsk); 952 if (group_dead) 953 disassociate_ctty(1); 954 exit_task_namespaces(tsk); 955 exit_task_work(tsk); 956 exit_thread(tsk); 957 958 /* 959 * Flush inherited counters to the parent - before the parent 960 * gets woken up by child-exit notifications. 961 * 962 * because of cgroup mode, must be called before cgroup_exit() 963 */ 964 perf_event_exit_task(tsk); 965 966 sched_autogroup_exit_task(tsk); 967 cgroup_exit(tsk); 968 969 /* 970 * FIXME: do that only when needed, using sched_exit tracepoint 971 */ 972 flush_ptrace_hw_breakpoint(tsk); 973 974 exit_tasks_rcu_start(); 975 exit_notify(tsk, group_dead); 976 proc_exit_connector(tsk); 977 mpol_put_task_policy(tsk); 978 #ifdef CONFIG_FUTEX 979 if (unlikely(current->pi_state_cache)) 980 kfree(current->pi_state_cache); 981 #endif 982 /* 983 * Make sure we are holding no locks: 984 */ 985 debug_check_no_locks_held(); 986 987 if (tsk->io_context) 988 exit_io_context(tsk); 989 990 if (tsk->splice_pipe) 991 free_pipe_info(tsk->splice_pipe); 992 993 if (tsk->task_frag.page) 994 put_page(tsk->task_frag.page); 995 996 exit_task_stack_account(tsk); 997 998 check_stack_usage(); 999 preempt_disable(); 1000 if (tsk->nr_dirtied) 1001 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 1002 exit_rcu(); 1003 exit_tasks_rcu_finish(); 1004 1005 lockdep_free_task(tsk); 1006 do_task_dead(); 1007 } 1008 1009 void __noreturn make_task_dead(int signr) 1010 { 1011 /* 1012 * Take the task off the cpu after something catastrophic has 1013 * happened. 1014 * 1015 * We can get here from a kernel oops, sometimes with preemption off. 1016 * Start by checking for critical errors. 1017 * Then fix up important state like USER_DS and preemption. 1018 * Then do everything else. 1019 */ 1020 struct task_struct *tsk = current; 1021 unsigned int limit; 1022 1023 if (unlikely(in_interrupt())) 1024 panic("Aiee, killing interrupt handler!"); 1025 if (unlikely(!tsk->pid)) 1026 panic("Attempted to kill the idle task!"); 1027 1028 if (unlikely(irqs_disabled())) { 1029 pr_info("note: %s[%d] exited with irqs disabled\n", 1030 current->comm, task_pid_nr(current)); 1031 local_irq_enable(); 1032 } 1033 if (unlikely(in_atomic())) { 1034 pr_info("note: %s[%d] exited with preempt_count %d\n", 1035 current->comm, task_pid_nr(current), 1036 preempt_count()); 1037 preempt_count_set(PREEMPT_ENABLED); 1038 } 1039 1040 /* 1041 * Every time the system oopses, if the oops happens while a reference 1042 * to an object was held, the reference leaks. 1043 * If the oops doesn't also leak memory, repeated oopsing can cause 1044 * reference counters to wrap around (if they're not using refcount_t). 1045 * This means that repeated oopsing can make unexploitable-looking bugs 1046 * exploitable through repeated oopsing. 1047 * To make sure this can't happen, place an upper bound on how often the 1048 * kernel may oops without panic(). 1049 */ 1050 limit = READ_ONCE(oops_limit); 1051 if (atomic_inc_return(&oops_count) >= limit && limit) 1052 panic("Oopsed too often (kernel.oops_limit is %d)", limit); 1053 1054 /* 1055 * We're taking recursive faults here in make_task_dead. Safest is to just 1056 * leave this task alone and wait for reboot. 1057 */ 1058 if (unlikely(tsk->flags & PF_EXITING)) { 1059 pr_alert("Fixing recursive fault but reboot is needed!\n"); 1060 futex_exit_recursive(tsk); 1061 tsk->exit_state = EXIT_DEAD; 1062 refcount_inc(&tsk->rcu_users); 1063 do_task_dead(); 1064 } 1065 1066 do_exit(signr); 1067 } 1068 1069 SYSCALL_DEFINE1(exit, int, error_code) 1070 { 1071 do_exit((error_code&0xff)<<8); 1072 } 1073 1074 /* 1075 * Take down every thread in the group. This is called by fatal signals 1076 * as well as by sys_exit_group (below). 1077 */ 1078 void __noreturn 1079 do_group_exit(int exit_code) 1080 { 1081 struct signal_struct *sig = current->signal; 1082 1083 if (sig->flags & SIGNAL_GROUP_EXIT) 1084 exit_code = sig->group_exit_code; 1085 else if (sig->group_exec_task) 1086 exit_code = 0; 1087 else { 1088 struct sighand_struct *const sighand = current->sighand; 1089 1090 spin_lock_irq(&sighand->siglock); 1091 if (sig->flags & SIGNAL_GROUP_EXIT) 1092 /* Another thread got here before we took the lock. */ 1093 exit_code = sig->group_exit_code; 1094 else if (sig->group_exec_task) 1095 exit_code = 0; 1096 else { 1097 sig->group_exit_code = exit_code; 1098 sig->flags = SIGNAL_GROUP_EXIT; 1099 zap_other_threads(current); 1100 } 1101 spin_unlock_irq(&sighand->siglock); 1102 } 1103 1104 do_exit(exit_code); 1105 /* NOTREACHED */ 1106 } 1107 1108 /* 1109 * this kills every thread in the thread group. Note that any externally 1110 * wait4()-ing process will get the correct exit code - even if this 1111 * thread is not the thread group leader. 1112 */ 1113 SYSCALL_DEFINE1(exit_group, int, error_code) 1114 { 1115 do_group_exit((error_code & 0xff) << 8); 1116 /* NOTREACHED */ 1117 return 0; 1118 } 1119 1120 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1121 { 1122 return wo->wo_type == PIDTYPE_MAX || 1123 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1124 } 1125 1126 static int 1127 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1128 { 1129 if (!eligible_pid(wo, p)) 1130 return 0; 1131 1132 /* 1133 * Wait for all children (clone and not) if __WALL is set or 1134 * if it is traced by us. 1135 */ 1136 if (ptrace || (wo->wo_flags & __WALL)) 1137 return 1; 1138 1139 /* 1140 * Otherwise, wait for clone children *only* if __WCLONE is set; 1141 * otherwise, wait for non-clone children *only*. 1142 * 1143 * Note: a "clone" child here is one that reports to its parent 1144 * using a signal other than SIGCHLD, or a non-leader thread which 1145 * we can only see if it is traced by us. 1146 */ 1147 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1148 return 0; 1149 1150 return 1; 1151 } 1152 1153 /* 1154 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1155 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1156 * the lock and this task is uninteresting. If we return nonzero, we have 1157 * released the lock and the system call should return. 1158 */ 1159 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1160 { 1161 int state, status; 1162 pid_t pid = task_pid_vnr(p); 1163 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1164 struct waitid_info *infop; 1165 1166 if (!likely(wo->wo_flags & WEXITED)) 1167 return 0; 1168 1169 if (unlikely(wo->wo_flags & WNOWAIT)) { 1170 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1171 ? p->signal->group_exit_code : p->exit_code; 1172 get_task_struct(p); 1173 read_unlock(&tasklist_lock); 1174 sched_annotate_sleep(); 1175 if (wo->wo_rusage) 1176 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1177 put_task_struct(p); 1178 goto out_info; 1179 } 1180 /* 1181 * Move the task's state to DEAD/TRACE, only one thread can do this. 1182 */ 1183 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1184 EXIT_TRACE : EXIT_DEAD; 1185 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1186 return 0; 1187 /* 1188 * We own this thread, nobody else can reap it. 1189 */ 1190 read_unlock(&tasklist_lock); 1191 sched_annotate_sleep(); 1192 1193 /* 1194 * Check thread_group_leader() to exclude the traced sub-threads. 1195 */ 1196 if (state == EXIT_DEAD && thread_group_leader(p)) { 1197 struct signal_struct *sig = p->signal; 1198 struct signal_struct *psig = current->signal; 1199 unsigned long maxrss; 1200 u64 tgutime, tgstime; 1201 1202 /* 1203 * The resource counters for the group leader are in its 1204 * own task_struct. Those for dead threads in the group 1205 * are in its signal_struct, as are those for the child 1206 * processes it has previously reaped. All these 1207 * accumulate in the parent's signal_struct c* fields. 1208 * 1209 * We don't bother to take a lock here to protect these 1210 * p->signal fields because the whole thread group is dead 1211 * and nobody can change them. 1212 * 1213 * psig->stats_lock also protects us from our sub-threads 1214 * which can reap other children at the same time. 1215 * 1216 * We use thread_group_cputime_adjusted() to get times for 1217 * the thread group, which consolidates times for all threads 1218 * in the group including the group leader. 1219 */ 1220 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1221 write_seqlock_irq(&psig->stats_lock); 1222 psig->cutime += tgutime + sig->cutime; 1223 psig->cstime += tgstime + sig->cstime; 1224 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1225 psig->cmin_flt += 1226 p->min_flt + sig->min_flt + sig->cmin_flt; 1227 psig->cmaj_flt += 1228 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1229 psig->cnvcsw += 1230 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1231 psig->cnivcsw += 1232 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1233 psig->cinblock += 1234 task_io_get_inblock(p) + 1235 sig->inblock + sig->cinblock; 1236 psig->coublock += 1237 task_io_get_oublock(p) + 1238 sig->oublock + sig->coublock; 1239 maxrss = max(sig->maxrss, sig->cmaxrss); 1240 if (psig->cmaxrss < maxrss) 1241 psig->cmaxrss = maxrss; 1242 task_io_accounting_add(&psig->ioac, &p->ioac); 1243 task_io_accounting_add(&psig->ioac, &sig->ioac); 1244 write_sequnlock_irq(&psig->stats_lock); 1245 } 1246 1247 if (wo->wo_rusage) 1248 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1249 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1250 ? p->signal->group_exit_code : p->exit_code; 1251 wo->wo_stat = status; 1252 1253 if (state == EXIT_TRACE) { 1254 write_lock_irq(&tasklist_lock); 1255 /* We dropped tasklist, ptracer could die and untrace */ 1256 ptrace_unlink(p); 1257 1258 /* If parent wants a zombie, don't release it now */ 1259 state = EXIT_ZOMBIE; 1260 if (do_notify_parent(p, p->exit_signal)) 1261 state = EXIT_DEAD; 1262 p->exit_state = state; 1263 write_unlock_irq(&tasklist_lock); 1264 } 1265 if (state == EXIT_DEAD) 1266 release_task(p); 1267 1268 out_info: 1269 infop = wo->wo_info; 1270 if (infop) { 1271 if ((status & 0x7f) == 0) { 1272 infop->cause = CLD_EXITED; 1273 infop->status = status >> 8; 1274 } else { 1275 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1276 infop->status = status & 0x7f; 1277 } 1278 infop->pid = pid; 1279 infop->uid = uid; 1280 } 1281 1282 return pid; 1283 } 1284 1285 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1286 { 1287 if (ptrace) { 1288 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1289 return &p->exit_code; 1290 } else { 1291 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1292 return &p->signal->group_exit_code; 1293 } 1294 return NULL; 1295 } 1296 1297 /** 1298 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1299 * @wo: wait options 1300 * @ptrace: is the wait for ptrace 1301 * @p: task to wait for 1302 * 1303 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1304 * 1305 * CONTEXT: 1306 * read_lock(&tasklist_lock), which is released if return value is 1307 * non-zero. Also, grabs and releases @p->sighand->siglock. 1308 * 1309 * RETURNS: 1310 * 0 if wait condition didn't exist and search for other wait conditions 1311 * should continue. Non-zero return, -errno on failure and @p's pid on 1312 * success, implies that tasklist_lock is released and wait condition 1313 * search should terminate. 1314 */ 1315 static int wait_task_stopped(struct wait_opts *wo, 1316 int ptrace, struct task_struct *p) 1317 { 1318 struct waitid_info *infop; 1319 int exit_code, *p_code, why; 1320 uid_t uid = 0; /* unneeded, required by compiler */ 1321 pid_t pid; 1322 1323 /* 1324 * Traditionally we see ptrace'd stopped tasks regardless of options. 1325 */ 1326 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1327 return 0; 1328 1329 if (!task_stopped_code(p, ptrace)) 1330 return 0; 1331 1332 exit_code = 0; 1333 spin_lock_irq(&p->sighand->siglock); 1334 1335 p_code = task_stopped_code(p, ptrace); 1336 if (unlikely(!p_code)) 1337 goto unlock_sig; 1338 1339 exit_code = *p_code; 1340 if (!exit_code) 1341 goto unlock_sig; 1342 1343 if (!unlikely(wo->wo_flags & WNOWAIT)) 1344 *p_code = 0; 1345 1346 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1347 unlock_sig: 1348 spin_unlock_irq(&p->sighand->siglock); 1349 if (!exit_code) 1350 return 0; 1351 1352 /* 1353 * Now we are pretty sure this task is interesting. 1354 * Make sure it doesn't get reaped out from under us while we 1355 * give up the lock and then examine it below. We don't want to 1356 * keep holding onto the tasklist_lock while we call getrusage and 1357 * possibly take page faults for user memory. 1358 */ 1359 get_task_struct(p); 1360 pid = task_pid_vnr(p); 1361 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1362 read_unlock(&tasklist_lock); 1363 sched_annotate_sleep(); 1364 if (wo->wo_rusage) 1365 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1366 put_task_struct(p); 1367 1368 if (likely(!(wo->wo_flags & WNOWAIT))) 1369 wo->wo_stat = (exit_code << 8) | 0x7f; 1370 1371 infop = wo->wo_info; 1372 if (infop) { 1373 infop->cause = why; 1374 infop->status = exit_code; 1375 infop->pid = pid; 1376 infop->uid = uid; 1377 } 1378 return pid; 1379 } 1380 1381 /* 1382 * Handle do_wait work for one task in a live, non-stopped state. 1383 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1384 * the lock and this task is uninteresting. If we return nonzero, we have 1385 * released the lock and the system call should return. 1386 */ 1387 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1388 { 1389 struct waitid_info *infop; 1390 pid_t pid; 1391 uid_t uid; 1392 1393 if (!unlikely(wo->wo_flags & WCONTINUED)) 1394 return 0; 1395 1396 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1397 return 0; 1398 1399 spin_lock_irq(&p->sighand->siglock); 1400 /* Re-check with the lock held. */ 1401 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1402 spin_unlock_irq(&p->sighand->siglock); 1403 return 0; 1404 } 1405 if (!unlikely(wo->wo_flags & WNOWAIT)) 1406 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1407 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1408 spin_unlock_irq(&p->sighand->siglock); 1409 1410 pid = task_pid_vnr(p); 1411 get_task_struct(p); 1412 read_unlock(&tasklist_lock); 1413 sched_annotate_sleep(); 1414 if (wo->wo_rusage) 1415 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1416 put_task_struct(p); 1417 1418 infop = wo->wo_info; 1419 if (!infop) { 1420 wo->wo_stat = 0xffff; 1421 } else { 1422 infop->cause = CLD_CONTINUED; 1423 infop->pid = pid; 1424 infop->uid = uid; 1425 infop->status = SIGCONT; 1426 } 1427 return pid; 1428 } 1429 1430 /* 1431 * Consider @p for a wait by @parent. 1432 * 1433 * -ECHILD should be in ->notask_error before the first call. 1434 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1435 * Returns zero if the search for a child should continue; 1436 * then ->notask_error is 0 if @p is an eligible child, 1437 * or still -ECHILD. 1438 */ 1439 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1440 struct task_struct *p) 1441 { 1442 /* 1443 * We can race with wait_task_zombie() from another thread. 1444 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1445 * can't confuse the checks below. 1446 */ 1447 int exit_state = READ_ONCE(p->exit_state); 1448 int ret; 1449 1450 if (unlikely(exit_state == EXIT_DEAD)) 1451 return 0; 1452 1453 ret = eligible_child(wo, ptrace, p); 1454 if (!ret) 1455 return ret; 1456 1457 if (unlikely(exit_state == EXIT_TRACE)) { 1458 /* 1459 * ptrace == 0 means we are the natural parent. In this case 1460 * we should clear notask_error, debugger will notify us. 1461 */ 1462 if (likely(!ptrace)) 1463 wo->notask_error = 0; 1464 return 0; 1465 } 1466 1467 if (likely(!ptrace) && unlikely(p->ptrace)) { 1468 /* 1469 * If it is traced by its real parent's group, just pretend 1470 * the caller is ptrace_do_wait() and reap this child if it 1471 * is zombie. 1472 * 1473 * This also hides group stop state from real parent; otherwise 1474 * a single stop can be reported twice as group and ptrace stop. 1475 * If a ptracer wants to distinguish these two events for its 1476 * own children it should create a separate process which takes 1477 * the role of real parent. 1478 */ 1479 if (!ptrace_reparented(p)) 1480 ptrace = 1; 1481 } 1482 1483 /* slay zombie? */ 1484 if (exit_state == EXIT_ZOMBIE) { 1485 /* we don't reap group leaders with subthreads */ 1486 if (!delay_group_leader(p)) { 1487 /* 1488 * A zombie ptracee is only visible to its ptracer. 1489 * Notification and reaping will be cascaded to the 1490 * real parent when the ptracer detaches. 1491 */ 1492 if (unlikely(ptrace) || likely(!p->ptrace)) 1493 return wait_task_zombie(wo, p); 1494 } 1495 1496 /* 1497 * Allow access to stopped/continued state via zombie by 1498 * falling through. Clearing of notask_error is complex. 1499 * 1500 * When !@ptrace: 1501 * 1502 * If WEXITED is set, notask_error should naturally be 1503 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1504 * so, if there are live subthreads, there are events to 1505 * wait for. If all subthreads are dead, it's still safe 1506 * to clear - this function will be called again in finite 1507 * amount time once all the subthreads are released and 1508 * will then return without clearing. 1509 * 1510 * When @ptrace: 1511 * 1512 * Stopped state is per-task and thus can't change once the 1513 * target task dies. Only continued and exited can happen. 1514 * Clear notask_error if WCONTINUED | WEXITED. 1515 */ 1516 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1517 wo->notask_error = 0; 1518 } else { 1519 /* 1520 * @p is alive and it's gonna stop, continue or exit, so 1521 * there always is something to wait for. 1522 */ 1523 wo->notask_error = 0; 1524 } 1525 1526 /* 1527 * Wait for stopped. Depending on @ptrace, different stopped state 1528 * is used and the two don't interact with each other. 1529 */ 1530 ret = wait_task_stopped(wo, ptrace, p); 1531 if (ret) 1532 return ret; 1533 1534 /* 1535 * Wait for continued. There's only one continued state and the 1536 * ptracer can consume it which can confuse the real parent. Don't 1537 * use WCONTINUED from ptracer. You don't need or want it. 1538 */ 1539 return wait_task_continued(wo, p); 1540 } 1541 1542 /* 1543 * Do the work of do_wait() for one thread in the group, @tsk. 1544 * 1545 * -ECHILD should be in ->notask_error before the first call. 1546 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1547 * Returns zero if the search for a child should continue; then 1548 * ->notask_error is 0 if there were any eligible children, 1549 * or still -ECHILD. 1550 */ 1551 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1552 { 1553 struct task_struct *p; 1554 1555 list_for_each_entry(p, &tsk->children, sibling) { 1556 int ret = wait_consider_task(wo, 0, p); 1557 1558 if (ret) 1559 return ret; 1560 } 1561 1562 return 0; 1563 } 1564 1565 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1566 { 1567 struct task_struct *p; 1568 1569 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1570 int ret = wait_consider_task(wo, 1, p); 1571 1572 if (ret) 1573 return ret; 1574 } 1575 1576 return 0; 1577 } 1578 1579 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p) 1580 { 1581 if (!eligible_pid(wo, p)) 1582 return false; 1583 1584 if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent) 1585 return false; 1586 1587 return true; 1588 } 1589 1590 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1591 int sync, void *key) 1592 { 1593 struct wait_opts *wo = container_of(wait, struct wait_opts, 1594 child_wait); 1595 struct task_struct *p = key; 1596 1597 if (pid_child_should_wake(wo, p)) 1598 return default_wake_function(wait, mode, sync, key); 1599 1600 return 0; 1601 } 1602 1603 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1604 { 1605 __wake_up_sync_key(&parent->signal->wait_chldexit, 1606 TASK_INTERRUPTIBLE, p); 1607 } 1608 1609 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1610 struct task_struct *target) 1611 { 1612 struct task_struct *parent = 1613 !ptrace ? target->real_parent : target->parent; 1614 1615 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1616 same_thread_group(current, parent)); 1617 } 1618 1619 /* 1620 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1621 * and tracee lists to find the target task. 1622 */ 1623 static int do_wait_pid(struct wait_opts *wo) 1624 { 1625 bool ptrace; 1626 struct task_struct *target; 1627 int retval; 1628 1629 ptrace = false; 1630 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1631 if (target && is_effectively_child(wo, ptrace, target)) { 1632 retval = wait_consider_task(wo, ptrace, target); 1633 if (retval) 1634 return retval; 1635 } 1636 1637 ptrace = true; 1638 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1639 if (target && target->ptrace && 1640 is_effectively_child(wo, ptrace, target)) { 1641 retval = wait_consider_task(wo, ptrace, target); 1642 if (retval) 1643 return retval; 1644 } 1645 1646 return 0; 1647 } 1648 1649 long __do_wait(struct wait_opts *wo) 1650 { 1651 long retval; 1652 1653 /* 1654 * If there is nothing that can match our criteria, just get out. 1655 * We will clear ->notask_error to zero if we see any child that 1656 * might later match our criteria, even if we are not able to reap 1657 * it yet. 1658 */ 1659 wo->notask_error = -ECHILD; 1660 if ((wo->wo_type < PIDTYPE_MAX) && 1661 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1662 goto notask; 1663 1664 read_lock(&tasklist_lock); 1665 1666 if (wo->wo_type == PIDTYPE_PID) { 1667 retval = do_wait_pid(wo); 1668 if (retval) 1669 return retval; 1670 } else { 1671 struct task_struct *tsk = current; 1672 1673 do { 1674 retval = do_wait_thread(wo, tsk); 1675 if (retval) 1676 return retval; 1677 1678 retval = ptrace_do_wait(wo, tsk); 1679 if (retval) 1680 return retval; 1681 1682 if (wo->wo_flags & __WNOTHREAD) 1683 break; 1684 } while_each_thread(current, tsk); 1685 } 1686 read_unlock(&tasklist_lock); 1687 1688 notask: 1689 retval = wo->notask_error; 1690 if (!retval && !(wo->wo_flags & WNOHANG)) 1691 return -ERESTARTSYS; 1692 1693 return retval; 1694 } 1695 1696 static long do_wait(struct wait_opts *wo) 1697 { 1698 int retval; 1699 1700 trace_sched_process_wait(wo->wo_pid); 1701 1702 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1703 wo->child_wait.private = current; 1704 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1705 1706 do { 1707 set_current_state(TASK_INTERRUPTIBLE); 1708 retval = __do_wait(wo); 1709 if (retval != -ERESTARTSYS) 1710 break; 1711 if (signal_pending(current)) 1712 break; 1713 schedule(); 1714 } while (1); 1715 1716 __set_current_state(TASK_RUNNING); 1717 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1718 return retval; 1719 } 1720 1721 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid, 1722 struct waitid_info *infop, int options, 1723 struct rusage *ru) 1724 { 1725 unsigned int f_flags = 0; 1726 struct pid *pid = NULL; 1727 enum pid_type type; 1728 1729 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1730 __WNOTHREAD|__WCLONE|__WALL)) 1731 return -EINVAL; 1732 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1733 return -EINVAL; 1734 1735 switch (which) { 1736 case P_ALL: 1737 type = PIDTYPE_MAX; 1738 break; 1739 case P_PID: 1740 type = PIDTYPE_PID; 1741 if (upid <= 0) 1742 return -EINVAL; 1743 1744 pid = find_get_pid(upid); 1745 break; 1746 case P_PGID: 1747 type = PIDTYPE_PGID; 1748 if (upid < 0) 1749 return -EINVAL; 1750 1751 if (upid) 1752 pid = find_get_pid(upid); 1753 else 1754 pid = get_task_pid(current, PIDTYPE_PGID); 1755 break; 1756 case P_PIDFD: 1757 type = PIDTYPE_PID; 1758 if (upid < 0) 1759 return -EINVAL; 1760 1761 pid = pidfd_get_pid(upid, &f_flags); 1762 if (IS_ERR(pid)) 1763 return PTR_ERR(pid); 1764 1765 break; 1766 default: 1767 return -EINVAL; 1768 } 1769 1770 wo->wo_type = type; 1771 wo->wo_pid = pid; 1772 wo->wo_flags = options; 1773 wo->wo_info = infop; 1774 wo->wo_rusage = ru; 1775 if (f_flags & O_NONBLOCK) 1776 wo->wo_flags |= WNOHANG; 1777 1778 return 0; 1779 } 1780 1781 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1782 int options, struct rusage *ru) 1783 { 1784 struct wait_opts wo; 1785 long ret; 1786 1787 ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru); 1788 if (ret) 1789 return ret; 1790 1791 ret = do_wait(&wo); 1792 if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG)) 1793 ret = -EAGAIN; 1794 1795 put_pid(wo.wo_pid); 1796 return ret; 1797 } 1798 1799 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1800 infop, int, options, struct rusage __user *, ru) 1801 { 1802 struct rusage r; 1803 struct waitid_info info = {.status = 0}; 1804 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1805 int signo = 0; 1806 1807 if (err > 0) { 1808 signo = SIGCHLD; 1809 err = 0; 1810 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1811 return -EFAULT; 1812 } 1813 if (!infop) 1814 return err; 1815 1816 if (!user_write_access_begin(infop, sizeof(*infop))) 1817 return -EFAULT; 1818 1819 unsafe_put_user(signo, &infop->si_signo, Efault); 1820 unsafe_put_user(0, &infop->si_errno, Efault); 1821 unsafe_put_user(info.cause, &infop->si_code, Efault); 1822 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1823 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1824 unsafe_put_user(info.status, &infop->si_status, Efault); 1825 user_write_access_end(); 1826 return err; 1827 Efault: 1828 user_write_access_end(); 1829 return -EFAULT; 1830 } 1831 1832 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1833 struct rusage *ru) 1834 { 1835 struct wait_opts wo; 1836 struct pid *pid = NULL; 1837 enum pid_type type; 1838 long ret; 1839 1840 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1841 __WNOTHREAD|__WCLONE|__WALL)) 1842 return -EINVAL; 1843 1844 /* -INT_MIN is not defined */ 1845 if (upid == INT_MIN) 1846 return -ESRCH; 1847 1848 if (upid == -1) 1849 type = PIDTYPE_MAX; 1850 else if (upid < 0) { 1851 type = PIDTYPE_PGID; 1852 pid = find_get_pid(-upid); 1853 } else if (upid == 0) { 1854 type = PIDTYPE_PGID; 1855 pid = get_task_pid(current, PIDTYPE_PGID); 1856 } else /* upid > 0 */ { 1857 type = PIDTYPE_PID; 1858 pid = find_get_pid(upid); 1859 } 1860 1861 wo.wo_type = type; 1862 wo.wo_pid = pid; 1863 wo.wo_flags = options | WEXITED; 1864 wo.wo_info = NULL; 1865 wo.wo_stat = 0; 1866 wo.wo_rusage = ru; 1867 ret = do_wait(&wo); 1868 put_pid(pid); 1869 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1870 ret = -EFAULT; 1871 1872 return ret; 1873 } 1874 1875 int kernel_wait(pid_t pid, int *stat) 1876 { 1877 struct wait_opts wo = { 1878 .wo_type = PIDTYPE_PID, 1879 .wo_pid = find_get_pid(pid), 1880 .wo_flags = WEXITED, 1881 }; 1882 int ret; 1883 1884 ret = do_wait(&wo); 1885 if (ret > 0 && wo.wo_stat) 1886 *stat = wo.wo_stat; 1887 put_pid(wo.wo_pid); 1888 return ret; 1889 } 1890 1891 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1892 int, options, struct rusage __user *, ru) 1893 { 1894 struct rusage r; 1895 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1896 1897 if (err > 0) { 1898 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1899 return -EFAULT; 1900 } 1901 return err; 1902 } 1903 1904 #ifdef __ARCH_WANT_SYS_WAITPID 1905 1906 /* 1907 * sys_waitpid() remains for compatibility. waitpid() should be 1908 * implemented by calling sys_wait4() from libc.a. 1909 */ 1910 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1911 { 1912 return kernel_wait4(pid, stat_addr, options, NULL); 1913 } 1914 1915 #endif 1916 1917 #ifdef CONFIG_COMPAT 1918 COMPAT_SYSCALL_DEFINE4(wait4, 1919 compat_pid_t, pid, 1920 compat_uint_t __user *, stat_addr, 1921 int, options, 1922 struct compat_rusage __user *, ru) 1923 { 1924 struct rusage r; 1925 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1926 if (err > 0) { 1927 if (ru && put_compat_rusage(&r, ru)) 1928 return -EFAULT; 1929 } 1930 return err; 1931 } 1932 1933 COMPAT_SYSCALL_DEFINE5(waitid, 1934 int, which, compat_pid_t, pid, 1935 struct compat_siginfo __user *, infop, int, options, 1936 struct compat_rusage __user *, uru) 1937 { 1938 struct rusage ru; 1939 struct waitid_info info = {.status = 0}; 1940 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1941 int signo = 0; 1942 if (err > 0) { 1943 signo = SIGCHLD; 1944 err = 0; 1945 if (uru) { 1946 /* kernel_waitid() overwrites everything in ru */ 1947 if (COMPAT_USE_64BIT_TIME) 1948 err = copy_to_user(uru, &ru, sizeof(ru)); 1949 else 1950 err = put_compat_rusage(&ru, uru); 1951 if (err) 1952 return -EFAULT; 1953 } 1954 } 1955 1956 if (!infop) 1957 return err; 1958 1959 if (!user_write_access_begin(infop, sizeof(*infop))) 1960 return -EFAULT; 1961 1962 unsafe_put_user(signo, &infop->si_signo, Efault); 1963 unsafe_put_user(0, &infop->si_errno, Efault); 1964 unsafe_put_user(info.cause, &infop->si_code, Efault); 1965 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1966 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1967 unsafe_put_user(info.status, &infop->si_status, Efault); 1968 user_write_access_end(); 1969 return err; 1970 Efault: 1971 user_write_access_end(); 1972 return -EFAULT; 1973 } 1974 #endif 1975 1976 /* 1977 * This needs to be __function_aligned as GCC implicitly makes any 1978 * implementation of abort() cold and drops alignment specified by 1979 * -falign-functions=N. 1980 * 1981 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11 1982 */ 1983 __weak __function_aligned void abort(void) 1984 { 1985 BUG(); 1986 1987 /* if that doesn't kill us, halt */ 1988 panic("Oops failed to kill thread"); 1989 } 1990 EXPORT_SYMBOL(abort); 1991